Universal Dependency Analysis

Hoang-Vu Nguyen Panagiotis Mandros Jilles Vreeken

Introduction

Real data is high dimensional

Structure, however, is usually hidden in **subspaces**

Introduction

Real data is high dimensional

Structure, however, is usually hidden in subspaces

We are interested in subspaces that strongly interact

Discovering interaction

Correlated subspaces → hidden patterns

which in turn allows knowledge discovery

Discovering interaction

Correlated subspaces → hidden patterns

which in turn allows knowledge discovery

Revealing structure

Clusters may not be formed in the full space

- noisy and irrelevant attributes obstruct the formation
- intuitively, they should not correlate with the rest

Revealing structure

Clusters may not be formed in the full space

- noisy and irrelevant attributes obstruct the formation
- intuitively, they should not correlate with the rest

Pointing out anomalies

Outliers are **easier** to distinguish when their neighborhood is "grouped"

Pointing out anomalies

Outliers are **easier** to distinguish when their neighborhood is "grouped"

What do we want?

What do we want?

And we want this for **continuous-valued** data

Beyond linear dependencies

Multivariate

Non-parametric

Efficient

Beyond linear dependencies

Multivariate

Non-parametric

Efficient

Comparable scores

Universality

We should be able to compare subspaces of different dimensionality

Universality

We should be able to compare subspaces of different dimensionality

Current approaches, however, indicate higher correlation for larger subspaces

 $score(X_1, X_2) \leq score(X_1, X_2, X_3)$

Universality

We should be able to compare subspaces of different dimensionality

Current approaches, however, indicate higher correlation for larger subspaces

 $score(X_1, X_2) \leq score(X_1, X_2, X_3)$

Bias towards larger dimensionalities

UDS

Beyond linear dependencies

Multivariate

Non-parametric

Efficient

Comparable scores

Beyond linear

Information-theoretic measures are able to capture non-linear dependencies

In addition, they have properties that match our intuition

Beyond linear

Information-theoretic measures are able to capture non-linear dependencies

In addition, they have properties that match our intuition

And that is because Shannon entropy is

- Non-negative
- conditioning can only add information
- 0 *if f* the variables are functionally dependent
- and many other things...

They have many shortcomings when it comes to continuous-valued data

They have many shortcomings when it comes to continuous-valued data

$$-\sum_{x\in X} p(x)\log p(x) \rightarrow -\int p(x)\log p(x)dx$$

They have many shortcomings when it comes to continuous-valued data

$$-\sum_{x\in X} p(x)\log p(x) \to -\int p(x)\log p(x)dx$$

Some issues are

- differential entropy can be negative
- H(X|Y) = 0 does not imply functional dependency
- furthermore, it requires pdf estimation

$$h(X) = -\int P(x)\log P(x)\,dx$$

Information-theoretic measure for randomness of continuous-valued data

(Rao et al., 2004; Crescenzo & Longobardi, 2009; Nguyen et al., 2013)

Cumulative distribution

$$h(X) = -\int \underline{P(x)} \log \underline{P(x)} \, dx$$

Information-theoretic measure for randomness of continuous-valued data

Cumulative distribution

$$h(X) = -\int \underline{P(x)} \log \underline{P(x)} \, dx$$

Information-theoretic measure for randomness of continuous-valued data

Carries the **nice** properties of Shannon entropy to the continuous domain

Cumulative entropy Cumulative distribution $h(X) = -\left(\begin{array}{c} P(x) \log P(x) \, dx \end{array}\right)$ $h(X) \ge 0$ $h(X|Y) \ge 0$, with equality if f X is a function of Y $h(X|Y) \le h(x)$, with equality *iff* X and Y are independent Carries the nice properties of Shannon entropy to the continuous domain

UDS

Beyond linear dependencies

Multivariate

Non-parametric

Efficient

Comparable

UDS

Beyond linear dependencies

Multivariate

Non-parametric

Efficient

Comparable scores

Multivariate

To address this issue, we will make use of **total correlation**

$$C(X_1, \dots, X_d) = \sum_{i=2}^d H(X_i) - H(X_i \mid X_1, \dots, X_{i-1})$$

(Watanabe, 1960)

Multivariate

To address this issue, we will make use of **total correlation**

(Watanabe, 1960)

UDS

Beyond linear dependencies

Multivariate

Non-parametric

Efficient

Comparable scores

UDS

Beyond linear dependencies

Multivariate

Non-parametric

Efficient

Comparable scores

Non-parametric

Cumulative entropy is **non-parametrically** estimated from **empirical data** in closed-form expression

$$h(X) = -\sum_{i=2}^{n} (X_i - X_{i-1}) \frac{i}{n} \log \frac{i}{n}$$

Non-parametric

Cumulative entropy is **non-parametrically** estimated from **empirical data** in closed-form expression

We chose to **non-parametrically** estimate conditional Cumulative entropy through **optimal discretization**

$$g = \underset{g \in G}{\operatorname{argmax}} h(Y) - h(Y|X^g)$$

(Reshef et al., 2011; Nguyen et al., 2014; Vreeken, 2015)

Non-parametric

Cumulative entropy is **non-parametrically** estimated from **empirical data** in closed-form expression

