Modern MDL Meets Data Mining Insight, Theory, and Practice —Part IV— Dynamic Setting

Kenji Yamanishi

Graduate School of Information Science and Technology, the University of Tokyo August 4th 2019 KDD Tutorial

Part IV. Dynamic Setting

4.1. Change Detection with MDL Change Statistics

- 4.1.1. Change Detection
- 4.1.2. MDL Change Statistics
- 4.1.3. Sequential Gradual Change Detection
- 4.1.4. Adaptive Windowing

4.2. Model Change Detection with MDL Principle

- 4.2.1. MDL Model Change Statistics
- 4.2.2. Dynamic Model Selection
- 4.2.3. Clustering Change Detection
- 4.2.4. Model Change Sign Detection

4.1. Change Detection with MDL Change Statistics.

4.1.1 Change Detection What's Change Detection?

Detecting emergence of bursts of anomalies

Definition of Change Point

t=a

Application to Malware Detection

Detecting SQL Injection via change point detection

Why Change Detection?

Time Series	Event behind change			
Access log	Malware			
Computer usage log	Fraud			
Syslog	Failure			
Sensor data	Accident			
Tweet	Topic Emergence			
Real estate transaction	Economics crisis			
Usage transaction	Market trend			
Visual field loss	Glaucoma			

Previous Work

Abrupt Change detection: [Hinkley 1970] [Hsu 1977][Basseville, Nikiforov 1993](CUSUM) [Guralnik, Srivastava 1998] [Fearnhead, Liu 2007]

- On-line abrupt change detection: [Yamanishi,Takeuchi 2002] [Kiefer et al.2004] [Takeuchi, Yamanishi 2006] [Adams,MacKay 2007]
- Incremental change detection (Concept drift) [Zliobaite 2009] [Gama et al. 2013]
- Continuous change detection

[Miyaguchi, Yamanishi 2015] [Yamanishi Miyaguchi 2016]

No studies on unifying approaches to detecting gradual changes as well as abrupt ones

New Directions of Change Detection

4.1.2 MDL Change Statistics **Hypothesis Testing Framework** parametric class of $\mathcal{F} = \{ p(X; \theta) : \theta \in \Theta \}.$ prob. densities For sample size n, given a time point $t(1 \le t \le n)$, θ_0 $H_0: x_1^n \sim p(x; \theta_0)$ t is not change pt t $H_1: x_1^t \sim p(x_1^t; \theta_1),$ θ_2 t is θ_1 $x_{t+1}^n \sim p(x_{t+1}^n; \theta_2)$ change pt tLikelihood test $\theta_0, \theta_1, \theta_2$ are un cannot be applied is specified.

10

MDL Change Statistics

If the data can be compressed significantly more by changing the distribution at time *t*, then that point may be thought of as a change point.

C.f. [Yamanishi Miyaguchi BigData2016] [Vreeken Leeuwen DAMI2014] [Hooi et al. CIKM2018] [Guralnik and Srivastava KDD1999]

NML Codelength

Parametric model

 $\mathcal{P} = \{ p(X^n; \theta) : \theta \in \Theta \} \ (n = 1, 2, \dots)$

NML Codelength

where

(Normalized Maximum Likelihood (NML) Codelength)

$$\mathcal{L}(x^{n}) = -\log \frac{\max_{\theta} p(x^{n}; \theta)}{\sum_{y^{n}} \max_{\theta} p(y^{n}; \theta)} \xrightarrow{\text{Parametric}}_{\text{Complexity}}$$
$$= -\log \max_{\theta} p(x^{n}; \theta) + \log \sum_{y^{n}} \max p(y^{n}; \theta) = C_{n}$$
$$\approx -\log \max_{\theta} p(x^{n}; \theta) + \frac{k}{2} \log \frac{n}{2\pi} + \log \int \sqrt{|I(\theta)|} d\theta$$
$$, I(\theta) = E_{\theta} \left[-\frac{\partial^{2} \log p(X; \theta)}{\partial \theta \partial \theta^{T}} \right] \text{ (Fisher Information)} \quad \text{k:# parameters}$$

Formal Definition of MDL Change Statistics

MDL-change statistics [Yamanishi Miyaguchi BigData2016]

$$x^n = x_1 \dots x_n, \ x_1^t = x_1 \dots x_t, \ x_{t+1}^n = x_{t+1} \dots x_n$$

t: change point candidate, $\epsilon > 0$

 $\Phi_t(x^n) > 0 \Rightarrow t \text{ is a change point}$ $\Phi_t(x^n) \le 0 \Rightarrow t \text{ is not a change point}$

Performance Evaluation Metrics

- The performance measure of hypothesis testing
- Type I error probability:
- =The probability that H_0 is true but H_1 is accepted. (False alarm rate)
- Type II error probability
- =The probability that H_1 is true but H_0 is accepted.

