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1 Introduction

In this report, we discuss the use of causal graphs on detecting discrimination as
proposed by Bonchi et al. [1]. We contrast their approach with statistical parity, one
of the canonical notions of fairness in machine learning. While Bonchi et al.’s SBCN
showed some encouraging experimental results, we mainly look at its potential
weaknesses, which can be thought of as directions for future research. Lastly, we
go beyond classification problems and examine how fairness can be ensured in the
ranking of objects.

2 Statistical Parity

Statistical parity, or Independence, is one of the most popular criteria for fairness.
It assumes that everything is fair if the distribution of outcome is the same for all
groups. For a binary classification problem, if we denote the protected group by S
and its complement (the non-protected group) by S, then statistical parity tests for:
p(+[8) = p(+]S5°)

where p(+|5) is the probability an instance is classified as positive given that it is
a member of S. While statistical parity is desired in some cases, Dwork et al. [2]
made a reasonable argument that it alone is not sufficient. Specifically, statistical
parity only ensures group fairness while individuals might still be treated unfairly.
There are various scenarios in which statistical parity fails.

First, statistical parity still holds if wrong subsets of the groups are selected (for
being classified as positive) as long as the sizes of those subsets are proportional



to their corresponding groups, which reduces the utility of prediction. Second,
statistical parity cannot prevent self-fulfilling prophecy, the act of (deliberately or
not) choosing unqualified candidates from a group, which makes the discrimination
even stronger for that group in the future. Third, it cannot prevent violation of
privacy, in which case a subgroup (or an individual) of a group can be identified with
confidence as a result of a malicious manipulation of exposure.

3 The Suppes-Bayes causal networks

3.1 Definitions

Due to those severe problems of statistical parity, research has been conducted
to find alternative methods. One of those attempts was from Bonchi et al. [1].
They proposed a method to construct Suppes-Bayes causal networks (SBCN) from
observational data and then identify discrimination as causal paths on these networks
(or graphs).

Given a database, the causal graph is constructed by forming nodes and directed
edges. A node represents an assignment <attribute=value>. So a categorical
attribute with c categories should result in ¢ nodes in the graph. All numerical
attributes are expected to be binned and then treated as categorical afterward. A
directed edge represents a causal effect from its source to its sink. The weight (or
confidence) of an edge is a positive number which implies the strength of its causal
effect.

At first, each attribute is manually assigned with a temporal indicator of its relative
chronological order. For example, if the database is about people, then the temporal
order of the attribute nationality should be smaller than income. Edges are only
allowed to go from a node with a lower or equal temporal order of attribute to a
node with a higher or equal temporal order of attribute. Furthermore, for an edge
from u to v, its weight is set to p(v|u) — p(v|—u) (note that if p(v|u) < p(v|—u), we
remove this edge from consideration). Over all possible subsets of the edges that
satisfy the stated requirements, the best subset is chosen based on the regularized
maximum likelihood with the BIC-score. The discrimination is then computed as the
proportion of random walks that go from nodes that represent group memberships to
nodes that represent outcomes.

3.2 Strengths

Bonchi et al. made an interesting argument that discrimination is causal, and thus it
makes sense to treat it as a causal problem by modeling its causal graph. The use of
the temporal order allows researchers to include domain knowledge into the process.



If input correctly, it can help eliminate lots of obvious non-causal edges while still
maintaining the potential causal relationships.

Constructing the SBCN costs O(sm) time and O(m?) space complexity (where s is
the number of data points and m is the number of attribute-value pairs), which is
quite reasonable for many datasets. The time needed to compute the discrimination
score for a pair of ground and outcome is then O(tm) (where ¢ is the number of
random-walk simulations), which is also practical in most cases.

Moreover, the authors claim that the SBCN can detect different types of discrimina-
tion, including group discrimination, indirect discrimination, genuine requirements,
and individual/subgroup discrimination. Given that most of the existing approaches
only address one (or two) of the mentioned problems, the SBCN’s ability to deal
with all of them confirms its versatility.

Lastly, let us emphasize that under some conditions, the graph-reconstruction al-
gorithm is sound. That is, if (1) there is a correct (but unknown) DAG that can
represent the causal effects of the attributes, (2) each node that has more than one
cause has conjunctive parents, (3) all relevant attributes are present in the data, (4)
the temporal order is correct and complete, (5) the sample size s — oo, (6) the data
is uniformly randomly corrupted, then the resulting causal graph is the correct one.

3.3 Weaknesses

We can see that the list of conditions for the guarantee of soundness is quite long.
First, it is almost always unrealistic that the assumption of conjunctive parents holds.
In many cases, not all causes have to happen before the observation of their common
effect. For example, getting promoted and reading a funny meme both make us
happy, but we do not need both of them in order to be happy.

Second, the assumption about the completeness of the data is also impractical. In
real life, it is always hard to ensure that all relevant information is included in the
dataset. Especially, the absence of confounders can largely affect the correctness of
the resulting causal graph. For example, let us denote by A the outside temperature,
by B the air conditioner, and by C the room temperature. Note that the air conditioner
automatically adjusts with the outside temperature, it attempts to keep the room
temperature the same no matter how the outside temperature changes. The actual
causal relationships are: A causes both B and C, B causes C. Now, if we model
the causal graph without A, we would make a false conclusion that B and C are
independent (because the room temperature remains the same when the intensity
of the air conditioner changes). Moreover, although B is not a confounder of A
and C, the absence of B in the graph (which contains A and C) also leads to a false
conclusion that A and C are independent.