We chose to **non-parametrically** estimate conditional Cumulative entropy through **optimal discretization**

$$g = \underset{g \in G}{\operatorname{argmax}} h(Y) - h(Y|X^g) - r(g)$$

(Reshef et al., 2011; Nguyen et al., 2014; Vreeken, 2015)

UDS

Beyond linear dependencies

Multivariate

✓ Non-parametric

Efficient

Comparable scores

UDS

Beyond linear dependencies

Multivariate

✓ Non-parametric

Efficient

Comparable scores

Cumulative entropy is estimated in time linear to the number of samples

Cumulative entropy is estimated in time linear to the number of samples

We show that we can optimally discretize our data efficiently by dynamic programming

 $O(m\log m + m\beta^2) \ll O(2^m)$

m = number of samples β controls discretization

UDS

Beyond linear dependencies

Multivariate

✓ Non-parametric

✓ Efficient

Comparable scores

UDS

Beyond linear dependencies

Multivariate

✓ Non-parametric

✓ Efficient

Comparable scores

Universality

We address universality using an intuitive idea

We **normalize** our score by the maximal information the variables could add

Universality

We address universality using an intuitive idea

We **normalize** our score by the maximal information the variables could add

$$score(X_{1}, ..., X_{d}) = \frac{\sum_{i=2}^{d} h(X_{i}) - h(X_{i} \mid X_{1}, ..., X_{i-1})}{\sum_{i=2}^{d} h(X_{i})}$$

Universality

We address universality using an intuitive idea

We **normalize** our score by the maximal information the variables could add

$$score(X_{1}, ..., X_{d}) = \frac{\sum_{i=2}^{d} h(X_{i}) - h(X_{i} \mid X_{1}, ..., X_{i-1})}{\sum_{i=2}^{d} h(X_{i})}$$

Variables that contribute only little to the nominator, get penalized by the denominator

UDS

Beyond linear dependencies

Multivariate

✓ Non-parametric

Efficient

Comparable scores

UDS

$$UDS(X_1, \dots, X_d) = \frac{\sum_{i=2}^d (X_i) - h(X_i \mid X_1, \dots, X_{i-1})}{\sum_{i=2}^d h(X_i)}$$

Properties

- $UDS(X_1, ..., X_d) \in [0, 1]$
- $UDS(X_1, ..., X_d) = 0$ iff $X_1, ..., X_d$ are statistically independent
- UDS $(X_1, ..., X_d) = 1$ *iff* there exists X_i such that all the rest attributes are a function of X_i

Code available at eda.mmci.uni-saarland.de/uds

Experiment setup

Evaluations

- statistical power
- clustering
- outlier detection
- time efficiency
- discovering dependencies

Competitors

HICS (ICDE'12), CMI (SDM'13), MAC (ICML'14), UDS¬r

Generate 100 datasets with no dependencies

Generate 100 datasets with no dependencies

Sort their correlation scores (asc.) and set the 95-th one as a cutoff

Generate 100 datasets with no dependencies

Sort their correlation scores (asc.) and set the 95-th one as a cutoff

Generate 100 datasets with dependencies

Generate 100 datasets with no dependencies

Sort their correlation scores (asc.) and set the 95-th one as a cutoff

Generate 100 datasets with dependencies

$$\mathsf{SP} = \frac{\# (scores > cutoff)}{100}$$

Power

 $f(x) = 2x + 1 \qquad \qquad f(x) = \sin 2x$

Statistical power on 2 different forms of functional dependency [Higher is better]

Clustering

Data	UDS	СМІ	MAC	HICS
Optical	0.61	0.40	0.48	0.36
Leaves	0.70	0.52	0.61	0.45
Letter	0.82	0.64	0.82	0.49
PenDigits	0.85	0.72	0.85	0.71
Robot	0.54	0.33	0.46	0.21
Wave	0.50	0.24	0.38	0.18
Average	<u>0.67</u>	0.48	0.60	0.40

Clustering results (F1 scores) on real-world data sets [Higher is better]

Outlier detection

Data	UDS	CMI	MAC	HICS
Ann-Thyroid	0.98	0.96	0.96	0.95
SatImage	0.98	0.74	0.95	0.86
Segmentation	0.54	0.39	0.51	0.49
Wave Noise	0.51	0.50	0.50	0.48
WBC	0.50	0.47	0.48	0.47
WBCD	0.99	0.93	0.99	0.91
Average	<u>0.75</u>	0.66	0.73	0.69

Outlier detection results (AUC scores) on real-world data sets. [Higher is better]

Time efficiency

Time (ms)

Dependencies

Conclusions

We studied the problem of assessing subspace correlations in multivariate data

UDS is non-parametric, efficient, and addresses **universality**

Extensive experiments showed that UDS outperforms the state-of-the-art in both statistical power and subspace search

Thank you!

We studied the problem of assessing subspace correlations in multivariate data

UDS is non-parametric, efficient, and addresses **universality**

Extensive experiments showed that UDS outperforms the state-of-the-art in both statistical power and subspace search

$$h(X) = -\int P(x)\log P(x)\,dx$$

$$h(X) = -\sum_{i=2}^{n} (X_i - X_{i-1}) \frac{i}{n} \log \frac{i}{n}$$

$$h(X|Y) = \int h(X|y)p(y)dy$$

$$h(X|Y) = \sum_{y} h(X|y)p(y)$$