(Overlooking rate)

Theoretical Performance of MDL-Test

Theorem 4.1.1 (Error probabilities for MDL-test) [Yamanishi Miyaguchi BigData2016]

TypeI error prob. $\leq \exp\left[-n\left(\epsilon - \frac{\log C_n}{n}\right)\right]$, (False alarm rate) TypeII error prob. $\leq \exp\left[-\frac{n}{2}\left(d_n(p_{\text{NML}}, p_{\theta_1\theta_2}) - \frac{\log\left(C_t C_{n-t}\right)}{n} - \epsilon\right)\right]$ (Overlooking rate) where $d_n(p,q) \stackrel{\text{def}}{=} 2\left\{1 - \left(\sum_{n} \{p(x^n)\}^{\frac{1}{2}} \{q(x^n)\}^{\frac{1}{2}}\right)^{\frac{1}{n}}\right\}$ $p_{\theta_1,\theta_2}(x^n) \stackrel{\text{def}}{=} p(x_1^t;\theta_1)p(x_{t+1}^n;\theta_2),$ $p_{\rm NML}$:NML distribution

Error probabilities converge to zero exponentially with model complexity-based exponents.

4.1.3.Sequential Gradual Change Detection

Challenges: Real-time detection of sign of changes

Sequential MDL Change Detection(S-MDL)

Sequentially compute MDL change statistics with fixed window

[Yamanishi, Miyaguchi BigData2016]

$$x^n = x_1 \dots x_n,$$

Sequential MDL Change Detection

2h. window size

Sequential variant

$$\Phi_t \stackrel{\text{def}}{=} \frac{1}{2h} \left\{ \min_{\theta} \left(-\log P(x_{t-h+1}^{t+h}; \theta)) + \log C_{2h} \right\} - \frac{1}{2h} \left\{ \min_{\theta} \left(-\log P(x_{t-h+1}^{t}; \theta)) + \min_{\theta} \left(-\log P(x_{t-h+1}^{t+h}; \theta)) + 2\log C_h \right\} \right\}$$

Sequential MDL Change Detection Algorithm (S-MDL)

Given: h: window size, T: data length, \mathcal{F}_M : model class, β : threshold parameter for all $t = h + 1, \dots, T - h + 1$ do Input x_{t-h}, \dots, x_{t+h} . Calculate a change score Φ_t at time Make an alarm if and only if $\Phi_t > \beta$. end for Example 4.1.1. (Gaussian distributions)

$$\mathcal{F} = \left\{ P(X;\theta) = \frac{1}{\sqrt{2\pi\sigma}} \exp\left(-\frac{(X-\mu)^2}{2\sigma^2}\right), \\ \theta = (\mu,\sigma^2) \in (-\mu_{\max}, +\mu_{\max}) \times (\sigma_{\min}, \sigma_{\max}) \right\},$$

where μ_{\max} < ∞ , 0 < $\sigma_{\min}, \sigma_{\max}$ < ∞

MDL change statistics at time t:

$$\Phi_t = \frac{h}{2} \log \frac{\hat{\sigma}_0^2}{\hat{\sigma}_1 \hat{\sigma}_2} + \log \frac{C_{2h}}{C_h^2},$$

where $\hat{\sigma}_0^2, \hat{\sigma}_1^2$ and $\hat{\sigma}_2^2$: maximum likelihood (ML) estimators

$$\log C_k = \frac{1}{2} \log \frac{16|\mu|_{\max}}{\pi \sigma_{\min}^2} + \frac{k}{2} \log \frac{k}{2e} - \log \Gamma\left(\frac{k-1}{2}\right)$$

