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Abstract

Given multiple datasets over a fixed set of random variables,
each collected from a different environment, we are interested
in discovering the shared underlying causal network and the
local interventions per environment, without assuming prior
knowledge on which datasets are observational or interven-
tional, and without assuming the shape of the causal depen-
dencies. We formalize this problem using the Algorithmic
Model of Causation, instantiate a consistent score via the Min-
imum Description Length principle, and show under which
conditions the network and interventions are identifiable. To
efficiently discover causal networks and intervention targets
in practice, we introduce the ORION algorithm, which through
extensive experiments we show outperforms the state of the
art in causal inference over multiple environments.

1 Introduction
We consider the setting where we have multiple datasets
generated by a shared underlying causal mechanism, but
where each dataset is collected over a different environment.
That is, each dataset obtains observations over the same set
of variables, but with a different source distribution, or, may
be generated through an intervention upon the underlying
mechanism. Our goal is to jointly discover the overall causal
network as well as the local interventions without knowing
which datasets are observational and which are interventional.

As a motivating example, suppose we are interested in
learning the underlying causal process of some rare disease.
A single hospital typically sees too few such patients as to col-
lect sufficient data for drawing causal conclusions, and hence
we will have to consider data collected at multiple hospitals.
It is at best cumbersome to centralize the data due to privacy
regulations. Even if we could centrally collect the data, by
their location and specialization, every hospital will have a
different distribution of patients, and because of difference
in staff, machinery, etc., the parameters of the local data gen-
erating mechanisms will not all be exactly the same. If, for
example, a certain test or drug is locally unavailable, the data
collected there will be from an interventional distribution.
Whether a dataset has been intervened upon is unknown in
general and pool all data together in such cases can introduce
bias in estimation (Lee and Tsui 1982; Tillman 2009).
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While there exist approaches capable of discovering causal
networks (Spirtes et al. 2000; Chickering 2002; Shimizu et al.
2006; Huang et al. 2018; Peters et al. 2014), they are designed
to work only on a single dataset. Approaches that do take
the multiple datasets into account work on strict assumptions
such as having prior knowledge of intervention targets (Yang,
Katcoff, and Uhler 2018; Hauser and Bühlmann 2012), can
not match interventions on environments (Zhang et al. 2017)
or impose strict assumptions on the underlying causal mech-
anisms that are unlikely to hold in practice (Shimizu 2012;
Ghassami et al. 2017).

To discover causal networks using data over multiple envi-
ronments, we build our approach on the algorithmic model
of causality. We use the postulate of Algorithmic Markov
Condition (AMC) (Janzing and Schölkopf 2010) stating that
the true causal factorization of the joint distribution has the
lowest Kolmogorov complexity, which allows us to uniquely
identify a fully directed overall causal networks and local
interventions. Kolmogorov complexity is not computable it-
self, but can be instantiated in a statistically well-founded
manner using the Minimum Description Length (MDL) prin-
ciple (Marx and Vreeken 2021).

We define a theoretically sound MDL score for jointly dis-
covering the causal model and local interventions, and pro-
vide a practical greedy-algorithm to optimize our proposed
score. We explicitly do not assume any prior knowledge of
which datasets are observational or interventional and nei-
ther assume anything about the functional form of causal
relationships between the variables. Our contributions are:

1. We build an approach to discover the overall causal net-
work, the intervention targets within each environment, as
well as the local causal networks for data collected over
different environments.

2. We instantiate a consistent MDL-based score for non-
linear causal models and show under which assumptions it
identifies fully directed causal networks and interventions.

3. To discover causal networks and interventions in practice,
we propose an efficient greedy DAG search algorithm,
called ORION. Through an extensive set of experiments
we verify that it performs well in practice, outperform-
ing the state of the art exact approaches in both causal
discovery and identifying interventions over multiple en-
vironments.



2 Related Work
There exist many proposals for discovering causal networks
from a single (typically observational) i.i.d. dataset (Spirtes
et al. 2000; Chickering 2002; Huang et al. 2018; Compton
et al. 2021), which discover partially directed causal net-
works. While Mian, Marx, and Vreeken (2021) propose an
approach to discover fully directed networks, their method
is restricted to a single dataset and can not handle interven-
tions. Initial proposals that discover causal networks over
multiple environments focused on single target variables (Pe-
ters, Bühlmann, and Meinshausen 2016; Yu et al. 2019) and
can not trivially be extended to discover causal networks.
Many methods assume we either know the intervention tar-
gets (Hauser and Bühlmann 2012; Triantafillou and Tsamardi-
nos 2015; Yang, Katcoff, and Uhler 2018), or the environ-
ments that were intervened upon(Squires, Wang, and Uhler
2020; Brouillard et al. 2020). Recently, Faria, Martins, and
Figueiredo (2022) proposed an approach to relax the assump-
tion of known intervention environments. Approaches that do
not need prior knowledge of interventions substitute it with
other restrictive assumptions such as assuming a single type
of intervention (Cooper and Yoo 1999; Kocaoglu et al. 2019)
or fixing a functional form between cause and effect (Eaton
and Murphy 2007; Shimizu 2012). In practice we often nei-
ther know which environments are interventional, nor do we
know intervened variables, nor the causal functional forms.

The task of discovering causal networks over multiple
environments without assuming any prior knowledge of in-
terventions has been addressed by introducing an additional
context variable that takes a fixed value within each environ-
ment (Zhang et al. 2017). While a single context variable
allows to identify intervention targets across different en-
vironments, one can not single out the environment where
the intervention happens. Mooij, Magliacane, and Claassen
(2016) propose the unifying Joint Causal Inference (JCI)
framework that can be implemented using any constraint-
based causal discovery algorithm. JCI proposes to introduce
one context variable per environment, thereby allowing lo-
calization of intervention targets within each context. JCI,
however, outputs the overall global causal network and the
intervention targets. It does not give us information about
what are the local causal networks within environment, or
what type of intervention has been performed. Finally, Jaber
et al. (2020) recently provide a graphical characterization
for testing whether two causal graphs with potentially dif-
ferent intervention targets belong to the same equivalence
class. They, however, works under the assumption that the
underlying structure stays the same for all the environments.

3 Preliminaries
Setup and Notation For a set of random variables, X =
{X1, . . . , Xm} with Xi ∈ R, a Structural Causal Model
(SCM) (Pearl 2009) S models a joint distribution P over X
corresponding to the observational distribution of the system.
A causal DAG G over X is a graph in which the nodes
represent random variables and edges identify the causal
relationships as defined by S. A directed edge between two
variablesXi → Xj implies thatXi is a direct cause or parent

of Xj . We denote the set of parents of Xj with paj and use
|paj | to denote the size of the parent-set. Given a sample
D ∈ Rm×n of size n from P , the goal of causal discovery
is to identify the underlying causal directed acyclic graph
(DAG) G entailed by S from this sample.

