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Part 2 
MDL in Action 
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Explicit Coding 
Ad hoc sounds bad, but is it really? 
 Bayesian learning for instance, is inherently subjective, plus 
 biasing search is a time-honoured tradition in data analysis 
 

Using an explicit encoding allows us  
to steer towards the  

type of structure we want to discover 
 

We so also mitigate one of the practical weak spots of AIT 
 all data is a string, but wouldn’t it be nice if the structure  

you found would not depend on the order of the data? 
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Matrix Factorization 

The rank of a matrix 𝑨 is 
 number of rank-1 matrices that when summed form 𝑨 (Schein rank) 
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The rank of a Boolean matrix 𝑨 is 
 number of rank-1 matrices that when summed form 𝑨 (Schein rank) 
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The rank of a Boolean matrix 𝑨 is 
 number of rank-1 matrices that when summed form 𝑨 (Schein rank) 
 noise quickly inflate the ‘true’ latent rank to min 𝑛,𝑚  
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Boolean Matrix Factorization 

Noise quickly inflates the rank to min (𝑛,𝑚) 
 how can we determine the ‘true’ latent rank? 
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𝑨 𝑩 ∘ 𝑪 

≈ 



Boolean Matrix Factorization 

Separating structure and noise 
 matrices 𝐵 and 𝐶 contain structure, matrix 𝐸 contains noise 
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⊕ 

𝑨 𝑩 ∘ 𝑪 𝑬 

= 



Boolean Matrix Factorization 

Encoding the structure 
𝐿 𝑩 = log𝑛 + � log𝑛 + log

𝑛
𝑏

𝑏∈𝑩
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⊕ 

𝑨 𝑩 ∘ 𝑪 𝑬 

= 



Boolean Matrix Factorization 

Encoding the structure 
𝐿 𝑪 = log𝑚 + � log𝑚 + log

𝑚
𝑐

𝑐∈𝑪
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⊕ 

𝑨 𝑩 ∘ 𝑪 𝑬 

= 



Boolean Matrix Factorization 

Encoding the noise 
𝐿 𝑬 = log𝑛𝑚 + log

𝑛𝑛
𝑬  
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⊕ 

𝑨 𝑩 ∘ 𝑪 𝑬 

= 



Boolean Matrix Factorization 

MDL for BMF 
 

𝐿 𝐷,𝐻 = 𝐿 𝑩 + 𝐿 𝑪 + 𝐿(𝑬) 
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⊕ 

𝑨 𝑩 ∘ 𝑪 𝑬 

= 



Pattern Mining 

The ideal outcome of pattern mining 
 patterns that show the structure of the data 
 preferably a small set, without redundancy or noise 
 
Frequent pattern mining does not achieve this 
 pattern explosion → overly many, overly redundant results 
 

MDL allows us to effectively pursue the ideal 
 we want a group of patterns that summarise the data well 
 we take a pattern set mining approach 

 
 
 

(Tatti & Vreeken 2012, Bertens et al. 2016, Bhattacharyya & Vreeken 2017) 
(for transaction data, Vreeken et al (2011), for graphs Koutra et al (2014) 12 



Event sequences 

(Tatti & Vreeken 2012, Bertens et al. 2016, Bhattacharyya & Vreeken 2017) 13 
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a a a b d c d b a b c , 
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{ 

{ a, b, c, d, … }  
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Data 𝐷 



Event sequences 
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a a a b d c d b a b c , 
a a b d c d b , 
a a a b d c d b a , … } 

{ 

Alphabet Ω { a, b, c, d, … }  

a a a b d c d b a b c a b d a a b c Data 𝐷 

Patterns 
serial 

episodes 
a b 

a b a b a b 

‘subsequences 
allowing gaps’ 

one, or 
multiple 

sequences 



Event sequences 
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a a a b d c d b a b c , 
a a b d c d b , 
a a a b d c d b a , … } 

{ 

{ a, b, c, d, … }  

a a a b d c d b a b c a a d a a b c 

Patterns 
serial 

episodes 
a b 

a b a b a b 

‘subsequences 
allowing gaps’ 

d c 

d c 

one, or 
multiple 

sequences 

b 

b 

Alphabet Ω 

Data 𝐷 



Models 

As models we use code tables 
 dictionary of patterns & codes 
 always contains all singletons 

 
We use optimal prefix codes 
 easy to compute, 
 behave predictably, 
 good results, 
 more details follow 
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Encoding Event Sequences 
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The length of the code      for pattern 𝑋 

                      𝐿       = − log 𝑝       = −log ( 𝑢𝑢𝑢(𝑋)
∑𝑢𝑢𝑢(𝑌)

