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Abstract 
 
 
We investigated the applicability of the recently introduced Liquid State 
Machine model for the recognition of real-world temporal patterns on 
noisy continuous input streams. After first exploring more traditional tech-
niques for temporal pattern classification, we provide a brief introduction 
of spiking neuron models. These can be used as the dynamic ‘liquid’ filter 
in the LSM model that pre-processes continuous input such that relatively 
simple linear readout units can extract information of recent events. With a 
dedicated set of experiments we show that these networks do integrate im-
portant temporal features and that LSMs can be applied for fixed-moment 
recognition of very noisy temporal patterns with high performance. Con-
tinuous extraction of information is possible, but very dependent on the 
presentation of the liquid state to the readout units. We created a method 
that enabled us to transform rough recordings of artificial whisker sensors 
to spike train probability templates, which we used successfully for tasks of 
real-time texture recognition. The application of multiplicative spike-timing 
dependent plasticity to a network with dynamic synapses led to signifi-
cantly higher classification performance than we could attain with static 
networks. 
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Chapter 1 
Introduction 

 
 

Real-world temporal pattern recognition is one of the most popular activities in 
the world.  In fact, unless you’re pushing up daisies you’re doing it right now 
and all day long. Whether it’s recognizing the song of a bird, catching a ball or 
reading a thesis, we’re always combining the information we gather over time to 
extract important features and find possible meaning. If you think about it, for a 
great many types of tasks we simply need to have information over time, single 
snapshots of a ‘now’ often don’t suffice. Apart from visual recognition of faces 
and objects, many patterns in the real world around us only present themselves 
over periods of time, showing their features and characteristics over different 
‘now’s. Our senses provide us with endless streams of information about the 
world and our brain is very good at detecting interesting features and patterns 
over completely different time scales.  

Before we can happily start dealing with something as ‘real-world pattern 
recognition’ we first have to define what a pattern is at all. Intuitively we define 
it as a more-or-less reliable set of characteristics of a thing, group, abstract fea-
ture or concept. This makes that the act of pattern recognition consists of identi-
fying such a person or thing by some or all of the characteristics in the informa-
tion we have about it. The tricky part here is that these ‘characteristics’ can be 
virtually anything in the form, shape and values of that data we’re dealing with. 
Also, there are many types of data, ranging from nicely constrained statistical 
information gathered via questionnaires or supermarket customer cards to raw 
sensory input acquired directly from the real world. As often is the case, less is 
more. Generally speaking, having a lot of characteristics in the data makes mat-
ters worse; it makes it harder to find just those stable features that help us in 
identifying patterns reliably.  

Though static pattern recognition is already quite difficult from a compu-
tational point of view, detecting patterns over time is a complete different story. 
Most good pattern recognition techniques available today are confined to snap-
shot recognition: they literally attempt to recognize a pattern in one time-slice of 
input space, basically a Polaroid picture of the current input. This of course 
works great for problems where all necessary information is in the still image, 
like for instance face-recognition (see fig. 1). However, there are obviously in-
herent problems with this approach when we want to try to recognize a pattern 
in an input sequence. 
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This is exactly where the catch 
is, as many of the patterns we 
would like to recognize are 
temporal of nature. Audio, for 
instance, obviously is: the current 
frequency or voltage from a 
microphone doesn’t tell us much 
about the sound, let alone which 
word was possibly uttered. The 
same goes for visual data, unlike 
recognizing a face, movement can’t 
be detected based on a single still. 
In order to determine these kinds of 
characteristics it is necessary to 
relate the current input to former 
ones: to have some form of short-
term memory. 

There are quite a number of 
methods that work well for 
detecting repeating features in 
single snapshots, but there are very 

few methods that do the same equally well for patterns over time. Even fewer 
deal well with noisy data. As the world around us is particularly noisy, for real-
world pattern recognition we need methods that are able to cope with the inher-
ent noisy data that comes from it. Biological systems deal with noise very well 
and so do systems that mimic nature like artificial neural networks. However, 
there are serious problems with these computational techniques when it comes 
to training and controlling their dynamics when dealing with input over time. 

 
 

1.1 Liquid State Machines 
Recently the model of the Liquid State Machine (LSM) has been presented [48]. 
It is a novel approach that theoretically allows for real-time computation on con-
tinuous input streams in parallel. Randomly generated networks of neurons 
with realistic biological properties can be used for pre-processing inputs (see fig. 
2). Radically different from other approaches is that these networks do not have 
to be trained for specific tasks. Their network dynamics create unique state tra-
jectories that provide a fading short-term memory of the recent inputs. Rela-
tively simple techniques can be used to extract features from the ‘liquid’ state of 
these networks. The readout units can be trained not just to extract features, but 
can also be used as a mechanism for temporal pattern recognition [48]. The sys-
tem is partly biological plausible, as parts of the cerebral cortex have been iden-
tified to perform sensory integration tasks in small and homogenous ‘columns’ 
of neurons [38]. It is unknown, however, how the brain teaches itself to extract 
features from these dynamic networks. All together, the framework provides a 
new and promising approach for feature extraction and temporal pattern recog-
nition on continuous input streams. 

Figure 1. Face recognition is generally a form of
static pattern recognition; extracting features
from single still images and seeing whether these
match a template. While this is already difficult,
extracting information from series of stills is
much more complex. 
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Though there recently have been a flurry of publications on Liquid State 
Machines [5,22,26,28,36,37,48,50,51,58], much is still unknown about what can be 
expected of their computational power. Theoretically all sorts of complex sys-
tems can be applied as pre-processors, but little is said about what systems 
would perform this task best. Of the systems that have been used it is not even 
clear what parameters and generation methods allow for the best information 
pre-processing. Also, nearly all results published have either been focusing on 
details of the framework, or were aimed at applying them for seemingly com-
plex tasks. Though strong claims have been made about the computational 
strengths, it must be said the real complexity of these tasks is hard to estimate. 
Effectively, still little is known about the applicability and real computational 
powers of liquid state machines with spiking neural networks as temporal input 
pre-processors. 

