
Journal of Parallel and Distributed Computing 61, 350�371 (2001)

A Tree Projection Algorithm for Generation of
Frequent Item Sets

Ramesh C. Agarwal, Charu C. Aggarwal, and V. V. V. Prasad

IBM T. J. Watson Research Center, Yorktown Heights, New York 10598

E-mail: agarwal�watson.ibm.com, charu�watson.ibm.com, vvprasad�watson.ibm.com

Received March 1, 1999; accepted December 31, 1999

In this paper we propose algorithms for generation of frequent item sets by
successive construction of the nodes of a lexicographic tree of item sets. We
discuss different strategies in generation and traversal of the lexicographic
tree such as breadth-first search, depth-first search, or a combination of the
two. These techniques provide different trade-offs in terms of the I�O,
memory, and computational time requirements. We use the hierarchical
structure of the lexicographic tree to successively project transactions at each
node of the lexicographic tree and use matrix counting on this reduced set of
transactions for finding frequent item sets. We tested our algorithm on both
real and synthetic data. We provide an implementation of the tree projection
method which is up to one order of magnitude faster than other recent
techniques in the literature. The algorithm has a well-structured data access
pattern which provides data locality and reuse of data for multiple levels of
the cache. We also discuss methods for parallelization of the TreeProjection
algorithm. � 2001 Academic Press

Key Words: association rules; data mining; caching; item sets.

Contents.

1. Introduction.
2. The lexicographic tree of item sets.
3. Algorithmic strategies for lexicographic tree creation.
4. Extensions to parallel association rule mining.
5. Empirical results.
6. Conclusions and summary.

1. INTRODUCTION

The problem of finding association rules was first introduced by Agrawal et al.
[3]. This problem is concerned with finding relationships between different items in
a database containing customer transactions. Such information can be used for

doi:10.1006�jpdc.2000.1693, available online at http:��www.idealibrary.com on

3500743-7315�01 �35.00
Copyright � 2001 by Academic Press
All rights of reproduction in any form reserved.

many sales purposes such as target marketing, because the buying patterns of
consumers can be inferred from one another.

Let I be the set of all items in the database of transactions. A transaction T�I
is defined to be a set of items which are bought together in one operation. An
association rule between a set of items X�I and another set Y�I is expressed as
X O Y and indicates that the presence of the items X in the transaction also
indicates a strong possibility of the presence of the set of items Y. The measures
used to indicate the strength of an association rule are support and confidence. The
support of the rule X O Y is the fraction of the transactions containing both X and
Y. The confidence of the rule X O Y is the fraction of the transactions containing
X which also contain Y. A set of items is referred to as an item set. We shall refer
to an item set with k items in it as a k-item set.

In the association rule problem we wish to find all rules above a minimum level
of support and confidence. The primary concept behind most association rule algo-
rithms is a two phase procedure: In the first phase, all frequent item sets are found.
An item set is said to be frequent if it satisfies a user-defined minimum support
requirement. The second phase uses these frequent item sets in order to generate all
the rules which satisfy the user specified minimum confidence.

Since its initial formulation, considerable research effort has been devoted to the
association rule problem. A number of algorithms for frequent item set generation
have been proposed [1, 2, 4, 6, 7, 11�13, 16, 17]. Variations of association rules
such as generalized association rules, quantitative association rules and multilevel
association rules have been studied in [9, 14, 15]. In this paper, we present a
method which represents frequent item sets as nodes of a lexicographic tree. We
count the support of frequent item sets by projecting the transactions onto the
nodes of this tree. This significantly improves the performance of counting the
number of transactions containing a frequent item set. In a hierarchical manner, we
look only at that subset of transactions which can possibly contain that item set.
This is done by traversing the lexicographic tree in a top down fashion. The techni-
que of using carefully chosen lexicographic extensions in order to generate item sets
has been discussed in [3, 6]. Our aim is to use the lexicographic tree as a
framework upon which different strategies for finding frequent item sets can be
based. Most other algorithms have utilized a hash tree to count frequent item sets
contained in a transaction. We believe our approach based on projecting transac-
tions on nodes of a lexicographic tree and then eventually counting against a matrix
structure provides the most efficient method of counting item sets at very low levels
of support. The advantage of using matrix counting is that efficient cache
implementations can be provided which improve substantially over the current
implementations. The experimental results support this conclusion.

This paper is organized as follows. In the next section we discuss the concept of
the lexicographic tree and a few key ideas which lay the groundwork for the
description of our algorithm. In Section 3, we will discuss the primary strategies for
the creation of the lexicographic tree, and the various trade-offs associated with
each strategy. We propose strategies for parallelization of the TreeProjection
algorithm in Section 4. In Section 5, we discuss the empirical results, while Section 6
contains the conclusion and summary.

351TREE PROJECTION ALGORITHM

2. THE LEXICOGRAPHIC TREE OF ITEM SETS

We assume that a lexicographic ordering exists among the items in the database.
In order to indicate that an item i occurs lexicographically earlier than j, we will
use the notation i�L j. The lexicographic tree is a structural representation of the
frequent item sets with respect to this ordering. The lexicographic tree is defined in
the following way:

(1) A vertex exists in the tree corresponding to each frequent item set. The
root of the tree corresponds to the null item set.

(2) Let I=[i1 , ..., ik] be a frequent item set, where i1 , i2 , ..., ik are listed in
lexicographic order. The parent of the node I is the item set [i1 , ..., ik&1].

