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ABSTRACT

In this appraisal paper, we evaluate the efficacy of Shield [1], a
compression-based defense framework for countering adversarial
attacks on image classificationmodels, which was published at KDD
2018. Here, we consider alternative threat models not studied in the
original work, where we assume that an adaptive adversary is aware
of the ensemble defense approach, the defensive pre-processing,
and the architecture andweights of themodels used in the ensemble.
We define scenarios with varying levels of threat and empirically
analyze the proposed defense by varying the degree of information
available to the attacker, spanning from a full white-box attack to
the gray-box threat model described in the original work. To evalu-
ate the robustness of the defense against an adaptive attacker, we
consider the targeted-attack success rate of the Projected Gradient
Descent (PGD) attack, which is a strong gradient-based adversarial
attack proposed in adversarial machine learning research. We also
experiment with training the Shield ensemble from scratch, which
is different from re-training using a pre-trained model as done in
the original work. We find that the targeted PGD attack has a suc-
cess rate of 64.3% against the original Shield ensemble in the full
white box scenario, but this drops to 48.9% if the models used in
the ensemble are trained from scratch instead of being retrained.
Our experiments further reveal that an ensemble whose models are
re-trained indeed have higher correlation in the cosine similarity
space, and models that are trained from scratch are less vulnerable
to targeted attacks in the white-box and gray-box scenarios.
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1 INTRODUCTION

Adversarial examples are inputs that appear innocuous to humans
but fool a machine learning model into making incorrect predic-
tions [2]. Even the most accurate image classification models that
rely upon state-of-the-art deep neural networks are potentially
vulnerable to these maliciously crafted inputs [3–5]. Thus, it is
an important research problem to develop defenses against such
adversarial examples, especially when these models are deployed
in safety or security critical systems.

One such recently proposed defense is Shield, Secure Hetero-
geneous Image Ensemble with Localized Denoising [1], which uses
a combination of techniques to defend against adversarial exam-
ples for image classification systems. Shield trains several image
classification models using JPEG-compressed images at different
compression levels. These JPEG-trained models are used in a major-
ity vote ensemble to yield the final classification result for a given
input image. At inference time, Shield also applies Stochastic Local
Quantization (SLQ), which is a novel randomized form of JPEG
compression, as a pre-processing step. In the face of a non-adaptive
adversary that is only aware of the model architecture (but not
its weights nor any defensive measures), Shield reports a 16.3%
decrease in test accuracy against adversarial examples as compared
to a 57.19% drop when there is no defense.

While experiment results in the original Shield paper empha-
sized its fast inference and practicality of being a readily available
technique, it did not consider a full range of threat models or more
recent stronger attacks. Thus, in this work, we aim to appraise
Shield and make the following contributions:

EvaluatingThreatModelswithAdaptiveAttacker. In this work,
we further test the robustness of Shield against an adaptive adver-
sary that has access to more parts of the defense than originally
studied. We start with the white-box attack, in which the attacker
has access to all parts of the inference pipeline, and peel back infor-
mation given to the attacker by defining varying levels of threat
models that are different from the gray-box threat model analyzed
in [1]. We also find that Shield can be made more robust to targeted
attacks even in the white-box case by using models in the ensemble
whose weights are less correlated.

Evaluating Stronger Attacks. Since around the time Shield was
published, the Projected Gradient Descent (PGD) [4] attack had
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started to gain reputation in becoming one of the strongest gradient-
based iterative attacks proposed in adversarial machine learning
research. As PGD was not evaluated in the original Shield paper, in
this work, we contribute evaluation focusing on PGD. Specifically,
we use the targeted version of PGD to study the robustness of the
defense framework under different threat models. We focus on
reporting the attack success rate for targeting the least-likely model
prediction, as it is more compelling if an attack is able to affect
the prediction of a model significantly, opposed to only slightly
changing it. Since we target the least likely model prediction for the
attack, it is only easier for the adversary to target other predictions
as they already have a higher rank in the prediction likelihood.

Analyzing the Effect of Training Procedure on Robustness

of Shield. We take a closer look into the training procedure of
Shield, whose original approach of creating an ensemble of JPEG-
trained models involves re-training the models from a pre-trained
ResNet-50 v2 model. We find that this re-training approach yields
an ensemble of models whose weights are highly correlated, making
the defense less robust to attacks when the attacker has access to
one or more of the models in the ensemble. To explore how to
alleviate this issue, we experiment with newly trained models that
have been trained on JPEG-compressed images from scratch, and
perform the same analysis for comparison. We find that the training
procedure indeed affects the robustness of the defense at reducing
the success of strong targeted attacks. In the full white-box case,
simply training the models of the ensemble from scratch can reduce
the attack success rate by 24%.