 
 

1.2 Thesis outline 
The main goal of this thesis is to identify how well Liquid State Machines can be 
used for recognizing temporal patterns in noisy continuous input streams. We 
will start with an overview of existing techniques where we will quickly cover 
methods as chunking and tapped delay lines, hidden Markov models and recur-
rent neural networks. All these techniques have their individual strengths and 
weaknesses for application on this particularly complex task. We will pay extra 
attention to the feature that allows for fair comparison with the Liquid State Ma-
chine framework.  

Biological neural networks are proven to excel at noisy temporal pattern 
recognition [38]. We offer a short introduction to spiking neuron models, a class 
of artificial neurons that is much more biologically realistic than traditional neu-
ral networks [63]. Theoretically spiking neurons are also computationally a lot 
more powerful as they are able to react non-linearly to individually timed inputs 
[45].  Apart from general theory on the strengths of pulse coding opposed to 
more traditional rate coding, we will cover the well-studied and conceptually 

Figure 2. A Liquid State Machine uses an
excitable medium to pre-process low-
dimensional inputs, so that simple readout
units can extract temporal features. Typi-
cally complex recurrent neural networks are
used, but its function resembles a tank of
liquid: as the inputs disturb the surface they
create unique ripples that propagate, inter-
act and eventually fade away. After learning
how to read the water’s surface we can ex-
tract a lot of information about recent
events, without having to do the complex
input integration ourselves. Real water has
successfully been used for this in a task of
speech recognition [22].  
Image © Pennon Group UK.   
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simple model of integrate-and-fire neurons [25]. Using dynamic synapses that 
allow for activity bursts and input habituation can further increase the level of 
network realism [47]. However, exactly all these non-linear reactions to input 
make the dynamics of spiking neural networks very hard to control [7]. As no 
generally applicable methods for the supervised training of these networks have 
been found yet, we will zoom in on the interesting effects of applying unsuper-
vised spike-timing dependent Hebbian learning for creating network homeosta-
sis [1].  

Chapter 4 describes the Liquid State Machine model formally and shows 
that it has a near-identical twin: the Echo State Machine [34]. Both use the 
dynamics of complex recurrent neural networks for pre-processing temporal 
input and train additional mechanisms for extracting information from 
snapshots of the dynamic state of these networks. Though both have been tested 
in a variety of different tasks, little is known about their applicability on tasks in 
general and temporal pattern recognition in particular. 
After a detailed description of our methods of experimentation, we provide the 
results of our series of experiments that investigate the applicability of the Liq-
uid State Machine for temporal pattern recognition on single input streams. 
These experiments have been set up to provide insight in the capabilities power 
of the framework for the recognition of complex patterns in realistically noisy 
continuous input streams. Apart from doing this for controllable template gen-
erated spike trains we’ll also test whether we can apply this method for real-
time texture recognition. In the last chapters we offer a detailed analysis of our 
findings, relating it to other work and pinpointing important aspects for future 
investigation. 
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Chapter 2 
Temporal pattern recognition 

 
 

The world around us is extremely dynamic, everything changes continuously 
over time.  Whether it’s growth, development or just plain physics, we’re sur-
rounded with change. Nature equipped us very well to deal with it. We’re bril-
liant at detecting and coping with these changes, even as they do occur over 
completely different time scales. Trees and crop grow, people grow older, leaves 
wave in the wind and sounds are propagating waves in the air. Even though all 
of these examples are of completely different categories, they are all prime ex-
amples of events that can only happen over time. 

We are so accustomed to time and it’s accompanying change, that it’s easy 
to forget how complex it actually is to deal with. Also, it’s easy to loose out of 
sight that it’s not just us that are so good at it, but all life forms within their 
niche. Researchers in robotics [3] and artificial intelligence [55] know this per-
fectly well, however. Building something that can operate autonomously in an 
intelligent manner in the noisy and ever-changing environment of the real 
world is a task we’ve not yet succeeded in. Uncertainty caused by noise is a ma-
jor pain in the behind. But dealing with sensory input over time is most cer-
tainly its equal in causing us trouble. 

Time is what sets temporal pattern recognition aside from the normal 
blend we introduced in the previous chapter. Albert Einstein once wrote  
‘The only reason for time is to prevent all things from happening at once’.  
Apart from being a famous quote it pinpoints the very reason why temporal 
pattern recognition is so damn difficult [60]. Instead of having all characteristics 
to base your decision on at once, they are spread out over many slices of time.  A 
single freeze-frame of time is often of little or no information; in some way a se-
ries of these stills has to be collected to detect the pattern we’re looking for. In 
other words, we need a form of memory that spans enough time to hold the key 
characteristics of our pattern if we want to endeavour in temporal pattern rec-
ognition.  

Speech recognition is a good example of finding patterns in time: high-
level features as phonemes and words are to be extracted from the low-level au-
dio recordings. While still being a very daunting task, it does have a certain 
number of properties that make it simpler than many other dynamic real world 
applications. Though everybody’s pronunciation of words is different, there are 
identifying properties likely to be present [31,32]. These properties range from 
the moments on which frequencies rise, peak and fall to the relative strength at 
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which they are being created. We can use filtering techniques to extract these 
features, or allow the recognition method to discover these relations for itself. 
Many tasks do not have such apparent and easily extractable features for identi-
fication, one of which is the recognition of textures using whiskers [27].   

 
 

2.1 Adding memory 
Both many statistical methods and standard feed-forward neural networks do 
not possess real memory. These methods provide only a direct mapping from 
input to output. In their basic form they are therefore unsuited for temporal pat-
tern recognition. However, we can patch these techniques up by simply combin-
ing various stills into a bigger picture: an input window that hopefully contains 
enough information for detecting the desired pattern. Statistical methods often 
apply chunking to the input stream, analysing each block separately. For 
speech-recognition this often includes pre-processing the chunks of recorded 
speech with techniques like power-spectrum analysis and Fourier transforma-
tion. The analysis of these sound-chunks helps in determining whether the at-
oms of spoken words, phonemes, are present. Feed-forward neural networks 
form another class of very potent classification techniques that can be presented 
with a window of inputs. A simple method for enabling these to process time-
series is the usage of tapped-delay lines. Their whole function can be explained 
simply as instead of just the last input, these networks get presented all inputs 
from the last n time-slices [18].  

