
New Algorithms for Fast Discovery of Association Rules �M. J. Zaki, S. Parthasarathy, M. Ogihara, and W. LiComputer Science DepartmentUniversity of RochesterRochester NY 14627fzaki,srini,ogihara,weig@cs.rochester.eduAbstractDiscovery of association rules is an importantproblem in database mining. In this paper wepresent new algorithms for fast association min-ing, which scan the database only once, address-ing the open question whether all the rules canbe e�ciently extracted in a single database pass.The algorithms use novel itemset clustering tech-niques to approximate the set of potentially maxi-mal frequent itemsets. The algorithms then makeuse of e�cient lattice traversal techniques to gen-erate the frequent itemsets contained in each clus-ter. We propose two clustering schemes basedon equivalence classes and maximal hypergraphcliques, and study two traversal techniques basedon bottom-up and hybrid search. We also use avertical database layout to cluster related trans-actions together. Experimental results show im-provements of over an order of magnitude com-pared to previous algorithms.IntroductionOne of the central KDD tasks is the discovery of asso-ciation rules. The prototypical application is the anal-ysis of supermarket sales or basket data (Agrawal etal. 1996), which can be formally stated as follows: LetI = fi1; i2; � � � ; img be the set of database items. Eachtransaction, T , in the database, D, has a unique identi-�er, and contains a set of items, called an itemset. Anitemset with k items is called a k-itemset. The supportof an itemset is the percentage of transactions in D thatcontain the itemset. An association rule is a conditionalimplication among itemsets, A ) B. The data miningtask for association rules can be broken into two steps.The �rst step consists of �nding all frequent itemsets,i.e., itemsets that occur in the database with a certainuser-speci�ed frequency, called minimum support. Thesecond step consists of forming the rules among the fre-quent itemsets. This step is relatively easy (Agrawal�This work was supported in part by an NSF Re-search Initiation Award (CCR-9409120) and ARPA contract(F19628-94-C-0057). Copyright 1997, American Associa-tion for Arti�cial Intelligence (www.aaai.org). All rightsreserved.

et al. 1996), compared to the computationally inten-sive �rst step. Given m items, there are potentially 2mfrequent itemsets, which form a lattice of subsets overI. However, only a small fraction of the whole latticespace is frequent. This paper presents e�cient methodsto discover these frequent itemsets.Related Work Among the extant solutions, the Apri-ori algorithm (Agrawal et al. 1996) was shown tobe superior to earlier approaches (Park et al. 1995;Holsheimer et al. 1995). It uses the downward clo-sure property of itemset support to prune the item-set lattice { the property that all subsets of a fre-quent itemset must themselves be frequent. Thus onlythe frequent k-itemsets are used to construct candidate(k + 1)-itemsets. A pass over the database is madeat each level to �nd the frequent itemsets. The Par-tition algorithm (Savasere et al. 1995) minimizes I/Oby scanning the database only twice. Once for gen-erating a set of potential frequent itemsets, and oncefor gathering their support. Another way to mini-mize the I/O overhead is to work with only a smallsample of the database (Toivonen 1996; Zaki et al.1997a). A number of parallel algorithms have also beenproposed (Agrawal & Shafer 1996; Zaki et al. 1996;1997c). Itemset ClusteringConsider the lattice shown in �gure 1. Due to the down-ward closure property of itemset support the frequentitemsets (dashed circles) form a border (bold line), suchthat all frequent itemsets lie below it. The border isprecisely determined by the sub-lattices induced by themaximal frequent itemsets (bold circles). If we are giventhe maximal frequent itemsets we can design an opti-mal algorithm that gathers the support of all their sub-sets in a single database pass. In general we cannotprecisely determine the maximal itemsets a priori. Wecan however use intermediate results to obtain theirapproximations, called the potential maximal frequentitemsets.Equivalence Class Clustering For any k � 2, wecan generate the set of potential maximal itemsets fromthe set of frequent itemsets, Lk. We partition Lk into
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Figure 1: Lattice of Subsets and Maximal Itemset Induced Sub-latticesequivalence classes based on their common k� 1 lengthpre�x, given as, [a] = fb[k]ja[1 : k � 1] = b[1 : k � 1]g.For example, consider the L2 and the resulting equiv-alence classes shown in �gure 2. Any frequent itemsetwith the pre�x 1, must consist of items in [1], making12345678 a potential maximal itemset. Each equiva-lence class can thus be considered as a potential max-imal frequent itemset. Note that for k = 1 we end upwith the entire item universe as the maximal itemset.However, for any k � 2, we can extract more preciseknowledge, with increasing precision as k increases.