2 BACKGROUND

2.1 Shield

Shield is a defense framework published in KDD 2018 that em-
ploys (1) Stochastic Local Quantization and central cropping as pre-
processing; (2) model re-training; and (3) an ensemble of models
to defend against adversarial attacks on image classification sys-
tems. Below, we summarize the various components of the Shield
defense framework.

2.1.1 Stochastic Local Quantization (SLQ). SLQ is a randomized
form of image compression introduced in [1]. Thismethod leverages
JPEG compression as a form of defense. Since JPEG compression
performs quantization in the frequency domain, the authors hy-
pothesize that this step also removes adversarial perturbations from
the image. The authors also argue that since the quantization step is
non-differentiable, the attacker cannot obtain any useful gradients
to directly perform gradient-based attacks. Additionally, SLQ uses
randomization to further mask the gradients by breaking up the im-
age into smaller blocks, and applying a different JPEG compression
level to each block.

More concretely, let us denote the input image as x , and the
JPEG compression at quality level q applied to the input image as
JPEG(x ,q). SLQ usesK qualities {q1, . . . ,qK } to compute JPEG(x ,q1),
. . . , JPEG(x ,qK ), and use these images to randomly pick patches
from the corresponding locations to stitch up the final image.

2.1.2 TrainingModels on JPEG-compressed Images. Since Shield
employs SLQ pre-processing that uses different levels of JPEG com-
pression, the authors of [1] also re-train the image classification

model to be more robust to the pre-processing operation. Specifi-
cally, Shield takes a pre-trained ResNet-50 v2 model, denoted asM,
and re-trains it on images compressed at JPEG quality q to obtain a
new ResNet-50 v2 model Mq . The weights of M are used as the
initial weights while trainingMq to get faster convergence. Shield
trains multiple models in this manner using different JPEG quality
levels {q1, . . . ,qK } to obtain Mq1 , . . . ,MqK , which are then used
as a majority vote ensemble.

2.2 Projected Gradient Descent

Given a benign input instance x , a targeted adversarial attack aims
to find a small perturbation δ that changes the prediction of model
M to a target class t different from the true classy, i.e.,M(x+δ ) = t ,
where t , y, | |δ | | ≤ ϵ . We call ϵ the perturbation strength with re-
spect to a specific norm | | · | |. In this work we only examine strength
in terms of ℓ∞ because it is easy to understand—the maximum pixel
value deviation an attacker can apply across all image channels.

Projected Gradient Descent (PGD) [4] is one of the strongest first-
order attacks in the adversarial machine learning literature. PGD
iteratively minimizes a loss function L(x , t). In this work, we use
cross-entropy for L that computes the distance between the softmax
of the logit layer and the one-hot representation of the target class t .
We denote the logit layer of modelM as f (x ,M). In each iteration
i , it computes the direction of perturbation by taking the sign of the
gradient of loss function L with respect to the current perturbed
instance x i , and then perform a projection step back to the feasible
set, i.e., within ϵ ball of the original instance while remaining a
valid image:

x i+1 = Proj
(
x i − α · sign(∇x i L(x

i , t))
)

Instead of starting from the original instance, we use a random
starting point within ϵ ball of the original instance [4]. Following [6],
we use the least likely classyLL predicted by the model as our target
class.

3 APPRAISAL METHODOLOGY

When deploying a defense to mitigate adversarial examples, one
must understand the limits of that defense in terms of the strength of
the attacker and threat models it was tested for. We usually quantify
a defense’s capability as a well-defined threat model along with a
security curve that plots the accuracy of the model in the face of an
adversary that has the ability to manipulate the image at different
strengths for that threat model [7]. We measure strength as the
difference between a test image and its corresponding adversarial
image generated via an attack method. Such differences are high-
dimensional so we often summarize this difference by computing
some metric like ℓ∞ (largest absolute difference) or ℓ2 (euclidean
distance). At the limit of the strength (i.e., the ability to manipulate
pixels with any value), the attacker can simply use those examples
that are already incorrectly classified or just replace the image with
another image of their desired target. It turns out, however, that
many models exhibit weaknesses at much smaller strengths where
it is difficult for humans to visually distinguish any adversarial
perturbation. Note that the study of these security curves is of
interest to defenders due to the asymmetry between adversaries
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(a)

(b)

Figure 1: Example adversarial images generated against

Shield. The first column shows the original images and

their corresponding predictions. The second column shows

the adversarial images their corresponding predictions. The

final image is the difference between the original and ad-

versarial image, which we call the perturbation. Note that

both perturbations have ℓ∞ distance of 16 but different ℓ2
distances. The perturbation in the alp photo is visually no-

ticeable, while the perturbation in the koala photo is not.