Example 4.1.2. (Poisson distributions)

$$\mathcal{F} = \left\{ P(X = x; \lambda) = \frac{\lambda^x e^{-\lambda}}{x!}, \ \lambda \in (0, \lambda_{\max}) \right\}$$

where $\lambda_{\max} < \infty$. is an upper bound on λ_{\perp}

MDL change statistics at time t:

$$\Phi_t = -2h \log \left(\hat{\lambda}_h^{\hat{\lambda}_h} / \left(\hat{\lambda}_t^{\hat{\lambda}_t} \hat{\lambda}_{h-t}^{\hat{\lambda}_{n-t}} \right)^{1/2} \right) + \log \frac{C_{2h}}{C_h^2}$$

where $\hat{\lambda}_h$ is the ML estimator from x^n

$$\log C_k = \frac{1}{2}\log\frac{k}{2\pi} + \left(1 + \frac{\lambda_{\max}}{2}\right)\log 2 + \log^* \lambda_{\max}$$

Example 4.2.3. (Linear Regression)

$$X^{n} = (x_{1}, \dots x_{n})^{\top} = W_{n}^{\top}\beta + \epsilon, \quad \epsilon \sim \mathcal{N}(0, \sigma^{2}I_{n}),$$
$$W_{n} = \begin{pmatrix} 1 & 1 & 1 & \dots & 1 \\ 1 & 2 & 3 & \dots & n \end{pmatrix}^{\top} \in \mathbb{R}^{n \times 2}, \quad \beta \in \mathbb{R}^{2}$$
$$\mathcal{F} = \begin{cases} p(X^{n}; \theta) = \frac{1}{(\sqrt{2\pi}\sigma)^{d}} \exp\left(-\frac{||X - W_{n}^{\top}\beta||^{2}}{2\sigma^{2}}\right): \\ \theta = (\beta, \sigma^{2}) \in \mathbb{R}^{3}, \quad n = 1, 2, \dots \end{cases}.$$

MDL change statistics at time t:

where

$$\begin{aligned} & \left\{ \Phi_t = h \log \frac{\hat{\sigma}_h^2}{\hat{\sigma}_t \hat{\sigma}_{h-t}} - \log \frac{R}{\sigma_{\min}^2} - \log \frac{\Gamma(h-1)}{\Gamma(h/2-1)^2} + h \log 2, \right. \end{aligned} \right\} \\ & \text{e } \sigma_{\min} \text{ and } R \text{ are hyper-parameters } \hat{\sigma}_i^2 \ge \sigma_{\min}^2 \text{ and } \|\hat{\beta}\| \le nR. \\ & \hat{\sigma}_h^2 - \hat{\sigma}_t^2, \hat{\sigma}_{h-t}^2 \text{ the ML estimator of } \sigma^2 \end{aligned}$$

23

[Yamanishi, Miyaguchi BigData2016]

Jumping means:

_	Method	Abrupt	GRADUAL
_	IRL	0.467 ± 0.007	0.397 ± 0.014
	CF	0.511 ± 0.015	0.495 ± 0.017
	MDL1	0.856 ± 0.001	0.654 ± 0.001
_	MDL2	0.796 ± 0.019	0.646 ± 0.001

Jumping variances:

AUC

ALIC

Method	Abrupt	GRADUAL
IRL	0.514 ± 0.018	0.450 ± 0.021
CF	0.573 ± 0.008	0.493 ± 0.015
MDL1	0.721 ± 0.035	0.718 ± 0.035
MDL2	0.731 ± 0.034	0.711 ± 0.025

IRL: Inverse Run Length [Adams and MacKay 2007]
CF: ChangeFinder [Takeuchi and Yamanishi 2006]
MDL1: Proposed method with independent Gaussian
MDL2: Proposed method with linear regression

A time series of IP-URL counts, where each datum was the maximum # of total counts of records sent from an identical IP address to an identical URL within 15 minutes.

Total records =8632

MDL1 and MDL2 employ Poisson distributions

Experiments: Real Data

-SQL injection symptom detection-

Detected symptom caused by gradual increase of IP-URL accounts

How do you choose window size?

