Part 2

 MDL in Action

 MDL in Action}

Jilles Vreeken

Explicit Coding

Ad hoc sounds bad, but is it really?

- Bayesian learning for instance, is inherently subjective, plus
- biasing search is a time-honoured tradition in data analysis

$$
\begin{aligned}
& \text { Using an explicit encoding allows us } \\
& \text { to steer towards the } \\
& \text { type of structure we want to discover }
\end{aligned}
$$

We so also mitigate one of the practical weak spots of AIT

- all data is a string, but wouldn't it be nice if the structure you found would not depend on the order of the data?

Matrix Factorization

The rank of a matrix \boldsymbol{A} is

- number of rank-1 matrices that when summed form \boldsymbol{A} (Schein rank)

Boolean Matrix Factorization

The rank of a Boolean matrix \boldsymbol{A} is

- number of rank-1 matrices that when summed form \boldsymbol{A} (Schein rank)

Boolean Matrix Factorization

The rank of a Boolean matrix \boldsymbol{A} is

- number of rank-1 matrices that when summed form \boldsymbol{A} (Schein rank)
- noise quickly inflate the 'true' latent rank to $\min (n, m)$

Boolean Matrix Factorization

Noise quickly inflates the rank to $\min (n, m)$

- how can we determine the 'true' latent rank?

Boolean Matrix Factorization

Separating structure and noise

- matrices B and C contain structure, matrix E contains noise

Boolean Matrix Factorization

Encoding the structure

$$
L(\boldsymbol{B})=\log n+\sum_{b \in \boldsymbol{B}}\left[\log n+\log \binom{n}{|b|}\right]
$$

Boolean Matrix Factorization

Encoding the structure

$$
L(\boldsymbol{C})=\log m+\sum_{c \in \boldsymbol{C}}\left[\log m+\log \binom{m}{|c|}\right]
$$

Boolean Matrix Factorization

Encoding the noise

$$
L(\boldsymbol{E})=\log n m+\log \binom{n m}{|\boldsymbol{E}|}
$$

Boolean Matrix Factorization

MDL for BMF

$$
L(D, H)=L(\boldsymbol{B})+L(\boldsymbol{C})+L(\boldsymbol{E})
$$

Pattern Mining

The ideal outcome of pattern mining

- patterns that show the structure of the data
- preferably a small set, without redundancy or noise

Frequent pattern mining does not achieve this

- pattern explosion \rightarrow overly many, overly redundant results

MDL allows us to effectively pursue the ideal

- we want a group of patterns that summarise the data well
- we take a pattern set mining approach

Event sequences

Alphabet Ω

$$
\{a, b, c, d, \ldots\}
$$

Data D
one, or multiple sequences

$$
\begin{array}{llllllllllllllllll}
a & b & d & c & a & d & b & a & a & b & c & a & d & a & b & a & b & c
\end{array}
$$

$$
\left\{\begin{array}{lllllllllll}
a & b & d & c & a & d & b & a & a & b & c, \\
a & b & d & c & a & d & b, & & & \\
a & b & d & c & a & d & b & a & a, & \ldots
\end{array}\right\}
$$

Event sequences

Alphabet Ω

$$
\{a, b, c, d, \ldots\}
$$

Data D
one, or multiple sequences

Patterns

serial
episodes

'subsequences allowing gaps'

Event sequences

Alphabet Ω $\{a, b, c, d, \ldots\}$

Data D
one, or multiple sequences

Patterns
serial
episodes

'subsequences allowing gaps'

Models

As models we use code tables

- dictionary of patterns \& codes
- always contains all singletons

We use optimal prefix codes

- easy to compute,
- behave predictably,
- good results,
- more details follow

Encoding Event Sequences

Data D: \quad| a | b | d | c | a | d | b | a | a | b | c |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Encoding 1: using only singletons

