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Question of the day

How can we efficiently discover
the globally optimal cut points
for any subgroup discovery
objective function?
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for any subgroup discovery
objective function?




Subgroup Discovery
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Attributes Targets

Find conditions on attributes such that distribution of the targets
on the conditioned data is different from that of the global data

For example
=  when Temperature < 6 there are fewer bikers than usual

= when 20 < Temperature < 25 and 65 < Humidity < 75
there are more bikers than usual



Example Subgroup

The number of gold atoms in a micro-cluster
strongly determines its homo-lumo gap

Condition = {“N odd"}

gap

(together with Mario Boley, work in progress)



Binary Features

A condition on an attribute is essentially a binary feature
= subgroup discovery essentially relies on feature construction

For nominal data, extracting binary features is easy
= there are only 2!4°m features for each attribute 4, after all

For numeric or ordinal data, this is much harder
= there are 2™ possible features for each attribute A
= standard approach is to simply use k equi-width or height bins



Eye of the beholder

Univariate Multivariate
Measure Nominal Ordinal Numeric Nominal Ordinal Numeric
WRACcc v v - - i, ;
z-score - - v - - ;

Kullback-Leibler
Hellinger distance

Quadratic divergence =

There exist very many quality measures
= each with specific properties, for target-specific data types



Discovering subgroups

Very complicated combinatorial problem

= humonguous search space
all possible conditions on all possible attributes

= unstructured search space
useful objective functions are not monotone/submodular

Standard approach
= naively binarise your data
= sample or search to discover top-k best subgroups



Discovering subgroups

Very complicated combinatorial problem

= humonguous search space
all possible conditions on all possible attributes

= unstructured search space
useful objective functions are not monotone/submodular

What we fix

Standard approach / in this paper

= naively binarise your data
= sample or search to discover top-k best subgroups



Quality measures

Univariate Multivariate
Measure Nominal Ordinal Numeric Nominal Ordinal Numeric
WRACcc v v - - i, ;
z-score - - v - - ;

Kullback-Leibler
Hellinger distance

Quadratic divergence =

Quality measures are highly specific to problem settings
= can we define a general and efficient algorithm to find cut points?



FLEX

For attribute A, discover the binary features, i.e. grid g,
that gives for objective ¢

lg]

arg max AT z gb(bg)

This leaves |F| = 0(2™) grids to evaluate...
= Juckily, the search space is structured

(we also consider maximal total quality, but this leads to worse results)



Structure in space

Let g be the optimal partitioning of attribute A into k bins.

We observe

k k-1
Y omi) = $(bE)+ ) ¢k}
i=1 i=1

This means that {b}, ..., b* 1} is
the optimal partitioning of A < I¥ into k — 1 bins.

We can use dynamic programming!



FLEXI, the algorithm

Algorithm 1 FLEXI

—

Initialisation Initialise B «< |D| micro-bins

2-partitions -~ Compute 2-partition scores

L e Hd e o

Use dynamic programming
10: 3 to [ partitions - to compute best scores for
partitions into 3 to S parts

Return - Identify and return best result




FLEXI, the algorithm

Algorithm 1 FLEXI FLEXI can be used with
I Create initial disjoint bins {¢;,...,cz} of A lity .
2: Create a double array qual[l...3][1.../] any qua Ity unction ¢
3: Create an array b[1...3][1... 5] to store bins
4: fori =1 — 5 do
52 B[1][i] = Uy=, e and qual[1][i] = |@(b[1][d]) To ensure
6: end for !
7 for A =2 — 3do we need a smart way
8: fori=A— Jdo _ i
9: pos = eIy WG qual[X — 1][j] 4—[¢(U;’{,zj+1 ck)] to ComPUte ¢(Uk=] Ck)
0 qual[N[i] = qual[A — 1)[pos] He(Ujmpossr %))
1 Copy all bins in b[A — 1][pos] to b|A][¢] .
2 AddUi,,. s x to b For five measures
13: end for We ShOW hOW
14: end for .
15: A* = arg 121)?2{[3 Aqual[/\][ﬁ] to do this
16: Return b[A*][5]




Instantiating FLEXI,,,

Weighted Relative Accuracy
= standard quality measure for single binary target

S /S n
WRAcc(S) = = (—* — —+)
n\s n

Compares the ratios of positive samples S?*

within subgroup S to that of the whole data, %’

How can we efficiently pre-compute WRAcc(Uj,—; ci)?



