Part 2 MDL in Action

Jilles Vreeken

Explicit Coding

Ad hoc sounds bad, but is it really?

- Bayesian learning for instance, is inherently subjective, plus
- biasing search is a time-honoured tradition in data analysis

Using an explicit encoding allows us to steer towards the type of structure we want to discover

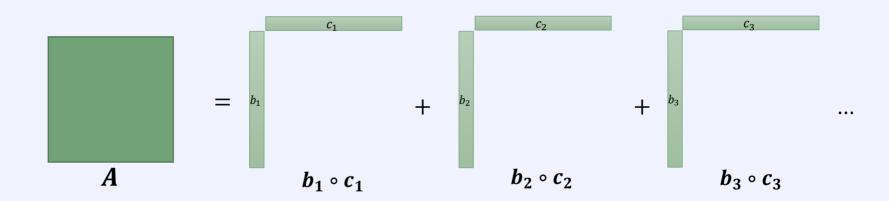
We so also mitigate one of the practical weak spots of AIT

all data is a string, but wouldn't it be nice if the structure you found would not depend on the order of the data?

Matrix Factorization

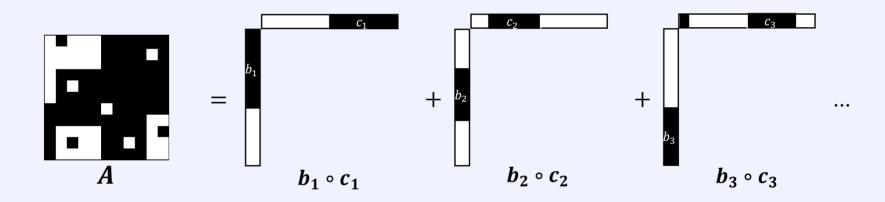
The rank of a matrix A is

number of rank-1 matrices that when summed form A (Schein rank)



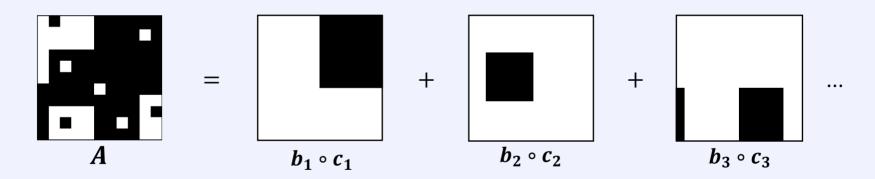
The rank of a Boolean matrix A is

number of rank-1 matrices that when summed form A (Schein rank)



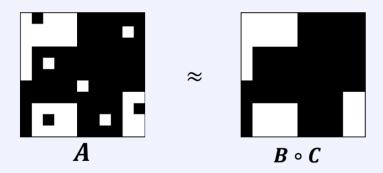
The rank of a Boolean matrix A is

- number of rank-1 matrices that when summed form A (Schein rank)
- noise quickly inflate the 'true' latent rank to min(n, m)



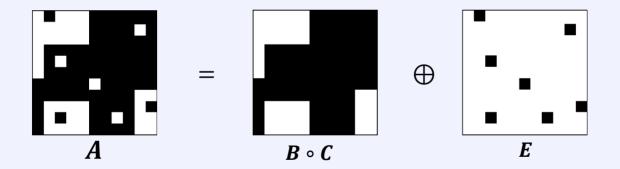
Noise quickly inflates the rank to min(n, m)

how can we determine the 'true' latent rank?



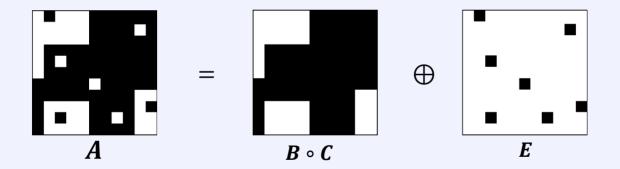
Separating structure and noise

matrices B and C contain structure, matrix E contains noise



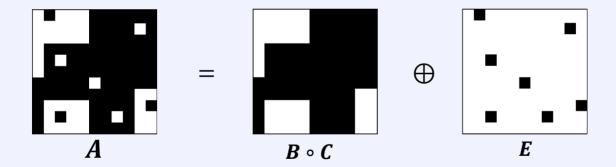
Encoding the structure

$$L(\mathbf{B}) = \log n + \sum_{b \in \mathbf{B}} \left[\log n + \log \binom{n}{|b|} \right]$$