Under the assumptions of 1) causal faithfulness (Spirtes
et al. 2000), 2) the causal Markov condition (Spirtes et al.
2000) and 3) causal sufficiency (Pearl 2009) it is possible
to discover causal networks from observational data up to
the Markov equivalence class (Glymour, Zhang, and Spirtes
2019). When we want to identify a fully oriented causal net-
work we need additional assumptions (Peters, Janzing, and
Schölkopf 2017), such as that the effect is a non-linear func-
tion of its causal parents with independent, additive Gaussian
noise (Hoyer et al. 2009) or the assumption of low-noise
between causal pairs (Marx and Vreeken 2019) which we
elaborate in Sec. 4.

Under these assumptions, fully directed causal networks
cannot only be identified, but also learned from data (Shimizu
et al. 2006; Mian, Marx, and Vreeken 2021). Next, we show
how the DAG G can be learned given a dataset D.

Information Theoretic Causal Discovery The main build-
ing block of the information theoretic model of causality is
the algorithmic Markov condition (Janzing and Schölkopf
2010) which is based on Kolmogorov complexity. The Kol-
mogorov complexity of a finite binary string x is the length
of the shortest binary program p∗ for a universal Turing ma-
chine U that outputs x and halts (Kolmogorov 1965; Li and
Vitányi 2009). This p∗ is the length of the ultimate lossless
compression of x. Similarly, the Kolmogorov complexity of a
probability distribution P , K(P ), is the length of the shortest
program that outputs P (x) to precision q on input ⟨x, q⟩ (Li
and Vitányi 2009). Formally stated,

K(P ) = min
p∈{0,1}∗

{|p| : |U(p, x, q)− P (x)| ≤ 1/q} .

Using Kolmogorov complexity, Janzing and Schölkopf
(2010) postulate the Algorithmic Markov Condition (AMC).
Postulate 1 ((Janzing and Schölkopf 2010)) A causal
DAG G over random variables X with joint density P is
only acceptable if the shortest description of P factorizes as

K(P (X1, . . . , Xm)) =

m∑
j=1

K(P (Xj | paj)) . (1)

which holds up to an additive constant.
Under this model the true DAG that generated D will have
the lowest Kolmogorov complexity. Intuitively, this implies
that the set paj most succinctly describes each P (Xj |·).

Due to, among others, the halting problem, Kolmogorov
complexity is not computable. We can, however, approxi-
mate it from above through lossless compression (Li and
Vitányi 2009). The Minimum Description Length (MDL)
principle (Rissanen 1978; Grünwald 2007) provides a statis-
tically well-founded framework to do so. Marx and Vreeken
(2021) prove a formal connection between AMC and MDL
by showing that the MDL formulation gives (on expectation)
the same inference result as the original postulate. There-
fore, in the limit n → ∞, finding the true DAG can be



achieved by finding the minimizer of a suitable lossless
MDL score. Given a model class M, MDL chooses the
best model M ∈ M for data D as the one that minimizes,
L(D,M) = L(M) + L(D |M), where L(M) is the length
in bits of the description of M , and L(D |M) is the length
in bits of the description of data D given M .

To use MDL in practice we need to define a model class,
and how to encode a model, resp. the data given a model, into
bits. Our goal is to measure the complexity of a dataset under
a model class after all. We are not concerned with the actual
codes but rather only the optimal code lengths (Grünwald
2007). Hence, all logarithms are to base 2 and we use the
common convention that 0 log 0 = 0.

Intervention Detection An intervention set Υ over an
SCM S defines any external perturbation that inhibits the
influence of one or more parents of any Xi ∈ X , resulting
in a new joint distribution P̃ over X . If we were to know
the true causal DAG G∗ that models the observational dis-
tribution over X and have infinite samples from some new
environment D̃, it is straightforward to discover if D̃ was
generated from the original DAG G∗ or an intervened DAG
G̃: First, we would discover G̃ over D̃. We can then simply
consider the difference between the edge-sets E(G∗)− E(G̃)
to discover what are the intervened variables, if any.

In practice, neither do we have infinite data, nor do we
know G∗ in advance. Even if we could learn G∗ from limited
data D, we first need to ensure that there are no interventions
present in D. This results in a cyclic dependency as learning
what interventions are present in the data was our goal in the
first place. The key question we hence need to answer is: How
can we, given only limited data from multiple environments,
simultaneously discover the true overall causal network, the
local causal structures as well as the intervention targets
within each environment? This we discuss next.

4 Causal Discovery from Data Drawn
from Multiple Environments

In this section we build on the algorithmic Markov condition
described in Sec. 3 to identify the global resp. local causal
models, as well as the intervention targets. Formally, our
problem statement is:

Problem Statement 1 Given samples D = {D1, . . . ,Dd}
over d environments that share a common SCM. Our goal
is to (a) identify a single causal DAG G∗ representing the
true SCM; (b) identify which Dk ∈D are interventional and
which Xi ∈ Dk are intervened upon; and (c) identify the
local causal network for each Dk.

To address this, we first define our causal model, list down
the assumptions necessary to prove identifiability and present
a novel score. Then we show that the optimizer of this score
identifies the true causal model and interventions in the limit.

4.1 Causal Model and Assumptions
We consider a setup where in each environment k, the value
of each variable Xi is determined by a non-linear function
fki over its causal parents and additive independent Gaussian

noise term with zero mean and unit variance Ni, regulated
by a scaling factor αk

i . For Xi in environment k we have

Xi := fki (pai) + αk
i ·Ni . (2)

We assume that all Ni are jointly independent and that
Ni⊥⊥ pai for all Xi ∈ Dk. We assume that the number of pa-
rameters required to non-parametrically model fki are upper-
bounded by O(log n) (Mian, Marx, and Vreeken 2021).

Assumptions for Identifying Markov Equivalence
Classes To discover causal networks up to Markov equiva-
lence class we need to assume 1) the causal Markov condition,
2) the causal faithfulness (Spirtes et al. 2000), and 3) causal
sufficiency (Pearl 2009). These assumptions allows us to guar-
antee identifiability up to the Markov equivalence class of
DAGs, and not just partial ancestral graphs (PAGs) (Spirtes,
Meek, and Richardson 1999).

Assumptions for Identifying Fully Oriented Networks
To ensure that we can orient edges between any pair of vari-
ables, and not just the edges coming into colliders, as is the
case with the Markov equivalence class, we additionally need
the low-noise assumption, meaning that the noise variance
is sufficiently small for the causal pairs within a Markov
equivalence class (Blöbaum et al. 2018) i.e. α→ 0, where α
is the vector consisting of scaling factors αk

i for the bivariate
causal edges and 0 is the null vector. Alternatively, we can
make the assumption that these bivariate causal relationships
are non-invertible. In this work, we make the low-noise as-
sumption because it also covers the class of non-invertible
causal relationships and is therefore a more general case of
the two. This, however, does not imply that the causal rela-
tionships are deterministic. For an extensive discussion on
the low-noise assumption see (Blöbaum et al. 2018)[Sec. 3].

Assumptions for Identifying Interventions We assume
that the true underlying causal network G that generates the
data remains the same for all environments unless it is specif-
ically changed by either (i) Hard-Interventions HI(Xj); or
(ii) inhibiting Soft-Interventions SI(Xj). A hard intervention
on variable Xj eliminates the effect of paj on Xj , whereas
a soft-intervention causes a mechanism change that sets the
effect of a subset of paj to 0.