These methods effectively force a form of short-term memory into the in-
put-space of the basic recognition method. It should, however, come as no sur-
prise that this has a cost. The first problem is that the input-space can grow 
enormously if patterns that span a relatively long period are to be detected [60]. 
Another major problem is to determine the required size of this input-window: 
it should hold enough information for the pattern to be recognized, but not be 
too large either. The optimal window size is often not known beforehand [33].  

Processing a lot more input increases the required computational power, 
but larger input-spaces pose more of a problem for the ability of solving the task 
at all [60]. Though we can relatively easily scale up computing power, there’s no 
way we can control the exponential increase of possible correlations between 
inputs and (desired) outputs. Finding just those configurations of characteristics 
that indicate the sought pattern could work fine if we didn’t have to worry 
about noisy data, but unluckily for us we don’t live in such a world. These prob-
lems exist for all methods for temporal pattern recognition, but have a particular 
grave effect on these patch-ups, as these require a direct mapping from input 
[18].  

 
 

2.2 Hidden Markov models 
It would be rather beneficial if we would not have to present a full series of in-
puts for analysis, but would let the method have its own form of memory. This 
allows for internal pre-processing of input states, making it possible that longer-
term casual effects and levels of noise are picked up and dealt with within the 
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decision process. A good example 
of a state-based decision method is 
a hidden Markov model [15,57]. It 
has been the standard method for 
speech recognition since the 1970s.  

A hidden Markov model 
works by constructing a math-
ematical structure called a 
(hidden) Markov chain. This is a 
full state model of the input space 
it is likely to encounter, see fig. 3. 
Each transition between states is 
associated with a random process 
or simply a probability for each 
type of input class. These input 
classes are what we want to 
extract from the data, we would 
like to find the hidden (hence the 
name) generator model. By feed-
ing in the input the model tells us 
which transitions would be most 
probable for what generator. By combining each of these proba-bilities for each 
generator we get an approximation of the chance it was used in generating the 
full stream [16].  

Generally speaking we can’t apply this method directly on the raw and 
noisy input we acquire from sensors, as it works best on slightly more high-level 
and de-noised features as frequency diagrams for speech recognition [15]. Once 
the model has been created it can be used to predict what generator was used 
for the current input stream; in the case of speech recognition this could work on 
all levels ranging from phoneme detection to full sentence construction. Though 
hidden Markov models can work very well, for good operation it is necessary to 
have a reliable set of such high-level and continuous features [57]. As mentioned 
earlier, in speech recognition tasks these are relatively easy to extract: frequency 
bandwidths, power, onsets, offsets and peaks are easy to detect and quite in-
formative to the recognition models. However, this does not go for many other 
temporal pattern problems like the classification of signals from artificial 
whisker sensors. High levels of noise and over-saturated frequency bands do 
not allow such nice pre-processing and block identification and thus requires us 
to find recognition methods that can inherently deal with these difficulties. 

 
 

2.3 Recurrent Neural Networks 
Artificial neural networks are mathematical models that capture important ele-
ments of how we think real neurons operate. Besides being a very potent and 
easily applied technique for classification, they also offer high noise-robustness: 
they can be trained to provide stable and reliable output even when the input 
suffers from relatively high levels of noise. While feed-forward neural networks 

Figure 3. A hidden Markov model for DNA gen-
eration. A Markov chain consists of a number of
generator states and their transition probabilities; in
other words, the model encodes the features of a
sequence and how these relate. [16] 
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only have connections from one layer to the next, recurrent neural networks can 
also have ‘backward’ connections. This creates a dynamic flow of information in 
the network that allows for a form of internal short-term memory. Unlike the 
previously mentioned tapped-delay-line solution, these networks pre-process 
input and can be trained to internally store important features to base future de-
cisions on [33]. However, exactly these internal temporal dynamics make it 
much harder to train the network to provide a specific answer for a series of in-
puts. Theoretically one single input characteristic from moments ago can radi-
cally change the current state of the network. 

Back-Propagation Through Time  (BPTT) [33] solves this in a rather 
extreme approach: gradually folding out the network for each input to store its 
network dynamics it creates one big feed-forward network. The well-known 
back-propagation algorithm [59] can train this resulting network as normal. 
Apart from the possible storage problems of folding out a complex recurrent 
network or dealing with long time series, this approach has two major draw-
backs: it can only train in an epoch-based manner and suffers from fading error-
signals. Though having a more real-time nature, Real-Time Recurrent Learning 
(RTRL) [65,66] does also suffer from this inability to recognize long-term rela-
tions between in and output. Error-signals are propagated to preceding connec-
tions and are likewise decreased according to their seeming importance. The 
longer these chains of connections grow, the lower the error signal becomes and 
the less effect it will have during training. Effectively this means that no long-
term correlations can be learned [33].  

While long-term is a relative judgement of course, when dealing with real-
world data this often means high-resolution recordings of multiple seconds. 
Raw data from microphones needs to be sampled at least 2KHz to be able to ex-
tract frequencies informative for speech recognition. Long-Short Term Memory 
(LSTM) [30] was proposed as a solution able to recognize temporal patterns 
spanning both the short and this long-term range. Instead of using standard 
sigmoidal neurons it employs complex cells that are able to pick out informative 
features from the input stream. In order for this mechanism to work properly 
the input needs to be as clean as possible, noise can easily push it of its track.  

Even though performance of these techniques is quite reasonable on their 
domains, there still remain a couple of intrinsic drawbacks when we want to 
apply them for recognition of patterns in noise rich and high-resolution streams. 
The main concerns are that training is very slow and needs lots of memory 
(BPTT), execution and analysis are not real-time (statistical methods) and/or 
reasonable performance is restricted to specific temporal problems (LSTM). 
Without extra adaptations these methods all suffer from noisy input, making 
them ill-suited for direct real-world applications [41,42]. 