Figure 1. AUC vs window size

4.1.4. Adaptive Windowing

SCAW: Sequentially compute MDL change statistics with Adaptive Windowing (ADWIN) [Bifet & Gavaldà SDM07]

- If a statistics value exceeds threshold, it shrinks its window \rightarrow no need to choose window size h heuristically
- Cost-saving version (ADWIN2)
 - Narrowing down the number of division points from O(|W|) to $O(\log |W|)$

Asymptotic Reliability

Definition (Asymptotic reliability) Algorithm \mathcal{A} is asymptotically reliable if and only if, for all $\theta_0 \in \Theta$,

 $X_1^{\infty} \sim p(x_1^{\infty}; \theta_0) \Rightarrow \lim_{n \to \infty} |\mathcal{T}_{\mathcal{A}}(X_1^n)| < \infty,$

where $|\mathcal{T}_{\mathcal{A}}(X^n)|$ denotes the number of change points estimated by \mathcal{A} .

 Asymptotic reliability assures: "the number of false-alarms stays finite as the data size grows when the target process does *not* contain any changes."

Theorem 4.1.2 [Kaneko, Miyaguchi, Yamanishi BigData2017]

Let d be the dimension of a data sequence. Then, SCAW is asymptotically reliable if there exists a hyper parameter $\delta > 0$ that satisfies

$$\begin{array}{c} \hline \epsilon_h \geq \log \frac{1}{\delta} + (1 + \frac{\delta}{2} + \frac{d}{2}) \log h + const. \\ \hline \\ \text{Threshold} \\ \text{Hyperparameter} \end{array}$$

Experimental Result: Synthetic Data

SCAW achieves highest performance

[Kaneko, Miyaguchi. Yamanishi BigData2017]

PHT: Page-Hinkley Test [Hinkle 70] ADWIN [Bifet & Gavaldà 07]
 CF: ChangeFinder [Takeuchi & Yamanishi 06]
 BOCPD: Bayesian online chnagepoint detection [Adams & MacKay 07]

Experimental Results: Real Data —Failure Sign Detection—

Detected signs of real failures in an industrial boiler system

- [Kaneko, Miyaguchi. Yamanishi BigData2017] Increase in the amount of an ingredient from early Apr. in 2015
- A temporary stop of the boiler system on Mar. 15th in 2015

4.2. Model Change Detection with MDL Principle

Related Work

Tracking Piecewise Stationary Sources

[Shamir Merhav IEEE IT1999] [Killick, Fearnhead, Eckley JASA2012] [Davis, Yau EJS2013]

Switching Distribution

[Erven, Grunwald, Rooij JRoyalStat 2013]

- Tracking Best Experts / Derandomization
 [Herbster, Warmuth JML 1998] [Vovk ML99]
- Dynamic Model Selection

[Yamanishi, Maruyama KDD2005, IEEE IT2007] [Davis, Lee, Rodriguez JASA 2006] [Hirai Yamanishi KDD2012] [Yamanishi Fukushima IEEE IT2019]

Concept Drift

[J. Gama, I. Zlibait, A. Bifet, M. Pechenizkiy, Bouchachia, ACM Survey 2013]

Theoretical Result on MDL-Test

MDL Test: $\Phi_t(x^n)$: MDL change statistics $\Phi_t(x^n) > 0 \Longrightarrow t$ is a change point $\Phi_t(x^n) \le 0 \Longrightarrow t$ is not a change point

Theorem 4.1.3 [Yamanishi Fukushima IEEE Inform Theory 2018]

Type I error prob. $\leq \exp \left| -n \left(\epsilon - \frac{\log C_n(M_0^*) + \mathcal{L}(M_0^*)}{n} \right) \right|$ (False alarm prob.) Type II error prob. $\leq \exp\left(-nD_n^{\alpha}(M_1^*, M_2^*, \epsilon)\right)$. (Overlooking prob.) $D_n^{\alpha}(M_1^*, M_2^*, \epsilon) \stackrel{\text{def}}{=} 2\alpha(1-\alpha)d_n^{\alpha}(\tilde{p}_{\text{NML}}, p_{M_{1*2}}) - \alpha \frac{\ell_n(M_1^*, M_2^*, \epsilon)}{n}$ $\ell_n(M_1^*, M_2^*, \epsilon) \stackrel{\text{def}}{=} \log C_t(M_1^*) + \log C_{n-t}(M_2^*) + \mathcal{L}(M_1^*, M_2^*) + \log \tilde{C}_n + n\epsilon.$ Type I and II error probabilities converge exponentially to zero where exponents depend on parametric complexities

4.2.3. Dynamic Model Selection (DMS) -Multiple model change detection-

Find a model sequence that minimizes total description length

 $\mathcal{P} = \{ P(X; \theta, M) : \theta \in \Theta_M. M \in \mathcal{M} \}$: ^z Model class