4.2 Encoding the Causal Model
To instantiate AMC (Eq. (1)) for our causal model (Eq. (2))
we need to define a lossless MDL score (Marx and Vreeken
2021). The model classM that we consider for our proposed
MDL score consists of all possible DAGs over X , the set
of local DAGs each environment, as well as the SCM that
models fki for all Xi in each Dk ∈ D. The correct model
M ∈M is therefore one that minimizes L(D,M) such that

M∗ = argmin
M∈M

L(D,M)

= argmin
M∈M

(
L(M) +

d∑
k=1

m∑
i=1

L(Xk
i |paki , fki )

)

= argmin
M∈M

(
L(M) +

d∑
k=1

m∑
i=1

L(ϵi,k)

)



where paki are parents of variable Xi in dataset k according
to the modelM . We reformulate L(Xk

i |paki , fki ) in the above
equation by L(ϵki ) to highlight that encoding each Xi once
fki and the parents are specified, comes down to storing the
residuals ϵi,k. We define the cost of the model as

L(M) = Lstr (M) +

d∑
k=1

Lmec(M
k|M) ,

where Lstr is the cost of storing the network structures
and Lmec is the cost of storing the SCM once the structure is
specified. Next, we describe what each of these costs are.

Structure The structure cost consists of the number of bits
required to encode the global causal network as well as the
interventions present in each environment. Formally we have

Lstr (M) = L(G∗) +

d∑
k=1

L(Gk|G∗) ,

where we first encode the global causal network G∗, and for
each Gk what are the interventions on G∗. Formally stated

L(G∗) = LN(d)+LN(m)+

m∑
i=1

LN(|pai|)+log

(
m

|pai|

)
,

where we first encode the number of environments, resp.
variables, using LN, the optimal encoding for integers z ≥
0 (Rissanen 1983). It is defined as LN(z) = log∗ z + log c0,
where log∗ z = log z + log log z + . . . and we consider only
the positive terms, c0 is a normalization constant to ensure
the Krafft-inequality holds (Krafft 1949). Then, for each of
the m variables, we encode the number of parents |pai| and
identify pai from m using log

(
m

|pai|
)

bits.
Next we encode the local networks Gk once the interven-

tions over G∗ are provided, i.e. L(Gk|G∗) is defined as

L(Gk|G∗) = log(m) + log

(
m

m̃k

)
+

∑
Xi∈X̃k

log(|pai|) + log

(
|pai |
|pak

i |

)
.

For each local network, we encode the number, m̃ and iden-
tity X̃k of intervened variables. Then, for each intervened
variable, we identify the its active set of parents.

Combining the above, we have a lossless code for the
causal structure.

Mechanisms Next we define how to encode an SCM over
M . Effectively we have to encode the function fki for all Xi

in each Dk ∈D. This is defined as

Lmec(M
k|M) =

m∑
i=1

L(fki ) .

Our causal model makes no assumption on the functional
form of the causal relationship. We model each fki non-
parametrically. In particular we use multivariate regression
splines (Friedman 1991) of the form Xi :=

∑|H|
j=1 fj(Pj) ,

where fj is a hinge function applied to a subset of Xi’s

parents Pj with size |Pj |. A hinge function is of the form
f(P) = a ·

∏T
t=1 max(0, gt(pat) − bt) , where T denotes

the number of multiplicative terms in the hinge, pat ∈ P is
the parent associated with the t-th term, and gt is a non-linear
transformation from a finite function class F applied to pat.
The cost to store the causal mechanism using multivariate
regression splines can then be defined as

L(f) = LN(|H|) +
∑
hj∈H

[
LN(Tj) + log

(
|P|+ Tj − 1

Tj

)

+ Tj log(|F|) + Lp(θj)
]
.

We use LN to encode the number of hinges. Then for each
hinge, we encode the number of terms per hinge, the correct
assignment of terms Tj to parents in P , the number of bits to
identify non-linear transformations used for each term in the
hinge, and parameters θj associated with th j-th term. We
encode the parameters θj using Lp(θj) (Marx and Vreeken
2017) formally defined as

Lp(θ) =

|θ|∑
i=1

1 + LN(zi) + LN(⌈θi · 10zi⌉) ,

where zi is the smallest integer such that |θi| · 10zi ≥ 10p.
Simply put, p = 2 implies that we consider the first two
digits of the parameter. For each parameter we encode the
sign using 1 bit, encode the shift zi and the shifted parameter
θi. We work with fixed precision for parameters θi, meaning
that Lp is computed in constant time w.r.t sample size.

Residuals As a final step to obtaining a lossless score, we
need to encode the noise that remains in the system once
the specified model has captured the structure and generat-
ing mechanism of the data. Since we use regression func-
tions, we aim to minimize the variance of the residual, and
hence encode the residual ϵ as Gaussian distributed with
zero-mean (Grünwald 2007), that is

L(ϵi,k) =
n

2

(
1

ln 2
+ log 2πσ̂2

i,k

)
,

where we compute the empirical variance σ̂2
i,k from the resid-

ual, ϵi,k.
Combining all of the above, we have a lossless MDL score

by which we can instantiate the AMC. Next we establish the-
oretical guarantees entailed by the defined causal model and
prove that the minimizer of L(D,M) identifies the correct
causal network and interventions in the limit.

4.3 Asymptotic Guarantees
In the following we show that the proposed score is consistent
when n→∞. We show that under the assumptions described
in Sec. 4.1, it identifies hard interventions as well as inhibiting
soft-interventions. We provide all the proofs in Appendix A.

We begin by showing that missing edges in local causal
networks are the result of interventions.
Lemma 1 ∀i, k HI(Xk

i ) ⇐⇒ paki = ∅ , and
SI(Xk

i ) ⇐⇒ paki ⊂ pai



To provide further identifiability results we first state the
definition of a conservative set of interventions as stated by
Hauser and Bühlmann(Hauser and Bühlmann 2012).

Definition 2 ((Hauser and Bühlmann 2012)) A set of in-
terventions Υ is conservative, if ∀Xi ∈

⋃d
k=1 Υ

k,∃Υk ∈ Υ
such that Xi /∈ Υk.

Simply put, a set of interventions Υ is conservative if for
each variable Xi we can find at least one environment in
which it is not intervened upon (Xi /∈ Υk). Let G∗ be the
true global network and Gk be the network discovered for
environment k.

Lemma 3 If Υ is conservative,
⋃d

k=1G
k = G∗, if Υ is

non-conservative,
⋃d

k=1 Gk ⊆ G∗.

Next, we provide our main result. We can show the following
best resp. worst case result that we can guarantee for the
causal model defined in Eq. (2).

Theorem 4 Let Y be the set of all effects such that ∀Yi ∈
Y, |pai| = 1. If ∀Yi, k αk

i → 0, L(D,M) will be the lowest
for the true fully-oriented causal network.

Moreover we can still identify the correct Markov equiva-
lence class, even when the low noise assumption is violated,

Theorem 5 L(D,M) correctly identifies the collider struc-
tures in the underlying causal network.