$\begin{array}{rlrl}C T_{1} & a & a \\ & b & a \\ & c & c \\ & d & d \\ & d & d\end{array}$
The length of the code X for pattern X

$$
L(\boxed{X})=-\log (p(\boxed{X}))=-\log \left(\frac{u \operatorname{sg}(X)}{\sum \operatorname{usg}(Y)}\right)
$$

The length of the code stream

$$
L\left(C_{p}\right)=\sum_{X \in C T} u s g(X) L(\boxed{\triangle})
$$

Encoding Event Sequences

Data D: $\quad \begin{array}{lllllllllll}a & b & d & c & a & d & b & a & a & b & c\end{array}$
Encoding 2: using patterns

Alignment: $\quad \begin{array}{llllllllllll}a & b & d & c & a & d & b & a & a & b & c \\ & p & & & & & & & & & & \end{array}$

$$
p!?!\quad q ?!p!!
$$

Encoding Event Sequences

Data D: $\quad \begin{array}{lllllllllll}a & b & d & c & a & d & b & a & a & b & c\end{array}$
Encoding 2: using patterns

The length of a gap code ? for pattern X

$$
L(?)=-\log (p(? \mid p))
$$

and analogue for non-gap codes \square

Encoding Event Sequences

By which, the encoded size of D given $C T$ and C is

$$
L(D \mid C T)=L\left(C_{p} \mid C T\right)+L\left(C_{g} \mid C T\right)
$$

which leaves us to define $L(C T \mid C)$

Encoding a Code Table
 $L(C T \mid C, D)$ consists of

Encoding a Code Table

$L(C T \mid C, D)$ consists of

1) base singleton counts in D

$$
L_{\mathbb{N}}(|\Omega|)+L_{\mathbb{N}}(| | D| |)+\log \binom{| | D| |-1}{|\Omega|-1}
$$

Encoding a Code Table

$L(C T \mid C, D)$ consists of

1) base singleton counts in D

$$
L_{\mathbb{N}}(|\Omega|)+L_{\mathbb{N}}(| | D| |)+\log \binom{| | D| |-1}{|\Omega|-1}
$$

Encoding a Code Table

$L(C T \mid C, D)$ consists of

1) base singleton counts in D

$$
L_{\mathbb{N}}(|\Omega|)+L_{\mathbb{N}}(| | D| |)+\log \binom{| | D| |-1}{|\Omega|-1}
$$

2) number of patterns, total, and per pattern usage

$$
L_{\mathbb{N}}(|\mathcal{P}|+1)+L_{\mathbb{N}}(\operatorname{usg}(\mathcal{P})+1)+\log \binom{\operatorname{usg}(\mathcal{P})-1}{|\mathcal{P}|-1}
$$

Encoding a Code Table

$L(C T \mid C, D)$ consists of

1) base singleton counts in D

$$
L_{\mathbb{N}}(|\Omega|)+L_{\mathbb{N}}(| | D| |)+\log \binom{| | D| |-1}{|\Omega|-1}
$$

2) number of patterns, total, and per pattern usage

$$
L_{\mathbb{N}}(|\mathcal{P}|+1)+L_{\mathbb{N}}(\operatorname{usg}(\mathcal{P})+1)+\log \binom{\operatorname{usg}(\mathcal{P})-1}{|\mathcal{P}|-1}
$$

Encoding a Code Table

$L(C T \mid C, D)$ consists of

1) base singleton counts in D

$$
L_{\mathbb{N}}(|\Omega|)+L_{\mathbb{N}}(| | D| |)+\log \binom{| | D| |-1}{|\Omega|-1}
$$

2) number of patterns, total, and per pattern usage

$$
L_{\mathbb{N}}(|\mathcal{P}|+1)+L_{\mathbb{N}}(\operatorname{usg}(\mathcal{P})+1)+\log \binom{\operatorname{usg}(\mathcal{P})-1}{|\mathcal{P}|-1}
$$

3) per pattern X : its length, elements, and number of gaps

$$
L_{\mathbb{N}}(|X|)-\left[\sum_{x \in X} \log p(x \mid D)\right]+L_{\mathbb{N}}(\operatorname{gaps}(X)+1)
$$