Third, even though we are allowed to include our domain knowledge into the SBCN
in terms of the temporal order, the proposed method does not allow to skip temporal
ordering the attributes that we are not sure of. In practice, there might be cases in
which we do not have enough knowledge to deduce the ordering of some attributes.
This, together with the fact that this ordering is very important for the reconstruction
of the SBCN, result in a big risk factor. While in fact, A happens before B, if we
mistakenly order A after B, not only may the direction of causation between them is
reversed but also are many other consequences to other nodes.

Forth, the relationships between attributes with equal temporal order are complicated.
For two nodes a and b that have the same ordering value, it is not always easy to
make the decision of whether to conclude that a causes b or b causes a using only
observational data.

Fifth, it does not have any means to handle numerical attributes explicitly but requires
them to be transformed to categorical somehow, most likely through binning. Since
this transformation is lossy, there is a high chance that some useful information is not
preserved. In addition, the number of values per attribute (either that attribute is truly
categorical or a transformed version of a numerical attribute) has to be relatively
small compared to the sample size for the statistical inference to be reliable. More
precisely, each pair of <attribute=value> needs a significant amount of support. Big
size is also a desired (but not necessarily enough) property for the assumption of
uniformly randomly corrupted data.

Sixth, the weight of the edge going from any node u to v, denoted by W (v, u) and
computed by W (v, u) = p(v|u) — p(v|—u) only considers the pairwise dependency
between u and v, but not any joint dependency in which u and another node u’ can
together cause v but neither of u and u’ can cause v alone. Consider the XOR
function as an example, even though the two input values determine the output, none
of them can affect the output on its own. The SBCN will eliminate both edges from
the inputs to the output, resulting in a false negative.

Seventh, as hill-climbing is a greedy method, using it to optimize for the subset of
edges in the SBCN makes no guarantee that the resulting graph is optimal in general.
Furthermore, it also does not give a lower bound on how good its result is compared
to the optimal one.

Eighth, the choice of the distribution to measure the likelihood of the data given
the graph (i.e. LL(D'|G") where D' is derived from the original data and G’ is the
current graph) needs to be chosen carefully. Only when an appropriate distribution
is used should we expect a good resulting causal graph.

Ninth, although the authors claim that individual and subgroup discrimination can be
detected via SBCN with the personalized PageRank algorithm, this approach suffers



from the problem of joint causality. The personalized PageRank basically simulates
and estimates which outcome is more likely to be reached from any of the set of
starting nodes. It does not consider how multiple starting nodes jointly determine
the outcome, which is desirable for detecting individual discrimination.

Tenth, it is worth it to note that this method only detects discrimination but does not
ensure fairness on its own. Also, the SBCN does not output all discrimination in the
data but only allows us to query if any user-inputted group/subgroup/individual is
discriminated or not.

3.4 In contrast to statistical parity

For simplicity, let us assume a binary classification problem with a protected group
(.9) and its complement (S¢) as similar to the above. To test for group fairness with
the SBCN, we simulate walks from the nodes representing S and S¢ and count
how many times they reach the nodes represent positive and negative outcomes.
Call by ¢ the number of simulations for each of S and S¢, S, and S¢ the number
of simulations starting from S and S¢ that reach the positive outcome before the
negative outcome, respectively. Typically, ST+ ~ % implies group fairness. As a
corner case, we also consider it fair if there is no path to go from either S or S¢ to
either positive or negative outcomes.

The problem is that this approach suffers from the same problem as statistical parity:
despise the use of a causal graph, it only tests for whether the same proportion of
all groups reaches each outcome, rather than ensuring every individual is treated
right. Thus, the critiques from Dwork et al. [2] can also be applied here. The three
concerns about reduced utility, self-fulfilling prophecy, and privacy violation remain
even if the SBCN claims the classification is fair for the protected group.

To illustrate, let us take Dwork’s example:

“Suppose in the culture of S the most talented students are steered
toward science and engineering and the less talented are steered
toward finance, while in the culture of S ¢ the situation is reversed:
the most talented are steered toward finance and those with less
talent are steered toward engineering. An organization ignorant of
the culture of S and seeking the most talented people may select for
“economics,’ arguably choosing the wrong subset of S...” [2]

In this scenario, the resulting SBCN will learn from the (flawed) decisions that
pursuing finance and being talented are strongly associated with disregard to group
membership, and thus it is fair. However, in fact, it is unfair for members of S who
are talented and were steered toward science and engineering.



4 Fairness in ranking problems

In this section, we reason about the use of statistical parity and SBCN to ensure
fairness on ranking problems. Let us assume that we only have these 2 tools at hand.

In some scenarios, like the simplified problem of selecting students for a seminar
course, because the number of seats for each seminar is basically fixed with some
small variation, it makes sense to rank the applicants by suitability and then select
the top k according to the desired number of positions. For this type of ranking
problem, in which order is just a proxy for classification (applicants are accepted or
rejected), just applying statistical parity and/or SBCN on the classification outcomes
may be an easy but sufficient way.

For other (actual) ranking problems, it is not obvious how these 2 methods can
work out. One potential solution may be to distribute the instances into bins by
their ranking outcome and measure fairness in each of those bins. The bins may
be disjoint (e.g. the first bin contains instances in top 1%, the second bin contains
instances from below top 1% up to top 2%, and so on) or not (e.g. the first bin
contains instances in top 1%, the second bin contains instances in top 2%, and so
on). The bin size may be either relative (e.g. top 1%, top 2%) or absolute (e.g. top
10, top 100) and different bins may have different sizes (e.g. the first bin contains the
first 1%, the second bin contains the first 5%, the third bin contains the first 20%).
The resulting conclusion on fairness is then aggregated from all bins, with bins of
the higher rankings may have more weights than bins of lower rankings, depending
on the specific problem. Note that both statistical purity and SBCN can be used to
measure fairness with this approach.
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