 
 

2.4 Biology Does Do It Better 
Besides the critique above, none of the mentioned methods are actually biologi-
cally very plausible [38,55]. While plausibility is not our ultimate goal on itself, 
we can’t deny the fact that real neural structures are extremely good at real-time 
(temporal) pattern recognition [14,24]. For example, barn owls hunt at night and 
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can locate possible prey in complete darkness, using solely their auditory sys-
tem with a precision of 1-2 degrees of angle. This corresponds to the detection of 
the few (<5) microseconds delay in the moment of the patterns perceived by 
both ears [46], as well as judging whether this sound might come from a prey 
and is worth investigating. Experimental data shows that rats [13,56] can dis-
criminate textures very precisely by brushing their whiskers against it and sub-
sequently recognizing the vibrations from these specialized hairs [9]. They do 
this with pretty much the same precision as humans using their fingertips [9]. 
The rats, however, are much more specialized at this and do it using much sim-
pler sensors and a smaller area of the brain. It is not known how they do this,  
there is seemingly no difference in the activity of the neurons involved when 
different textures are presented [54,56]. 

We simply have to admit that biology does do a much better job at tempo-
ral pattern recognition than we currently can do computationally. Artificial neu-
ral networks are very potent classifiers, but traditional models simplify the op-
eration of biological neurons a great deal [46]. The main assumption that neu-
rons encode their message in the average firing activity, for instance, cannot 
hold for the examples above: those neurons have to react non-linearly to 
changes in their input within milliseconds.  Using neuron models that have a 
higher level of realism might not only provide us with computationally more 
powerful artificial neural networks, it could also provide insight in how real 
neural structures may operate [25].  
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Chapter 3 
Spiking Neural Networks 

 
 

Models of spiking neurons [63] try to capture the rich dynamics found in real 
neural structures with much greater detail than traditional neuron models did. 
Like real neurons, communication is based on individually timed pulses. Pulse 
coding, as this is called, is potentially much more powerful for encoding infor-
mation. It is possible to multiplex much more information into a single stream of 
individual pulses than you can transmit using just the average firing rates 
(hence rate coding) of a neuron. We know, for example, that the auditory system 
combines amplitude and frequency very efficiently over one channel [46].  

Another great advantage of pulse coding is speed: lots of it is gained as 
neurons can be made to react to single pulses, allowing for extremely fast binary 
calculation. The human brain, for example, can recognize faces in as little as 
100ms. The involved neurons have to decide in (literally) split-second whether 
or not to fire. This would simply be impossible if they’d use rate coding, the av-
eraging windows would become so small that no reliable output could be gen-
erated [62]. The majority 
decision of a group of neurons 
can be used to generate more 
reliable output: this is called 
population encoding. Though 
we find this in use in many parts 
of the brain, the massive 
amounts of neurons that would 
be needed to allow for such fast 
facial recognition are simply not 
present in the visual cortex 
[13,38]. 

Like real neurons, spiking 
neurons have an ever-changing 
internal state, the membrane 
voltage [38]. When a threshold 
value is crossed, an action poten-
tial is generated that traverses 
from the soma over the axons 
(see fig. 4). It is communicated to 
the dendrites of other neurons 

 
 

Figure 4. (a) Schematic drawing of a neuron. (b) In-
coming postsynaptic potentials alter the membrane
voltage so it crosses threshold value ϑ; the neuron
spikes and goes into a refractory state. (c) Typical
forms of excitatory and inhibitory postsynaptic poten-
tials over time. [25] 
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by connections between these two 
called synapses. Such an action 
potential is a short (1ms) and 
sudden increase in voltage that 
we, due to their form and nature, 
refer to as a spike or pulse. 
Though all spikes look alike, their 
effect on connected neurons may 
be completely different. Connec-
tions between neurons are formed 
by synapses, complex signal 
transducers [38] that help the sig-
nal to cross the physical gap 
between the two neurons. An 
incoming spike triggers the release 
of neurotransmitter chemicals that 
cross the synaptic gap and generate a post-synaptic potential [25]. The type of 
synapse and amount of released neurotransmitter determine the strength and 
type of the post-synaptic potential: it may either heighten (excitatory, EPSP) or 
lower (inhibitory, IPSP) the membrane potential of the post-synaptic neuron. 
Real neurons use only one type of neurotransmitter in all of their outgoing syn-
apses, effectively making the neuron itself either excitatory or inhibitory [38]. 

 
 

3.1 Pulse Coding Models 
Many different models [25] of spiking neurons exist, of which the Hodgkin-
Huxley model is by far the most detailed and complex. It was based on experi-
ments with the large neurons found in squid. This set of differential equations 
realistically describes the exact reactions of the neuron’s membrane potential to 
the influx of chemicals and electric stimulation. However, as this realism comes 
at a large computational cost it makes the model less suited for simulations of 
large networks. As our goal here is to find a model that is realistic enough to be 
successfully used in temporal pattern recognition we will only cover the much 
simpler integrate-and-fire (I&F) model. This model (see fig. 5) is an instance of 
the general threshold-fire model that describes that neurons fire if their mem-
brane potential rises beyond its threshold value. It is very commonly used for 
networks of spiking neurons, as it is quite simple to understand and implement. 
However, it does approximate the very detailed Hodgkin-Huxley model rela-
tively well and so captures generic properties of neural activity [25].  

As we’ve seen in the previous chapter, action potentials are all very simi-
lar. We can therefore forget about form and characterise these by their firing 
times ti(f). The lower index i indicates the neuron, the upper index f the number 
of the spike. We can then describe the spike-train of a neuron as 

},...,{ )()1( n
i ttF =  (3.1) 

The variable ui is generally used to refer to the membrane potential, or in-
ternal state, of a neuron i. If a neuron’s membrane potential crosses threshold 

 
 

Figure 5. Schematic drawing of the integrate-and-
fire neuron. On the left side, the low-pass filter that
transforms a spike to a current pulse I(t) that charges
the capacitor. On the right, the schematic version of
the soma, which generates a spike when voltage u
over the capacitor crosses threshold  [25]. 
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value ϑ from below, it generates a spike. We add the time of this event to Fi, de-
fining this set as 

} 0| { >′∧== (t)u(t)utF iii ϑ  (3.2) 

When a real neuron generates an action potential the membrane potential 
suddenly increases, followed by a long lasting negative after-potential (see fig. 
4b). This sharp rise above the threshold value makes it absolutely impossible for 
the neuron to generate another spike and is therefore named absolute refractori-
ness. Afterward, the period of negative spike after-potential (SAP) makes it less 
likely that the neuron fires again and is called the relative refractoriness. 