Instantiating FLEXI,,,

Pre-computing Weighted Relative Accuracies

1) fori=1- p do
count[i] = number of positive labels in D, 0(n)
compute WRAcc(c;) based on count|i]
2) fori=2-pfdo
6 = countli]
forj=i—1-1do
0 = 6 + count|j] _ 0(B2?)
set # of positive labels in Uj_; ¢, to 6
compute WRAcc(Uj—; cx)

Done!



Instantiating FLEXI

We show how to instantiate

= FLEXI,, with WRAcc at O0(n + f?)
= FLEXI, with Z-score at 0(n + %)
= FLEXI, with Hellinger distance at 0(npB?d)
= FLEXI, with Kullback Leibler at 0(npB?d)
= FLEXI, with quadratic divergence at 0(n?d)

As B is typically small, between 5 to 40,
the first four scale in n



EXperiments

Experiments show that FLEXI outperforms the
state of the art in quality, flexibility, and efficiency.



Experiments

Experiments show that FLEXI outperforms the
state of the art in , flexibility, and efficiency.

Data FLEXI,, EF EW SD UD ROC
Adult 0.08 (100) 0.07(88) 0.07(88) 0.07(88)  0.06(75) 0.07 (88)
Cover 0.12(100) 0.04(33) 0.08(66) 0.04(33)  0.05(42) 0.04(33)
Bank 0.04 (100) 0.02(50) 0.03(75) 0.02(50)  0.02(50) 0.02 (50)
Network 0.18 (100) 0.10(56) 0.12(67)  0.14(78)  0.12(67) 0.14(78)
Drive 0.11(100) 0.03(27) 0.08(73) 0.05@5)  0.06(55) 0.05(45)
Year 0.12(100) 0.06(50) 0.06(50) 0.07(58)  0.06 (50) 0.07 (58)

Average quality for top-50 subgroups

(WRACc0)



Experiments

Experiments show that FLEXI outperforms the

state of the art in , , and efficiency.
Data FLEXI SUM EF EW SD IPD ROC
Adult 100 38 37 31 n/a 4 n/a
Cover 100 43 64 75  wa 45 n/a
Bank 100 46 62 33  n/ka 6 n/a
Network 100 55 68 55 n/a 21 n/a
Drive 100 42 64 85 &9 42 62
Year 100 43 45 42 40 42 74

Average quality for top-50 subgroups
(Kullback-Leibler divergence)



Experiments

Experiments show that FLEXI outperforms the

state of the art in , , and efficiency.
Data FLEXI, SUM EF EW IPD
Adult 100 18 7 8 23
Cover 100 60 41 39 53
Bank 100 31 47 59 66
Network 100 48 69 64 56
Drive 100 62 41 59 66
Year 100 26 27 21 55

Average quality for top-50 subgroups

(Quadratic divergence)
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EXperiments

Experiments show that FLEXI outperforms the

state of the art in quality, flexibility, and efficiency.
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Conclusions

We studied how to efficiently discover
high quality binary features for subgroup discovery

In short, FLEXI

discovers binary features with

highly flexible, operates with

- due to dynamic programming
complexity depends on ¢, yet often

Future work
= feature construction to allow sampling high quality subgroups



Thant you!

We studied how to efficiently discover
high quality binary features for subgroup discovery

In short, FLEXI

= discovers binary features with maximal average quality

= highly flexible, operates with any objective function

= efficient due to dynamic programming

= complexity depends on ¢, yet often linear in size of the data

Future work
= feature construction to allow sampling high quality subgroups

(source code available at: eda.mmci.uni-saarland.de/flexi)
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