)  
 
The length of the code stream 

       𝐿 𝐶𝑝 = ∑ 𝑢𝑢𝑢 𝑋 𝐿(     )𝑋∈𝐶𝐶  

a a a b d c d b a b c 
a 
b 

d 
c 

a a a b d c d b a b c 

a 
b 

d 
c 

X 

X X 

X 

Data 𝐷: 

𝐶𝑇1: Encoding 1: using only singletons 
 

  𝐶𝑝  
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a a a b d c d b a b c 
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p   !   ?   ! q   ?   ! p   !   ! 

gap 
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Data 𝐷: 

Encoding 2: using patterns 
 

  𝐶𝑝  
   

  𝐶𝑔 

𝐶𝑇2: 
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Data 𝐷: a a a b d c d b a b c 

The length of a gap code      for pattern 𝑋 
 

         𝐿        = − log(𝑝               ))  

and analogue for non-gap codes ! 

a d b 
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Encoding 2: using patterns 
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? 
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𝐶𝑇2: 
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which leaves us to define 𝐿(𝐶𝐶 ∣ 𝐶) 
 

By which, the encoded size of 𝐷 given 𝐶𝐶 and 𝐶 is 
 

𝐿 𝐷 𝐶𝐶 = 𝐿 𝐶𝑝 𝐶𝐶 + 𝐿(𝐶𝑔 ∣ 𝐶𝐶) 



Encoding a Code Table 
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X X ? ! 
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…
 

𝐿(𝐶𝐶 ∣ 𝐶,𝐷) consists of 



Encoding a Code Table 
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𝐿(𝐶𝐶 ∣ 𝐶,𝐷) consists of 

1) base singleton counts in 𝐷 

 𝐿ℕ Ω + 𝐿ℕ 𝐷 + log 𝐷 − 1
Ω − 1
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𝐿(𝐶𝐶 ∣ 𝐶,𝐷) consists of 

1) base singleton counts in 𝐷 

 𝐿ℕ Ω + 𝐿ℕ 𝐷 + log 𝐷 − 1
Ω − 1

 

 

2) number of patterns, total, and per pattern usage 

 𝐿ℕ 𝒫 + 1 + 𝐿ℕ 𝑢𝑢𝑢 𝒫 + 1 + log 𝑢𝑢𝑢 𝒫 − 1
𝒫 − 1  

 

𝒫  
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𝐿(𝐶𝐶 ∣ 𝐶,𝐷) consists of 

1) base singleton counts in 𝐷 

 𝐿ℕ Ω + 𝐿ℕ 𝐷 + log 𝐷 − 1
Ω − 1

 

 

2) number of patterns, total, and per pattern usage 

 𝐿ℕ 𝒫 + 1 + 𝐿ℕ 𝑢𝑢𝑢 𝒫 + 1 + log 𝑢𝑢𝑢 𝒫 − 1
𝒫 − 1  

 
3) per pattern 𝑋 : its length, elements, and number of gaps  

𝐿ℕ 𝑋 − � log𝑝 𝑥 𝐷
𝑥∈𝑋 

+ 𝐿ℕ 𝑔𝑔𝑔𝑔 𝑋 + 1  

 
 

𝒫  
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Encoding Event Sequences 

Tatti & Vreeken (2012) Bertens et al. (2016), Bhattacharyya & Vreeken (2017) 
for transaction data, Vreeken et al (2011) Budhathoki & Vreeken (2015) for graphs Koutra et al (2014) 28 

By which we have a lossless encoding. 
In other words, an objective function. 

By MDL, our goal is now to minimise 
 

𝐿 𝐶𝐶,𝐷 = 𝐿 𝐶𝐶 𝐶 + 𝐿(𝐷 ∣ 𝐶𝐶) 
 
for how to do so, please see the papers 
 



Experiments 
 synthetic data random               no structure found 

   HMM               structure recovered 
 real data  text data     for interpretation 

 

(implementation available at http://eda.mmci.uni-saarland/sqs) 29 

   SQS-CANDS SQS-SEARCH 

Ω  |𝐷| # 𝐶𝐶𝐶𝐶 || || Δ𝐿 

Addresses 5 295 56 15 506 138 155 5k 

JMLR 3 846 788 40 879 563 580 30k 

Moby Dick 10 277 1 22 559 215 231 10k 



Selected Results 

 

(Tatti & Vreeken 2012; Bhattacharyya & Vreeken 2017, Grosse & Vreeken 2017) 30 

JMLR 
 

 
empirical, risk minimization structural 

indep, component analysis prinicipal 

Mahalanobis, 

distance edit, 
Euclidean, 
pairwise 

PRES. ADDRESSES 
 

unit[ed] state[s] 
take oath 
army navy 
under circumst. 
econ. public expenditur 
exec. branch. governm. 