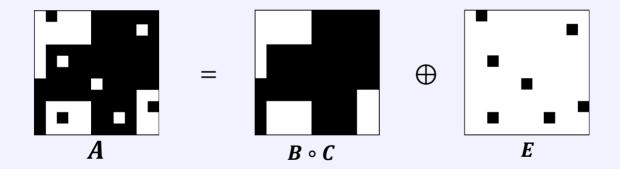
Encoding the structure

$$L(\mathbf{C}) = \log m + \sum_{c \in \mathbf{C}} \left[\log m + \log {m \choose |c|} \right]$$



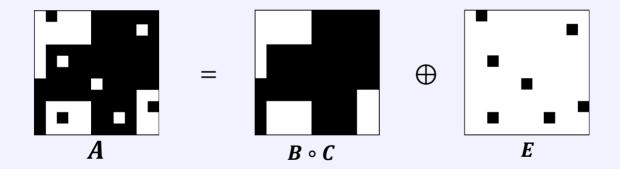
Encoding the noise

$$L(\mathbf{E}) = \log nm + \log \binom{nm}{|\mathbf{E}|}$$



MDL for BMF

$$L(D,H) = L(\mathbf{B}) + L(\mathbf{C}) + L(\mathbf{E})$$



Pattern Mining

The ideal outcome of pattern mining

- patterns that show the structure of the data
- preferably a small set, without redundancy or noise

Frequent pattern mining does not achieve this

pattern explosion → overly many, overly redundant results

MDL allows us to effectively pursue the ideal

- we want a group of patterns that summarise the data well
- we take a pattern set mining approach

Event sequences

```
Alphabet \Omega \{a, b, c, d, ...\}

Data D a b d c a d b a a b c a d a b a b c

one, or multiple sequences \{a b d c a d b a a b c, a b d c a d b, a a, ...\}
```

Event sequences

Alphabet Ω $\{a,b,c,d,...\}$ Data Done, or multiple sequences $\{a,b,c,d,...\}$ $\{a,b,c,d,...\}$ $\{a,b,c,d,...\}$ $\{a,b,c,d,...\}$ $\{a,b,c,d,...\}$

Patterns

serial episodes

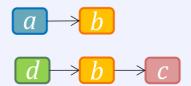
'subsequences allowing gaps'

Event sequences

Alphabet Ω $\{a,b,c,d,...\}$ Data Done, or multiple sequences $\{a,b,c,d,...\}$ $\{a,b,c,d,...\}$ $\{a,b,c,d,...\}$ $\{a,b,c,d,...\}$

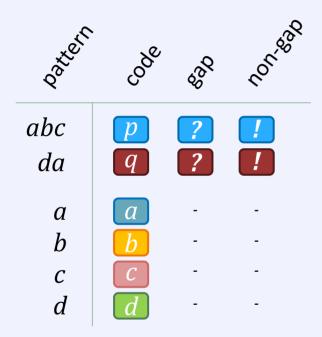
Patterns

serial episodes



'subsequences allowing gaps'