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Figure 2: Clustering SchemesMaximal Hypergraph Clique Clustering FromLk, it is possible to generate a more re�ned set of po-tential maximal itemsets. The key observation is thatgiven any frequent m-itemset, for m > k, all its k-subsets must be frequent. In graph-theoretic terms,if each item is a vertex in a hypergraph, and each k-subset an edge, then the frequent m-itemset must forma k-uniform hypergraph clique. Furthermore, the setof maximal hypergraph cliques represents an approxi-mation or upper-bound on the set of maximal poten-tial frequent itemsets. All the true maximal frequentitemsets are contained in the vertex set of the maximalcliques, as stated formally in the lemma below.Lemma 1 Let HLk be the k-uniform hypergraph withvertex set I, and edge set Lk. Let C be the set of max-imal hypergraph cliques in H, and let M be the set of

vertex sets of the cliques in C. Then for all maximalfrequent itemsets f , 9t 2M , such that f � t.An example of maximal hypergraph clique clusteringis given in �gure 2. The �gure shows all the equivalenceclasses, the maximal cliques per class, and the hyper-graph for class [1]. It can be seen immediately thatclique clustering is more precise than equivalence classclustering. For example, for the class [1], the formergenerated the maximal element 12345678, while the lat-ter a more re�ned set f1235; 1258; 1278; 13456; 1568g.The maximal cliques are discovered using a dynamicprogramming algorithm; see (Zaki et al. 1997b) fordetails. As the edge density of the equivalence classgraph increases the cost for generating the cliques mayincrease. Some of the factors a�ecting the edge densityinclude decreasing support and increasing transactionsize. Lattice TraversalEach potential maximal itemset generated by the aboveclustering schemes, induces a sublattice on I. We nowhave to traverse each of these sub-lattices to determinethe true frequent itemsets.Bottom-up Traversal A pure bottom-up latticetraversal proceeds in a breadth-�rst manner generat-ing all frequent itemsets of length k, before generat-ing those of length k + 1. Figure 3 shows an exam-ple of this scheme, with the potential maximal item-set, 123456, and the true maximal frequent itemsets1235 and 13456. Most current algorithms use this ap-proach (Agrawal et al. 1996; Savasere et al. 1995;Park et al. 1995).Hybrid Top-down/Bottom-up Traversal Thebottom-up search may generate spurious candidates inthe intermediate steps, since the fact that all subsetsof an itemset are frequent doesn't guarantee that theitemset is frequent. We can envision other traversaltechniques which quickly identify the set of true max-imal frequent itemsets. If we are interested in all fre-quent itemsets, we can then gather the support of alltheir subsets as well. We rule out a pure top-down ap-
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Figure 3: Bottom-up and Hybrid Lattice Traversalproach due to the inaccuracies in the clusters (Zaki etal. 1997b), and propose a hybrid top-down/bottom-upscheme that works well in practice. The basic idea is tostart with a single element from the itemset cluster, andextend this by one more element till we generate an in-frequent itemset. This comprises the top-down phase.In the bottom-up phase, the remaining elements arecombined with the elements in the �rst set to generateall the additional frequent itemsets. For the top-downphase, we sort the cluster elements in descending orderof their support. We start with the element with max-imum support, and extend it with the next element inthe sorted order. This is based on the intuition that thelarger the support the more likely is the itemset to bepart of a larger itemset. Figure 3 shows an example ofthe hybrid scheme.Transaction ClusteringThere are two possible layouts of the database for as-sociation mining. The horizontal layout (Agrawal et al.1996) consists of a list of transactions. Each transactionhas an identi�er followed by a list of items. The verti-cal layout (Holsheimer et al. 1995) consists of a list ofitems. Each item has a tid-list { the list of all the trans-actions containing the item. The vertical format seemsmore suitable for association mining since the supportof a candidate k-itemset can be computed by simple tid-list intersections. No complicated data structures needto be maintained. The tid-lists cluster relevant transac-tions, and avoid scanning the whole database to com-pute support, and the larger the itemset, the shorterthe tid-lists, resulting in faster intersections. Further-more, the horizontal layout seems suitable only for thebottom-up traversal. The inverted layout, however, hasa drawback. Intersecting 1-itemset tid-lists to deter-mine L2 can be very expensive (Zaki et al. 1997b).This can be solved by using sampling(Toivonen 1996;Zaki et al. 1997a), or by using a preprocessing stepto gather the support all 2-itemsets. Since this infor-mation is invariant, the pre-processing has to be per-formed once initially, and the cost can be amortizedover the number of times the data is mined. Our current