Encoding a Code Table

$L(C T \mid C, D)$ consists of

1) base singleton counts in D

$$
L_{\mathbb{N}}(|\Omega|)+L_{\mathbb{N}}(| | D| |)+\log \binom{| | D| |-1}{|\Omega|-1}
$$

2) number of patterns, total, and per pattern usage

$$
L_{\mathbb{N}}(|\mathcal{P}|+1)+L_{\mathbb{N}}(\operatorname{usg}(\mathcal{P})+1)+\log \binom{\operatorname{usg}(\mathcal{P})-1}{|\mathcal{P}|-1}
$$

3) per pattern X : its length, elements, and number of gaps

$$
L_{\mathbb{N}}(|X|)-\left[\sum_{x \in X} \log p(x \mid D)\right]+L_{\mathbb{N}}(\operatorname{gaps}(X)+1)
$$

Encoding Event Sequences

By which we have a lossless encoding. In other words, an objective function.

By MDL, our goal is now to minimise

$$
L(C T, D)=L(C T \mid C)+L(D \mid C T)
$$

for how to do so, please see the papers

Experiments

- synthetic data
- real data
random HMM
text data
\checkmark no structure found structure recovered for interpretation

Selected Results

Serial Episodes

Pres. Addresses

unit[ed] state[s]
take oath
army navy under circumst. econ. public expenditur exec. branch. governm.

Choice-episode

JMLR

empirical, structural risk minimization
indep, prinicipal component analysis

Mahalanobis,
edit,
Euclidean, distance pairwise

Ontological Episodes

Clustering

The best clustering is the one that costs the least bits

- similar structure (patterns) within clusters
- different structure (patterns) between clusters

Partition your data such that

$$
L(C)+\sum_{\left(D_{i}, H_{i}\right) \in C} L\left(D_{i}, H_{i}\right)
$$

is minimal
(similar to mixture modelling, but descriptive instead of predictive)

Clustering

Mammals occurrences

- 2221 areas in Europe
- $50 \times 50 \mathrm{~km}$ each
- 123 mammals
- no location info

Classification

Split your data per class

- induce model per class

Then, for unseen instances

- assign class label of model that encodes it shortest

$$
L\left(x \mid H_{1}\right)<L\left(x \mid H_{2}\right) \rightarrow P\left(x \mid H_{1}\right)>P\left(x \mid H_{2}\right)
$$

Classification by MDL

$L\left(x \mid H_{1}\right)<L\left(x \mid H_{2}\right) \rightarrow P\left(x \mid H_{1}\right)>P\left(x \mid H_{2}\right)$

Outlier Detection

One-Class Classification (aka anomaly detection)

- lots of data for normal situation - insufficient data for target

Compression models the norm

- anomalies will have high description length $L\left(t \mid H_{\text {norm }}^{*}\right)$

Very nice properties

- performance high accuracy
- versatile
- characterisation
no distance measure needed
'this part of t is incompressible'

CompreX on Images

Catholic church, Vatican

Washington Memorial, D.C.

Thames river, Buckingham palace, plain fields, London

Causal Discovery

Causal Discovery

We can find the causal skeleton using conditional independence tests,

Causal Inference

We can find the causal skeleton using conditional independence tests, but only few edge directions

Algorithmic Markov Condition

If $X \rightarrow Y$, we have,
up to an additive constant,

$$
K(P(X))+K(P(Y \mid X)) \leq K(P(Y))+K(P(X \mid Y))
$$

That is, we can do causal inference by identifying the factorization of the joint with the lowest Kolmogorov complexity

MDL and Regression

Modelling the Data

We model Y as

$$
Y=f(X)+\mathcal{N}
$$

As f we consider linear, quadratic, cubic, exponential, and reciprocal functions, and model the noise using a
0 -mean Gaussian. We choose the f that minimizes

$$
L(Y \mid X)=L(f)+L(\mathcal{N})
$$

Confidence and Significance

How certain are we?