Proof sketch For an intuitive explanation of our main result,
consider Thm. 5 first. Identifying collider structure means
that our score identifies causal DAGs up to Markov equiva-
lence class at the very least. This implies that any undirected
edges that exist in the final network are between pairs of vari-
ables that are not colliders. For such case, our causal model
simplifies to the pair-wise model of Marx and Vreeken (Marx
and Vreeken 2019). They prove that under the low-noise as-
sumption, orientation of such pair-wise edges is identifiable
using an L0 regularized score (e.g. BIC). Meaning, for the
pair-wise model between variables X and Y , the BIC score
for regressing Y onto X , resp. X onto Y , will be highest in
the causal direction. Next, note that the BIC score is equal
to the negative of the MDL criterion. Thus, if we were to
score all Markov equivalent DAGs using an MDL based L0

regularized score, the causal one will obtain the lowest score.
Consequently, to prove Thm. 5, we reformulate L(D,M)
to show that it is a valid L0 regularized score. Using this
score in conjunction with the low-noise assumption stated in
Sec 4.2 lets us identify any remaining bivariate cases in the
causal network, which proves Thm. 4.

It is worth noting that our proposed score identifies
the fully oriented causal network, it neither requires using
distribution-shifts nor introducing additional context vari-
ables to orient any remaining edges. These theoretical guar-
antees, however, only hold if we score all possible DAGs over
the data. This quickly becomes infeasible for large graphs.
Indeed, finding the exact Bayesian network is known to be
NP-hard (Chickering, Heckerman, and Meek 2004). Hence,
we propose a practical approach to minimizing L(D,M).

Algorithm 1: The ORION Algorithm
Input: Datasets D over X
Output: Array of causal networks G

1 for k = 1 . . . d do
2 Gk ← ∅
3 G←

[
G1, . . . Gd

]
4 repeat
5 G← FORWARDSEARCH(G,D)
6 G← BACKWARDSEARCH(G,D)
7 until convergence;
8 return G

5 Practical Algorithm
In this section we present a practical algorithm ORION for dis-
covering causal DAGs from multivariate continuous valued
data over multiple environments. ORION greedily adds and
removes edges to the global resp. local causal networks such
that it reduces L(D,M) most. Similar to GES, it performs
forward and backward search, repeated until convergence.
We provide the algorithm outline in Alg. 1 and give detailed
pseudocode in Appendix C. It learns a causal network by
iteratively adding and removing edges to the global struc-
ture, and encoding interventions for the datasets that reject
the globally introduced edges. As output, it returns the (in-
tervened) local causal networks. We take union over these
networks to reconstruct the predicted global causal network
(Lem. 3) and take the difference between the edge-sets of
global and local causal networks to determine the interven-
tion targets (Lem. 1). As our score is lower-bounded at 0, and
we only take steps that reduce our score, it is guaranteed to
converge. Even though the guarantees of greedy DAG search
are limited to causal trees, we show in Sec. 6 that ORION
outperforms state-of-the-art exact search algorithms. Next,
we describe the ranking mechanism and the search phases.

Edge gain To calculate the gain provided by each edge,
we first measure the bits that we save by adding an edge in
the current model. Formally, let eij = Xi → Xj , and M be
the current model. We write M ⊕ eij to denote the model
with edge eij included. We define the absolute gain in bits δ
associated with edge eij as

δ(eij) = max {0, L(D,M)− L(D,M ⊕ eij)} .

Next, we calculate the true gain for this edge by calculating
the relative bits we gain over adding this edge in the opposite
direction. Formally,

ψ(eij) = δ(eij)− δ(eji) .

Intuitively, the higher the value of ψ(eij), the more certain we
are that we inferred the correct direction for this edge. This is
motivated by the no-hypercompression inequality (Grünwald
2007), which we use to test the significance of each edge.
Let s = ψ(e), the probability of gaining s bits over the null
model is less than or equal to 2−s. If we find that the gain
for an edge is not significant— i.e. 2−s is greater than the
desired significance threshold— we do not add this edge.



Table 1: [Lower is Better] Averaged normalized SID for syn-
thetic data with m = 10. Intervals indicates the best, resp.
worst possible intervention distance for methods that output
the Markov equivalence class of the causal network.

d ORION LINGAM JCI-PC CDNOD

3 0.45 0.58 [0.47, 0.67] [0.48, 0.55]
5 0.44 0.55 [0.45, 0.67] [0.44, 0.48]
7 0.42 0.53 [0.42, 0.65] [0.56, 0.66]
9 0.43 0.52 [0.44, 0.63] [0.60, 0.70]

Forward Search In forward search, we maintain a priority
queue containing the edges eij ordered by the gain in bits
ψ(eij), when adding the edge to the model. We iteratively
build the causal graph by adding the highest ranked edge
from the priority queue to the global causal DAG. We reject
edges that introduce cycles in the network. Once an edge
eij is added to the network, we re-rank all the candidate
edges associated with variables Xj in the priority queue. We
repeat this until all the edges have been evaluated and no
edge addition provides gain anymore.

We introduce each edge as part of the global network
which means that the structure cost is shared across datasets.
Each of the datasets, therefore, only need to pay a discounted
cost of storing their causal mechanism in order to include
this edge. If the discounted cost is not enough to register a
gain, an intervention is encoded for this dataset.

Backward Search Since we greedily add edges during the
forward search phase, some parents of variable Xj may be-
come redundant as forward search progresses. This is because
a subset of these parents may be able to explain Xj better.
To remove these redundant parents, we need a backward
search. We iteratively remove that edge from the network
which improves score the most. We remove edges until no
edge removal improves L(D,M) anymore.

Complexity Analysis We first make a pass over the entire
edge-set for each environment to determine the initial edge
gains. This requires O(cdm2 logm) steps where c denotes
the complexity of the regression approach that is used. In
forward search, each edge can lead to at most m− 1 ranking
updates, each of which require O(logm) time when priority
queue is implemented as a heap. Resulting in a complexity of
O(cdm3 logm). The backwards search has a similar upper
bound of O(cdm3 logm). Hence, the overall complexity is
in O(cdm3 logm). ORION compares favorably to the worst-
case complexities of PC , O(2m), GES, O(2m), CDNOD,
O(n3). ORION is inherently parallelizable over both edges
and environments, therefore quite fast in practice.

6 Evaluation
In this section we empirically evaluate ORION, we are mainly
interested in answering the following three questions – (1)
Does ORION accurately discover causal networks over data
from multiple environments? (2) How well does ORION per-
form on real world networks where our assumptions may
not hold? and (3) Does ORION reliably identify intervention
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Figure 1: [Closer to origin is better] Comparison of normal-
ized SHD and SID when all environments contain data from
a different intervention distribution over the same causal net-
work. Dotted lines indicate the uncertainty interval over SID
for JCI-PC, EGES and FGES.

targets? We first describe our experimental setup and then
answer these questions in the subsequent set of experiments.