The goal in this paper is to use the structure of the lexicographic tree in order to
substantially reduce the CPU time for counting frequent item sets. An example of
the lexicographic tree is illustrated in Fig. 1. A frequent 1-extension of an item set
such that the last item is the contributor to the extension will be called a frequent
lexicographic tree extension, or simply a tree extension. Thus, each edge in the
lexicographic tree corresponds to an item corresponding to its frequent
lexicographic tree extension. We will denote the set of frequent lexicographic tree
extensions of a node P by E(P). In the example illustrated in Fig. 1, the frequent
lexicographic extensions of node a are b, c, d, and f.

Let Q be the immediate ancestor of the item set P in the lexicographic tree. The
set of candidate branches of a node P is defined to be those items in E(Q) which
occur lexicographically after the node P. These are the possible frequent
lexicographic extensions of P. We denote this set by R(P). Thus, we have the
following relationship: E(P)�R(P)/E(Q). The value of E(P) in Fig. 1, when
P=ab, is [c, d]. The value of R(P) for P=ab is [c, d, f], and for P=af, R(P) is
empty.

FIG. 1. The lexicographic tree.

352 AGARWAL, AGGARWAL, AND PRASAD

The levels in a lexicographic tree correspond to the sizes of the different item sets.
The various levels for the example in Fig. 1 are indicated. We shall denote the set
of item sets corresponding to the nodes at level k by Lk .

A node is said to be generated the first time its existence is discovered by virtue
of the extension of its immediate parent. A node is said to have been examined
when its frequent lexicographic tree extensions have been determined. Thus, the
process of examination of a node P results in generation of further nodes, unless the
set E(P) for that node is empty. Obviously a node can be examined only after it
has been generated. This paper will discuss a set of algorithms which construct the
lexicographic tree in a top-down fashion by starting at the node null and
successively generating nodes until all nodes have been generated and subsequently
examined. At any point in the algorithm, a node in the lexicographic tree is defined
to be inactive if it has been determined that the subtree rooted at that node can not
be further extended. Otherwise, the node is said to be active. Thus, the event of a
node being active or inactive is dependent on the current state of the algorithm
which is generating the nodes. A node which has just been generated is usually born
active, but it becomes inactive later when all its descendents have been determined.
For example, in the case of Fig. 1, let us assume that all nodes up to and including
level-2 have already been examined. (Consequently, all nodes up to and including
level-3 have been generated.) In this case, the set of active nodes would be abc, acd,
ab, ac, a, and null. Thus, even though there are 23 nodes corresponding to the top
three levels which have been generated, only six of them are active. Note that we
have not labeled the unexamined nodes abd and acf as active since even the set of
candidate branches for these nodes is empty. We will be using this example
repeatedly in our paper. For the sake of notational convenience, we shall label it A.

An active node is said to be a boundary node if it has been generated but not
examined. In example A, the active boundary node set is [abc, acd]. As we can see
from the complete tree in Fig. 1, the subsequent examination of the node abc will
not lead to any further extensions, while the examination of the node acd will
indeed lead to the node acdf.

The extension set E(P) was produced when P was first examined. As the algo-
rithm progresses, some of these 1-extensions are no longer active. We introduce the
term AE(P) to denote the subset of E(P) which is currently active. We call these
active extensions. These represent the branches at node P which are currently active.
Next, we introduce the concept of active items.

The set of active items F(P) at a node P is recursively defined as follows:

(1) If the node P is a boundary node, then F(P)=R(P).

(2) If the node P is not a boundary node, then F(P) is the union of AE(P)
with active items of all nodes included in AE(P).

Clearly, AE(P)�F(P)�E(P). The first condition is true because of the nature of
the relationship between AE(P) and F(P). F(P) is a set which reduces in size when
more item sets are generated, since fewer number of items form active extensions.
For example A, for the null node, the only active extension is a, and the set of active
items is [a, b, c, d, f]. For node a, its active extensions are [b, c], and the set of
active items is [b, c, d, f].

353TREE PROJECTION ALGORITHM

In the next section, we will discuss an algorithm which constructs the lexico-
graphic tree. The following information is stored at each node during the process
of this construction:

(1) The item set P at that node.

(2) The set of lexicographic tree extensions at that node which are currently
active��AE(P).

(3) The set of active items F(P) at that node. F(P) and AE(P) will be
updated whenever the set of boundary nodes changes.

Let P be a node in the lexicographic tree at level-m, and let all levels of the
lexicographic tree up to level k>m have already been generated. Then, for a trans-
action T we define the projected transaction T(P) to be equal to T & F(P).
However, if T does not contain the item set corresponding to node P then T(P) is
null. If T(P) has less than (k&m+1) items then it also is eliminated. This is
because a transaction T(P) at a level-m node with less than (k&m+1) items does
not have enough items to extend to a node at level-k. The rationale for this is that
any successive projection to lower levels strictly reduces the number of items in the
projected transaction, and hence, if the projected transaction at node P contains
less than (k&m+1) items, then the same transaction will not contain any item
when projected to a node at level-k. For a set of transactions T, we define the
projected transaction set T (P) to be the set of projected transactions in T with
respect to active items F(P) at P.

Consider the transaction abcdefghk. Then, for the example A of Fig. 1, the projected
transaction at node null would be [a, b, c, d, e, f, g, h, k] & [a, b, c, d, f]=abcdf.
The projected transaction at node a would be bcdf. For the transaction abdefg, its
projection on node ac is null because it does not contain the required item set ac.

Let P be a level-m node of the lexicographic tree, and let us assume that the top
k>m levels have already been generated. We emphasize the following points:

(1) An inactive node does not provide any extra information which is useful
for further processing. Thus, it can be eliminated from the lexicographic tree.

(2) For a given transaction T, the information required to count the support
of any item set which is a descendant of a node P is completely contained in its
projection T(P).