$$
\mathbb{C}=\underbrace{\mid L(X)+L(Y \mid X)}_{L(X \rightarrow Y)}-\underbrace{L(Y)+L(X \mid Y)}_{L(Y \rightarrow X)} \mid \text { : the higher the more certain }
$$

Confidence and Significance

How certain are we?

$$
\mathbb{C}=\left|\frac{L(X)+L(Y \mid X)}{L(X)+L(Y)}-\frac{L(Y)+L(X \mid Y)}{L(X)+L(Y)}\right|
$$

- the higher the more certain
- robust w.r.t. sample size

Is a given inference significant?

- our null hypothesis L_{0} is that X and Y are only correlated, we have $L_{0}=\frac{|L(X \rightarrow Y)-L(Y \rightarrow X)|}{2}$
- we can use the no-hypercompression inequality to test significance

$$
\mathrm{P}\left(L_{0}(D)-L(D) \geq k\right) \leq 2^{-k}
$$

Performance on Benchmark Data

(Tübingen 97 univariate numeric cause-effect pairs, weighted)

Performance on Benchmark Data

(Tübingen 97 univariate numeric cause-effect pairs, weighted)

Inferences of state of the art algorithms ordered by confidence values.

SLOPE is 85% accurate with $\alpha=0.001$

Deep Learning

Model selection in deep learning is hard

- way too many 'free' parameters for standard regularizers,
- no meaningful prior over networks, and
- uniform prior will lead to overfitting

How about an MDL approach?

- what is the description length of a neural network?

MDL for Neural Networks

Suppose neural network $H \in \mathcal{H}$ predicts target y given x

$$
\hat{y}=H(x)
$$

How do we encode data given the model?

- if $H(x)$ is probabilistic, we have $L(\boldsymbol{y} \mid H(\boldsymbol{x}))=-\sum_{y_{i} \in \boldsymbol{y}} \log p\left(y_{i} \mid x_{i}\right)$
- else we can simply encode the residual error,
- e.g. if \boldsymbol{y} is binary, we have $\boldsymbol{e}=\boldsymbol{y} \oplus \widehat{\boldsymbol{y}}$, and $L(\boldsymbol{y} \mid H(\boldsymbol{x}))=\log n+\log \binom{n}{|\boldsymbol{e}|}$
- e.g. if \boldsymbol{y} is continuous, we can encode using a zero-mean Gaussian

MDL for Neural Networks

Suppose neural network $H \in \mathcal{H}$ predicts target y given x

$$
\hat{y}=H(x)
$$

How do we encode the model?

- we could encode all of the parameters, but that's highly ad hoc
- instead, we can use the notion of prequential coding

Prequential Coding

Simple, elegant idea:

"Update your model after every message"

That is, we re-train our network after 'every' new label

- we initialize topology $H \in \mathcal{H}$ with fixed weights
- we transmit the first k labels using H_{0}
- we now train H on this first batch of k labelled points, we obtain H_{1}
- we transmit the second k labels using H_{1}
- we now train H on the first two batches, and obtain H_{3}

Prequential Coding

Simple, elegant idea:
"Update your model after every message"

$$
L(D \mid \mathcal{H})=\sum_{D_{i}} L\left(D_{i} \mid H_{i-1}\right)
$$

Best of all, this is not a crude, but a refined MDL code!

- depends fully on how H behaves on the data
- no arbitrary choices on how to encode H
- within a constant of $L\left(D \mid H^{*}\right)$, and this constant only depends on \mathcal{H}

Schedule

9:30am
10:00am
11:00am

8:00am	Opening
8:10am	Introduction to MDL
8:50am	MDL in Action
9:30am	Sreak
10:00am	Stochastic Complexity
11:00am	MDL in Dynamic Settings

Opening
Introduction to MDL
MDL in Action

Stochastic Complexity
MDL in Dynamic Settings