implementation uses the pre-processing approach dueto its simplicity. Sampling requires an extra databasepass, while pre-processing requires extra storage. Form items, O(m2) disk space is required, which can bequite large for large m. However, for m = 1000 used inour experiments this adds only a very small extra stor-age overhead. Note that the database itself requiresthe same amount of space in both the horizontal andvertical formats.New Association AlgorithmsWe present four new algorithms, depending on the clus-tering and lattice traversal scheme used:� Eclat: equivalence class & bottom-up� MaxEclat: equivalence class & hybrid� Clique: maximal hypergraph clique & bottom-up� MaxClique: maximal hypergraph clique & hybridThe new algorithms use one of the itemset clusteringschemes to generate potential maximal itemsets. Eachsuch cluster induces a sublattice, which is traversed us-ing bottom-up search to generate all frequent itemsets,or using hybrid scheme to generate only the maximalfrequent itemsets. Each cluster is processed in its en-tirety before moving on to the next cluster. Since thetransactions are clustered using the vertical format, thisinvolves a single database scan, resulting in huge I/Osavings. Frequent itemsets are determined using simpletid-list intersections. No complex hash structures needto be built or searched. The algorithms have low mem-ory utilization, since only the frequent k-itemsets withina single cluster need be kept in memory at any point.The use of simple intersection operations also makesthe new algorithms an attractive option for direct im-plementation on general purpose database systems.Experimental ResultsOur experiments used a 100MHz MIPS processorwith 256MB main memory, with di�erent benchmarkdatabases (Agrawal et al. 1996). For fair comparison,all algorithms use 2-itemset supports from the prepro-cessing step. See (Zaki et al. 1997b) for detailed ex-
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(a) Total Execution Time (b) Number of Transactions Scale-upFigure 4: Performance Comparisonperiments. In �gure 4 a), we compare our new algo-rithms against Apriori and Partition (with 10 parti-tions) on T20.I6.D100K database. Eclat outperformsApriori by a factor of 10, and Partition by a factor of5. As the support decreases, the size and the num-ber of frequent itemsets increases. Apriori has to makemultiple passes over the database, and performs poorly.Partition saves some I/O costs, but it spends time com-puting redundant frequent itemsets in common amongdi�erent partitions. Among the new algorithms, Cliqueprovides a �ner level of clustering, reducing the num-ber of candidates considered, and performs better thanEclat. Both the hybrid algorithms, MaxEclat and Max-Clique, outperform the bottom-up ones, since they only�nd maximal itemsets, and thus perform fewer joins.Table 1 gives the number of joins performed by the dif-ferent algorithms. Compared to Eclat, the hypergraphclique clustering is able to cut down the joins by 25%for Clique. Combined with the hybrid search, thereis a 75% reduction for MaxClique, making it the bestalgorithm. It outperforms Apriori by a factor of 40,Partition by a factor of 20, and Eclat by a factor of 2.5.Eclat Clique MaxEclat MaxClique# Joins 83606 61968 56908 20322Time (sec) 46.7 42.1 28.5 18.5Table 1: Number of Joins: T20.I6.D100K (0.25%)Figure 4 b) shows how the di�erent algorithms scaleup as the number of transactions increases from 0.1 to5 million (M). The times are normalized against the ex-ecution time for MaxClique on 0.1M transactions. Thenumber of partitions for Partition was varied from 1 to50. While all the algorithms scale linearly, the slope ismuch smaller for the new algorithms. The new algo-rithms also scale well with transaction size, and havevery low memory utilization (Zaki et al. 1997b).ConclusionsWe proposed new algorithms for fast association min-ing, using three main techniques. We �rst cluster item-

sets using equivalence classes or maximal hypergraphcliques. We then generate the frequent itemsets fromeach cluster using bottom-up or hybrid traversal. Avertical database layout is used to cluster transactions,enabling us to make only one database scan. Experi-mental results indicate more than an order of magni-tude improvements over previous algorithms.ReferencesAgrawal, R. & Shafer, J. 1996. Parallel mining ofassociation rules. In IEEE Knowledge & Data Engg.,8(6):962{969.Agrawal, R.; Mannila, H.; Srikant, R.; Toivonen, H.;& Verkamo, A. 1996. Fast discovery of associationrules. In Advances in KDD. MIT Press.Holsheimer, M.; Kersten, M.; Mannila, H.; & Toivo-nen, H. 1995. A perspective on databases and datamining. In 1st KDD Conf.Park, J.; Chen, M.; & Yu, P. 1995. An e�ective hashbased algorithm for mining association rules. In SIG-MOD Conf.Savasere, A.; Omiecinski, E.; and Navathe, S. 1995.An e�cient algorithm for mining association rules inlarge databases. In 21st VLDB ConfToivonen, H. 1996. Sampling large databases for as-sociation rules. In 22nd VLDB ConfZaki, M.; Ogihara, M.; Parthasarathy, S.; & Li, W.1996. Parallel data mining for association rules onshared-memory multi-processors. In Supercomputing.Zaki, M.; Parthasarathy, S.; Li, W.; & Ogihara, M.1997a. Evaluation of sampling for data mining of as-sociation rules. In 7th Wkshp. Resrch. Iss. Data Engg.Zaki, M.; Parthasarathy, S.; Ogihara, M.; & Li, W.1997b. New algorithms for fast discovery of associationrules. TR 651, CS Dept, Univ. of Rochester.Zaki, M.; Parthasarathy, S.; & Li, W. 1997c. A local-ized algorithm for parallel association mining. In 9thACM Symp. Parallel Algorithms & Architectures.