 
 

3.2 Integrate-and-Fire Neurons 
In the integrate-and-fire model spikes are seen as short current pulses that travel 
down the axons. Once it arrives at a synapse, the short pulse is transformed by a 
low-pass filter into a current pulse I(t-tj(f)) that charges the next integrate-and-fire 
circuit. This increase in voltage can be seen as the postsynaptic potential. Once 
the voltage over the capacitor goes above threshold value ϑ, the circuit shunts, 
sends out a pulse and resets itself. We write 

RI(t)u(t)
t
uτm +−=
∂
∂

 (3.3) 

to describe the effects on membrane potential u over time, with τm being the 
membrane time constant in which voltage ‘leaks’ away. The neuron fires once u 
crosses threshold ϑ and a short pulse δ is generated. An important variable is 
the input resistance R of the circuit, typically set to values in the order of 1MΩ. 
To enforce a period of absolute refractoriness after firing, we force u to K<0 for a 
period of δabs during which the integration process is halted. Relative refractori-
ness can be added by setting the membrane potential afterwards to ureset and re-
starting the integration process.  
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Because incoming pulses have a finite short length, a neuron’s input cur-
rent I will often be 0.  Once a spike arrives, it is multiplied by synaptic efficacy 
factor cij to form the post-synaptic potential that charges the capacitor, for which 
we find all neurons j connected to i from collection Γi.  This effect lasts a while 
longer than the duration of the pulse itself though, as the membrane potential 
only slowly leaks exponentially towards its resting potential. 

Biological data shows that axons and dendrites are fast while synapses are 
relatively slow at pulse transmission. Inhibitory connections generally use faster 
neurotransmitters than excitatory synapses.  We can introduce synaptic or ax-
onal transmission delays ∆ij in the pulse definition function δ itself, or simply 
shift the incoming spike window. By adding an extra term iext to equation 1.4 we 
can also model external influence to the neuron. 
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As the above equations show, the integrate-and-fire model is conceptually 
and computationally relatively simple, though inherently much heavier than 
rate coding sigmoidal networks. An advantage of the model is that it is rela-
tively easy to integrate it in hardware, allowing for very fast operation. It has a 
close relation to the more general spike-response model (SRM) and can be used 
like it by rewriting it into the correct kernels η and ε that form the heart elements 
of the SRM model [25].  

 
 

3.3 Dynamic Synapses 
Besides signal transducers, real synapses also are extremely complex informa-
tion pre-processors that show strong dynamics at many different temporal 
scales [38]. In fact, they act as dynamic memory buffers, altering transmission 
behaviour depending on the form of the spike train it recently received [49]. 
Though most artificial neural networks use synapses that only act like static 
weighing functions, it has been shown that synapses that model more dynamic 
features also found in real synapses, like facilitation and depletion, are computa-
tionally much more powerful [47].   

In biology, once an action potential arrives at a synapse (see fig. 6) there is 
a probability that a vesicle of neurotransmitters releases its contents into the ex-
tra-cellular fluid of the synaptic gap. These chemicals cross over to the post-
synaptic side of the synapse, where they act on matching receptors on the mem-
brane. Whether this postsynaptic potential is excitatory or inhibitory depends on 

 
 
 

Figure 6. Schematic drawing of a synapse.
When a pre-synaptic action potential arrives
vesicles containing neurotransmitter chemicals
may fuse with the membrane, delivering their
content into the extra-cellular fluid of the syn-
aptic cleft. When these chemicals bind to recep
tors on the dendritic side of the synapse a post-
synaptic potential will be generated, it’s nature
depending on the type of synapse and chemi-
cals. [68] 

 

Figure 7. Typical asymmetric Spike-Timing
Dependent Plasticity window: pre-synaptic
action potentials that shortly closely before the
post-synaptic neuron spikes cause LTP, while
late arrival leads to LTD. The LTP time win-
dow is shorter, but has a higher peak. [6]. 
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the type of neurotransmitter that is released, its size on the amount of ion gates 
opened by receptors activated by the neurotransmitters. Afterwards the neuro-
transmitter chemicals are actively recovered into the pre-synaptic node, ready 
for the next round of duty [38]. When a spike arrives, the state of the synapse is 
very important in whether and in what degree a post-synaptic potential is 
caused. The amount of available neurotransmitter vesicles, amount of receptors 
and facilitation and depression recovery times all play important roles in defin-
ing the state of a synapse and thus how it will processes information encoded in 
the incoming spikes [49]. 

By using such dynamics instead of static weights in the model of the syn-
apse, the network gains an extra degree of non-linear dynamics: allowing for 
more diverse and input specific dynamics displayed in the network. The 
mechanism operates on the neurotransmitter release probability, increasing the 
likelihood of spikes early in arriving spike-train to be transmitted [25]. Conse-
quently, the amount of readily available vesicles for spikes that arrive later in 
the sequence is decreased. This leads to the effect that signals that arrive after a 
period of inactivity are much stronger and reliably transmitted, allowing for 
strong recurrent activity without network destabilization due to over-activation 
[49].  

Using dynamic instead of static synapses increases the required computa-
tion significantly. Instead of just weighing input, each synapse has a dynamic 
state that changes over time and inputs. We can capture the dynamic state and 
information transmission of such synapses by the following set of recursive 
equations: 

nnn RuAA ⋅⋅=  (3.6) 
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1, 11 == RUu  (3.9) 

The four main parameters to this model are A, U, F and D. Seen from the outside 
it is the synaptic efficacy An that alters over time when spikes arrive. Internally 
this effect is determined by the dynamic state variables un and Rn. These are re-
lated to the standard fraction of synaptic resources for spike transmission U. F 
and D are two time constants that describe time necessary for the synapse to re-
cover from facilitation and depression [47].  

The first spike to arrive is transferred with maximum efficacy, but it influ-
ences the fraction of synaptic resources Rn available to transmit the nth spike. 
The actual fraction of neurotransmitters used to transfer that spike is modelled 
in Rn.un. In other words, if another spike arrives shortly after there will be less 
neurotransmitter chemicals readily available and it’s efficacy will thus be lower. 
The second term of equation 3.8 describes how much chemicals are still missing 
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at the time t since spike n. A depleted synapse is said to be ‘depressed’, as it 
does not hold enough available vesicles to evoke a proper post-synaptic poten-
tial. Depression factor D defines how fast the synapse can recover its chemicals 
from the synaptic cleft.  

