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1 Introduction

Frequent pattern mining is a classical data-mining task and plays an essential
role in mining associations, correlations, sequential patterns etc [1]. Here, we
focus on basket data which is a database of transactions each containing a
set of database items I = {i1, i2, ..., in}. Frequent patterns are those item sets
whose number of occurrences is above a certain threshold. Maximal frequent
patterns are those item sets which cannot be extended to a larger maximal
frequent pattern by adding items. A very popular algorithm for this task is
Apriori [2]. The algorithm finds frequent patterns iteratively in breath-first
order. That is, it finds all frequent patterns of length (k - 1) before those
of length k. At a high level the algorithm has three main steps at the kth

iteration:

1. Generate candidate frequent patterns of length k (Ck) from those of
length (k -1).

2. Check which of these candidates are really frequent by examining the
database transactions.

3. Obtain the patterns of length k (Lk) which are really frequent by com-
paring against a minimum support threshold.

The candidates at the first step are produced through the Apriori property
[3]: A subset of a frequent item set must also be a frequent item set. However,
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the second step can be very expensive with respect to time and multiple
passes over the database may be necessary.

In [4] Zaki et. al. proposes new algorithms for fast association mining
which scan the database only once. Here they propose to find potential maxi-
mal frequent item sets (candidates) from smaller frequent item sets by finding
cliques in a hyper graph whose vertices are these smaller frequent item sets.
They partition these smaller frequent item sets Lk of size k into equivalence
classes based on their common k - 1 length prefix. Consider the equivalence
classes generated from frequent item sets of size k = 2 below: (reproduced
from [4])

Figure 1: Equivalence classes

The equivalence class with prefix 1 i.e. 12345678 is a potential maximal
item set (as each subset is frequent). Also, all subsets of length 3,..,7 in the
subset lattice of 12345678 are candidate frequent item sets. They propose
a hybrid top-down/bottom-up traversal algorithm on the candidate subset
lattices to determine the true frequent item sets.

2 Mining Frequent Patterns without candi-

date Generation

The authors of [1] argue that the approach of Aripori and other similar meth-
ods like [4], which is candidate set generation and test (as described above)
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is computationally very expensive. They propose that the performance of
frequent pattern mining can be substantially improved by not generating
candidates patterns.

They propose to do this using a novel data structure called frequent
pattern tree or FP-tree. Each vertex in this tree corresponds to an item
in the database and has a count value. This tree is grown in two steps:

1. Scan the database once to find the frequent 1-item sets F and sort F
in decreasing support as L.

2. Create a root node called ”null”. For each each transaction (Trans)
in the database sort the frequent items in order of L. Now, insert this
transaction in the FP-tree. This starts from the ”null” node and the
first item in Trans. If the node being examined has a child correspond-
ing to the next item in Trans, increment the count of that node by 1.
Otherwise create a new node corresponding to the next item in Trans
with count 1. This process is continued until nodes corresponding to
each frequent item in Trans have been found/created . All nodes cor-
responding to a particular item are connected by node-links.

The FP-tree is compact representation of the database which allows fre-
quent pattern mining. The diagram below (reproduced from [1]) illustrates
this mining process:

Figure 2: FP-tree Mining

The mining process first considers each item in the order of their sup-
port. Following node links, a conditional FP-tree is created which implicitly
contains information only about transactions which contain the item under
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consideration. The conditional FP-tree of the item m is shown. The counts
on a node of item m tells us how many transactions contain m and all items
in the path from ”null” to the node of m. We can modify the counts on the
other nodes accordingly (Property 3.2 from [1]). Now, the count values on
the other nodes (say a) measure how many times that item co-occurs with
m. Here, am occurs 3 times together and can be classified as frequent.

Let’s compare Figure 1 and 2. The nodes macf in Figure 2 mirrors the
equivalence classes in [4] and in Figure 1.

After all pairs which co-occurs with m have been determined longer fre-
quent patterns are obtained in a depth first style. As ma is frequent we
search for longer frequent patterns containing ma. In fact the pattern cam
is found. A further recursive call finds fcam. After this, recursive calls to
find longer patterns containing cm and fm are executed.

Figure 3: Order of FP-tree Mining

The key point here is: The items in the conditional FP-tree of
m i.e. macf can be considered as a candidate maximal frequent
item set and all its subsets (of size 3) candidate frequent item sets.
This means that FP-Growth algorithm in [1] implicitly constructs candidate
frequent item sets.

The gain in performance comes from having a compact representation
of the database which makes the task of discovering larger frequent item
sets from smaller ones computationally inexpensive (equivalent to finding
frequent 1-item sets in the FP-tree).
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3 Is FP-Growth is really different than Tree-

Projection?

The authors of [1] argue that the Tree-Projection algorithm in [5] is really
different from FP-Growth in [1]. This claim is valid as there are significant
differences in the way they operate.

Tree-Projection works in a breath-first order in contrast to the depth-first
order of FP-Growth. So, considering the example from the previous section
first the frequent patterns ma, mc, mf will be generated before mac, macf
etc. However the search tree will appear very similar to Figure 2 except that
the order of discovery will be breath first. (A combined depth-first/breath-
first search strategy for Tree-Projection is possible).

Moreover, and more importantly, the FP-Tree is designed in such a way
that we can determine the frequency of larger item sets from smaller (fre-
quent) item sets using Property 3.2 in [1]. The Tree-Projection algorithm
operates by constructing matrices which contain support of item sets of size
two at level (k-1) to generate nodes at level (k+1). In other words, this
amounts to finding frequent 1-item sets in FP-Growth and frequent 2-item
sets in Tree-Projection. If the number of transactions is large and length of
each transaction is long this can be very expensive.

Thus, due to the above mentioned facts (and other unmentioned facts)
the authors of [1] claim that FP-Growth is more efficient and scalable than
Tree-Projection.
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