Setup We compare to state-of-the-art approaches from the
classes of ANM, constraint, and score-based methods. As the
representative ANM-based method, we compare to Direct-
LINGAM (Shimizu 2012) which is an extension of the origi-
nal LINGAM (Shimizu et al. 2006) to multiple datasets. For
constraint-based methods, we compare to CDNOD (Zhang
et al. 2017), and to the JCI framework of (Mooij, Maglia-
cane, and Claassen 2016) using PC (Spirtes et al. 2000) resp.
FCI (Spirtes, Meek, and Richardson 1999). For score-based
approaches, we compare to the permutation-based greedy
search approach, UT-IGSP (Squires, Wang, and Uhler 2020),
the GES algorithm (Chickering 2002; Ramsey et al. 2017)
using the two-layer approach proposed by Eaton and Murphy
(2007), which we refer to as EGES. As baseline, we compute
results over vanilla fast-GES (FGES) (Ramsey et al. 2017) by
taking a union over locally discovered networks.

We evaluate the quality of the discovered networks in terms
of structural similarity using the Structural Hamming Dis-
tance (SHD) (Kalisch and Bühlmann 2007) which measures
the number of edges in which two networks differ. SHD, how-
ever, tells us nothing about the difference in networks’ causal
implications. To measure this causal similarity, we use the
Structural Intervention Distance (SID) (Peters and Bühlmann
2015). SID counts those pairs of variables Xi and Xj , such
that the effect experienced by Xj due to an intervention on
Xi differs between two networks. For comparability over
different datasets, we normalize SHD and SID between 0 and
1, we give the unnormalized scores in Appx. D. To avoid
practical issues like var-sortability (Reisach, Seiler, and We-
ichwald 2021), we standardize all data. We provide the full
experimental setup in Appx D and make our code and data
available in supplementary material.



0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

×

×

×
×

SHD

SI
D

REGED5

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

×

×
××

SHD

SI
D

REGED15
ORION

LINGAM

UT-IGSP

JCI-FCI

JCI-PC

CDNOD

EGES

FGES

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

×

××
×

SHD

SI
D

REGED5s

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

×
×
× ×

SHD

SI
D

REGED15s

Figure 2: [Closer to origin is better] Comparison of nor-
malized SHD and SID for the REGED networks without se-
lection bias (REGED5, REGED15) and with selection bias
(REGED5s, REGED15s). Dotted lines indicate the interval
over SID for JCI-PC, EGES and CDNOD.

Q1. Does ORION accurately discover causal networks
over data from multiple environments? We start with
a simple setting where we generate multiple datasets using
the same underlying distribution. We simulate DAGs using
the Erdős-Rényi model. We model effect as a function of
its causes using polynomial functions in half of the cases.
For other half we use randomly initialized 2-layer neural
networks to model the mechanism. We average the resulting
SID over 100 different runs and report the results in Table. 1.
We omit JCI-FCI because it almost always returns empty
networks, and FGES it reports SID intervals too wide to
convey meaningful information. We find that ORION reports
the best SID, at least as good as the lowest score over the
equivalence classes that JCI-PC resp. CDNOD report.

Next, and more interestingly, we generate each environ-
ment using different intervention distributions from a fixed
underlying causal network. This means that the data for each
environment comes from a different (sub)network, about
which we know neither the type nor the targets of interven-
tion. We report the results in Fig. 1 where we see that ORION
performs best. CDNOD is unable to handle the cases involv-
ing hard interventions.

Q2. How well does ORION perform when assumptions
may not hold? To this end, we use the re-simulated Lung-
cancer gene expression, REGED network (Statnikov et al.
2015). We extract two non-overlapping connected compo-
nents of 5 resp. 15 variables, which we refer to as REGED5
and REGED15. For both networks, we randomly divide the
data into 3 environments containing 250 samples each.

Next, we introduce selection bias in the data by sorting
on one of the variable and dividing the resulting dataset into
three partially overlapping datasets of 200 samples each. We
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Figure 3: [Higher is better] F1 scores for ORION, LINGAM,
JCI-PC, EGES and FGES for identifying intervention targets
in synthetic data over different environment sizes, d. We
omit CDNOD as it does not contain a mechanism to identify
intervention targets within each environment.

repeat this for each variable thereby giving us a total of 5
resp. 15 separate experiment instances for each network. We
refer to these datasets as REGED5s resp. REGED15s.

We show the results for both aforementioned setups in
Fig. 2 where we see that ORION performs the best overall.
Moreover, we see that EGES, CDNOD and JCI-PC have very
wide SID intervals, which restricts us from drawing useful
causal conclusions from the discovered networks.

Q3. Can ORION reliably identify intervention targets?
We test how well ORION can identify both direct and indi-
rect intervention targets over multiple environments. We use
the same structure as used by Zhang et al. (2017) for their
experiments and report the F1-scores for this experiment in
Fig. 3. We see that ORION gets an F1-score average of 0.63,
which is twice as good as LINGAM and JCI-PC. Surprisingly,
FGES, although only a baseline, performs better than both
LINGAM and JCI-PC.

7 Discussion and Conclusion
We proposed novel scores for the discovery of causal net-
works over multiple environments based on the algorithmic
Markov condition and its approximation via MDL. Our anal-
ysis proved that optimizing this score identifies the true DAG
and all local interventions in the limit. This allows us to si-
multaneously discover the underlying causal mechanism and
local interventions over multiple datasets. We proposed a
practical algorithm ORION which, through extensive experi-
ments, we showed that it outperforms the state of the art at
discovering the true causal networks given multiple datasets,
even when all the environments contain data generated from
unknown intervention distributions over the same network,
and reliably identifies intervention targets.

Although non-trivial, it is a promising direction to inves-
tigate implementing the GES (Chickering 2002) procedure
using our score as a line of future work. Such an implementa-
tion will extend all our theoretical guarantees to the proposed
implementation, at the expense of the worst-case runtime
becoming exponential in the number of variables. Currently
we are investigating evolving our proposed score to handle
edge-introducing interventions alongside inhibiting interven-
tions. Maintaining identifiabilty guarantees while doing so is
a challenging yet worthwhile line of future work.
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A Proofs
Lemma 1 ∀i, k HI(Xk

i ) ⇐⇒ paki = ∅ and SI(Xk
i ) ⇐⇒ paki ⊂ pai

Proof: Assume that we are given the true causal network G∗ for an SCM as well as the dataset Dk over the same SCM for
which SI(Xi) holds.

First, we prove the direction paki ⊂ pa∗i −→ SI(Xk
i ) for Lemma 2. Assume that paki ⊂ pa∗i holds but there is no SI(Xi).