Despite being visually noticeable, the alp perturbation has

lower ℓ2 than the koala perturbation. Ideally a chosen dis-

tance would be well ordered with respect to visual distin-

guishability. Images are best viewed in color.

and defenders. That is, adversaries need only find one particular
weakness while defenders ought to mitigate all possible weaknesses.

In this work, we examine strength in terms of ℓ∞. Figure 1 shows
two different adversarial images with their corresponding pertur-
bations. Both perturbations have ℓ∞ of 16 yet exhibit different ℓ2
distances. The ℓ2 distance of the koala perturbation is larger than
the ℓ2 distance of the alps perturbation, yet the alps perturbation
is easily discernible in the adversarial image. Finding better met-
rics to summarize adversarial perturbations that take into account
human perception remains an open problem. Because Shield was
evaluated against ImageNet, we chose the same attacker strength
that other state-of-the-art defenses on ImageNet use [8]: an ℓ∞ of
16 out of 255.

3.1 Studying Effect of Training Procedure on

Ensemble Robustness

Since the Shield framework deploys an ensemble of models re-
trained from the same ResNet-50 v2 model M, we posit that the
model weights may be highly correlated, making it easier for the at-
tacker to attack the ensemble even under weak gray-box restrictions
in which the attacker has access to only some of the models from
the ensemble. To study the effect of this potential issue, we train the

models from scratch on JPEG-compressed images of corresponding
qualities used in the original work.

In [1], the model re-trained from a pre-trained ResNet-50 v2
modelM using images with JPEG quality q were denoted as Mq .
We call these models as “Derivative” models. Adopting a simi-
lar notation, we call the new ResNet-50 v2 model trained from
scratch on images with JPEG quality q as M∗

q , and we refer to
them as “Originative” models. Hence, we perform our analysis
on two ensembles, the newly trained {M∗

20,M
∗
40,M

∗
60,M

∗
80} (or

Shield-Originative) and the original {M20,M40,M60,M80} (or
Shield-Derivative).

Also, to quantify the correlation between 2 models, we flatten,
normalize and concatenate the weights from each layer of a model
to form a single vector, and calculate the cosine similarity with
the corresponding vector for the other model. Indeed, we find that
Shield-Derivative (which has been obtained using initial weights
from the same pre-trained ResNet-50 v2model) has a higher average
cosine similarity of 0.64 between any pair of models in the ensemble.
Whereas, Shield-Originative (whose models have been trained
from scratch) has a lower average cosine similarity of 0.42 between
the pairs of models. One can further decrease this correlation by
explicitly adding the similarity measure to the loss function as a
regularizer, and train an ensemble jointly to make it more robust
to transferability attacks.

3.2 Extending to More Threat Models

To fully understand the robustness of the proposed defense under
different circumstances, it is important to set meaningful restric-
tions on the capabilities of the attacker according to the application
domain [9]. Hence, we define varying degrees of threat models, and
evaluate the proposed Shield defense under different scenarios.
These threat models vary from a full white-box attack (no restric-
tions) to strong gray-box restrictions as originally studied in [1].
Table 1 summarizes these threat models, and we describe them in
more detail below.

TM-White. This threat model corresponds to the full white-box
attack that imposes no restrictions on the attacker, who is allowed
to access to all parts of the proposed defense. For Shield, this
includes the model architecture, weights, any JPEG pre-processing
(i.e., SLQ), as well as all the defense parameters (e.g., SLQ in [1] uses
JPEG qualities 20, 40, 60 and 80). In practice, attackers typically do
not have full access to all information of the defense (if they do,
that could mean an attacker is in complete control of the defender
and could do anything they want). However, studying white-box
attacks help researchers better understand a defense’s robustness
under the most hostile situation.

