
Jilles Vreeken

Part 2
MDL in Action

1

Explicit Coding
Ad hoc sounds bad, but is it really?
 Bayesian learning for instance, is inherently subjective, plus
 biasing search is a time-honoured tradition in data analysis

Using an explicit encoding allows us
to steer towards the

type of structure we want to discover

We so also mitigate one of the practical weak spots of AIT
 all data is a string, but wouldn’t it be nice if the structure

you found would not depend on the order of the data?

2

Matrix Factorization

The rank of a matrix 𝑨 is
 number of rank-1 matrices that when summed form 𝑨 (Schein rank)

3

+ + … =

𝑐3

𝑏3

𝑐1

𝑏1 𝑏2

𝑐2

𝒃𝟏 ∘ 𝒄𝟏 𝒃𝟐 ∘ 𝒄𝟐 𝒃𝟑 ∘ 𝒄𝟑 𝑨

The rank of a Boolean matrix 𝑨 is
 number of rank-1 matrices that when summed form 𝑨 (Schein rank)

𝑐1

𝑏2

Boolean Matrix Factorization

(Miettinen et al 2006, 2008) 4

𝑐1

𝑏1 𝑏2 …

𝑐1

𝑏1

𝑐1 𝑐2 𝑐3

𝑏2

𝑏3

𝑨 𝒃𝟏 ∘ 𝒄𝟏 𝒃𝟐 ∘ 𝒄𝟐 𝒃𝟑 ∘ 𝒄𝟑

+ + =

The rank of a Boolean matrix 𝑨 is
 number of rank-1 matrices that when summed form 𝑨 (Schein rank)
 noise quickly inflate the ‘true’ latent rank to min 𝑛,𝑚

𝑏1

Boolean Matrix Factorization

(Miettinen et al 2006, 2008) 5

= + + …

𝑨 𝒃𝟏 ∘ 𝒄𝟏 𝒃𝟐 ∘ 𝒄𝟐 𝒃𝟑 ∘ 𝒄𝟑

𝑏1 𝑏1

Boolean Matrix Factorization

Noise quickly inflates the rank to min (𝑛,𝑚)
 how can we determine the ‘true’ latent rank?

(Miettinen & Vreeken 2012, 2014) 6

𝑨 𝑩 ∘ 𝑪

≈

Boolean Matrix Factorization

Separating structure and noise
 matrices 𝐵 and 𝐶 contain structure, matrix 𝐸 contains noise

(Miettinen & Vreeken 2012, 2014) 7

⊕

𝑨 𝑩 ∘ 𝑪 𝑬

=

Boolean Matrix Factorization

Encoding the structure
𝐿 𝑩 = log𝑛 + � log𝑛 + log

𝑛
𝑏

𝑏∈𝑩

(Miettinen & Vreeken 2012, 2014) 8

⊕

𝑨 𝑩 ∘ 𝑪 𝑬

=

Boolean Matrix Factorization

Encoding the structure
𝐿 𝑪 = log𝑚 + � log𝑚 + log

𝑚
𝑐

𝑐∈𝑪

(Miettinen & Vreeken 2012, 2014) 9

⊕

𝑨 𝑩 ∘ 𝑪 𝑬

=

Boolean Matrix Factorization

Encoding the noise
𝐿 𝑬 = log𝑛𝑚 + log

𝑛𝑛
𝑬

(Miettinen & Vreeken 2012, 2014) 10

⊕

𝑨 𝑩 ∘ 𝑪 𝑬

=

Boolean Matrix Factorization

MDL for BMF

𝐿 𝐷,𝐻 = 𝐿 𝑩 + 𝐿 𝑪 + 𝐿(𝑬)

(Miettinen & Vreeken 2012, 2014) 11

⊕

𝑨 𝑩 ∘ 𝑪 𝑬

=

Pattern Mining

The ideal outcome of pattern mining
 patterns that show the structure of the data
 preferably a small set, without redundancy or noise

Frequent pattern mining does not achieve this
 pattern explosion → overly many, overly redundant results

MDL allows us to effectively pursue the ideal
 we want a group of patterns that summarise the data well
 we take a pattern set mining approach

(Tatti & Vreeken 2012, Bertens et al. 2016, Bhattacharyya & Vreeken 2017)
(for transaction data, Vreeken et al (2011), for graphs Koutra et al (2014) 12