Then Xi in Dk is calculated as

Xk
i :=

p∑
j=1

fkj (Skj ) , (3)

with p = 2|pa
k
i | and h and S defined according to our causal model in Sec. 4 of the main text, whereas Xi in D∗ is calculated as

X∗
i :=

q∑
j=1

f∗j (S∗j ) , (4)

with q = 2|pa
∗
i |. Under our assumption that the causal model does not change unless an intervention is performed, equations (3)

and (4) should be equal and we can therefore write.

p∑
j=1

fkj (Skj ) =
q∑

j=1

f∗j (S∗j ) , (5)

Without loss of generality, we can re-write r.h.s of the equation. (5) as two summations as follows,
p∑

j=1

fkj (Skj ) =
p∑

j=1

f∗j (S∗j ) +
q∑

r=p+1

f∗r (S∗r ) , (6)

where the summation
∑p

j=1 on both sides of the equation, corresponds to the same indices of the generating functions as well
as the same corresponding subset of parents. The summation over r on the r.h.s of eq. (6) contains all the remaining subsets
over the power set of pa∗i . Note that the set of non-linear functions h, over all possible combinations of parents in the power set
P(pai) of Xi’s parents form a basis and therefore are linearly independent, this implies that the first summation term on the r.h.s
is equal to the summation on the l.h.s which in turn implies

q∑
r=p+1

f∗r (S∗r ) = 0 .

This is possible in one of the two cases: (1) if the basis functions are a linear combination of each other or (2) if the coefficients
associated with each of the basis functions is 0. The former we have already ruled out, whereas the latter implies that the
coefficients of all the basis f∗r (S∗r ) are zero, which implies that there is no edge incoming to Xi in G∗ for this set of parents,
which is a contradiction.

Next we prove the direction SI(Xk
i ) −→ paki ⊂ pa∗i for Lemma 2. Assume that SI(Xk

i ) holds, paki are the actual set of Xi’s
parents in Dk after SI(Xk

i ) but we instead find pa′i such that pa′i = pa∗i .
Recall that since we are using linear regression, our aim for Xi ∈ Dk is to minimize

E


Xi −

q∑
j=1

fj(Sj)

2
 .

Without loss of generality, we can divide the summation term in two parts, the first part consists of the basis containing only
paki and the second part consists of the remaining set of basis.

E


Xi −

p∑
j=1

fj(Sj)−
q∑

r=p+1

fr(Sr)

2
 . (7)

Since the true generating mechanism for Xi only comprises of basis in the first summation term, we are only left with the
noise term ϵi associated with Xi. Hence can further simplify eq. (7) to

E

(ϵi − q∑
r=p+1

fr(Sr)

)2
 . (8)



The minimum for eq. (8) is achieved when
∑q

r=p+1 fr(Sr) = E(ϵi). By our modelling assumptions, we know that E(ϵi) = 0.
Therefore, by the same reasoning used to prove reverse direction, we can conclude that the coefficient associated with each of the
basis functions in

∑q
r=p+1 fr(Sr) is zero. This implies that pa′i ⊂ pa∗i , which is a contradiction. □

Lemma 3 If Υ is conservative,
⋃d

k=1G
k = G∗, If Υ is non-conservative,

⋃d
k=1 Gk ⊆ G∗.

Proof: If Υ is conservative, ∀Xi ∈ X ∃Dk ∈ D such that paki = pa∗i . We get ∀Xi

⋃d
k=1 pa

k
i = pa∗i , which implies that⋃d

k=1 E(Gk) = E(G∗).
If Υ is non-conservative, ∃Xi ∈ X such that ∀Dk ∈ D paki ⊂ pa∗i . This implies that ∃Xi s.t.

⋃d
k=1 pa

k
i ⊆ pa∗i , which

implies that
⋃d

k=1 E(Gk) ⊆ E(G∗). □

Theorem 4 Let Y be the set of all effects such that ∀Yi ∈ Y, |pai| = 1. If ∀Yi, k αk
i → 0, L(D,M) will be the lowest for the

true fully-oriented causal network.
Theorem 5 Even if the low noise assumption is violated, L(D,M) correctly identifies the collider structures in the underlying
causal network.
As described in the main text, to prove both Thm. 4 and 5, it suffices to show that L(D,M) is a valid L0 regularized score
(e.g. BIC). Note that showing L(D,M) is a valid L0 regularized score suffices to prove Thm. 5 and the only additional step
needed to prove Thm. 4 is the low-noise assumption as this lets us identify any remaining bivariate cases in the resulting Markov
Equivalence class (Marx and Vreeken 2019).

Proof: We can write L(D,M) as

L(D,M) = Lstr(M) +

d∑
k=1

Lmec(M
k|M) +

m∑
i=1

L(ϵki )

= Lstr(M) +

d∑
k=1

m∑
i=1

L(fki ) + L(ϵki )

Since Lstr(M) only stores the structure of the global network, which is independent of the number of samples n, therefore it
is constant w.r.t n. Hence we get

L(D,M) = O(1) +
d∑

k=1

m∑
i=1

LF (f
k
i ) + L(ϵki ) .

Next, let us look at the cost of encoding a specific environment, k which is given as
m∑
i=1

L(fki ) + L(ϵki ) .

Encoding Residuals Note that we can rewrite the encoding of the residuals L(ϵ) as
bknk log σ̂k

2 +O(1) ,
where the additive constant is independent of the model.

Encoding Functions Next, we upper bound L(f). We get that |H| ∈ O(log n) from our assumptions. Per hinge we need to
encode the number of multiplicative terms LN(Tj), the function type per term Tj log |F|, the number of possible assignments
from terms to parents log

(|S|+Tj−1
Tj

)
and the parameter vector per hinge Lp(θj). Each parameter vector is constant. Since the

number of parents are independent of nk as they are fixed for a certain network, the number of possible interacting terms Tj is
also constant w.r.t. nk, which means that for large nk LN(Tj), Tj log |F| (for a finite function class) and log

(|S|+Tj−1
Tj

)
are also

constants. In addition, we need to encode the number of hinges for each node, which adds to the constant term. Hence, we can
rewrite LF (h) as

ck log nk +O(1) .
Combining the residual and function cost for a specific environment, we arrive at

bknk log σ̂k
2 + ck log nk +O(1) .

If we set bk = 1 and ck = dk

2 , where dk is the number of degrees of freedom of the model, we arrive at the BIC score.
Since we compute the same score individually for each environment we can compute the sum over these scores and arrive at

L(D,M) =

d∑
k=1

bk log nk + ck ∗ nk log (σ2
k) +O(1) .

□



B Assumptions
In this section we consolidate the assumptions required for our work into a single list. Assumptions 1-5 are necessary to provide
identifiability atleast up to the Markov equivalence class, Assumption 6, allows us to identify the fully directed causal network
within the Markov equivalence class, and Assumption 7 is necessary for identifiability of intervention targets.

1. Causal Sufficiency. This means that all the relevant variables are included in the data and there are no unobserved con-
founders (Pearl 2009). Finding fully oriented causal networks is a challenging task, even under causal sufficiency. Although
unlikely to hold in practice, almost every causal discovery method (including our competitors, GES, UT-IGSP, CDNOD,
LINGAM, JCI-PC) require assuming causal sufficiency to obtain identifiability of the underlying causal network.

2. Causal Markov and Faithfulness Condition (Spirtes et al. 2000).

3. Causal relationships between the variables can be modeled by a DAG.

4. Each Xi is related to its parents via non-linear functions and additive independent Gaussian noise term with zero mean and
unit variance N , regulated by a scaling factor αk

i . The causal relationship is formally given as Xi := fki (pai) + αk
i ·N . We

assume that all the noise terms are jointly independent and that N ⊥⊥ pai for all Xi in environment k.