DMS(Dynamic Model Selection) criterion

$$\sum_{t=1}^{T} (-\log P(x_t | x^{t-1}; M_t)) + \sum_{t=1}^{T} (-\log P(M_t | M^{t-1})) \Longrightarrow \operatorname{Min} \text{ w.r.t, } M_1, \dots, M_T$$

Predictive Codelength Pre for data sequence fo

PredictiveCodelengthComputable viafor model sequenceDynamic Programming

Probabilistic Setting of DMS

Predictive distribution for data sequence

$$\begin{split} P(x_t|x^{t-1};M_t) &= P(x_t;\hat{\theta}(x^{t-1}),M_t): \text{Maximum Likelihood Prediction} \\ P(x_t|x^{t-1};M_t) &= \int P(x_t;\theta,M_t)p(\theta|x^{t-1};M_t)d\theta: \text{Bayes Prediction} \\ P(x_t|x^{t-1};M_t) &= \frac{P(x_t|x^{t-1};\hat{\theta}(x_t\cdot x^{t-1}),M_t)}{\int P(X|x^{t-1};\hat{\theta}(X\cdot x^{t-1}),M_t)dX}: \text{SNML Prediction} \\ \text{Sequentially normalized maximum likelihood code-length} \\ \hline \text{Model transition probability} \\ P(M_t|M^{t-1};\alpha) &= \begin{cases} 1-\alpha & (M_t=M_{t-1}), \\ \frac{\alpha}{|\mathcal{M}|-1} & (M_t\neq M_{t-1}). \end{cases} \\ \hline \alpha & (M_t\neq M_{t-1}). \end{cases} \end{split}$$

DMS Algorithm

1) Model sequence selection using dynamic programming $S(M, N_{M,t}, t) = \min_{\substack{M', N_{M',t-1}}} \{S(M', N_{M',t-1}, t-1) \\ -\log P(x_t | x^{t-1}, M_{t-1}) - \log P(M | M', \alpha(N_{M',t-1}))\}$

 $N_{M,t}$: # change points needed to be M at time t

2)Estimating model transition prob. via Krischevsky–Trofimov estimator $\alpha(N_{M,t}) = \frac{N_{M,t} + 1/2}{t}$

Application to Failure Detection from Syslog

[Yamanishi, Maruyama KDD2005]

What's Syslog?

- Event sequences collected with BSD syslog protocol
- Warning messages about devices

ID	Time stamp	Event Severity	Att1	Att2	Message	
##	Nov 13 00:06:23:	ERR	bridge:	!brdgursrv:	queue is full. discarding a message.	
##	Nov 13 10:15:00:	WARN:	INTR:	ether2atm:	Ethernet Slot 2L/1 Lock-Up!!	Detect failures early
##	Nov 13 10:15:10:	WARN:	INTR:	ether2atm:	Ethernet Slot 2L/2 Lock-Up!!	and identify their
##	Nov 13 10:15:20:	WARN:	INTR:	ether2atm:	Ethernet Slot 2L/3 Lock-Up!!	patterns

Syslog Modeling with HMM Mixtures

Syslog sessions are modeled with HMM mixtures

j-th session of syslog : $\mathbf{y}_j = (y_{j1}, \dots, y_{jT_j})$

$$P(\mathbf{y}_{j} \mid \theta) = \sum_{k=1}^{K} \pi_{k} P_{k}(\mathbf{y}_{j} \mid \theta_{k}) \qquad \text{K: #syslog behavior}$$

where $P_{k}(\mathbf{y}_{j} \mid \theta_{k}) = \sum_{(x_{1}, \dots, x_{T_{j}})} \gamma_{k}(x_{1}) \prod_{t=1}^{T_{j}-1} a_{k}(x_{t+1} \mid x_{t}) \prod_{t=1}^{T_{j}} b_{k}(y_{t} \mid x_{t})$

Experiments: Failure Detection

#syslog patterns changed two days before system down.