TM-Gray1. This is a gray-box threat model that imposes weak re-
strictions on the attacker. Namely, the attacker now only has access
to some of the models’ weights from the ensemble. The attacker is
still aware of the defense strategy and the defense parameters. Since
Shield uses 4 models in the ensemble, we study the robustness of
the defense by varying the number of models that the attacker can
access, and report the average attack success rate. For example, if
the attacker can access 2 out of the 4 models from the ensemble,
this yields 6 combinations of models that the attacker can attack,
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Attacker has access to

Threat Model (TM) Model Architecture Weights of Models in Ensemble Defense Strategy Defense Parameters

TM-White Yes All Yes Yes
TM-Gray1 Yes Some Models Yes Yes
TM-Gray2 Yes No Yes Yes
TM-Shield Yes No No No

Table 1: Threat models studied in this work, ordered by decreasing severity. We define different scenarios with varying levels

of threat. TM-White (top) allows the attacker to access thewhole inference pipeline including the defense parameters, whereas

TM-Shield (bottom), originally studied in [1], only provides the model architecture to the attacker.

i.e.,
(4
2
)
= 6, and we report the average success rate from all the 6

attack trials in this case.

TM-Gray2. This is a moderate gray-box threat model that imposes
some more restrictions on the attacker. Specifically, now the at-
tacker is aware of the the model architecture and the defense strat-
egy and parameters, but cannot access any of the model weights
and is unaware of the training strategy. In this scenario, the at-
tacker is faced with training their own models on JPEG-compressed
images. We evaluate this scenario by creating adversarial examples
using the newly trained Originative models {M∗

q } and testing them
against with Shield’s default Derivative models {Mq }.

TM-Shield. This corresponds to the original gray-box threat
model studied in [1] which imposes strong restrictions on the at-
tacker. In this scenario, the attacker is only aware of the model
architecture used in the ensemble and is oblivious of the defense
pre-processing and does not have access to the model weights.

3.3 Constructing and Evaluating Adaptive

Attacks

Shield integrates several techniques that mask the gradients of a
model so that an adversary cannot perform an exact gradient-based
attack that uses backpropagation. This backpropagation compu-
tation is exactly the same method one would use to learn such a
model, except that rather than changing the weights of the model,
the attacker seeks to change only the input image. For this work,
we rely upon the PGD attack as implemented in Cleverhans [10]
(which contains technical details).

Backpropagation requires that all operations in the model be dif-
ferentiable. By using JPEG compression, which is non-differentiable,
Shield forces attackers to create JPEG compression approximations
that are differentiable. A recent work [11] describes how to do this,
and we apply the authors’ differentiable JPEG approximation to
attack Shield. Similarly, because the majority voting of the ensem-
ble of models in Shield is also non-differentiable, we approximate
the majority vote by averaging the logits output of each model
before applying the softmax function. One can also apply alterna-
tive ensemble approximations [12], but we found averaging to be
effective.

A further difficulty in naively applying PGD to Shield is the
stochasticity of the SLQ pre-processing step. Because SLQ intro-
duces randomness in the input presented to the model, the model
effectively sees a different, albeit similar, input image every time for

the same image. Shield relies upon its ensemble of JPEG trained
models to ensure that the same input image even after SLQ pre-
processing still maps to the same prediction. The attacker, however,
typically has no control of this randomness. To circumvent this
issue, we compress the image at multiple compression levels — 20,
40, 60 and 80 (the JPEG qualities used by SLQ) — and average over
these compression levels to find an adversarial perturbation. More
concretely, for the purpose of attacking, we compute the logits of a
given ensemble E for the input x as,

1
|Q| · |E |

∑
M∈E

∑
q∈Q

f (JPEG(x ,q),M)

where Q is the set of JPEG compression levels used by SLQ and
f (x ,M) is the logits output of the model M for input x .

4 RESULTS

For our experiments, we sampled 1000 of the 50000 ImageNet [13]
validation images and used PGD with 20 iterations to generate
adversarial images. We performed the targeted version of the PGD
attack with the least-likely prediction of the model under attack as
the targets. We report the attack success rate, which is the fraction
of images that were incorrectly classified by the model with the
target label specifically chosen by the attacker. The attack is not
successful if the model misclassifies the image but the output label
is not the same as the target label. In the following section, we now
present our results on the threat models being studied.

4.1 White-box Attack (TM-White)

The results from a full white-box targeted attack are shown in
Table 2. We see that only 17 of the 1000 adversarially crafted im-
ages are correctly classified by the original Shield model (Shield-
Derivative). The remaining 983 were incorrectly classified as some-
thing other than the ground truth label.