5. The number of MARS-hinge functions per variable are upper-bounded by O(log n) (Mian, Marx, and Vreeken 2021). This
assumption is required to show identifiability guarantees entailed by our proposed scores. See Proof of Th. 4 and 5 for details.

6. The noise variance is sufficiently small (Marx and Vreeken 2019; Blöbaum et al. 2018) i.e. ∀i, k in Eq.(2) αk
i → 0.

7. The true underlying causal network G that generates the data only changes as a result of either (i) Hard-Interventions HI(Xj);
or (ii) inhibiting Soft-Interventions SI(Xj). An intervention always eliminate atleast one edge in G.

C Pseudocode

Algorithm 2: The ORION Algorithm
Input: Datasets D over X
Output: Array of causal networks G

1 for k = 1 . . . d do
2 Gk ← ∅
3 G←

[
G1, . . . Gd

]
repeat

4 G← FORWARDSEARCH(G,D)
5 G← BACKWARDSEARCH(G,D)
6 until convergence;
7 return G

Algorithm 2 shows the ORION algorithm. ORION greedily adds and removes edges to the global resp. local causal networks
such that it reduces L(D,M) most. ORION consists of two phases: forward and backward search, repeated until convergence.
As our score is lower-bounded at 0, and we only take steps that reduce our score, ORION is guaranteed to converge. ORION
learns a global causal network, and a set containing lists of intervention targets, one for each environment. To obtain the local
causal network specific to an environment, we can apply the learned interventions to the predicted global network (Lemm. 1 and
3). Next, we describe the ranking mechanism and the search phases.

Algorithm 3: Score Edge Addition
Data: edgeset E over G
Result: priority queue of edges Q

1 Q← ∅
2 foreach pair (u, v) ∈ E do
3 ψ ← δ⊕(euv)− δ⊕(evu)
4 Q ← Q ⊕ (euv , ψ)
5 Q ← Q ⊕ (evu ,−ψ)
6 return Q



Algorithm 4: Score Edge Removal
Data: edgeset E over G
Result: priority queue of edges Q

1 Q← ∅
2 foreach pair (u, v) ∈ E do
3 ψ ← δ⊖(euv)
4 Q ← Q ⊕ (euv , ψ)

5 return Q

Edge gain To calculate the gain provided by each edge, we first measure the bits that we save by adding an edge in the current
model. Formally, let eij = Xi → Xj , and M be the current model. We write M ⊕eij to denote the model with edge eij included.
We define the absolute gain in bits δ associated with edge eij as

δ(eij) = max {0, L(D,M)− L(D,M ⊕ eij)}

where L(D,M) is the score defined in Sec. 4. Next, we calculate the true gain for this edge by calculating the relative bits we
gain over adding this edge in the opposite direction. Formally,

ψ(eij) = δ(eij)− δ(eji) .

Intuitively, the higher the value of ψ(eij), the more certain we are that we inferred the correct direction for this edge. This is
motivated by the no-hypercompression inequality (Grünwald 2007), which we use to test the significance of each edge. Let
s = ψ(e), the probability of gaining s bits over the null model is less than or equal to 2−s. If we find that the gain for an edge is
not significant— i.e. 2−s is greater than the desired significance threshold— we do not add this edge to the network. For the
backward search the ranking, δ⊖, is analogous to forward search except that the gain for each edge is the number of bits saved by
removing the edge. Algorithms 3 and 4 show the pseudocode for edge scoring for both edge addition and removal.

Algorithm 5: Forward Search
Data: Environments D over X , array of causal networks G
Result: Array of updated networks G

1 E∗(G)← all possible edges in G
2 Ecand ← E∗(G)− E(G)
3 Q← SCOREEDGEADDITION(Ecand)
4 while Q not empty do
5 e← take top most entry from Q
6 che ← child variable for edge e
7 if G⊕ e not cyclic and e is significant then
8 G← G⊕ e
9 foreach edge ek, connected to che ∈ Q do

10 update score of ek ∈ Q to ψ(ek )

11 return G

Forward Search In forward search, ORION maintains a priority queue containing the edges ordered by their relative gain,Ψ.
We iteratively build the causal graph by adding the highest ranked edge from the priority queue to the causal DAG. We reject
edges that introduce cycles in the network. Once an edge eij is added to the network, we re-rank all the candidate edges associated
with variables Xj in the priority queue. This is repeated until all the candidate edges have been evaluated.

We introduce each edge as a part of the global network and therefore each of the datasets only need to pay a discounted cost of
storing the causal mechanism in order to include this edge. If this cost is not enough for a local dataset to register a gain, it rejects
the edge. In that case, an intervention is encoded for the latter. The pseudocode for forward search is shown in Algorithm 5

Backward Search Since we greedily add edges during the forward search phase, some of the parents of a variable may become
redundant as forward search progresses. To remove such edges we need the backward search. We iteratively remove that edge
from the network which improves our score the most. We keep removing the edges iteratively, until no edge removal improves
the score anymore. We show the psuedocode for Backward search in Algorithm 6.



Algorithm 6: Backward Search
Data: Environments D over X , array of causal networks G
Result: Array of updated networks G

1 Ecand ← E(G)
2 Q← SCOREEDGEREMOVAL(Ecand)
3 while Q not empty do
4 e← take top most entry from Q
5 if e is significant then
6 G← G⊖ e
7 foreach edge ek, connected to che ∈ G do
8 update score of ek ∈ Q to ψ(ek )

9 return G

D Experiments and Additional Results
Competitor Methods The code for the competitor methods were taken from the following sources.

• CDNOD: Implementation provided by the authors on Github: https://bit.ly/3m1jo0G.

• PC (using the RCIT (Strobl, Zhang, and Visweswaran 2019) as the independence test) and GES: Causal Discovery Tool-
box (Kalainathan and Goudet 2019).

• LINGAM: Implementation provided by the authors on Github: https://bit.ly/39PExra.

• JCI-FCI: Implementation provided by the authors on Github: https://bit.ly/3MNL6Ju.

• UT-IGSP: Implementation provided by the authors on Github: https://bit.ly/3tVbHO1.

Comparisons to LINGAM The original LINGAM is not applicable to multi-environment setting. We, however, compare to
the Direct-LiNGAM (Shimizu 2012) that is specifically designed for multi-environment setting. Direct-LiNGAM returns one
weight-matrix per dataset where non-zero entries correspond to a causal edge. Using these individual local causal networks in
conjunction with Lemmas 1 and 3, we can find the global causal network as well as the intervention targets exactly as we do for
ORION.

Comparisons to GES For baseline FGES we simply learn individual local networks and take the union as the predicted causal
network, which is guaranteed to be correct in the limit. Once we have individual local causal networks, using Lemmas 1 and 3
we can find the global causal network as well as the intervention targets exactly as we do for ORION. The second variant, EGES,
is designed for multi-environment setting. It consists of context variables that we can directly use to identify intervention targets,
similar to the JCI framework.