Event sequences

(Tatti & Vreeken 2012, Bertens et al. 2016, Bhattacharyya & Vreeken 2017) 13

one, or
multiple

sequences

a a a b d c d b a b c ,
a a b d c d b ,
a a a b d c d b a , … }

{

{ a, b, c, d, … }

a a a b d c d b a b c a b d a a b c

Alphabet Ω

Data 𝐷

Event sequences

(Tatti & Vreeken 2012, Bertens et al. 2016, Bhattacharyya & Vreeken 2017) 14

a a a b d c d b a b c ,
a a b d c d b ,
a a a b d c d b a , … }

{

Alphabet Ω { a, b, c, d, … }

a a a b d c d b a b c a b d a a b c Data 𝐷

Patterns
serial

episodes
a b

a b a b a b

‘subsequences
allowing gaps’

one, or
multiple

sequences

Event sequences

(Tatti & Vreeken 2012, Bertens et al. 2016, Bhattacharyya & Vreeken 2017) 15

a a a b d c d b a b c ,
a a b d c d b ,
a a a b d c d b a , … }

{

{ a, b, c, d, … }

a a a b d c d b a b c a a d a a b c

Patterns
serial

episodes
a b

a b a b a b

‘subsequences
allowing gaps’

d c

d c

one, or
multiple

sequences

b

b

Alphabet Ω

Data 𝐷

Models

As models we use code tables
 dictionary of patterns & codes
 always contains all singletons

We use optimal prefix codes
 easy to compute,
 behave predictably,
 good results,
 more details follow

16

a
b

d
c

a
b

d
c

abc
da

p
q

?
?

!
!

- -

- -

- -

- -

Encoding Event Sequences

17

The length of the code for pattern 𝑋

 𝐿 = − log 𝑝 = −log (𝑢𝑢𝑢(𝑋)
∑𝑢𝑢𝑢(𝑌)

)

The length of the code stream

 𝐿 𝐶𝑝 = ∑ 𝑢𝑢𝑢 𝑋 𝐿()𝑋∈𝐶𝐶

a a a b d c d b a b c
a
b

d
c

a a a b d c d b a b c

a
b

d
c

X

X X

X

Data 𝐷:

𝐶𝑇1: Encoding 1: using only singletons

 𝐶𝑝

Encoding Event Sequences

18

a d b

a a a b d c d b a b c

abc
da

p
q

?
?

!
!

p q p

! ? ? ! ! ! !

a a a b d c d b a b c Alignment:

p ! ? ! q ? ! p ! !

gap
gap

a
b

d
c

a
b

d
c

Data 𝐷:

Encoding 2: using patterns

 𝐶𝑝

 𝐶𝑔

𝐶𝑇2:

Encoding Event Sequences

19

Data 𝐷: a a a b d c d b a b c

The length of a gap code for pattern 𝑋

 𝐿 = − log(𝑝))

and analogue for non-gap codes !

a d b

abc
da

p
q

?
?

!
!

p q p

?

? p

Encoding 2: using patterns

 𝐶𝑝

 𝐶𝑔

?

a
b

d
c

a
b

d
c

! ? ? ! ! ! !

𝐶𝑇2:

Encoding Event Sequences

20

which leaves us to define 𝐿(𝐶𝐶 ∣ 𝐶)

By which, the encoded size of 𝐷 given 𝐶𝐶 and 𝐶 is

𝐿 𝐷 𝐶𝐶 = 𝐿 𝐶𝑝 𝐶𝐶 + 𝐿(𝐶𝑔 ∣ 𝐶𝐶)

Encoding a Code Table

21

X X ? !

a
z

a
z

…

Y Y ? !

…

𝐿(𝐶𝐶 ∣ 𝐶,𝐷) consists of

Encoding a Code Table

(Rissanen 1983) 22

X X ? !

a
z

a
z

…

Y Y ? !

…

𝐿(𝐶𝐶 ∣ 𝐶,𝐷) consists of

1) base singleton counts in 𝐷

 𝐿ℕ Ω + 𝐿ℕ 𝐷 + log 𝐷 − 1
Ω − 1

Encoding a Code Table

(Rissanen 1983) 23

X X ? !

a
z

Y Y ? !

…

a
z

…

𝐿(𝐶𝐶 ∣ 𝐶,𝐷) consists of

1) base singleton counts in 𝐷

 𝐿ℕ Ω + 𝐿ℕ 𝐷 + log 𝐷 − 1
Ω − 1

Encoding a Code Table

24

X X ? !

a
z

Y Y ? !

…

a
z

…

𝐿(𝐶𝐶 ∣ 𝐶,𝐷) consists of

1) base singleton counts in 𝐷

 𝐿ℕ Ω + 𝐿ℕ 𝐷 + log 𝐷 − 1
Ω − 1

2) number of patterns, total, and per pattern usage

 𝐿ℕ 𝒫 + 1 + 𝐿ℕ 𝑢𝑢𝑢 𝒫 + 1 + log 𝑢𝑢𝑢 𝒫 − 1
𝒫 − 1

𝒫

Encoding a Code Table

25

X X ? !

a
z

Y Y ? !