Furthermore, an attacker is able to force Shield-Derivative to
make a prediction of their choosing. Here we chose the prediction
target to be the least-likely class that the differentiable version of
ensemble predicts on the original image. Such a target should be
difficult for an attacker to hit, yet our results show that 643 of those
1000 adversarial image were successfully predicted as the least-
likely label. However, we see in the case of Shield-Originative
that an ensemble having uncorrelated models can alleviate this
problem and increase the defense robustness to a targeted attack.
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Ensemble White-box Attack Success Acc.

Shield-Derivative 0.643 0.017
Shield-Originative 0.489 0.022

Table 2: White-box robustness to targeted attacks. Shield-

Originative thwarts more targeted attacks (i.e., attacker is

less successful), evenwhen adversary has access to the entire

inference pipeline, since models trained from scratch have

lower correlation than models re-trained from the another

model as in Shield-Derivative. Accuracy of bothmodels are

adversely affected.
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Figure 2: Comparison of the average attack success for TM-

Gray1, where the attacker has access to n out 4 models from

the ensemble. The attack is least successful in both cases

when the attacker has access to only one model, and most

successful when the attacker has access to all 4 models (TM-

White). Models trained from scratch (Shield-Originative, in

green) are significantly more robust to an adaptive targeted

attack as compared to the original Shield ensemble, in gray.

The attacker is only able to target 489 images out of 1000 in this
case.

4.2 Weak Gray-box attack (TM-Gray1)

In this threat model, the attacker can only access some of the models
from the ensemble, while having full knowledge of the defense
strategy. We perform this ablation study by averaging over the
attack success rate from attacking all possible model combinations
corresponding to the attacker’s budget constraint (i.e., the number
of models the attacker can access). The most restrictive case is when
the attacker can only access one of the models. In this scenario, the
attacker has 4 choices for performing the attack (on any one of the
4 models from the ensemble). Hence the average attack success is
reported from the 4 trials that the attacker can make. Similarly, the
attacker has 6 choices when allowed to attack 2 models together,
and so on.

The results of this experiment are shown in Figure 2, which plots
the average attack success from attacking n out of 4 models, by
varying n on the x-axis. As is evident, this study spotlights the
effect of training from scratch and the risk of having models that
are correlated. Note here that TM-White is an extreme case of this
threat model when the attacker can access the whole ensemble
(n = 4).

Even with just one model available to the attacker, the accuracy
of the original ensemble (Shield-Derivative) falls to 20.33%, and
further to 1.7% when all models are available to the attacker (TM-
White). The Shield-Originative ensemble also shows similar trends
with respect to accuracy. However, there is a clear contrast when
it comes to the attack success rates for the two ensembles. The
targeted attack has a lower success rate with the Shield-Originative
ensemble, since the weights of the models in this ensemble are less
correlated, and hence the attack does not transfer so well to the
other models.

4.3 Moderate Gray-box attack (TM-Gray2)

This is a gray-box threat model that places more restrictions on
the attacker. The attack can no longer access the weights of the
ensemble and is unaware of the training procedure, but is aware of
the model architecture and defense parameters. We believe such
a threat model can be realistic since many applications employ
existing architectures but with weights learned for their specific
task. Furthermore, weights of a model can remain confidential by
using a trusted execution environment or deployment as a cloud
API. Finally, we believe our assumption that the attacker is aware
of a JPEG-based defense is reasonable. Like model architectures,
the set of known defenses is small enough that an attacker can
exhaustively try them until they are successful.

In this threat model, the attacker is forced to train their own
proxy models for performing the attack. To mimic this, we first gen-
erated adversarial examples against newly trained models from the
Shield-Originative ensemble using the adaptive attack procedure
described above. We then fed these adversarial examples into the
original Shield-Derivative model to determine whether they fool
Shield. We also evaluate these attacked images using the original
JPEG-trained models (M20, M40,M60,M80) for comparison.

The results from this experiment are shown in Table 3. In all of
these tests, we found that the adversary was unable to control the
prediction target. That is, the adversarial image we generated did
not classify to the ground truth label nor the targeted label, but to
some other label. It is application dependent whether this ability
of the attacker to control the predicted output is of concern. In
authentication usages, for example, the attacker might impersonate
a specific user with targeted attacks or simply any authorized user
with untargeted attacks.