Instantiation We implement ORION in Python, and use the nonparametric regression splines from the open source R-package,
EARTH. We further standardize all data to avoid susceptibility to practical issues like var-sortability (Reisach, Seiler, and
Weichwald 2021). ORION is implemented to work in parallel over each environment. We run all experiments on an 3.5 Ghz Intel
E5-2643 CPU. For all input instances, ORION inferred causal network inside 3 minutes for parallelized version and within 20
minutes for single-threaded runs.

Evaluation Metrics We evaluate the discovered causal networks in terms of structural similarity using the Structural Hamming
Distance (SHD) (Kalisch and Bühlmann 2007). Let G and H be the ground truth resp. predicted causal DAG, then SHD(G ,H )
counts the edges where the two causal DAGs differ. Structural similarity alone, however, is not enough since a single wrongly
oriented causal edge can lead to more than one incorrect causal decisions. Therefore it is critical that we also measure the causal
similarity between causal networks. We do this using the Structural Intervention Distance (SID) (Peters and Bühlmann 2015).
SID(G ,H ) counts the pairs of variables Xi and Xj , such that the effect of an intervention on Xi is incorrectly propagated to Xj .
For methods that output the Markov equivalence class of the causal network, SID is an interval indicating the best resp. worst
possible score over this class.

For comparability across different settings, we normalize both SHD and SID between 0 and 1. The minimum for both SHD
and SID is zero. The maximum value of SHD for m different variables is if all possible edges in a network are incorrectly
predicted by the algorithm, there are a total of

(
m
2

)
edges possible for m variables. The maximum SID for m variables is given

by m ∗ (m− 1) (Peters and Bühlmann 2015). Once we have these minimum and maximum values, we can normalize any value
of SHD resp. SID between 0 and 1.
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(a) DAG used to generate non-linear data for experiment where all
data are interventional. This graph contains all connections possible
in a DAG: a collider (D → H ← E), a fork (C ← A → D), a
chain (A → C → F ) and a feed forward loop (C → F → G and
C → G).
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(b) DAG used to generate non-linear data for the experiments involving
intervention targets detection.

D.1 Specific Experimental Setup
Q1. Can ORION discover causal networks over data from multiple environments? We have number of environments
d ∈ {3, 5, 7, 9}, number of variables m ∈ {5, 10, 15} and number of samples per environment n = 1000 as our experimental
setting. We simulate DAGs using the Erdos-Rényi model. We model effect as a function of its causes using polynomial functions
in half of the cases. For other half we use randomly initialized. 2-layer neural networks to model the mechanism. To generate
synthetic data, we use the causal discovery toolbox (Kalainathan and Goudet 2019). The full set of results for this setting are
provided in Tables. 2 and 3.

Data for the case where each environment comes from a different interventioned (sub)network is generated using the graph
structure shown in Figure 4a. For each environment we randomly pick a variable and apply either an Inhibiting or a Hard
intervention on the latter with equal probability. We use n = 3000 samples per environment.

Q2. How well does ORION perform on networks where our assumptions may not hold? We use the re-simulated Lung-
cancer gene expression, REGED network (Statnikov et al. 2015), containing 500 samples from http://www.causality.inf.ethz.ch/
challenge.php?page=datasets. We extract two non-overlapping connected components of 5 resp. 15 variables which we refer to
REGED5b resp. REGED15. Next, we break our assumptions by introducing selection bias. We sort each dataset once on each
variable and divide the resulting dataset into three overlapping environments which gives us 5 resp. 15 distinct datasets. We refer
to these datasets as REGED5s resp. REGED15s. We report the results for these experiments in Fig ??.

Q3. Can ORION reliably identify intervention targets? Data for the case where we identify the intervention targets is
generated using the graph structure that is shown in Figure 4b. This is the same structure as used by (Zhang et al. 2017) for all of
their synthetic data experiments to test their implementation of CDNOD. We use the settings d ∈ {3, 5, 7} for the number of
environments and use n = 3000 samples per environment. A total of 100 experimental instances are generated. We report the
results for identifying only the direct intervention targets in Fig. 5.

D.2 Additional Results
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Figure 5: [Higher is better] F1 scores for ORION, LINGAM, JCI-PC and GES for identifying direct intervention targets in
synthetic data over different environment sizes, d.



d m ORION LINGAM JCI-PC CDNOD-INV UT-IGSP JCI-FCI EGES

3 3.2 5.3 3.4 3.5 3.4 4.9 4.3
5 5 3.5 5.7 4.0 3.3 3.5 4.9 4.2
7 3.4 5.8 4.1 3.5 3.6 4.9 4.4
9 3.4 6.1 5.7 3.3 3.6 4.8 4.6

3 18.0 24.8 16.6 15.7 20.2 19.3 21.1
5 10 18.0 26.1 16.6 14.8 19.8 19.3 22.0
7 18.0 27.4 17.1 18.0 20.2 19.3 22.9
9 17.5 27.9 18.4 21.1 20.2 19.8 23.8

3 40.1 58.8 39.9 37.8 56.7 45.1 60.9
5 15 40.1 61.9 39.9 34.6 55.6 45.1 60.9
7 40.1 65.1 39.9 31.5 56.7 45.1 60.9
9 42.0 67.2 37.8 33.6 55.6 45.1 60.9

Table 2: [Lower is better] Averaged SHD for experiments involving homogeneous synthetic data.

d m ORION LINGAM JCI-PC CDNOD-INV UT-IGSP JCI-FCI EGES

3 5.2 9.4 [3.2, 9.2] [3.2,9.6] 7.2 9.6 [4.0,8.4]
5 5 5.2 9.2 [3.2,10.2] [3.4,8.8] 7.4 9.6 [3.8,8.0]
7 5.0 9.0 [2.8, 9.2] [5.6,8.6] 7.2 9.6 [4.4,8.6]
9 4.8 9.2 [3.4,11.2] [5.8,8.4] 7.6 9.6 [4.2,8.8]

3 40.5 52.2 [42.3,60.3] [40.5,51.3] 52.2 58.5 [36.0,46.8]
5 10 39.6 49.5 [40.5,60.3] [32.4,40.5] 52.2 59.4 [36.9,45.9]
7 37.8 47.7 [37.8,58.5] [50.4,59.4] 51.3 59.4 [38.7,46.8]
9 38.7 46.8 [39.6,56.7] [48.6,58.5] 51.3 60.3 [37.8,45.9]

3 113.4 147.0 [134.4,168.0] [123.9,134.4] 155.4 163.8 [130.2,138.6]
5 15 111.3 138.6 [134.4,161.7] [119.7,130.2] 153.3 161.7 [126.0,134.4]
7 109.2 132.3 [132.3,163.8] [136.5,144.9] 155.4 161.7 [123.9,132.3]
9 109.2 132.3 [130.2,157.5] [123.9,142.8] 153.3 159.6 [128.1,136.5]

Table 3: [Lower is Better] Averaged SID for experiments involving homogeneous synthetic data. Intervals indicates the best, resp.
worst possible intervention distance for methods that output the Markov equivalence class of the causal network.