Models



As models we use code tables

- dictionary of patterns & codes
- always contains all singletons

We use optimal prefix codes

- easy to compute,
- behave predictably,
- good results,
- more details follow

Data
$$D$$
: $a b d c a d b a a b c$

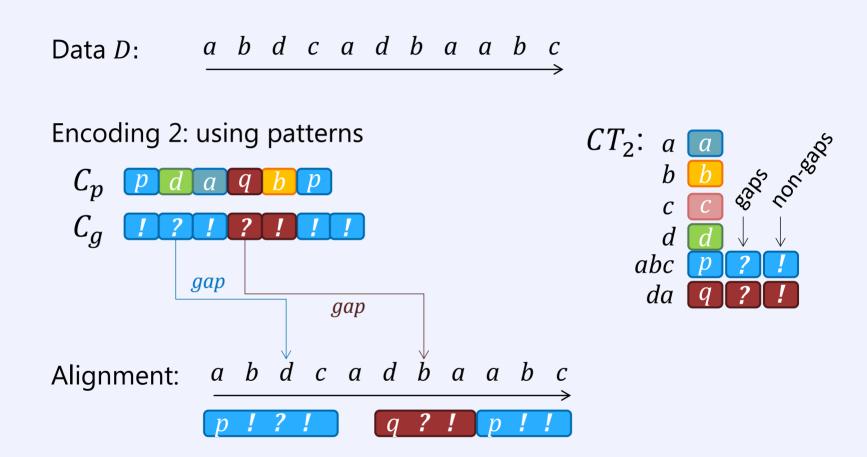
Encoding 1: using only singletons

The length of the code \square for pattern X

$$L(X) = -\log(p(X)) = -\log(\frac{usg(X)}{\sum usg(Y)})$$

The length of the code stream

$$L(C_p) = \sum_{X \in CT} usg(X)L(X)$$



Data
$$D$$
: $a b d c a d b a a b c$

Encoding 2: using patterns

The length of a gap code \square for pattern X

$$L(?) = -\log(p(?|p))$$

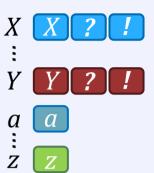
and analogue for non-gap codes <a>III

By which, the encoded size of D given CT and C is

$$L(D \mid CT) = L(C_p \mid CT) + L(C_g \mid CT)$$

which leaves us to define $L(CT \mid C)$

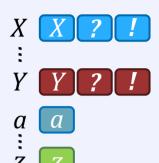
 $L(CT \mid C, D)$ consists of



 $L(CT \mid C, D)$ consists of

1) base singleton counts in D

$$L_{\mathbb{N}}(|\Omega|) + L_{\mathbb{N}}(||D||) + \log(\frac{||D||-1}{|\Omega|-1})$$



 $L(CT \mid C, D)$ consists of

1) base singleton counts in D

$$L_{\mathbb{N}}(|\Omega|) + L_{\mathbb{N}}(||D||) + \log \binom{||D||-1}{|\Omega|-1}$$

$L(CT \mid C, D)$ consists of

1) base singleton counts in D

$$L_{\mathbb{N}}(|\Omega|) + L_{\mathbb{N}}(||D||) + \log(\frac{||D||-1}{|\Omega|-1})$$

 $\begin{cases} \vdots \\ Y & Y & ? \end{cases}$ $\begin{cases} a & a \\ \vdots \\ z & z \end{cases}$

2) number of patterns, total, and per pattern usage

$$L_{\mathbb{N}}(|\mathcal{P}|+1) + L_{\mathbb{N}}(usg(\mathcal{P})+1) + \log \binom{usg(\mathcal{P})-1}{|\mathcal{P}|-1}$$

$L(CT \mid C, D)$ consists of

 $L_{\mathbb{N}}(|\Omega|) + L_{\mathbb{N}}(||D||) + \log(\frac{||D||-1}{|\Omega|-1})$

number of patterns, total, and per pattern usage
$$L_{\mathbb{N}}(|\mathcal{P}|+1) + L_{\mathbb{N}}(usg(\mathcal{P})+1) + \log \binom{usg(\mathcal{P})-1}{|\mathcal{P}|-1}$$

$L(CT \mid C, D)$ consists of

$$L_{\mathbb{N}}(|\Omega|) + L_{\mathbb{N}}(||D||) + \log(\frac{||D||-1}{|\Omega|-1})$$

2) number of patterns, total, and per pattern usage

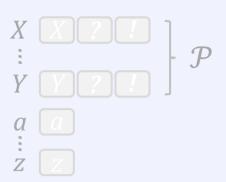
$$L_{\mathbb{N}}(|\mathcal{P}|+1) + L_{\mathbb{N}}(usg(\mathcal{P})+1) + \log \binom{usg(\mathcal{P})-1}{|\mathcal{P}|-1}$$