The fraction of the available resources R actually used for the (n+1)th spike 
depends on the synapse’s degree of facilitation, or how soon after a spike large 
parts of the resources will be used again. For different combinations of values 
for factors D and F totally different synaptic information pre-processing and 
transmission behaviours can be achieved. Inhibitory synapses are generally 
much faster than excitatory ones, but show relatively slow facilitation and re-
covery from depression.  

Recent work has shown that many synapses are likely to be equipped with 
two types of neurotransmitters: slow releasing and fast recovering versus fast 
releasing and slowly recovering messenger chemicals [53]. This has not yet been 
incorporated in the above model, but may lead to even more dynamic and real-
istic synaptic signal transmission behaviour. 

 
 

3.4 Training 
Though networks that employ pulse coding theoretically provide a large com-
putational power, we first need to harness or use the dynamics of these net-
works before we are able to use them for successful application.  

 
3.4.1 Supervised Learning 

For a long time, supervised training methods for spiking neural networks have 
been lacking. In more traditional models of artificial neurons, training tech-
niques could rely on the predictability of a neuron’s output given a certain in-
put. Spiking neurons however, behave in a much more dynamic manner: firing 
with either fixed frequency, short bursts or not at all and are able to habituate to 
input [38,46]. Existing techniques like backprop [59] therefore can’t be applied 
directly: the network’s reaction is determined more strongly by the exact tim-
ings of spikes than the average activity of neurons. Spike-prop, an adaptation [7] 
of this powerful algorithm, can train a network of spiking neurons to react to 
input with single individually timed spikes. Its applicability is limited however, 
as in order to work it requires an overly complex network of many individually 
specifically delayed and differently weighted synapses per connection between 
two neurons. These requirements increase the computational load for networks 
tremendously. Combined with the fact that the resulting networks are quite sen-
sitive to noise, it can only be put to effective use in specific domains [7].  

 
3.4.2 Unsupervised Learning 

A variety of methods for unsupervised training of spiking neural networks have 
been around for a while, though [39]. Spike-Timing Dependent Plasticity (STDP) 
[1,61] is a powerful form of Hebbian learning [29] that delicately alters synaptic 
efficacy (weight) according to the precise timing of post and pre-synaptic activ-
ity. Synaptic modification only occurs if the difference between pre and post-
synaptic firing is small. The sign of this difference determines whether the con-
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nection is strengthened or weakened. By using such an asymmetric window (see 
fig. 7), STDP can stabilize network activity as it puts neurons in temporally sen-
sitive states and introduces competition between neurons [6].   

Synapses influenced by this form of spike-timing dependent synaptic plas-
ticity [61] are forced to compete for control of the timing of postsynaptic action 
potentials. Connections that receive spikes just before a postsynaptic spike is 
triggered are strengthened, as STDP causes Long-Term Potentiation (LTP) at 
these synapses. Analogously, it weakens those that fire too late by invoking 
Long-Term Depression (LTD). This way, STDP modifies (see fig. 7) excitatory 
synaptic strengths until there exists a sufficiently high, but not excessive, prob-
ability of a presynaptic action potential being shortly followed by a postsynaptic 
spike. STDP can be extended such that it also modifies the short-term synaptic 
plasticity properties of a synapse, an effect that is called synaptic redistribution 
[1] and works best in combination with dynamic synapses. 

The element of competition, punishing late firing, provides a powerful 
method to adapt individual neurons to listen most to those inputs that are con-
sistent at predicting strong post-synaptic responses. This leads to two effects in 
the network: groups of neurons are encouraged to fire in correlation and neural 
pathways in the network with low latency are formed and strengthened as syn-
apses of longer-latency or less-effective inputs are weakened [40]. Basically, de-
pending on the input pattern the network will be able to react with fast corre-
lated activity.  

Even though these techniques can regulate network activity, they remain 
methods for unsupervised training and can therefore not be used to steer the 
network’s response towards certain input. As an alternative to supervised learn-
ing, evolution has been successfully employed to evolve networks of spiking 
neurons for various tasks of robot control [23,43] and temporal pattern recogni-
tion [41]. The main difficulty in applying evolution is the definition of the fitness 
function; evolution does not strive to find the perfect solution, but settles for an 
economic one. The fitness function should enable evolution to find the best solu-
tion by creating a smooth fitness space. This is virtually impossible for tasks 
with relatively long-term correlations. Especially for tasks of temporal pattern 
recognition this often resulted in premature convergence to a local maximum 
[42].  

 
3.5 Using spiking neurons 
Spiking neural networks have many nice properties that set them apart from the 
more traditional networks of rate-coding neurons [25]. They have an inherent 
notion of time that makes them seemingly particularly suited for processing 
temporal input data [31,63]. Their non-linear reaction to input provides them 
with strong computational qualities, theoretically requiring just small networks 
for complex tasks [41]. Changes in synaptic efficacy found in living neurons 
have been formalized into unsupervised learning methods that successfully can 
cluster network activity for input classes [39,61]. All these features combined 
capture a lot of detail of our current understanding of how real neurons operate. 

However, what we currently do not understand yet immediately forms the 
Achilles heel of applying spiking neural networks: supervised learning. Control-
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ling the response of these highly non-linear and time-sensitive networks has 
been proven to be very difficult. The algorithms we have found can only be ap-
plied on very limited domains. It is very unlikely that real neural structures just 
rely on unsupervised Hebbian learning for training of tasks, but we do not un-
derstand how they do organize and adapt to do their tasks.  

