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About this tutorial 

Approximately 3.5 hours long 
 
Extensive, but incomplete introduction to 
 MDL theory 
 MDL practice in data mining  
 naturally a bit biased 

3 



Schedule 

 Opening 

 Introduction to MDL 

 MDL in Action 

 ––––––break ––––––  

 Stochastic Complexity  

 MDL in Dynamic Settings   
 

4 

  8:00am 

  8:10am 

  8:50am 

  9:30am 

 10:00am 

 11:00am 

 



Schedule 

 Opening 

 Introduction to MDL 

 MDL in Action 

 ––––––break ––––––  

 Stochastic Complexity  

 MDL in Dynamic Settings   
 

5 

  8:00am 

  8:10am 

  8:50am 

  9:30am 

 10:00am 

 11:00am 

 



Schedule 

 Opening 

 Introduction to MDL 

 MDL in Action 

 ––––––break ––––––  

 Stochastic Complexity  

 MDL in Dynamic Settings   
 

6 

  8:00am 

  8:10am 

  8:50am 

  9:30am 

 10:00am 

 11:00am 

 



Jilles Vreeken 

Part 1 
Introduction to MDL 
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Induction by Simplicity 

 
 
 

“The simplest description 
of an object is the best” 
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Kolmogorov Complexity 

 
𝐾𝑈 𝑥 = min

𝑦
 𝑙(𝑦)  𝑈 𝑦  halts and 𝑈 𝑦 = 𝑥} 

 
The Kolmogorov complexity of a binary string 𝑥 

is the length of the shortest program 𝑦∗  
for a universal Turing Machine 𝑈  

that generates s and halts. 
   

 

(Solomonoff 1960, Kolmogorov 1965, Chaitin 1969) 9 
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Ultimately Impractical 

Kolmogorov complexity 𝐾(𝑥), or rather, 
the Kolmogorov optimal program 𝑥∗ is not computable. 

 
We can approximate it from above, 

but, this is not very practical. 
(simply not enough students to enumerate all Turing machines) 

 
We can approximate it through  

off-the-shelf compressors,  
yet, this has serious drawbacks. 

(big-O, what structure does a compressor reward, etc) 
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A practical variant 
A more viable alternative is the 

Minimum Description Length principle 
 

“the best model is the model  
that gives the best lossless compression” 

 
 
 

There are two ways to motivate MDL 
 we’ll discuss both at a high level 
 then go into more details on what MDL is and can do 
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Two-Part MDL 

The Minimum Description Length (MDL) principle 
 

given a set of hypotheses ℋ, the best hypothesis 𝐻 ∈ ℋ 
for given data 𝐷 is that 𝐻 that minimises 

 
𝐿 𝐻 + 𝐿(𝐷 ∣ 𝐻) 

 
  in which 
 

    𝐿(𝐻) is the length, in bits, of the description of 𝐻 
 

    𝐿 𝐷 𝐻  is the length, in bits, of the description of  
        the data when encoded using 𝐻 

 

 
 (see, e.g., Rissanen 1978, 1983, Grünwald, 2007) 13 



Bayesian Learning 

Bayes tells us that 
 

Pr(𝐻 ∣ 𝐷) =
Pr(𝐷 ∣ 𝐻) × Pr(𝐻)

Pr(𝐷)
 

 

This means we want the 𝐻 that maximises Pr(𝐻 ∣ 𝐷).  
Since Pr(𝐷) is the same for all models, we have to 

maximise Pr 𝐷 𝐻 × Pr 𝐻  
 

Or, equivalently, minimise 
− log(Pr(𝐻)) − log (Pr 𝐷 𝐻 ) 
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From Bayes to MDL 

So, Bayesian Learning means minimising 
 

− log(Pr(𝐻)) − log (Pr 𝐷 𝐻 ) 
 

Shannon tells us that the −log transform takes us  
from probabilities to optimal prefix-code lengths 
 

This means we are actually minimizing 
 

𝐿 𝐻 + 𝐿 𝐷 𝐻  
 

for some encoding 𝐿 for 𝐻 resp. 𝐷 ∣ 𝐻  
corresponding to distribution Pr 
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Bayesian MDL 

If we want to do MDL this way  
– i.e., being a Bayesian –  

we need to specify 
 

 a prior probability Pr (𝑀) on the models, and 
 a conditional probability Pr (𝐷|𝑀) on data given a model 
 

What are reasonable choices?  
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What Distribution to Use? 

For the data, this is ‘easy’: a maximum likelihood model 
 a maximum entropy model for Pr(𝐷 ∣ 𝑀) makes most sense 
 

For the models, this is ‘harder’, we could, e.g., use 
 ‘whatever the expert says is a good distribution’, or 
 an uninformative prior on 𝑀, or 
 (a derivative of) the universal prior from algorithmic statistics 
 

These are not easy to compute, query, and ad hoc.  
 