3) per pattern X: its length, elements, and number of gaps

$$L_{\mathbb{N}}(|X|) - \left[\sum_{x \in X} \log p(x \mid D)\right] + L_{\mathbb{N}}(gaps(X) + 1)$$

$L(CT \mid C, D)$ consists of

$$L_{\mathbb{N}}(|\Omega|) + L_{\mathbb{N}}(||D||) + \log(\frac{||D||-1}{|\Omega|-1})$$



2) number of patterns, total, and per pattern usage

$$L_{\mathbb{N}}(|\mathcal{P}|+1) + L_{\mathbb{N}}(usg(\mathcal{P})+1) + \log \binom{usg(\mathcal{P})-1}{|\mathcal{P}|-1}$$

3) per pattern X: its length, elements, and number of gaps

$$L_{\mathbb{N}}(|X|) - \left[\sum_{x \in X} \log p(x \mid D)\right] + L_{\mathbb{N}}(gaps(X) + 1)$$

By which we have a lossless encoding. In other words, an objective function.

By MDL, our goal is now to minimise

$$L(CT,D) = L(CT \mid C) + L(D \mid CT)$$

for how to do so, please see the papers

Experiments

synthetic data

random

real data

HMM

text data

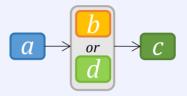
✓ no structure found

✓ structure recovered for interpretation

			Sqs-Cands		SQS-SEARCH	
	$ \Omega $	D	# Cnds	$ \mathcal{P} $	$ \mathcal{P} $	ΔL
Addresses	5 295	56	15 506	138	155	5k
JMLR	3 846	788	40 879	563	580	30k
Moby Dick	10 277	1	22 559	215	231	10k

Selected Results

Serial Episodes



Choice-episode

Ontological Episodes

PRES. ADDRESSES

unit[ed] state[s]
take oath
army navy
under circumst.
econ. public expenditur
exec. branch. governm.

JMLR

empirical, risk minimization

indep, component analysis prinicipal

Mahalanobis, edit, Euclidean, pairwise

LOTR

he Verb Conj he [he said that he]

Conf _ the Noun of [and even the end of]

the Adj Noun and [the young Hobbits and]

Clustering

The best clustering is the one that costs the least bits

- similar structure (patterns) within clusters
- different structure (patterns) between clusters

Partition your data such that

$$L(C) + \sum_{(D_i, H_i) \in C} L(D_i, H_i)$$

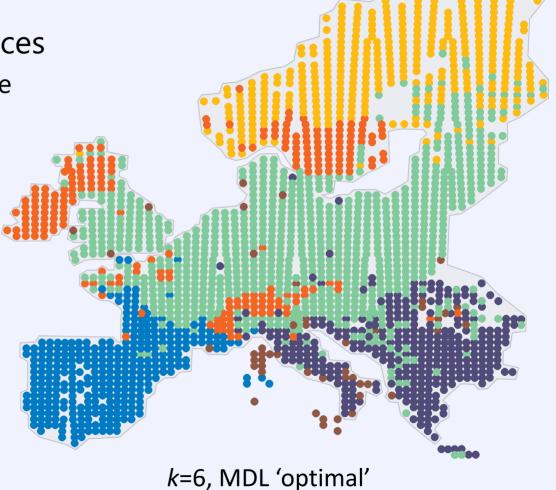
is minimal

(similar to mixture modelling, but descriptive instead of predictive)