…

a
z

…

𝐿(𝐶𝐶 ∣ 𝐶,𝐷) consists of

1) base singleton counts in 𝐷

 𝐿ℕ Ω + 𝐿ℕ 𝐷 + log 𝐷 − 1
Ω − 1

2) number of patterns, total, and per pattern usage

 𝐿ℕ 𝒫 + 1 + 𝐿ℕ 𝑢𝑢𝑢 𝒫 + 1 + log 𝑢𝑢𝑢 𝒫 − 1
𝒫 − 1

𝒫

Encoding a Code Table

26

X X ? !

a
z

Y Y ? !

…

a
z

…

𝐿(𝐶𝐶 ∣ 𝐶,𝐷) consists of

1) base singleton counts in 𝐷

 𝐿ℕ Ω + 𝐿ℕ 𝐷 + log 𝐷 − 1
Ω − 1

2) number of patterns, total, and per pattern usage

 𝐿ℕ 𝒫 + 1 + 𝐿ℕ 𝑢𝑢𝑢 𝒫 + 1 + log 𝑢𝑢𝑢 𝒫 − 1
𝒫 − 1

3) per pattern 𝑋 : its length, elements, and number of gaps

𝐿ℕ 𝑋 − � log𝑝 𝑥 𝐷
𝑥∈𝑋

+ 𝐿ℕ 𝑔𝑔𝑔𝑔 𝑋 + 1

𝒫

Encoding a Code Table

27

X X ? !

a
z

Y Y ? !

…

a
z

…

𝐿(𝐶𝐶 ∣ 𝐶,𝐷) consists of

1) base singleton counts in 𝐷

 𝐿ℕ Ω + 𝐿ℕ 𝐷 + log 𝐷 − 1
Ω − 1

2) number of patterns, total, and per pattern usage

 𝐿ℕ 𝒫 + 1 + 𝐿ℕ 𝑢𝑢𝑢 𝒫 + 1 + log 𝑢𝑢𝑢 𝒫 − 1
𝒫 − 1

3) per pattern 𝑋 : its length, elements, and number of gaps

𝐿ℕ 𝑋 − � log𝑝 𝑥 𝐷
𝑥∈𝑋

+ 𝐿ℕ 𝑔𝑔𝑔𝑔 𝑋 + 1

𝒫

Encoding Event Sequences

Tatti & Vreeken (2012) Bertens et al. (2016), Bhattacharyya & Vreeken (2017)
for transaction data, Vreeken et al (2011) Budhathoki & Vreeken (2015) for graphs Koutra et al (2014) 28

By which we have a lossless encoding.
In other words, an objective function.

By MDL, our goal is now to minimise

𝐿 𝐶𝐶,𝐷 = 𝐿 𝐶𝐶 𝐶 + 𝐿(𝐷 ∣ 𝐶𝐶)

for how to do so, please see the papers

Experiments
 synthetic data random  no structure found

 HMM  structure recovered
 real data text data for interpretation

(implementation available at http://eda.mmci.uni-saarland/sqs) 29

 SQS-CANDS SQS-SEARCH

Ω |𝐷| # 𝐶𝐶𝐶𝐶 || || Δ𝐿

Addresses 5 295 56 15 506 138 155 5k

JMLR 3 846 788 40 879 563 580 30k

Moby Dick 10 277 1 22 559 215 231 10k

Selected Results

(Tatti & Vreeken 2012; Bhattacharyya & Vreeken 2017, Grosse & Vreeken 2017) 30

JMLR

empirical, risk minimization structural

indep, component analysis prinicipal

Mahalanobis,

distance edit,
Euclidean,
pairwise

PRES. ADDRESSES

unit[ed] state[s]
take oath
army navy
under circumst.
econ. public expenditur
exec. branch. governm.