Novel insights suggest that there might not be such a thing as a neural 
code that we need to understand and control, but that the power of spiking neu-
ral computation lies in making use of their dynamics [34,48]. This rather radical 
change in approach thus leaves the idea that we need to steer and control the 
network dynamics behind and instead proposes that we rather try to make use 
of those dynamics by for instance recognizing state trajectories in the network. 
Spiking neural networks are so brought right back in the realm of applicability, 
as even in noise rich environments their dynamics have been shown to be reli-
able [62].  
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Chapter 4 
Liquid State Machines 
 
 
Independent of each other, Maass [48,50] and Jaeger [34,35] developed the simi-
lar concepts of respectively the Liquid and Echo State Machines. These similar 
mathematical frameworks claim to allow for universal real-time computation 
without stable states or attractors on continuous input streams. Both operate by 
feeding a continuous input stream into a sufficiently complex recurrent neural 
network. Due to the intrinsic dynamics in the network it is likely to contain sub-
stantial information about all recent inputs. What this network, which we call 
the excitable medium, does is transforming the low dimensional temporal input 
into a higher dimensional ‘liquid’, or ‘echo’ state. Though this dynamic state 
might be unintelligible for humans, we can successfully apply spatial classifica-
tion or pattern recognition techniques in readout units that can extract valuable 
information about recent inputs from it.  

The above is rather abstract and best explained by the following example: 
imagine a rock and a pond and throw the rock into the water. In fact, here the 
rock is a low-dimensional temporal input: the rock and throw have some prop-
erties but these are only expressed very briefly. The resulting splash and ripples 
that are created can be seen as the reaction, or ‘liquid’ state. These ripples 
propagate over the water’s surface for a while and will interact with the ripples 
caused by other recent events. The water can thus be said to retain and integrate 
information about recent events, so if we’re somehow able to ‘read’ the water’s 
surface we can extract information about what has been recently going on in this 
pond. We refer to this trained spectator as a readout unit that we can ask at any 
one time what’s going on in the pond, provided that we can show him a picture 
of the water’s surface. 

 
 

4.1 Formal Definition 
The concepts of the Liquid State Machine (LSM) [48] and the Echo State Machine 
(ESM) [34] are very similar and only differ in detail. The ESM setup has been 
mainly applied using traditional recurrent neural networks, while LSMs have 
been put to work primarily using spiking neural networks as the ‘liquid me-
dium’. As we strive to investigate biologically more probable temporal pattern 
recognition methods we are more interested in the latter setup. We will there-
fore only use the name ‘liquid state machine’ and its abbreviation, but mainly 
for not having to use both names all the time. A mathematical framework for-
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malizes the intuitive notion that 
infinitely large and sufficiently 
dynamic and complex systems as the 
liquid can be guaranteed to provide 
universal computational power in the 
LSM, like Turing machines [48]. While 
Turing machines do this for off-line 
computation on discrete input, the 
LSM achieves real-time computation 
on analog functions in continuous time, 
without stable states.  

Formally, the LSM (see fig. 8) 
works as follows: A continuous input 
stream u(.) of disturbances is injected 
into excitable medium LM that acts as a 
liquid filter. This liquid can be virtually 
anything from which we can read it’s 
current liquid state xM(t) at each time 
step t. This liquid state is mapped to target output function y(.) by means of a 
memory-less readout function fM . Examples of media that have been success-
fully used as the liquid include recurrent networks of sigmoidal [34] neurons, 
temporally dynamic and biologically realistic spiking neurons [48] as well as 
ordinary real wet water [22].  

 
4.1.1 Infinite State Machines 

As the names of both the LSM and ESM hint, there is a resemblance with finite 
state machines. However, in the finite state machine the full state space and 
transitions are carefully constructed and clearly defined; quite unlike the rich 
dynamics found in the medium of an LSM. These state machines could be seen 
as a universal finite state machine, as a sufficiently highly dynamic ‘liquid’ can 
implicitly contain the states and transitions of many complex finite state ma-
chines. The large advantage of the LSM is that we do not have to define the 
states themselves, as the readout units can be trained to extract the state from 
the continuous analog state of the liquid. We only have to make sure that the 
reaction of the liquid is reliable in the sense that it reaches identifiable states af-
ter a predefined number of time steps of input. 

The dynamics in the medium are of great importance, as it allows for in-
formation to be temporally stored and integrated. It may therefore seem surpris-
ing that randomly generated and connected networks with fixed weights per-
form really well, handcrafting is said to be unnecessary. Exact performance dif-
fers per generated ‘column’ of neurons, but their computational power is re-
ported to be quite high.  Size and level of connectivity of a column are important 
to its memory span, but even more so are the dynamics of both neurons and 
synapses.  

 
 
 

 
 
 

Figure 8. Schematic principle of the liquid
state machine. A continuous stream of input
values u(.) is fed into ‘liquid medium’ LM; a
sufficiently complex excitable medium of
which outgoing signals xM(t) define the liq-
uid state. These values are propagated to
read-out unit fM that generates output y for
the current time step t [48]. 
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4.1.2 Separation Property 
The most important aspect of the liquid 
is to react differently enough to different 
input sequences. The amount of dis-
tance created between those is called the 
separation property (SP) of the liquid. 
The SP (see fig. 9) reflects the ability of 
the liquid to create different trajectories 
of internal states for each of the input 
classes. The ability of the readout units 
to distinguish these trajectories, general-
ize and relate them to the desired 
outputs is called the approximation 
property (AP). This property depends 
on the adaptability of the chosen 
readout units, whereas the SP is based 
directly on the liquid’s complexity. 

Jaeger [34] found that he could 
greatly increase the performance of an 
Echo State Machine by using recurrent 
networks of continuous leaky-integrator neurons instead of standard recurrent 
sigmoidal networks.  The main difference between these two types of synaptic 
connections is the ability of the former to react more non-linearly to temporal 
input and as such they strongly increase the non-linear dynamics of the ESM. 
Maass [50] found very similar results when he compared the performance of 
LSMs using liquids of spiking neural networks with either static weighing con-
nections or the more realistically dynamic synapses. As such synapses allow for 
depletion and habituation they provide for more non-linear interaction in the 
network. The finding that more dynamic connections increases the computa-
tional power of the model is not surprising if we realise that using these neurons 
and synapses greatly enhances the temporal dynamics of the medium, making 
input trajectories more likely to be unique and thus allow for easier recognition 
of different input streams.  In relation to the notion of the separation property, 
we can say that there seems to be a strong correlation between the computa-
tional power of the full system and the non-linearity of the liquid networks [51]. 