Clustering

Mammals occurrences

- 2221 areas in Europe
- 50x50km each
- 123 mammals
- no location info



Classification

Split your data per class

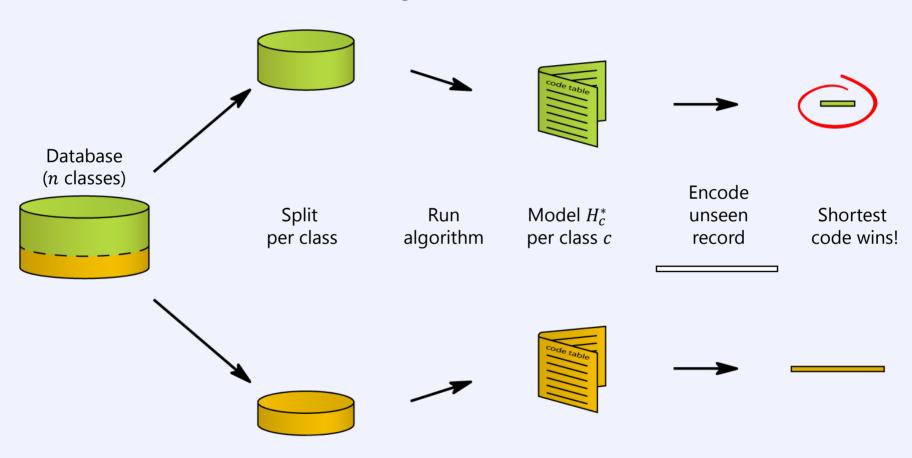
induce model per class

Then, for unseen instances

assign class label of model that encodes it shortest

$$L(x | H_1) < L(x | H_2) \rightarrow P(x | H_1) > P(x | H_2)$$

Classification by MDL



$$L(x | H_1) < L(x | H_2) \rightarrow P(x | H_1) > P(x | H_2)$$

Outlier Detection

One-Class Classification (aka anomaly detection)

lots of data for normal situation – insufficient data for target

Compression models the norm

• anomalies will have high description length $L(t \mid H_{norm}^*)$

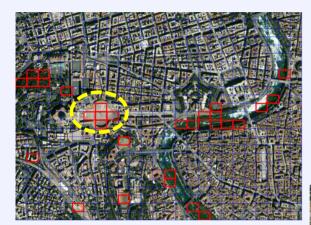
Very nice properties

performance high accuracy

versatile no distance measure needed

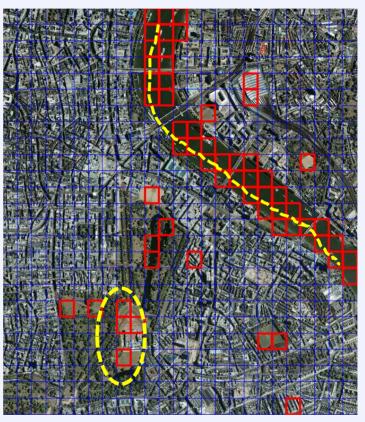
characterisation 'this part of t is incompressible'

CompreX on Images



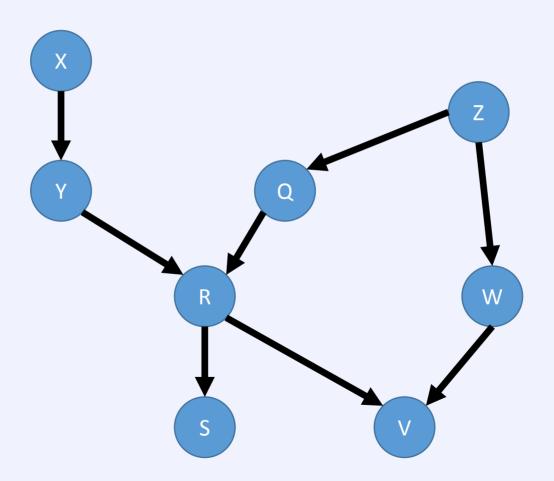
Catholic church, Vatican

Washington Memorial, D.C.



Thames river, Buckingham palace, plain fields, London

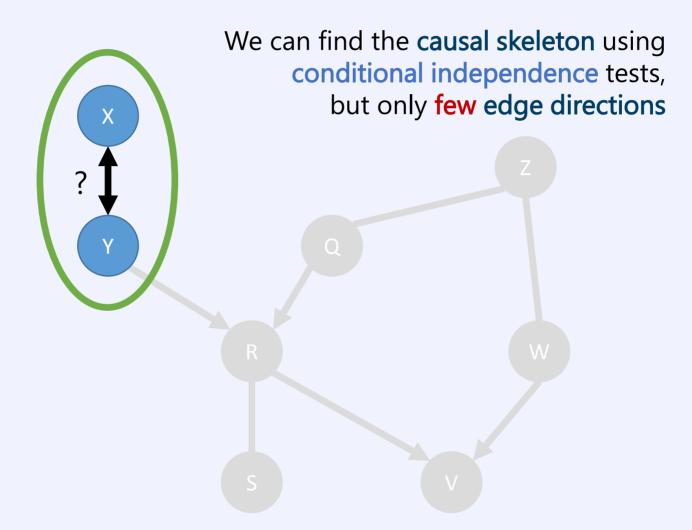
Causal Discovery



Causal Discovery

We can find the causal skeleton using conditional independence tests, but only few edge directions W R