LOTR 
 

he Verb Conj he 
   [he said that he] 
 

Conf _ the Noun of 
  [and even the end of] 
 

the Adj Noun and 
  [the young Hobbits and] 

a c b 

Serial Episodes 

a 
 

or c 
b 

d 

Choice-episode Ontological Episodes 

A  𝒞 b 



Clustering 

The best clustering is the one that costs the least bits 
 similar structure (patterns) within clusters 
 different structure (patterns) between clusters 
 
Partition your data such that 

𝐿 𝐶 + � 𝐿(𝐷𝑖 ,𝐻𝑖)
(𝐷𝑖,𝐻𝑖)∈𝐶

 

       is minimal 
 
(similar to mixture modelling, but descriptive instead of predictive) 

 

for itemsets, see Van Leeuwen et al (2009) 31 



Clustering 

Mammals occurrences 
 2221 areas in Europe 
 50x50km each 
 123 mammals 
 no location info 

for itemsets, see Van Leeuwen et al (2009) 32 

k=6, MDL ‘optimal’ 



Classification 

Split your data per class 
 induce model per class 

 

Then, for unseen instances 
 assign class label of model that encodes it shortest 
 

𝐿 𝑥 𝐻1 < 𝐿 𝑥 𝐻2 → 𝑃 𝑥 𝐻1 > 𝑃(𝑥 ∣ 𝐻2) 

(for itemsets, see ECML PKDD’06) 33 



Classification by MDL 

Van Leeuwen et al (2006) 34 

𝐿 𝑥 𝐻1 < 𝐿 𝑥 𝐻2  →  𝑃 𝑥 𝐻1 > 𝑃(𝑥 ∣ 𝐻2) 

Split  
per class 

Model 𝐻𝑐∗  
per class 𝑐 

Encode 
unseen 
record 

Shortest  
code wins! 

Run 
algorithm 

Database 
(𝑛 classes) 



Outlier Detection 

One-Class Classification (aka anomaly detection) 
 lots of data for normal situation – insufficient data for target 

 
Compression models the norm 
 anomalies will have high description length  𝐿(𝑡 ∣ 𝐻𝑛𝑛𝑛𝑛∗ ) 
 

Very nice properties 
 performance high accuracy 
 versatile                  no distance measure needed 
 characterisation      ‘this part of t is incompressible’ 

 
 

 
Smets & Vreeken (2011) Akoglu et al (2012) 35 



CompreX on Images 

Akoglu et al (2012) 36 

Catholic church, Vatican 

Washington Memorial, D.C. 

Thames river, Buckingham 
palace, plain fields, London 



Causal Discovery 

37 
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Causal Discovery 

Spirtes et al (2000)  
Marx & Vreeken, Conditional Independence Testing by Stochastic Complexity (2019) 38 

We can find the causal skeleton using  
conditional independence tests,  

but only few edge directions 
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Y Q 

S 

R 

Z 

V 

W 



Causal Inference 

Spirtes et al (2000)  
Marx & Vreeken, Conditional Independence Testing by Stochastic Complexity (2019) 39 

We can find the causal skeleton using  
conditional independence tests,  

but only few edge directions 
 

Q 

S 

R 

Z 

V 

W 

? 

X 

Y 



Algorithmic Markov Condition 

 
If 𝑋 → 𝑌, we have, 

up to an additive constant, 

 
𝐾 𝑃 𝑋 + 𝐾 𝑃 𝑌 𝑋 ≤ 𝐾 𝑃 𝑌 + 𝐾 𝑃 𝑋 𝑌  

 
That is, we can do causal inference by  

identifying the factorization of the joint  
with the lowest Kolmogorov complexity 

 (Janzing & Schölkopf, IEEE TIT 2012) 40 



MDL and Regression 

(Grünwald 2007) 41 

a1 x + a0 

𝐿 𝑀 + 𝐿(𝐷|𝑀) 

a10 x10 + a9 x9 + … + a0 

errors 

    { } 



Modelling the Data 
We model 𝑌 as 
 

𝑌 = 𝑓 𝑋 + 𝒩 
 
As 𝑓 we consider linear, 
quadratic, cubic, exponential, 
and reciprocal functions, and 
model the noise using a  
0-mean Gaussian. We choose 
the 𝑓 that minimizes 
 

𝐿 𝑌 𝑋 =  𝐿 𝑓 + 𝐿(𝒩) 
 
 
 

 

Marx & Vreeken (2017) 42 



Confidence and Significance 

How certain are we?  

