
Hoang-Vu Nguyen
Panagiotis Mandros

Jilles Vreeken

Universal Dependency Analysis



Introduction

Real data is high dimensional

Structure, however, is usually
hidden in subspaces



Introduction

Real data is high dimensional

Structure, however, is usually
hidden in subspaces

We are interested in subspaces that
strongly interact



Discovering interaction

Correlated subspaces → hidden patterns
 which in turn allows knowledge discovery



Discovering interaction

Correlated subspaces → hidden patterns
 which in turn allows knowledge discovery



Clusters may not be formed in the full space
 noisy and irrelevant attributes obstruct the formation
 intuitively, they should not correlate with the rest

Revealing structure



Clusters may not be formed in the full space
 noisy and irrelevant attributes obstruct the formation
 intuitively, they should not correlate with the rest

3D 2D

Revealing structure



Pointing out anomalies
Outliers are easier to distinguish when their 

neighborhood is ”grouped"



Pointing out anomalies
Outliers are easier to distinguish when their 

neighborhood is ”grouped"

?



What do we want?

𝑿𝑿𝟏𝟏 𝑿𝑿𝟐𝟐 … 𝑿𝑿𝒅𝒅

Plug a 
subspace

Subspaces

How 
correlated 

is it?



What do we want?

Plug a 
subspace

Subspaces

How 
correlated 

is it?

And we want this for 
continuous-valued data
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Bias towards larger dimensionalities
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Beyond linear

Information-theoretic measures are able to 
capture non-linear dependencies

In addition, they have properties that match our intuition

And that is because Shannon entropy is
 Non-negative
 conditioning can only add information
 0 𝑖𝑖𝑖𝑖𝑖𝑖 the variables are functionally dependent 
 and many other things…
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However..
They have many shortcomings when it comes to 

continuous-valued data

−�
𝑥𝑥∈𝑋𝑋

𝑝𝑝 𝑥𝑥 log 𝑝𝑝 𝑥𝑥 → −�𝑝𝑝 𝑥𝑥 log 𝑝𝑝 𝑥𝑥 dx

Some issues are
 differential entropy can be negative
 𝐻𝐻 𝑋𝑋 𝑌𝑌 = 0 does not imply functional dependency
 furthermore, it requires pdf estimation

(Rao et al., 2004)



Cumulative entropy

ℎ 𝑋𝑋 = −�𝑃𝑃 𝑥𝑥 log 𝑃𝑃 𝑥𝑥 𝑑𝑑𝑑𝑑

Information-theoretic measure for randomness 
of continuous-valued data

(Rao et al., 2004; Crescenzo & Longobardi, 2009; Nguyen et al., 2013) 



Cumulative entropy

ℎ 𝑋𝑋 = −�𝑃𝑃 𝑥𝑥 log 𝑃𝑃 𝑥𝑥 𝑑𝑑𝑑𝑑

Information-theoretic measure for randomness 
of continuous-valued data

(Rao et al., 2004; Crescenzo & Longobardi, 2009; Nguyen et al., 2013) 

Cumulative 
distribution



Cumulative entropy

ℎ 𝑋𝑋 = −�𝑃𝑃 𝑥𝑥 log 𝑃𝑃 𝑥𝑥 𝑑𝑑𝑑𝑑

Information-theoretic measure for randomness 
of continuous-valued data

Carries the nice properties of Shannon entropy
to the continuous domain

(Rao et al., 2004; Crescenzo & Longobardi, 2009; Nguyen et al., 2013) 

Cumulative 
distribution



Cumulative entropy

ℎ 𝑋𝑋 = −�𝑃𝑃 𝑥𝑥 log 𝑃𝑃 𝑥𝑥 𝑑𝑑𝑑𝑑

Information-theoretic measure for randomness 
of continuous-valued data

Carries the nice properties of Shannon entropy
to the continuous domain

(Rao et al., 2004; Crescenzo & Longobardi, 2009; Nguyen et al., 2013) 

Cumulative 
distribution

ℎ 𝑋𝑋 ≥ 0

ℎ 𝑋𝑋 𝑌𝑌 ≥ 0, with equality 𝑖𝑖𝑖𝑖𝑖𝑖 X is a function of Y

ℎ 𝑋𝑋 𝑌𝑌 ≤ ℎ(𝑥𝑥), with equality 𝑖𝑖𝑖𝑖𝑖𝑖 X and Y are independent
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ℎ 𝑋𝑋𝑖𝑖 − ℎ 𝑋𝑋𝑖𝑖 𝑋𝑋1, … , 𝑋𝑋𝑖𝑖−1)