(3) The number of items in a projected transaction T(P) is typically much
smaller than the original transaction. This number continues to reduce as the
algorithm progresses, more frequent item sets are generated, and F(P) reduces. As
F(P) shrinks, and k increases, then at some point T(P) contains less than
(k&m+1) items. At that time, T(P) becomes null.

(4) For a given transaction set T and node P, the ratio of the number of
transactions in T (P) and T is approximately determined by the support of the
item set corresponding to P. Since projected transactions with less than (k&m+1)
items are not included, the ratio is actually much smaller.

354 AGARWAL, AGGARWAL, AND PRASAD

2.1. Notational Reference Guide

We will briefly repeat the terminology introduced in the above section for ease
in reader reference:

E(P) Frequent lexicographic extensions of node P.
R(P) Candidate branches of node P.
Lk Large item sets (of length k) corresponding to level k.
AE(P) Currently active extensions of node P.
F(P) Currently active items at node P.
T(P) Projection on node P of transaction T.
T (P) Projection on node P of transaction set T.

3. ALGORITHMIC STRATEGIES FOR LEXICOGRAPHIC
TREE CREATION

Various algorithmic strategies are feasible for lexicographic tree creation. Either
all nodes at level-k may be created before nodes at level-(k+1) or longer patterns
may be discovered earlier in order to remove some of the other branches of the tree.
For example, in breadth-first search all nodes at level-k will be created before nodes
at level-(k+1). On the other hand, in depth-first creation, all frequent descendents
of a given node will be determined before any other node. The various strategies
provide different trade-offs in I�O, memory, and CPU performance.

3.1. Breadth First Creation of the Lexicographic Tree

In breadth-first search, all nodes at level-k are created before nodes at level-
(k+1). At any given level-k, the information regarding the possible items which
can form frequent lexicographic extensions of it can be obtained from its parent at
level-(k&1). A given item i can be a frequent lexicographic extension of a node
only if it is also a frequent lexicographic extension of its immediate parent and
occurs lexicographically after it. Thus, while finding (k+1)-item sets, we look at all
possible frequent lexicographic extensions of each (k&1)-item set. For a given node
at level-(k&1), if there are m such extensions, then there are (m

2) possible (k+1)-
item sets which are descendants of this (k&1)-item set. In order to count these (m

2)
possible extensions, we will use projected transaction sets which are stored at that
node. The use of projected transaction sets in counting supports is important in the
reduction of the CPU time for counting frequent item sets. A flowchart indicating
the overall process is illustrated in Fig. 2. The algorithmic description is illustrated
in Fig. 3. The process of creating the matrices at level-(k&1) of the tree and
subsequently executing the subroutine AddCounts() is performed in Step 3 and the
process of addition of new nodes to the lexicographic tree (AddTree()) is discussed
in Step 4, whereas the process of pruning inactive nodes (PruneTree()) from the
tree is performed in Step 5.

The process of counting the support of the (k+1)-item sets is accomplished as
follows: Let P be any (k&1)-item set whose frequent extensions E(P) (nodes at
level-k) have already been determined. At each such node P, a matrix of size

355TREE PROJECTION ALGORITHM

FIG. 2. Flowchart for breadth-first creation of the lexicographic tree.

FIG. 3. Breadth-first creation of the lexicographic tree.

356 AGARWAL, AGGARWAL, AND PRASAD

|E(P)| V |E(P)| is maintained. A row and column exists in this matrix for each item
i # E(P). An entry exists in this matrix which indicates the count of item set
P _ [i, j]. (Since the matrix is symmetric, we maintain only the lower triangular
part.) For each item pair [i, j] in the projected transaction T(P), we increment the
corresponding entry of this matrix by one unit. Thus, the total time for counting at
each node is equal to the sum of the squares of the projected transaction sizes at
that node. Once the process of counting is complete, the frequent (k+1)-item sets
which are descendants of P may be determined by identifying those entries in the
matrix which have support larger than the required minimum support s. The
process of generating frequent (k+1)-item sets from k-item sets is repeated for
increasing k until the level-k of the tree is null. Another way of rewording the
termination criterion is that the active list is empty at the null node. The basic
flowchart for performing the counting is illustrated in Fig. 4.

FIG. 4. Illustrating the process of performing counting in the lexicographic tree.

357TREE PROJECTION ALGORITHM

The hierarchical structure of the lexicographic tree is useful in creating a set of
projected transactions for the level-(k&1) nodes. This is quite important in the
reduction of CPU time for item set counting. The transactions can be projected
recursively down the tree in order to create all the projected sets up to the level-
(k&1). This projected set is a small subset of the original transaction set for each
node. However, the total space occupied by the projected transactions over all
nodes may be much larger than the original database size. Thus, the algorithm
reads a transaction from the database into main memory, recursively projects the
transactions down the lexicographic tree in depth first order, and updates the
matrices maintained at level-(k&1). (In actual implementation, the algorithm
reads a block of transactions into a memory buffer at one time.) The process of
performing the recursive transaction projection and counting for a single transac-
tion is illustrated in Fig. 5. This can also be considered an implementation of
Step 3 of Fig. 4. This flowchart illustrates how to perform the transaction projection
and counting for all descendants of a given node P. The flowchart uses a recursive
call to itself. The first call to the flowchart is from the null node. The algorithmic
description is provided in Fig. 6. An example of the matrix along with associated
counts at the null node is illustrated in Fig. 7. A more detailed description of the
process will be discussed in the section on transaction projection and counting. We
have used the concept of a single transaction for ease in exposition. In reality, it is
a block of transactions which is projected at one time. More details will be
provided in the section on memory requirements.

FIG. 5. An implementation of the AddCounts() procedure.