LOTR

he Verb Conj he
 [he said that he]

Conf _ the Noun of
 [and even the end of]

the Adj Noun and
 [the young Hobbits and]

a c b

Serial Episodes

a

or c
b

d

Choice-episode Ontological Episodes

A 𝒞 b

Clustering

The best clustering is the one that costs the least bits
 similar structure (patterns) within clusters
 different structure (patterns) between clusters

Partition your data such that

𝐿 𝐶 + � 𝐿(𝐷𝑖 ,𝐻𝑖)
(𝐷𝑖,𝐻𝑖)∈𝐶

 is minimal

(similar to mixture modelling, but descriptive instead of predictive)

for itemsets, see Van Leeuwen et al (2009) 31

Clustering

Mammals occurrences
 2221 areas in Europe
 50x50km each
 123 mammals
 no location info

for itemsets, see Van Leeuwen et al (2009) 32

k=6, MDL ‘optimal’

Classification

Split your data per class
 induce model per class

Then, for unseen instances
 assign class label of model that encodes it shortest

𝐿 𝑥 𝐻1 < 𝐿 𝑥 𝐻2 → 𝑃 𝑥 𝐻1 > 𝑃(𝑥 ∣ 𝐻2)

(for itemsets, see ECML PKDD’06) 33

Classification by MDL

Van Leeuwen et al (2006) 34

𝐿 𝑥 𝐻1 < 𝐿 𝑥 𝐻2 → 𝑃 𝑥 𝐻1 > 𝑃(𝑥 ∣ 𝐻2)

Split
per class

Model 𝐻𝑐∗
per class 𝑐

Encode
unseen
record

Shortest
code wins!

Run
algorithm

Database
(𝑛 classes)

Outlier Detection

One-Class Classification (aka anomaly detection)
 lots of data for normal situation – insufficient data for target

Compression models the norm
 anomalies will have high description length 𝐿(𝑡 ∣ 𝐻𝑛𝑛𝑛𝑛∗)

Very nice properties
 performance high accuracy
 versatile no distance measure needed
 characterisation ‘this part of t is incompressible’

Smets & Vreeken (2011) Akoglu et al (2012) 35

CompreX on Images

Akoglu et al (2012) 36

Catholic church, Vatican

Washington Memorial, D.C.

Thames river, Buckingham
palace, plain fields, London

Causal Discovery

37

X

Y Q

S

R

Z

V

W

Causal Discovery

Spirtes et al (2000)
Marx & Vreeken, Conditional Independence Testing by Stochastic Complexity (2019) 38

We can find the causal skeleton using
conditional independence tests,

but only few edge directions

X

Y Q

S

R

Z

V

W

Causal Inference

Spirtes et al (2000)
Marx & Vreeken, Conditional Independence Testing by Stochastic Complexity (2019) 39

We can find the causal skeleton using
conditional independence tests,

but only few edge directions

Q

S

R

Z

V

W

?

X

Y

Algorithmic Markov Condition

If 𝑋 → 𝑌, we have,

up to an additive constant,

𝐾 𝑃 𝑋 + 𝐾 𝑃 𝑌 𝑋 ≤ 𝐾 𝑃 𝑌 + 𝐾 𝑃 𝑋 𝑌

That is, we can do causal inference by

identifying the factorization of the joint
with the lowest Kolmogorov complexity

 (Janzing & Schölkopf, IEEE TIT 2012) 40

MDL and Regression

(Grünwald 2007) 41

a1 x + a0

𝐿 𝑀 + 𝐿(𝐷|𝑀)

a10 x10 + a9 x9 + … + a0

errors

 { }

Modelling the Data
We model 𝑌 as

𝑌 = 𝑓 𝑋 + 𝒩

As 𝑓 we consider linear,
quadratic, cubic, exponential,
and reciprocal functions, and
model the noise using a
0-mean Gaussian. We choose
the 𝑓 that minimizes

𝐿 𝑌 𝑋 = 𝐿 𝑓 + 𝐿(𝒩)

Marx & Vreeken (2017) 42

Confidence and Significance

How certain are we?

Marx & Vreeken (2017) 43

ℂ = 𝐿 𝑋 + 𝐿 𝑌 𝑋) − 𝐿 𝑌 + 𝐿 𝑋 𝑌)  the higher the more certain

 𝐿(𝑋 → 𝑌) 𝐿(𝑌 → 𝑋)

Confidence and Significance

How certain are we?

Is a given inference significant?
 our null hypothesis 𝐿0 is that 𝑿 and 𝒀 are only correlated,

we have 𝐿0 = |𝐿 𝑋→𝑌 −𝐿 𝑌→𝑋 |
2

 we can use the no-hypercompression inequality to test significance

P 𝐿0 𝐷 − 𝐿 𝐷 ≥ 𝑘 ≤ 2−𝑘

Grünwald (2007), Marx & Vreeken (2017) 44

ℂ =
𝐿 𝑋 + 𝐿 𝑌 𝑋)
𝐿 𝑋 + 𝐿 𝑌

−
𝐿 𝑌 + 𝐿 𝑋 𝑌)
𝐿 𝑋 + 𝐿 𝑌

 the higher the more certain
 robust w.r.t. sample size

Performance on Benchmark Data
(Tübingen 97 univariate numeric cause-effect pairs, weighted)

45 Marx & Vreeken (2017)

Performance on Benchmark Data
(Tübingen 97 univariate numeric cause-effect pairs, weighted)

Marx & Vreeken (2017)

46

Inferences of state of the
art algorithms ordered
by confidence values.