Causal Inference



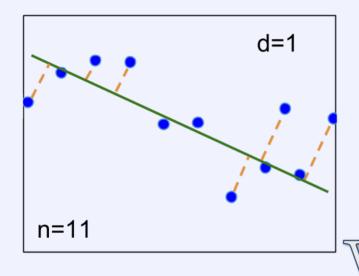
Algorithmic Markov Condition

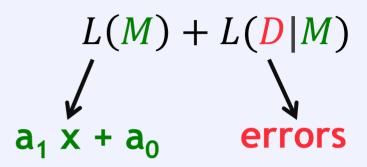
If $X \rightarrow Y$, we have, up to an additive constant,

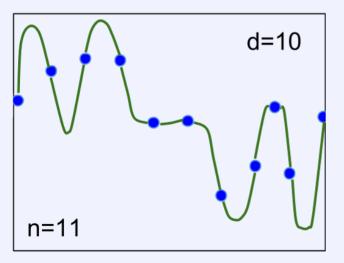
$$K(P(X)) + K(P(Y|X)) \le K(P(Y)) + K(P(X|Y))$$

That is, we can do **causal inference** by identifying the factorization of the joint with the **lowest Kolmogorov complexity**

MDL and Regression







$$a_{10} x^{10} + a_9 x^9 + ... + a_0 \{ \}$$

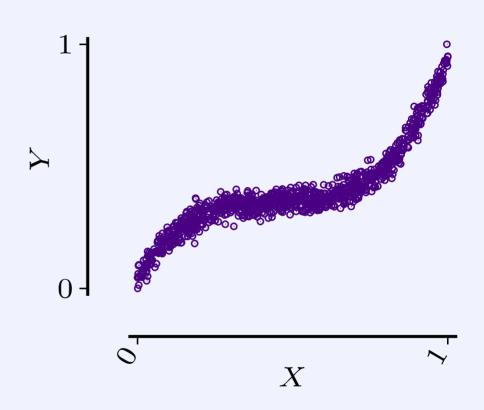
Modelling the Data

We model Y as

$$Y = f(X) + \mathcal{N}$$

As f we consider linear, quadratic, cubic, exponential, and reciprocal functions, and model the noise using a 0-mean Gaussian. We choose the f that minimizes

$$L(Y \mid X) = L(f) + L(\mathcal{N})$$



Confidence and Significance

How certain are we?

$$\mathbb{C} = |L(X) + L(Y \mid X) - L(Y) + L(X \mid Y)|$$

$$L(X \to Y) \qquad L(Y \to X)$$

the higher the more certain

Confidence and Significance

How certain are we?

$$\mathbb{C} = \left| \frac{L(X) + L(Y \mid X)}{L(X) + L(Y)} - \frac{L(Y) + L(X \mid Y)}{L(X) + L(Y)} \right|$$
 the higher the more certain robust w.r.t. sample size

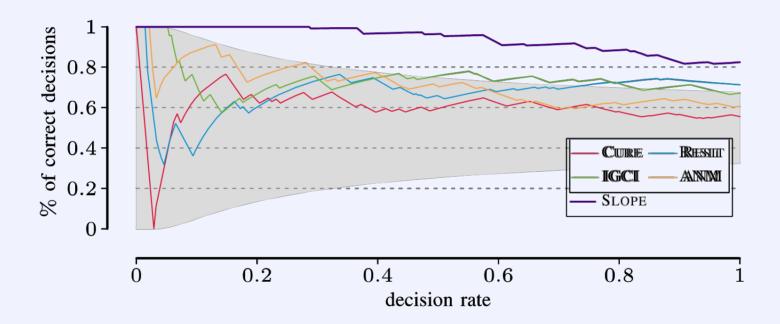
Is a given inference significant?