358 AGARWAL, AGGARWAL, AND PRASAD

FIG. 6. Incrementing item set counts.

Once all the counts of the matrices at level-(k&1) have been determined, we
compare these counts against the required minimum support and add the new
nodes at level-(k+1). The new nodes at level-(k+1) are added by the procedure
AddTree() of Fig. 8. The algorithm prunes all those nodes which have been deter-
mined to be unnecessary for further counting and tree generation (Fig. 9). The
process of pruning inactive nodes proceeds by first removing all inactive nodes at
level-(k+1), then all inactive nodes at level-k, and so on, until the null node. At the
same time the active item lists for the nodes are updated. Thus, in the next itera-
tion, when (k+2) item sets are being counted, the time for projecting transactions
is greatly reduced. This is because only active items need to be used in the projection.
Another way to look at it is that at any node P, as the algorithm progresses, the
projected transaction set T (P) keeps shrinking in terms of both the number of
transactions as well as the number of items in transactions. This is because the
active item list F(P) also shrinks as the algorithm progresses. If level-k of the tree

FIG. 7. The matrix structure at the null node.

359TREE PROJECTION ALGORITHM

FIG. 8. Adding new item sets to the tree.

has already been generated, then for a node P at level-m, the projection of a trans-
action T(P) must have at least (k&m+1) items for it to be useful to extend the
tree to level-(k+1). If it has fewer items, it is eliminated. For a given value of m,
as k increases, fewer transactions satisfy the (k&m+1)-items criterion.

3.2. Depth First Creation of the Lexicographic Tree

In depth-first search, we create the nodes of the lexicographic tree in depth-first
order. At any point in the search, we maintain the projected transaction sets for all
nodes (and their siblings) on the path from the root to the node which is currently
being extended. The root of the tree contains the entire transaction database. The
key point to understand is that once we have projected all the transactions at a
given node, then finding the subtree rooted at that node is a completely independent
item set generation problem with a substantially reduced transaction set. Further-
more, it is possible to prune other branches of the tree quickly. For example, in the
Fig. 1, once the node acdf has been discovered by the depth-first search procedure,
it is possible to prune off all other subtrees hanging at c, d, e, and f, since none of
these generate any item sets whose existence is not implied by acdf.

In breadth-first search, it is necessary to initiate the process of transaction projection
in each iteration, starting from the null node. Depth-first search has the advantage
that it is not necessary to re-create the projected transactions for each level-k. The
problem with this technique is that since the entire transaction database needs to
be carried down the tree at one time, disk I�O may be necessary in order to read
and write the projected transactions. Thus, although the CPU times are reduced,
the disk I�O times may increase so substantially that the method may often be
infeasible for large databases, except for lower levels of the tree where the projected

FIG. 9. Pruning inactive nodes.

360 AGARWAL, AGGARWAL, AND PRASAD

transactions fit in memory. A very efficient version of the depth first algorithm has
been proposed in [2] which is capable of finding very long patterns. This algorithm
is more than one order of magnitude faster than the MaxMiner algorithm [6] for
finding long patterns.

3.3. Combined Depth-First and Breadth-First Creation

In this case, we process the first few levels of the tree using breadth-first search.
At some stage of the algorithm, the projected transaction set at individual boundary
level nodes is small enough to fit in memory. At that point, we write all the projected
transactions to disk in separate files for each boundary node. These files are read
one at a time and the subtree rooted at that node is created in the depth-first order.
This is done entirely in memory and therefore does not require any additional I�O.
This process is repeated for all boundary nodes. Thus, the inefficiencies associated
with each approach can be avoided by using the correct strategy for the case in
question. Many other hybrid schemes are possible, each having different trade-offs
in terms of I�O, memory, and CPU time.

The implementation discussed in this paper uses a pure breadth-first strategy
since it is geared toward short item sets in large databases.

3.4. Transaction Projection Strategy

As in tree creation, several strategies are possible in projecting transactions to
boundary nodes where the eventual counting is done. The most important factors
are available memory and cache size. For simplicity, let us assume that the tree has
been created in breadth-first order and all nodes up to level-k have been created.
To create nodes at level-(k+1), for all nodes P at level-(k&1) we allocate storage
for triangular matrices of size |E(P) V E(P)|. The collective amount of memory
required to hold all these matrices is likely to be far larger than cache size of the
machine. However, it is expected that they will fit in the amount of available
memory. Any remaining amount of memory is available to hold projected transac-
tions. One possible strategy is to process one transaction at a time and project it
to all nodes at level-(k&1). In practice, it will get eliminated at several intermediate
nodes of the tree, reaching only a small fraction of the nodes at level-(k&1). If the
projected transaction at a level-(k&1) node has m items, then it will require (m

2)
operations to update the triangular matrix stored at that node. This is likely to
result in a very poor cache performance. However, if a large fraction of the transac-
tion database is projected to that node, then it is quite likely that many transactions
will project to that node. Then, we can set up a loop to count contributions of all
these transactions to the triangular matrix. This results in a much better cache
performance for the triangular matrices. This approach requires a larger amount of
memory. When a transaction is simultaneously projected to all nodes at level-
(k&1), the total amount of memory required for all the projections is far larger.
However, this problem can be substantially avoided by following the depth-first
strategy in projecting the transactions, even though the tree has been created in
breadth-first order. The discussion of this section can be considered an implementation
of Fig. 5, using a block of transactions instead of a single transaction T. The actual

361TREE PROJECTION ALGORITHM

implementation of the algorithm, as discussed in the empirical section used a block
of transactions at one time. The size of this block was determined by the memory
availability.