http://fbi-award.jp/sentan/jusyou/2005/nec.pdf

4.2.3. Clustering Change Detection

Detecting changes of number of clusters and clustering assignments

DMS for Complete Variable Model

Incrementally Application of DMS to complete variable model

Z: latent variable ...Cluster index of X

At each time t (= 1, ..., T), observe $X_t = \boldsymbol{x}_t^n = \boldsymbol{x}_{t1}, \ldots, \boldsymbol{x}_{tn}$: observed data of *n* objects $Z_t = \boldsymbol{z}_t^n = z_{t1}, \ldots, z_{tn}$: latent variable sequence $\boldsymbol{x}_{ti} = (x_{ti1}, \ldots, x_{tim})^{\top} \in \mathbb{R}^m$: *m*-dimensional data for each object $\mathcal{P} = \{p(X, Z; \theta, M)\}$: Complete variable model

Incremental DMS Criterion

Slice total codelength time-wisely, then select # clusters and cluster assignment at each time

 $X^T = X_1, \ldots, X_T$: data sequence $Z^T = Z_1, \ldots, Z_T$: latent variable sequence $M^T = M_1, \ldots, M_T$: model sequence [Hirai Yamanishi KDD2012] See also [Sun et al. KDD2007] [Satoh Yamanishi ICDM2013]

Application to Gaussian Mixture Model Complete variable model of Gaussian mixture model

$$f(\mathbf{x}^{n}, z^{n}; \mu, \Sigma) = \prod_{k=1}^{K} \pi_{k}^{h_{k}} \times \prod_{x_{i} \in z_{k}} \frac{1}{(2\pi)^{\frac{mh_{k}}{2}} \cdot |\Sigma_{k}|^{\frac{h_{k}}{2}}} \times \exp\left\{-\frac{1}{2}(\mathbf{x}_{i} - \mu_{k})^{\top} \Sigma_{k}^{-1}(\mathbf{x}_{i} - \mu_{k})\right\}.$$

Upper bound on NML codelength for GMM

$$L_{\text{uNML}}(\mathbf{x}^n, z^n \quad \mathcal{M}(K)) = -\log f(\mathbf{x}^n, z^n; \mathcal{M}(K), \hat{\theta}(\mathbf{x}^n, z^n)) \quad \text{[Hirai an} \\ +\log \mathcal{C}_{\text{u}}(\mathcal{M}(K), n), \quad \text{Yamanis}$$

[Hirai and Yamanishi IEEE IT 2019]

$$\mathcal{C}_{u}(\mathcal{M}(K),n) = \sum_{h_{1},\dots,h_{K}} \frac{N!}{h_{1}!\dots h_{K}!} \prod_{k=1}^{K} \left(\frac{h_{k}}{N}\right)^{h_{k}}$$
$$\times B(m,R,\epsilon) \cdot \left(\frac{h_{k}}{2e}\right)^{\frac{mh_{k}}{2}} \frac{1}{\Gamma_{m}(\frac{h_{k}-1}{2})}$$
$$B(m,R,\epsilon) \stackrel{\text{def}}{=} \frac{2^{m+1}R^{\frac{m}{2}} \prod_{j=1}^{m} \epsilon_{1j}^{-\frac{m}{2}}}{m^{m+1} \cdot \Gamma\left(\frac{m}{2}\right)}.$$

Experimental Results: Real Data

-Market Structure Change Detection-

Tracking changes of customer structures
from beer transaction behavior data (QPR)Data
provided
by M-CubePeriod: Nov.2011-Jan. 2012#customers: 3185Data for each customer at t=consumption volume of 14 brands
beer during 14 days until time t

Experimental Results: Real Data

-Market Structure Change Detection-

Clustering Structure Change

平均消費量(ml)	cluster 1	cluster 2	cluster 3		cluster 1	cluster 2	cluster 3	cluster 4	clu	
ビールA	184	0	117		84	0	131	50	2	
ビールB	91	0	95		123	0	248	0		
プレミアムA	108	0	80		153	0	174	73		
プレミアムB	11	11								
ビールC	0 •	Year-	end de	mands of	Beer	A and 3	rd	122		
ビールD	0	worl	d Poor	Cranidly	incro			192		
第三のビールA	93	world Beer C rapidly increased,								
第三のビールB	they led to form new additional								1	
第三のビールC	0 clusters								2	
第三のビールD	0	0								
発泡酒A	0							0		
オフム	0	0	157		0	0	169	138		
オフB	0	114	34		0	215	74	0		
オフC	0	0	83		0	0	61	83		
総購入量	589	852	1373		637	796	2348	705	5	
人数(人)	598	376	311	2012/2/1	397	190	123	162	3	