We also tested the Fast Gradient Method (FGM) [14] which is
known to be transferable even across model architectures. Our
results showed that FGM targeted attack in this scenario is still not
successful in forcing a prediction on the ensemble, resulting in a
0% attack success rate, although it affects the model accuracy more
adversely than PGD.
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Defending Model

Attacked Ensemble #model known Shield-Derivative M20 M40 M60 M80

Shield-Originative

1 0.000 (0.303) 0.000 (0.215) 0.000 (0.273) 0.000 (0.272) 0.000 (0.269)
2 0.000 (0.265) 0.000 (0.184) 0.000 (0.240) 0.000 (0.237) 0.000 (0.228)
3 0.000 (0.231) 0.000 (0.165) 0.000 (0.206) 0.000 (0.211) 0.000 (0.202)
4 0.000 (0.214) 0.000 (0.139) 0.000 (0.185) 0.000 (0.198) 0.000 (0.185)

No attack 0.633 0.538 0.597 0.574 0.603

Table 3: Average attack success rate, and averagemodel accuracy (in parenthesis) for the TM-Gray2 threat model. The targeted

attack does not have any success in this scenario since the attacker does not have access to the model weights and the training

procedure, and is thus forced to train their own models which are not guaranteed to transfer even with an adaptive targeted

attack.

In this gray-box threat model, we see a degradation in the model
accuracy of the ensemble as well as the JPEG-trained models; how-
ever, an attacker cannot control the prediction like they could in
the white-box threat model.

4.4 Strong Gray-box attack (TM-Shield)

This is the threat model originally studied in [1] that places stronger
gray-box restrictions on the attacker. The attacker in this scenario
is only aware of the model architecture and cannot access any
other parts of the inference pipeline. This threat model assumes
that the attacker is non-adaptive. To mimic this, we turn off the
differentiable JPEG component in our adaptive attack computation
and attack a ResNet-50 v2 model that is not part of the original
Shield ensemble. Although we observe a drop in model accuracy
from 0.633 to 0.381 for the Shield-Derivative ensemble and from
0.77 to 0.423 for the Shield-Originative ensemble due to the added
perturbation, we find that the non-adaptive targeted PGD attack is
not successful with a 0% attack success.

5 CONCLUSION

As with any empirical security analysis, our results represent upper-
bounds on the robustness of Shield. Attacks only get stronger.
We believe that an adversary can better target gray-box attacks
using a technique that recently won the both the non-targeted
adversarial attack and targeted adversarial attack competitions at
the 2017 Competition on Adversarial Attacks and Defenses [15],
or adversaries will use query-based black-box methods to increase
their targeted attack success [16]. More so, while understanding
the limits of a model with respect to some ℓ∞ limit is instructive,
ultimately adversaries will findmore clever ways to fool amodel [17,
18].

Ourmain goal of this work is to understand the efficacy of Shield
against adaptive attack techniques and under different threat mod-
els. We evaluate the robustness of the ensemble-based defense at
resisting against targeted attacks. Our results show that Shield
can be made more robust to such attacks in the white-box sce-
nario by modifying the training procedure so as to deploy models
whose weights are less correlated. This is further supported by our
gray-box experiments, wherein the models trained from scratch
are more robust to making maliciously targeted predictions. In this

work we simply train the models from scratch on different data dis-
tributions (by varying JPEG compression levels) to obtain models
that have less correlated weights, but one can imagine a training
paradigm that explicitly models this as a regularizer in the training
optimization criteria.

We hope that future defenses will employ similar adaptive attack
techniques to demonstrate their robustness at a variety of attack
strengths and in the face of different, perhaps more realistic, threat
models.
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A IMPLEMENTATION ISSUES

The first author of this work discovered an issue in the original
Shield evaluation code implementation that affects the results
reported in the published paper [1]. During training, central crops
are enabled to better learn discriminative features for the object of
interest. However, during evaluation it is customary to turn off this
central cropping. The implementation of Shield does not turn off
this cropping during evaluation nor did the attacks in Shield take
into account this cropping when generating perturbations.

The first author of this work discovered this issue after noticing
adversarial images were not working against the public imple-
mentation of Shield. He found that the images were adversarial
against another implementation of Shield using the same SLQ and
model parameters, but not against the originally released Shield
implementation1. After some investigation, he found the afore-
mentioned central-cropping-at-evaluation-time issue, disabled this
central cropping, and found that the adversarial images remained
adversarial.

As such, central cropping is now a feature of Shield in the
sense that the evaluation portion of the published paper [1] is
SLQ with central cropping. Further experiments reveal that central
cropping contributes significantly to the reported robustness of
Shield. In this work, we do not include this cropping as part of the
pre-processing step, and only consider SLQ as is.

1https://github.com/poloclub/jpeg-defense
at commit 1576429cf199c38065b941a48b0fcd7747901457
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