3.5. Implementation Details

The performance of this algorithm is quite sensitive to the lexicographic ordering
of the items in the tree. When the ordering of the items in the tree is such that the
least frequent item occurs first, the running times are best. This has also been observed
earlier by Bayardo [6]. The reason for this is that the average size of the set E(P)
is sensitive to the nature of the ordering. If least frequent items are picked first, then
the size of E(P) is small. This contributes to the reduced running times. In reality,
it is possible to improve the performance even further by reordering the items at
lower level nodes based on the support counts of the corresponding frequent
extensions. In our paper, we choose to maintain a fixed ordering from least to most
support after counting 1-item sets.

Our current implementation is primarily based on pure breadth-first strategy for
tree generation, combined with the depth-first strategy for transaction projection
and counting. The counting of the support for frequent (k+1)-item sets which are
descendents of a (k&1)-item set P was performed in a structured way so that the
cache performance was optimized. We discussed earlier that a block of transactions
is used at one time in order to perform the counting. Here we will discuss the
method for counting L2 . The general technique of counting Lk+1 is very similar.
We assume that the database which is used is expressed in terms of L1 for counting
frequent 2-item sets. This corresponds to the projection at the null node. Consider
the case when |L1 |=10,000. In that case, the number of elements in the matrix of
size |L1 | V |L1 | is equal to 49,995,000. The memory required to hold this triangle
is far larger than cache size of a typical machine. Therefore, cache-blocking was
performed.

In cache-blocking, the current buffer of transactions is counted against one strip
of elements in the matrix at a time (see Fig. 10). Thus, it is more likely for this
entire strip to remain in cache when the counting is performed. Each cache block
represents a set of items. (An item is represented by a column in this trapezoidal
cache block.) This strip of elements was chosen such that the total number of
elements in it fits in the cache. The number of cache blocks NC is obtained by

FIG. 10. Cache blocking for counting L2 .

362 AGARWAL, AGGARWAL, AND PRASAD

dividing the total amount of memory required by the cache size of the machine. We
say that a transaction touches a block if it has at least one item in the cache block.
If a transaction touches a block, then we maintain pointers which carry the infor-
mation for the first and the last item in the transaction from each block, as well as
the last item in the entire transaction. Thus, three pointers are maintained for each
transaction which touches a cache-block. Thus, the transactions are implicitly
projected to the cache-blocks by storing this pointer information. For a given cache
block, let there be M transactions which touch it. For this block, we maintain a list
of 3 } M pointers for these M transactions. Similar lists are maintained for each of
the blocks. Memory buffers are allocated in order to hold the lists of pointers for
each cache block. These pointers may be used to perform the counting effectively.
Let p1(C, T) and p2(C, T) be the pointers to the first and last item respectively at
which a transaction T touches a cache block C, and let p3(C, T) be the pointer to
the end of the transaction. Note that the value of p3(C, T) is the same for each
cache block C. We first determine the projections for each transaction in the buffer
onto each cache block C:

for each transaction T in the buffer do
for each cache block C touched by transaction T do

determine and store p1(C, T), p2(C, T), and p3(C, T)

The loop for performing the counting using the pointers for the projection of a
transaction on a trapezoidal cache block is as follows:

for each cache block C do
for each transaction T in the buffer which touches cache block C do

for OuterPointer= p1(C, T) to p2(C, T) do
for InnerPointer=OuterPointer+1 to p3(C, T) do

Add to the count of the matrix entry corresponding to the items which
are pointed to by OuterPointer and InnerPointer

The code above ensures that the counts for each trapezoidal cache block are
done at one time. Cache blocking is more critical for the higher levels of the tree
since the matrix sizes are larger at those levels.

3.6. Performance Effect of Caching

One of the aspects of the TreeProjection algorithm is to effectively utilize the
memory hierarchy in a way which improves the performance of the algorithm
substantially. The speed of cache operations has continued to outpace the speed of
main memory operations in the past few years. Therefore, it is valuable to make
efficient use of caches for both present and future implementations.

The use of a lexicographic tree facilitates the use of matrix counting techniques
for the TreeProjection algorithm. Matrix counting provides the short inner loop
structure which creates the repeated cache accesses to the same memory addresses.
The bottleneck operation of the TreeProjection algorithm is in counting. Since the
caching aspect of the algorithm improves this bottleneck operation substantially, it
follows that this can lead to an overall performance improvement by an order of
magnitude.

363TREE PROJECTION ALGORITHM

Another caching advantage is obtained by the depth-first nature of the projection.
This is because in the depth-first order, the support of a node and all its
descendants is counted before counting the support of any other node. When the
set of projected transactions at a node fit in the cache, then the depth-first order is
likely to make repeated cache accesses to this small set of transactions while per-
forming the counting for the entire subtree rooted at that node. Since most of the
time spent by the algorithm is in counting the support of the candidate extensions
of lower level nodes, it follows that the performance improvement will be reflected
over a large portion of the counting process.

The depth-first projection algorithm also works well with multiple levels of cache.
The algorithm automatically exploits multiple cache sizes. Typically, in one pass of
the algorithm, we read a large block of data from disk. This block will not fit even
in a very large cache. However, the block size is designed to fit in main memory.
It is projected to the null node using the active item list at the null node. This will
result in a large reduction in the buffer size. In the next step, it is projected to all
currently active level-1 nodes. Each of these projections is likely to be an order of
magnitude smaller and may fit in the highest level of cache of the machine (say L3).
Next, the block at the leftmost level-1 node is projected to all its active children.
These projections are likely to be another order of magnitude smaller and may fit
in L2. These blocks are again projected in depth first order to lower level nodes. At
this point, these projections may fit in L1 and all subsequent processing is done
with data in L1. Note that the algorithm does not need to know sizes of various
levels of cache. The depth-first projection automatically adjusts to various levels
and sizes of cache. For the higher levels of tree where the transaction buffer does
not fit in cache, cache performance is still good because transactions are accessed
with stride one. To summarize, our tree projection counting algorithm provides
good data locality and exploits multiple levels of cache.