 
 
 

 
 

Marx & Vreeken (2017) 43 

ℂ = 𝐿 𝑋 + 𝐿 𝑌  𝑋) − 𝐿 𝑌 + 𝐿 𝑋  𝑌)   the higher the more certain 
  
 𝐿(𝑋 → 𝑌) 𝐿(𝑌 → 𝑋) 



Confidence and Significance 

How certain are we?  
 
 
 

Is a given inference significant? 
 our null hypothesis 𝐿0 is that 𝑿 and 𝒀 are only correlated, 

we have 𝐿0 = |𝐿 𝑋→𝑌 −𝐿 𝑌→𝑋 |
2

 
 

 we can use the no-hypercompression inequality to test significance 
 

P 𝐿0 𝐷 − 𝐿 𝐷 ≥ 𝑘 ≤ 2−𝑘 
 

 
Grünwald (2007), Marx & Vreeken (2017)  44 

ℂ =
𝐿 𝑋 + 𝐿 𝑌  𝑋)
𝐿 𝑋 + 𝐿 𝑌

−
𝐿 𝑌 + 𝐿 𝑋  𝑌)
𝐿 𝑋 + 𝐿 𝑌

 
 the higher the more certain 
 robust w.r.t. sample size 

  
 



Performance on Benchmark Data 
(Tübingen 97 univariate numeric cause-effect pairs, weighted) 

 

45 Marx & Vreeken (2017) 
 



Performance on Benchmark Data 
(Tübingen 97 univariate numeric cause-effect pairs, weighted) 

 

Marx & Vreeken (2017) 
 

46 

Inferences of state of the 
art algorithms ordered 
by confidence values. 

SLOPE is 85% accurate 
with 𝛼 = 0.001 



Deep Learning 

Model selection in deep learning is hard 
 way too many ‘free’ parameters for standard regularizers, 
 no meaningful prior over networks, and 
 uniform prior will lead to overfitting 

 
How about an MDL approach? 
 what is the description length of a neural network? 

 

47 



MDL for Neural Networks 

Suppose neural network 𝐻 ∈ ℋ predicts target 𝑦 given 𝑥 
𝑦� = 𝐻(𝑥) 

 
How do we encode data given the model? 
 if 𝐻(𝑥) is probabilistic, we have 𝐿 𝒚 𝐻 𝒙 = −∑ log 𝑝(𝑦𝑖|𝑥𝑖)𝑦𝑖∈𝒚  
 else we can simply encode the residual error,  

 e.g. if 𝒚 is binary, we have 𝒆 = 𝒚⊕ 𝒚�, and 𝐿 𝒚 𝐻 𝒙 = log 𝑛 + log
𝑛

|𝒆|  

 e.g. if 𝒚 is continuous, we can encode using a zero-mean Gaussian 
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MDL for Neural Networks 

Suppose neural network 𝐻 ∈ ℋ predicts target 𝑦 given 𝑥 
𝑦� = 𝐻(𝑥) 

 
How do we encode the model? 
 we could encode all of the parameters, but that’s highly ad hoc 
 instead, we can use the notion of prequential coding 

 
 

 

Dawid (1984) Barron et al (1998) Grünwald (2007) Blier & Ollivier (2018) 49 



Prequential Coding 

Simple, elegant idea: 
 

“Update your model after every message” 
 

That is, we re-train our network after ‘every’ new label 
 we initialize topology 𝐻 ∈ ℋ with fixed weights 
 we transmit the first 𝑘 labels using 𝐻0 
 we now train 𝐻 on this first batch of 𝑘 labelled points, we obtain 𝐻1 
 we transmit the second 𝑘 labels using 𝐻1 
 we now train 𝐻 on the first two batches, and obtain 𝐻3 

 
 

 Dawid (1984) Barron et al (1998) Grünwald (2007) Blier & Ollivier (2018) 50 



Prequential Coding 
Simple, elegant idea: 
 

“Update your model after every message” 
 

𝐿 𝐷 ℋ = �𝐿(𝐷𝑖 ∣ 𝐻𝑖−1)
𝐷𝑖

 

 
Best of all, this is not a crude, but a refined MDL code! 
 depends fully on how 𝐻 behaves on the data 
 no arbitrary choices on how to encode 𝐻 
 within a constant of 𝐿(𝐷|𝐻∗), and this constant only depends on ℋ 

 
 
 

 

Dawid (1984) Barron et al (1998) Grünwald (2007) 
 51 



Schedule 

 Opening 

 Introduction to MDL 

 MDL in Action 

 ––––––break ––––––  

 Stochastic Complexity  

 MDL in Dynamic Settings   
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