In MDL we say, if we are going to be ad hoc,  
let us do so openly and use explicit universal encodings 
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Information Criteria 

MDL might make you think of either 
 

Akaike’s Information Criterion (AIC) 
 

𝑘 − ln(Pr(𝐷|𝐻)) 
 

or the Bayesian Information Criterion (BIC) 
 

k
2

ln 𝑛 − ln (Pr 𝐷 𝐻 ) 
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Information Criteria 

MDL might make you think of either 
 

Akaike’s Information Criterion (AIC) 
 

𝐿𝐴𝐴𝐴 𝐻 =  𝑘 
 

or the Bayesian Information Criterion (BIC) 
 

𝐿𝐵𝐵𝐵 𝐻 =  
k
2

ln 𝑛  
 

We, however, do not assume that all parameters are  
created equal, we take their complexity into account 
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From Kolmogorov to MDL 

Both Kolmogorov complexity and  
MDL are based on compression. 

Is there a relationship between the two? 
 

Yes. 
 

We can derive two-part MDL  
from Kolmogorov complexity. 

We’ll sketch here how. 
 

(see, e.g., Li & Vitanyi 1996, Vereshchagin & Vitanyi 2004 for details) 21 



Objects and Sets 

Recall that in Algorithmic Information Theory we 
are looking for (optimal) descriptions of objects. 
 
One way to describe an object is 
 describe a set of which it is a member 
 point out which of these members it is. 
 
In fact, we do this all the time 
 the beach (i.e., the set of all beaches) 
 over there (pointing out a specific one) 
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Algorithmic Statistics 

We have, a set 𝑆 
 which we call a model 
 which has complexity 𝐾(𝑆) 

 

and an object 𝑥 ∈ 𝑆 
 𝑆 is a model of 𝑥 
 the complexity of pointing out 𝑥 in 𝑆 is 

the complexity of 𝑥 given 𝑆, i.e. 𝐾(𝑥 ∣ 𝑆) 
 

Obviously, 
𝐾 𝑥 ≤ 𝐾 𝑆 + 𝐾(𝑥 ∣ 𝑆) 
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So? 

Algorithmic Information Theory states that 
 every program that outputs 𝑥 and halts encodes the information in 𝑥 
 the smallest such program encodes only the information in 𝑥 
 

If 𝑥 is a data set, i.e. a random sample, we expect it has 
 epistemic structure, “true” structure;  captured by 𝑆 
 aleatoric structure, “accidental” structure;  captured by 𝑥 ∣ 𝑆  
 

We are hence interested in that model 𝑆 that minimizes 
𝐾 𝑆 + 𝐾 𝑥 𝑆  

which is surprisingly akin to two-part MDL 
 

24 



More detail 
 

For 𝐾(𝑆) 
 this is simply the length of the shortest program that outputs 𝑆 

and halts; i.e., a generative model of 𝑥 
 

For 𝐾(𝑥 ∣ 𝑆) 
 if 𝑥 is a typical element of 𝑆  

there is no more efficient way to find 𝑥 in 𝑆 than by an index, i.e., 
𝐾 𝑥 𝑆 ≈ log ( 𝑆 ) 

 
 

25 



Kolmogorov’s Structure Function 

This suggests a way to discover the best model. 
 

Kolmogorov’s structure function is defined as 
 

ℎ𝑥 𝑖 = min
𝑆

{log 𝑆 ∣ 𝑥 ∈ 𝑆,𝐾 𝑆 ≤ 𝑖} 
 

That is, we start with very simple – in terms of  
complexity – models and gradually work our way up 

 

(see, e.g., Li & Vitanyi 1996, Vereshchagin & Vitanyi 2004) 26 



The MDL function 

This suggests a way to discover the best model. 
 

Kolmogorov’s structure function is defined as 
 

ℎ𝑥 𝑖 = min
𝑆

{log 𝑆 ∣ 𝑥 ∈ 𝑆,𝐾 𝑆 ≤ 𝑖} 
 

which defines the MDL function as 
 

𝜆𝑥 𝑖 = min
𝑆

{𝐾 𝑆 + log 𝑆 ∣ 𝑥 ∈ 𝑆,𝐾 𝑆 ≤ 𝑖} 
 

We try to find the minimum by considering  
increasingly complex models. 

 
(see Vereshchagin & Vitanyi 2004) 27 
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Two-Part MDL 

The Minimum Description Length (MDL) principle 
 

given a set of hypotheses ℋ, the best hypothesis 𝐻 ∈ ℋ 
for given data 𝐷 is that 𝐻 that minimises 
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  in which 
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Example Binomial 

Say we have a string  
𝑥 =  01011100001101010011 

of 10 zeroes and 10 ones  
 

Suppose ℋ consists of these binomials, e.g.  
𝑝1 = 0.1, 𝑝2 = 0.2,𝑝3 = 0.5 

 
𝐿(𝑥 ∣ 𝑝1) = −10 log 𝑝1 − 10 log 1 − 𝑝1  = 34.7 bits 
𝐿(𝑥 ∣ 𝑝2) = −10 log𝑝2 − 10 log 1 − 𝑝2  = 26.4 bits 
𝐿(𝑥 ∣ 𝑝3) = −10 log𝑝3 − 10 log 1 − 𝑝3  = 20.0 bits 
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Example Binomial 