3.7. Further Optimizations

A number of optimizations can be performed on this algorithm. For example,
when the matrix E(P) V E(P) is counted, it is also possible to count the support of
the item set P _ E(P). If this item set is discovered to be frequent, then it is possible
to stop exploring the subtree rooted at P. This implies that all subsets of P _ E(P)
are frequent.

Another technique which may be used to speed up the performance is the method
of counting the lower branches of the tree. In this case, we can use bucket counting
instead of matrix counting. Whenever the size of the E(P) is below a certain level,
a set of 2 |E(P)|&1 buckets may be used in order to find the subtree rooted at P.
Since there are only 2 |E(P)|&1 possible distinct projected transactions at a node, we
can find a one-to-one mapping between the buckets and the distinct transactions.
The count of a bucket is equal to the number of projected transactions which map
on to it. The bucket counting is a two-phase operation. In the first phase, the
number of transactions corresponding to each bucket are counted. In the second
phase, the counts from various buckets are aggregated together to form counts for
all the nodes of the subtree rooted at P. In this subtree, only those nodes which

364 AGARWAL, AGGARWAL, AND PRASAD

meet the desired support condition are retained. This technique can result in a
substantial reduction in the CPU time and I�O requirements when the number of
projected transactions at a given node are large, but the size of E(P) is relatively
small.

3.8. A Note on Memory Requirements

In this section, we will discuss the memory requirements of the TreeProjection
algorithm. The memory requirement of TreeProjection is equal to the sum of the
memory requirements for triangular matrices at each level-(k&1) node of the
lexicographic tree. At first sight, this might seem like a rather large requirement.
However, this is proportional to the number of candidate (k+1)-item sets at that
level. (Assuming that each entry of the matrix requires 4 bytes, the proportionality
factor will be 4.) Most other item set generation algorithms require the explicit
generation of the candidate item sets in some form or the other. Thus, the memory
requirements for maintaining the matrices in the TreeProjection algorithm are quite
comparable to other schemes in the literature. In particular, the lexicographic tree
requires much less memory than the hash tree implementation of the Apriori
algorithm because of the following two reasons:

v Since each node of the hash tree has fewer number of children on the
average, it has a larger number of nodes.

v Each node of the hash tree needs to contain multiple hash slots, some of
which are usually empty. This is quite wasteful.

An example of the memory requirements is illustrated in Table 1. This example
is for the retail data set (to be introduced in the next section) at a support level of
0.10. As we see, the memory requirements of the algorithm rapidly diminish with
increasing level in the tree. Thus, the maximum amount of memory is required for
the matrix at level 0, which corresponds to the candidate 2-item sets. This is
generally true for data in which the patterns are relatively short.

It is true that the number of candidates of size k (for k�3) scored by Apriori is
less than the TreeProjection algorithm because of certain pruning methods [4]
which require that all subsets of a candidate should be frequent. However, our
experiments on retail data showed that our candidate sets were only slightly larger

TABLE 1

Memory and CPU Time Requirements for the Matrices at the k th Level
(Retail Data)

Number of Average Number of matrix
Level matrices size entries CPU time (s)

0 1 5706 16276365 23.49
1 1668 30 3521972 25.44
2 4210 5 219269 9.76
3 305 3 8131 2.56
4 12 2 115 1.55

365TREE PROJECTION ALGORITHM

compared to fully pruned candidates of Apriori. Furthermore, in most of our runs,
Apriori usually ran out of memory much earlier than the TreeProjection algorithm.

The only other memory requirement is to project a block of transactions to a set
of nodes in depth-first order. This requirement is flexible and the block size can be
adjusted to fit the amount of available memory. In order to project a block of
transactions down the lexicographic tree, we first decide the amount of memory
which needs to be allocated to each level. The memory for a given level is
distributed among the siblings at a given level based on the support counts. Note
that in depth-first projection of a block, only one memory buffer is needed at each
level, and typically these buffers become smaller as you go down the tree.

4. EXTENSIONS TO PARALLEL ASSOCIATION RULE MINING

In this section we provide a brief description of how the algorithm may be
parallelized. We assume that there are m processors, labeled 1 . . .m, The Apriori
algorithm may be parallelized to two algorithms: namely, the Count Distribution
algorithm and the Data Distribution algorithm. The Count Distribution Algorithm
[5] scales linearly and has excellent speedup behavior with respect to the number
of transactions. In this algorithm, the database is equally divided among the P
different processors. Each processor independently runs the kth pass of the Apriori
algorithm and builds the hash tree in its own memory using its own small portion
of the database. After each iteration, a global reduction operation is performed in
which the global counts of candidates are computed by summing these individual
counts across the different processors [10]. Although the algorithm has excellent
scaleup properties with the number of processors, it has the disadvantage that each
processor needs to hold the entire hash tree in memory. When the hash tree cannot
fit in memory, the data distribution algorithm may be used in order to partition the
hash tree among the different processors. In the Data Distribution algorithm, [5]
the candidate item sets are partitioned among the different processors, and each
processor is reponsible for computing the counts of its locally stored subset of the
candidate item sets. The performance of the algorithm is sensitive to the distribution
of the candidate item sets among the different processors. It is desirable to
distributed the candidate item sets among the different processors in such a way
that the load is very well balanced. The Intelligent Data Distribution algorithm of
Han et al. [8] provides some interesting bin packing techniques for performing this
load balancing operation effectively. The parallelization techniques for both
the Count Distribution and Data Distribution algorithms may be used for the
TreeProjection algorithm.