SLOPE is 85% accurate
with 𝛼 = 0.001

Deep Learning

Model selection in deep learning is hard
 way too many ‘free’ parameters for standard regularizers,
 no meaningful prior over networks, and
 uniform prior will lead to overfitting

How about an MDL approach?
 what is the description length of a neural network?

47

MDL for Neural Networks

Suppose neural network 𝐻 ∈ ℋ predicts target 𝑦 given 𝑥
𝑦� = 𝐻(𝑥)

How do we encode data given the model?
 if 𝐻(𝑥) is probabilistic, we have 𝐿 𝒚 𝐻 𝒙 = −∑ log 𝑝(𝑦𝑖|𝑥𝑖)𝑦𝑖∈𝒚
 else we can simply encode the residual error,

 e.g. if 𝒚 is binary, we have 𝒆 = 𝒚⊕ 𝒚�, and 𝐿 𝒚 𝐻 𝒙 = log 𝑛 + log
𝑛

|𝒆|

 e.g. if 𝒚 is continuous, we can encode using a zero-mean Gaussian

 48

MDL for Neural Networks

Suppose neural network 𝐻 ∈ ℋ predicts target 𝑦 given 𝑥
𝑦� = 𝐻(𝑥)

How do we encode the model?
 we could encode all of the parameters, but that’s highly ad hoc
 instead, we can use the notion of prequential coding

Dawid (1984) Barron et al (1998) Grünwald (2007) Blier & Ollivier (2018) 49

Prequential Coding

Simple, elegant idea:

“Update your model after every message”

That is, we re-train our network after ‘every’ new label
 we initialize topology 𝐻 ∈ ℋ with fixed weights
 we transmit the first 𝑘 labels using 𝐻0
 we now train 𝐻 on this first batch of 𝑘 labelled points, we obtain 𝐻1
 we transmit the second 𝑘 labels using 𝐻1
 we now train 𝐻 on the first two batches, and obtain 𝐻3

 Dawid (1984) Barron et al (1998) Grünwald (2007) Blier & Ollivier (2018) 50

Prequential Coding
Simple, elegant idea:

“Update your model after every message”

𝐿 𝐷 ℋ = �𝐿(𝐷𝑖 ∣ 𝐻𝑖−1)
𝐷𝑖

Best of all, this is not a crude, but a refined MDL code!
 depends fully on how 𝐻 behaves on the data
 no arbitrary choices on how to encode 𝐻
 within a constant of 𝐿(𝐷|𝐻∗), and this constant only depends on ℋ

Dawid (1984) Barron et al (1998) Grünwald (2007)
 51

Schedule

 Opening

 Introduction to MDL

 MDL in Action

 ––––––break ––––––

 Stochastic Complexity

 MDL in Dynamic Settings

52

 8:00am

 8:10am

 8:50am

 9:30am

 10:00am

 11:00am

	Slide Number 1
	Explicit Coding
	Matrix Factorization
	Boolean Matrix Factorization
	Boolean Matrix Factorization
	Boolean Matrix Factorization
	Boolean Matrix Factorization
	Boolean Matrix Factorization
	Boolean Matrix Factorization
	Boolean Matrix Factorization
	Boolean Matrix Factorization
	Pattern Mining
	Event sequences
	Event sequences
	Event sequences
	Models
	Encoding Event Sequences
	Encoding Event Sequences
	Encoding Event Sequences
	Encoding Event Sequences
	Encoding a Code Table
	Encoding a Code Table
	Encoding a Code Table
	Encoding a Code Table
	Encoding a Code Table
	Encoding a Code Table
	Encoding a Code Table
	Encoding Event Sequences
	Experiments
	Selected Results
	Clustering
	Clustering
	Classification
	Classification by MDL
	Outlier Detection
	CompreX on Images
	Causal Discovery
	Causal Discovery
	Causal Inference
	Algorithmic Markov Condition
	MDL and Regression
	Modelling the Data
	Confidence and Significance
	Confidence and Significance
	Performance on Benchmark Data�(Tübingen 97 univariate numeric cause-effect pairs, weighted)�
	Performance on Benchmark Data�(Tübingen 97 univariate numeric cause-effect pairs, weighted)�
	Deep Learning
	MDL for Neural Networks
	MDL for Neural Networks
	Prequential Coding
	Prequential Coding
	Schedule