Suppose 𝑥 =  01011100001101010011,  
and ℋ = {𝑝1 = 0.1, 𝑝2 = 0.2,𝑝3 = 0.5} 

 
Without prior preference over 𝐻 ∈ ℋ 

𝐿 𝐻 = log |ℋ| 
 

𝐿 𝑝1 + 𝐿(𝑥 ∣ 𝑝1) = 36.3 bits 
𝐿 𝑝2 + 𝐿(𝑥 ∣ 𝑝2) = 28.0 bits 
𝐿 𝑝3 + 𝐿(𝑥 ∣ 𝑝3) = 21.6 bits 
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Example Binomial 

Suppose 𝑥 =  01011100001101010011,  
and ℋ = {𝑝1 = 0.1, 𝑝2 = 0.2,𝑝3 = 0.5} 

 
𝐿 𝑝1 + 𝐿(𝑥 ∣ 𝑝1) = 36.3 bits 
𝐿 𝑝2 + 𝐿(𝑥 ∣ 𝑝2) = 28.0 bits 
𝐿 𝑝3 + 𝐿(𝑥 ∣ 𝑝3) = 21.6 bits 

 
However, when you receive 𝐿(𝑝1) you know that  
𝑝2 and 𝑝3 were disregarded by the sender as  
these did not lead to a minimal description. 
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Example Binomial 

Suppose 𝑥 =  01011100001101010011,  
and ℋ = {𝑝1 = 0.1, 𝑝2 = 0.2,𝑝3 = 0.5} 

 
𝐿 𝑝1 + 𝐿(𝑥 ∣ 𝑝1) = 36.3 bits 
𝐿 𝑝2 + 𝐿(𝑥 ∣ 𝑝2) = 28.0 bits 
𝐿 𝑝3 + 𝐿(𝑥 ∣ 𝑝3) = 21.6 bits 

 
Models 𝐻 ∈ ℋ will only be used for data  

where they are optimal within the model class!  
Two-part MDL ignores this, it wastes bits! 
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Crude MDL 

The Minimum Description Length (MDL) principle 
 

given a set of hypotheses ℋ, the best hypothesis 𝐻 ∈ ℋ 
for given data 𝐷 is that 𝐻 that minimises 

 
𝐿 𝐻 + 𝐿(𝐷 ∣ 𝐻) 

 
  in which 
 

    𝐿(𝐻) is the length, in bits, of the description of 𝐻 
 

    𝐿 𝐷 𝐻  is the length, in bits, of the description of  
        the data when encoded using 𝐻 

 

 
 (see, e.g., Rissanen 1978, 1983, Grünwald, 2007) 34 



Refined MDL 
The main intuition, coming from crude MDL:  
𝐿(𝐻) is ad hoc, so we want to get rid of it, but 

keeping only 𝐿(𝐷 ∣ 𝐻) is going to give us a bad time,  
as maximising likelihood leads to overfitting. 

 
𝐿 𝐷 ℋ = 𝐿 𝐷 𝐻∗ + COMP ℋ  

 
aka the stochastic complexity of 𝐷 given ℋ 
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Universal Codes 
What Universal codes do we know? 
 
 the two-part code (iff minimax guarantees, or large sample) 
 prequential plug-in codes 
 Bayesian mixtures codes (Jeffrey’s prior) 
 Normalised Maximum Likelihood (NML) 

 
Each of these have quite a different nature, hence  
different coding schemes, but all lead to very similar 𝐿(𝐷 ∣ ℋ). 
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NML 
Normalized Maximum Likelihood (Shtarkov, 1987) 

 

𝐿 𝐷 ℋ = − log
𝑃 𝐷 𝐻∗ ∈ ℋ

∑ 𝑃 𝐷′ 𝐻𝐻 ∈ ℋ𝐷′∈ 𝒟
  

 
Interpretation: 

The more special 𝐷 is with respect to ℋ, the shorter its code. 
 

One nasty detail, the normalization:  
Enumerating every possible 𝐷𝐷 requires many PhD students, 

calculating the maximum likelihood 𝐻’ for every 𝐷𝐷, even more so. 
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Crude in Practice 
Refined MDL is only defined for a small set of cases.  
Computing stochastic complexity is possible for even fewer. 
 
Hence, in practice, as much as we may dislike it in theory,  
we often have to resort to crude MDL.  
 
However, as long as we’re aware of the biases of the encoding,  
that’s not a bad thing.  
 
In fact, as in two-part MDL we can steer our encoding towards 
models we (intuitively) like better, and hence for data mining 
purposes two-part MDL is a very often a good friend indeed. 
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MDL is a principle 
MDL is not a single method 
 it’s a general principle for doing inductive inference 

 
The main adage: fewer bits is better 
 encode the data universally  

that is, without external input, only consider the data at hand 
 ideally, uphold minimax optimality properties, try to make sure 

your encoding is never much worse than the best 
 

Try to avoid, as much as possible, ad hoc biases 
 be explicit about those that exist 
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