(1) Count Distributed TreeProjection Algorithm. This algorithm is implemented
in exactly the same way as the TreeProjection algorithm. In this case, each
processor builds the lexicographic tree in its memory instead of the hash tree.
Again, the same global sum reduction operation is performed in order to add the
support of the candidates across the different processors. The method is linearly
scalable with the number of processors. The only disadvantage with the algorithm
is that it is likely to work well when the lexicographic tree fits in memory of a single
processor. When this is not the case, we need to use a method akin to the Intelligent

366 AGARWAL, AGGARWAL, AND PRASAD

Data Distributed algorithm of Han et al. [8] in order to perform the lexicographic
tree generation and counting. This memory constraint is less severe for the
parallelized version of the TreeProjection algorithm because of the fact that the
lexicographic tree requires substantially less memory than the hash tree.

(2) Intelligent Data Distributed TreeProjection Algorithm. In this algorithm, we
distribute the lexicographic tree among the different processors based on the first
item in the tree. Thus, each processor has its own set of first items denoted by S(i).
The lexicographic tree is distributed among the processors in such a way that the
sum of the supports of the branches assigned to each processor is almost evenly
balanced. The techniques for moving the data among the different processors for
performing the counting are very similar to those discussed in [8]. We do not
discuss these techniques due to lack of space in our paper. A more detailed discussion
and empirical testing of these parallelization techniques will be provided in future
work.

5. EMPIRICAL RESULTS

The experiments were performed on an IBM RS�6000 43P-140 workstation with
a CPU clock rate of 200 MHz, 128 Mbyte of main memory, 1 Mbyte of L2 cache
and running AIX 4.1. The data resided in the AIX file system and were stored on
a 2 Gbyte SCSI drive. We tested the algorithm for both synthetic and real data.

The synthetic data set which we used for the purpose of our experiments was
T20.I6.D100K [4]. The corresponding performance curves are illustrated in Figs.
11 and 12. In Fig. 11, we have illustrated the performance of the algorithm versus
the support for both the Apriori algorithm [4] and our method (we will call it the
TreeProjection algorithm) on the synthetic data set T20.I6.D100K. As we see, the
TreeProjection algorithm quickly outstrips the Apriori method when support values
are low. For the lowest support value of 0.250, the Apriori algorithm required
147.87 s, while our technique required only 33.05 s. On the other hand, when the
support values are high, there was not much of a difference between the TreeProjection
and Apriori algorithms. This is because the times for performing I�O dominate at

FIG. 11. CPU time versus support for synthetic data.

367TREE PROJECTION ALGORITHM

FIG. 12. CPU time versus database size for synthetic data.

the higher levels of support. The scaling with database size was linear for both
methods.

We tested the algorithm on two real data sets. One of them was a retail data set
which was first used in [6] to test the efficiency of association algorithms. This data
set is not publicly available for proprietary reasons. The retail data set contains
213,972 transactions with an average transaction length of 31. The performance gap
between the two methods was even more substantial for the case of the retail data
set. The corresponding performance curves are illustrated in Figs. 13 and 14. In
Fig. 13, we have illustrated the performance variation with support. At the lowest
support value of 0.10, the TreeProjection algorithm required only 64.28 s in
comparison with the 1199.44 s required by the Apriori algorithm. This difference is
more than an order of magnitude. The time required for counting at each level of
the tree for a support of 0.10 is illustrated in Table 1. In addition, 1.48 s were
required for L1 counting. Note that very little CPU time is spent in counting sup-
port at lower levels of the tree. The reason for this is that our PruneTree(}) method
removes a very large fraction of the nodes. An even more interesting characteristic

FIG. 13. CPU time versus support for retail data.

368 AGARWAL, AGGARWAL, AND PRASAD

FIG. 14. CPU time per item set versus supp0ort for retailo data.

of the TreeProjection algorithm was the CPU time required per frequent item set
generated. The TreeProjection algorithm improved in terms of the time required in
order to generate each frequent item set, when the support was reduced. It is easy
to see why this is the case. As the required support level drops, more nodes are
generated at the lower levels of the tree. At these levels, the projected transaction
database is very small and therefore much smaller effort is required to perform the
counting per frequent item set.

We also tested the algorithm on the splice data set. The splice data set was taken
from the University of California at Irvine (UCI) machine learning repository
(http: ��www.ics.uci.edu� � mlearn�MLRepository.html) and subsequently cleaned [6].
The resulting data set had 3174 records with an average number of items equal to
61. The total number of items in the data set was 244. The size of the data set was
0.8 Mbyte. The Table 2 illustrates the variation of the number of patterns found
and the length of the longest pattern with support. Most of the patterns were
relatively short, and even at very low levels of support (up to 20) it was found that

TABLE 2

Number of Frequent Item Sets Found for
the Splice Data Set

Support in percent No. of sets Longest set

6 19112 7
5.5 26932 7
5 35047 7
4.5 45727 7
4 62258 7
3.5 93928 7
3 164584 8
2.5 309091 8
2 702065 8

369TREE PROJECTION ALGORITHM

FIG. 15. CPU time versus support for splice data.

the length of the longest pattern was 8. The corresponding performance chart is
illustrated in Fig. 15. As we see from Fig. 15, the TreeProjection algorithm out-
performs the Apriori method by more than an order of magnitude. At very low
levels of support, the Apriori algorithm runs out of memory and is unable to run
to completion. This behavior illustrates the memory advantages of using a
lexicographic tree projection algorithm over the hash tree implementation of the
Apriori algorithm.