(Watanabe, 1960)

replace Shannon entropy 
with Cumulative entropy
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Non-parametric

Cumulative entropy is non-parametrically estimated
from empirical data in closed-form expression
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Efficiency

Cumulative entropy is estimated in time 
linear to the number of samples

We show that we can optimally discretize our data 
efficiently by dynamic programming

𝑂𝑂 𝑚𝑚 log𝑚𝑚 + 𝑚𝑚𝛽𝛽2 ≪ 𝑂𝑂(2𝑚𝑚)

𝑚𝑚 = number of samples
𝛽𝛽 controls discretization
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Variables that contribute only little
to the nominator, get penalized

by the denominator



UDS
 Beyond linear dependencies 

 Multivariate

 Non-parametric

 Efficient

 Comparable scores



UDS

𝑈𝑈𝑈𝑈𝑈𝑈 𝑋𝑋1, … , 𝑋𝑋𝑑𝑑 =
∑𝑖𝑖=2𝑑𝑑 𝑋𝑋𝑖𝑖 − ℎ 𝑋𝑋𝑖𝑖 𝑋𝑋1, … , 𝑋𝑋𝑖𝑖−1)

∑𝑖𝑖=2𝑑𝑑 ℎ 𝑋𝑋𝑖𝑖

Properties
 UDS 𝑋𝑋1, … , 𝑋𝑋𝑑𝑑 ∈ 0,1
 UDS 𝑋𝑋1, … , 𝑋𝑋𝑑𝑑 = 0 𝑖𝑖𝑖𝑖𝑖𝑖 𝑋𝑋1, … , 𝑋𝑋𝑑𝑑 are statistically independent
 UDS 𝑋𝑋1, … , 𝑋𝑋𝑑𝑑 = 1 𝑖𝑖𝑖𝑖𝑖𝑖 there exists 𝑋𝑋𝑖𝑖 such that all the rest 

attributes are a function of 𝑋𝑋𝑖𝑖

Code available at
eda.mmci.uni-saarland.de/uds



Experiment setup
Evaluations
 statistical power 
 clustering 
 outlier detection 
 time efficiency
 discovering dependencies 

Competitors
 HICS (ICDE’12), CMI (SDM’13), MAC (ICML’14), UDS¬𝑟𝑟
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Statistical power
Generate 100 datasets with no dependencies

Sort their correlation scores (asc.) and set the 95-th one 
as a cutoff

Generate 100 datasets with dependencies

SP=
# (𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 > 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)

100



Statistical power

Statistical power on 2 different forms of 
functional dependency [Higher is better] 

𝑓𝑓 𝑥𝑥 = 2𝑥𝑥 + 1 𝑓𝑓 𝑥𝑥 = sin 2𝑥𝑥



Data UDS CMI MAC HICS

Optical 0.61 0.40 0.48 0.36

Leaves 0.70 0.52 0.61 0.45

Letter 0.82 0.64 0.82 0.49

PenDigits 0.85 0.72 0.85 0.71

Robot 0.54 0.33 0.46 0.21

Wave 0.50 0.24 0.38 0.18

Average 0.67 0.48 0.60 0.40

Clustering results (F1 scores) on real-world data sets [Higher is better] 

Clustering



Outlier detection

Data UDS CMI MAC HICS

Ann-Thyroid 0.98 0.96 0.96 0.95

SatImage 0.98 0.74 0.95 0.86

Segmentation 0.54 0.39 0.51 0.49

Wave Noise 0.51 0.50 0.50 0.48

WBC 0.50 0.47 0.48 0.47

WBCD 0.99 0.93 0.99 0.91

Average 0.75 0.66 0.73 0.69

Outlier detection results (AUC scores) on 
real-world data sets. [Higher is better] 



Time efficiency



Dependencies



Conclusions
We studied the problem of assessing subspace 

correlations in multivariate data

UDS is non-parametric, efficient, 
and addresses universality

Extensive experiments showed that UDS outperforms
the state-of-the-art in both statistical power and 

subspace search 
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ℎ 𝑋𝑋 𝑌𝑌 = �ℎ 𝑋𝑋 𝑦𝑦 𝑝𝑝 𝑦𝑦 𝑑𝑑𝑑𝑑

ℎ 𝑋𝑋 𝑌𝑌 = �
𝑦𝑦
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