4.2.4. Model Change Sign Detection

Problem Setting

At each time t(=1,...,T), observe $X_t = \boldsymbol{x}_t^n = \boldsymbol{x}_{t1},..., \boldsymbol{x}_{tn}$: observed data of n objects $Z_t = \boldsymbol{z}_t^n = z_{t1},..., z_{tn}$: latent variable sequence $\boldsymbol{x}_{ti} = (x_{ti1},...,x_{tim})^{\top} \in \mathbb{R}^m$: m-dimensional data for each object $\mathcal{P} = \{p(\boldsymbol{x};\theta,k): \theta \in \Theta_k\}$: model class

Structural Entropy

Structural Entropy [Hirai Yamanishi BigData 2018] ... measuring uncertainty of model selection

$$SE_t = \sum_k (-p(k|X_t)\log p(k|X_t))$$

where
$$p(k|X_t) = \frac{\exp(-\beta L_t(k))}{\sum_{k'} \exp(-\beta L_t(k'))}$$

OI

 $0<\beta\leq 1:$ temparature parameter

$$L_{t}(k) = \mathcal{L}_{\text{NML}}(X_{t}|X^{t-1};k)$$

= $-\log \max_{\theta} p(X_{t}|X^{t-1};\theta,k) + \log \sum_{Y} \max_{\theta} p(Y|X^{t-1};\theta,k)$
r for complete variable model

$$L_{t}(k) = \mathcal{L}_{\text{NML}}(X_{t}, Z_{t} | X^{t-1}, Z_{t-1}k)$$

= $-\log \max_{\theta} p(X_{t}, Z_{t} | X^{t-1}, Z^{t-1}; \theta) + \log \sum_{Y,W} \max_{\theta} p(Y, W | X^{t-1}, Z^{t-1}; \theta)$

Model Change Sign Detection via Structural Entropy

[Hirai Yamanishi BigData 2018] See also [Ohsawa RevSNS 2018]

Experimental Results: Synthetic Data

Change sign can be detected by looking at rise up of structural entropy

Experimental Results: Real Data

Signs of customer clustering structure changes can be detected by looking at rise up of structural entropy

Time 22

brand	clu-1	clu-2	clu-3	clu-4	clu-5	clu-6	clu-7
Α	3397	0	16	14	22	6	21
В	12	126	19	7	49	13	36
С	0	0	2328	0	15	10	1815
D	0	0	0	3079	5	7	1551
E	0	0	0	0	559	0	0
F	0	0	0	0	0	2371	0
num	307	368	259	269	15	159	132

	0
 ma	• • • /
 IIIC	

111110 21								
brand	clu-1	clu-2	clu-3	clu-4	clu-5	clu-6	clu-7	clu-8
Α	3782	10	18	9	30	5	23	0
В	0	3118	14	0	26	10	136	0
С	0	0	2492	0	18	6	111	0
D	0	0	0	3296	0	5	1818	0
E	0	0	0	0	638	0	0	0
F	0	0	0	0	0	2466	0	0
num	206	319	248	197	12	156	202	169

Summary

- The MDL change statistics is a theoretically justified methodology for measuring the change score either for parameter changes or model changes.
- For gradual change detection, apply sequential MDL statistics with adaptive/non-adaptive windowing to conduct real-time event detection.
- For multiple model change detection, conduct Dynamic Model Selection(DMS) to obtain optimal model sequences.
- For clustering structure change detection, apply DMS to latent variable models sequentially to catch up latent structure changes.
- Signs of model changes may be detected by looking at structural entropy measuring model uncertainty.

4.1. MDL change statistics

- J. Vreeken, M. van Leeuwen, A. Siebes: "Krimp: mining itemsets that compress," Data Mining and Knowledge Discovery, Vol. 23, 1, pp 169-214, 2011.
- K.Yamanishi and K.Miyaguchi: "Detecting gradual changes from data stream using MDL- change statistics," *Proceedings of 2016 IEEE International Conference on BigData* (IEEE BigData2016), pp:156-163, 2016.
- R. Kaneko, K.Miyaguchi, and K.Yamanishi: "Detecting Changes in Streaming Data with Information-Theoretic Windowing," *Proceedings of 2017 IEEE International Conference on Big Data* (BigData2017), pp: 646-655, 2017.
- B.Hooi, L.Akoglu, D.Eswaran, A.Pandey, A.Jereminov, L.Pileggi, C.Faloutsos: "ChangeDAR: Online localized change detection for sensor data on a graph," in Proceedings of the 27th ACM International Conference on Information and Knowledge Management, pp:507-516, 2018.