- our null hypothesis L_0 is that X and Y are only correlated, we have $L_0 = \frac{|L(X \rightarrow Y) - L(Y \rightarrow X)|}{2}$
- we can use the no-hypercompression inequality to test significance

$$P(L_0(D) - L(D) \ge k) \le 2^{-k}$$

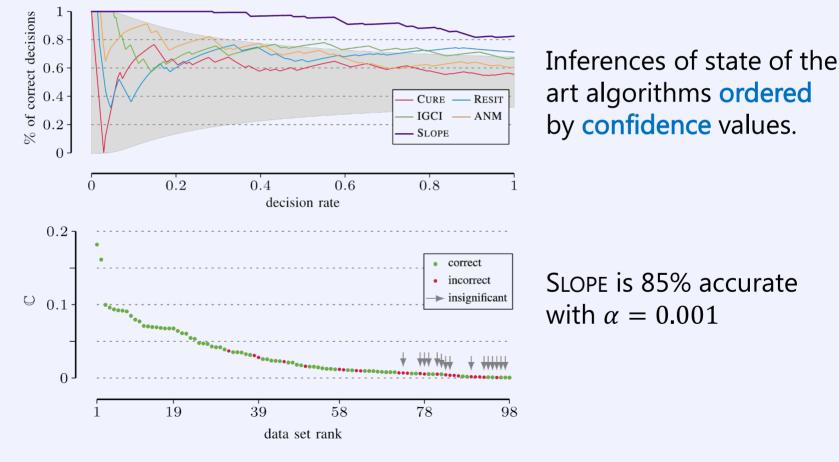
Performance on Benchmark Data

(Tübingen 97 univariate numeric cause-effect pairs, weighted)



Performance on Benchmark Data

(Tübingen 97 univariate numeric cause-effect pairs, weighted)



Deep Learning

Model selection in deep learning is hard

- way too many 'free' parameters for standard regularizers,
- no meaningful prior over networks, and
- uniform prior will lead to overfitting

How about an MDL approach?

what is the description length of a neural network?

MDL for Neural Networks

Suppose neural network $H \in \mathcal{H}$ predicts target y given x $\hat{y} = H(x)$

How do we encode data given the model?

- if H(x) is probabilistic, we have $L(y \mid H(x)) = -\sum_{y_i \in y} \log p(y_i | x_i)$
- else we can simply encode the residual error,
 - e.g. if y is binary, we have $e = y \oplus \widehat{y}$, and $L(y \mid H(x)) = \log n + \log \binom{n}{|e|}$
 - lacktriangle e.g. if $oldsymbol{y}$ is continuous, we can encode using a zero-mean Gaussian

MDL for Neural Networks

Suppose neural network $H \in \mathcal{H}$ predicts target y given x $\hat{y} = H(x)$

How do we encode the model?

- we could encode all of the parameters, but that's highly ad hoc
- instead, we can use the notion of prequential coding

Prequential Coding

Simple, elegant idea:

"Update your model after every message"

That is, we re-train our network after 'every' new label

- we initialize topology $H \in \mathcal{H}$ with fixed weights
- we transmit the first k labels using H₀
- we now train H on this first batch of k labelled points, we obtain H_1
- we transmit the second k labels using H₁
- we now train H on the first two batches, and obtain H_3

Prequential Coding

Simple, elegant idea:

"Update your model after every message"

$$L(D \mid \mathcal{H}) = \sum_{D_i} L(D_i \mid H_{i-1})$$

Best of all, this is not a crude, but a refined MDL code!

- depends fully on how H behaves on the data
- no arbitrary choices on how to encode H
- within a constant of $L(D|H^*)$, and this constant only depends on \mathcal{H}

Schedule

8:00am Opening

8:10am Introduction to MDL

8:50am MDL in Action

9:30am ————*break* ———

10:00am Stochastic Complexity

11:00am MDL in Dynamic Settings