6. CONCLUSIONS AND SUMMARY

This paper demonstrated the power of using transaction projection in conjunction
with lexicographic tree structures in order to generate frequent item sets required
for association rules. The advantage of visualizing item set generation in terms of
a lexicographic tree is that it provides us with the flexibility of picking the correct
strategy during the tree generation phase as well as the transaction projection
phase. By combining various strategies, a variety of algorithms are possible to
provide very high performance in most situations. The depth-first projection technique
provides locality of data access, which can exploit multiple levels of cache. We have
also demonstrated the parallelizability of the TreeProjection technique, and the
advantages of its parallel implementation over the parallel implementation of the
Apriori algorithm. In many situations, the parallel version of the TreeProjection
algorithm can reduce the communication required by a large factor compared to
the parallel version of the Apriori algorithm. Our future research will explore the
parallel aspects of the TreeProjection algorithm in greater detail.

ACKNOWLEDGMENTS

We thank Roberto Bayardo and Rakesh Agrawal for providing us with the retail and splice data on
which we tested the algorithms. We also thank them for providing us with their latest code for finding
frequent item sets. We thank Anant Jhingran for his comments on an earlier draft of this paper.

370 AGARWAL, AGGARWAL, AND PRASAD

REFERENCES

1. R. C. Agarwal, C. C. Aggarwal, V. V. V. Prasad, and V. Crestana, ``A Tree Projection Algorithm for
Generation of Large Itemsets For Association Rules,'' IBM Research Report, RC 21341.

2. R. C. Agarwal, C. C. Aggarwal, and V. V. V. Prasad, Depth first generation of long patterns,
in ``Proceedings of the ACM SIGKDD Conference,'' 2000.

3. R. Agrawal, T. Imielinski, and A. Swami, Mining association rules between sets of items in very large
databases, in ``Proceedings of the ACM SIGMOD Conference on Management of Data,''
pp. 207�216, 1993.

4. R. Agrawal, H. Mannila, R. Srikant, H. Toivonen, and A. I. Verkamo, Fast discovery of association
rules, in ``Advances in Knowledge Discovery and Data Mining,'' Chap. 12, pp. 307�328, AAAI�MIT
Press, Cambridge, MA.

5. R. Agrawal and J. C. Shafer, Parallel mining of association rules, IEEE Trans. Knowledge Data
Engineering 8, 6 (1996), 962�969.

6. R. J. Bayardo, Efficiently mining long patterns from databases, in ``Proceedings of the ACM
SIGMOD,'' pp. 85�93, 1998.

7. S. Brin, R. Motwani, J. D. Ullman, and S. Tsur, Dynamic itemset counting and implication rules for
market basket data, in ``Proceedings of the ACM SIGMOD,'' pp. 255�264, 1997.

8. E.-H. Han, G. Karypis, and V. Kumar, Scalable parallel data mining for association rules,
in ``Proceedings of the ACM SIGMOD Conference,'' pp. 277�288, 1997.

9. J. Han and Y. Fu, Discovery of multi-level association rules from large databases, in ``Proceedings
of the International Conference on Very Large Databases, Zurich, Switzerland,'' pp. 420�431,
September 1995.

10. V. Kumar, A. Grama, A. Gupta, and G. Karypis, ``Introduction to Parallel Computing: Algorithm
Design and Analysis,'' Benjamin Cummings�Addison Wesley, Redword City, CA, 1994.

11. D. Lin and Z. M. Kedem, Pincer-search: A new algorithm for discovering the maximum frequent
itemset, in ``EDBT Conference Proceedings,'' pp. 105�119, 1998.

12. H. Mannila, H. Toivonen, and A. I. Verkamo, Efficient algorithms for discovering association rules,
in ``AAAI Workshop on Knowledge Discovery in Databases,'' pp. 181�192, 1994.

13. A. Savasere, E. Omiecinski, and S. B. Navathe, An efficient algorithm for mining association rules
in large databases, in ``Proceedings of the 21st International Conference on Very Large Databases,''
1995.

14. R. Srikant and R. Agrawal, Mining Generalized Association Rules, in ``Proceedings of the 21st
International Conference on Very Large Data Bases,'' pp. 407�419, 1995.

15. R. Srikant and R. Agrawal, Mining quantitative association rules in large relational tables,
in ``Proceedings of the ACM SIGMOD Conference on Management of Data,'' pp. 1�12, 1996.

16. H. Toivonen, Sampling large databases for association rules, in ``Proceedings of the 22nd
International Conference on Very Large Databases, Bombay, India,'' September 1996.

17. M. J. Zaki, S. Parthasarathy, M. Ogihara, and W. Li, New algorithms for fast discovery of
association rules, in ``KDD Conference Proceedings,'' pp. 283�286, 1997.

371TREE PROJECTION ALGORITHM

	1. INTRODUCTION
	FIG. 1

	2. THE LEXICOGRAPHIC TREE OF ITEM SETS
	3. ALGORITHMIC STRATEGIES FOR LEXICOGRAPHIC TREE CREATION
	FIG. 2
	FIG. 3
	FIG. 4
	FIG. 5
	FIG. 6
	FIG. 7
	FIG. 8
	FIG. 9
	FIG. 10
	TABLE 1

	4. EXTENSIONS TO PARALLEL ASSOCIATION RULE MINING
	FIG. 11

	5. EMPIRICAL RESULTS
	FIG. 12
	FIG. 13
	FIG. 14
	TABLE 2
	FIG. 15

	6. CONCLUSIONS AND SUMMARY
	ACKNOWLEDGMENTS
	REFERENCES