C.f. Adaptive window algorithm

 A.Bifet and R.Gavaldà: "Learning from time-changing data with adaptive windowing," in *Proceedings of the 2007 SIAM International Conference on Data Mining*, 2007.
 C.f. Predictive change statistics

•V.Guralnik and J.Srivastava: "Event detection from time series data," in *Proceedings* of ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp:33–42, 1999.

4.2. Dynamic Model Selection

- K.Yamanishi and Y.Maruyama: "Dynamic syslog mining for network failure monitoring," Proceedings of ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD2005), pp: 499—508, 2005.
- K.Yamanishi and Y.Maruyama: "Dynamic model selection with its applications to novelty detection," *IEEE Transactions on Information Theory*, Vol. 53, NO. 6, pp:2180-2189, 2007.
- K.Yamanishi and S. Fukushima: "Model change detection with the MDL principle", IEEE Transactions on Information Theory, 64(9), pp: 6115-6126, 2018.

■ 4.2. Topics Related to Dynamic Model Selection

- M.Herbster and M.Warmuth: "Tracking the best experts," Machine Learning, 32, pp:151–178,1998.
- V. Vovk: "Derandomizing stochastic prediction strategies," *Machine Learning*, vol. 35, no. 3, pp. 247-282, 1999.
- •J.Kleinberg: "Bursty and hierarchical structure in stream," *Data Mining and Knowledge Discovery*, 7, pp:373—397, 2003.

4.2. Topics Related to Dynamic Model Selection(Cont.)

- R.A.Davis, T.C.M.Lee, G.A.Rofriguez-Yam: "Structural break estimation for nonstationary time series models," *Journal of American Statistical Associations*, 101, pp:223-239, 2006.
- X. Xuan and K. Murphy. Modeling changing dependency structure in multivariate time series," *Proceedings of the 24th International Conference on Machine Learning,* (ICML2007), pp.1055--1062, 2007.
- T.Erven, P.Grunwald, and S.Rooij: "Catching up by switching sooner: a predictive approach to adaptive estimation with an application to the AIC-BIC dilemma," *Jr.Royal Stat.Soc.Ser.B*, vol. 74, no. Issue 3, pp. 361–417, 2012.
- R.Killick, P.Fearnhead, and I.A.Eckley: "Optimal detection of changepoints with a linear computational cost," *Journal of American Statistical Associations*, 107:500, pp:1590-1598, 2012.
- •J. Gama, I. Zlibait, A. Bifet, M. Pechenizkiy, and A. Bouchachia, "A survey on concept drift adaptation," *ACM Computing Survey*, 2013.
- Y.Hayashi and K.Yamanishi: "Sequential network change detection with its applications to ad impact relation analysis," *Data Mining and Knowledge Discovery*: Vol. 29, Issue 1, pp: 137-167, 2015.

4.2.3. Clustering Change Detection

- M. Song and H.Wang: "Highly efficient incremental estimation of Gaussian mixture models for online data stream clustering," *Intelligent Computing*, 2005.
- •J. Sun, C. Faloutsos, S.Papadimitriou, P. S. Yu: "GraphScope: parameter-free mining of large time-evolving graphs," *Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD2007)*, pp: 687-696, 2007.
- S. Hirai and K.Yamanishi: "Detecting changes of clustering structures using normalized maximum likelihood coding." *Proceedings of ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD2012),* pp:343-351, 2012
- S.Sato and K.Yamanishi: "Graph partitioning change detection using tree-based clustering," *Proceedings of IEEE International Conference on Data Mining* (ICDM2013), pp:1169-1174, 2013.

4.2.4. Model Change Sign Detection

- S. Hirai and K.Yamanishi: "Detecting Latent Structure Uncertainty with Structural Entropy", Proceedings of IEEE International Conference on BigData (BigData2018), Dec. 2018.
- •Y. Ohsawa: "Graph-based entropy for detecting explanatory signs of changes in market," The Review of Social Network Strategies, Vol 12, 2, pp:183-203, 2018.