 
4.1.3 Liquid States 

Identifying the difference between two states of the liquid is actually quite diffi-
cult [35,48]. Liquid states depend on the input streams they’ve been presented, 
preferably we would like to have a correlation between the similarities of the 
input streams to the resulting liquid states at fixed readout moments. To break 
the news, no ultimate distance measure between such liquid states exists, nor for 
temporal input streams. Due to the highly dynamic non-linear and temporal na-
ture of the states, we intuitively see that simple 1-on-1 matching between two 
states will not work: even slight jitter in the two input patterns might cause 
states to seem different, while they’re actually very alike. Still, it does provide 
some indication of the distance between the liquid’s trajectories for two input 

 
 

 
Figure 9. The separation property of a ge-
neric neural microcircuit, a randomly gen-
erated LSM. Plotted on the y-axis is the dis-
tance between the two states of the liquid in
reaction to input signals that have Euclidian
distance d(u,v) [48]. 
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streams. We can, for instance, use the average Euclidean norm of the simple dis-
tance between two network states over all recorded time steps. Formally, for 
comparison of two states we write:  

)()(),,( tXtXvutd M
v

M
us −=  (4.1) 

where XuM(t) and XvM(t) denote the liquid states at time t of input streams 
u and v. We can acquire a similar indication on the distance between two spike 
trains if we apply a low-pass filter, after which the resulting continuous streams 
can be directly compared. Of course this offers no ultimate comparison, as it 
does not take the neuron’s dynamics and reactions into account.  

 
4.1.4 Links to Biology 

In the brain, the continuous sensory input streams are processed in neural mi-
crocircuits in the cerebral cortex [14,38]. These columns of neurons are anatomi-
cally and physiologically very similar and each of them performs many complex 
information integration tasks in parallel. Across the human brain we find more 
structures that are very similar to these microcircuits. In fact, we do not find 
these just in human brains but also in the brains of other species. This led to the 
thought that such heterogeneous columns of neurons are task independent and 
may therefore have potentially universal computational abilities on continuous 
streams of input [36]. This is a new insight in the understanding of neural com-
putation that has some strong and important parallels with LSMs.  

Edelman [17] pointed out a while ago that repetitive neural structures with 
universal properties are likely to have formed during the evolution of the brain. 
He proposed to investigate the computational power of such structures, but did 
not provide a framework like the Liquid or Echo State Machines. His research 
remained on the more philosophical grounds on how and why repetitive struc-
tures must’ve been used by evolution to create many of the talents the human 
brain has today.  

 
 

4.2 Generating and Using LSMs 
By using biologically sufficiently realistic neural networks as micro-columns in 
the liquid we might both be able to tap the power of the cortical microcircuits, 
while at the same time learning a fair bit about the capabilities of their biological 
counterparts. Maass [48] used randomly generated networks of 135 spiking neu-
rons per column and used biological data to define parameters like connectivity, 
synaptic efficacy and membrane time constants. He used spike trains as input 
and those are fed to a random 20% of the neurons in the network. It remains a 
question how the level of realism relates to the computational abilities of these 
microcircuits.  

Recapitulating, the basic action in the liquid state machine is the transfor-
mation and integration of continuous low-dimensional input streams into 
perturbations of the higher dimensional liquid to facilitate feature extraction 
[58]. The internal dynamics ensure that the current state of the liquid will hold 
information about recent inputs. The high-dimensionality of this liquid state 
helps making recognition much easier. First of all, during the memory-span of 
the liquid the complex low-dimensional temporal problem is turned into a more 
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uid the complex low-dimensional temporal problem is turned into a more easily 
solvable spatial recognition task. Secondly, the high dimensionality and dynam-
ics make it theoretically virtually impossible that two different inputs lead to 
exactly the same network state or state trajectory. In fact, inputs that are radi-
cally different are likely to lead to vastly different states of the liquid: allowing 
the readout units much easier discrimination.  

 
4.2.1 Readout Units 

Perceptrons, or threshold gates, have been around for over 40 years. Although 
they allow universal Boolean computation and are universal approximators for 
continuous functions, initial enthusiasm faded as no method for solving non-
linear separable problems with satisfactory performance was discovered. Per-
ceptrons compare the summed input received from weighing synapses to a 
fixed threshold: their output is high if the input is above, or low if it is below 
this value. They can, however be put to very good use as simple readout units in 
LSMs. After training with linear regression they can both be applied for classifi-
cation and for the continuous extraction of information from the liquid state. 
The presentation of the liquid state to these units is of utmost importance how-
ever, especially if both mechanisms speak different ‘languages’: i.e. use pulse 
and rate coding mechanisms. Though rather simplistic, a low-pass filter can be 
applied to transform the spike-trains into continuous output that can be 
weighted and fed to the readout perceptrons. [48].  

However, there are limitations to the power of linear regression and single 
perceptrons. Information in the liquid can be encoded in non-linearly separable 
ways and can thus theoretically not be extracted by these simple readout units. 
Computationally stronger is the use of perceptrons in pools, using the average 
activation of all perceptrons as output, or the committee machine. In the latter 
the Boolean output depends on the majority of the votes in the pool. Still, train-
ing these units is complex. Mechanisms that can solve non-linear separable 
problems in dependable manner are multi-layer perceptrons trained using 
backprop [59]. These have been successfully applied to extract input timings 
from low-passed liquid states [26]. 

 
4.2.2 Parallel Delta Rule 

Recently, Auer [2] introduced the p-delta rule for parallel perceptrons, neural 
networks of a single layer of perceptrons. Its performance is comparable to that 
of other state-of-the-art classification algorithms, but is much less complex: only 
one layer of perceptrons and just one global 2-bit communication signal is re-
quired. In contrast, the backprop [59] algorithm for multilayer perceptrons 
needs to communicate high-precision floating-point values between neurons, 
making it much less biological plausible and computationally more taxing. 

The largest difference with standard linear regression is that we’ll have to 
adjust the full weight vector of the perceptron pool to change the output to-
wards the desired level. There are a number of different methods thinkable, but 
simply adjusting all weights is claimed to work for the parallel delta rule. 
Though harsh, it ensures that at least the right weights are adjusted and change 
occurs. The weight adjustments can be calculated in both batch and iterative 
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manners, from which we present the latter here that can easily be translated to 
batch updating. We calculate the amount of weight change for each connection 
by 
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where ô is the output of the pool, α is the weight vector, z the input vector , 
η the learn rate and o the target output. The particular choice of clear margin pa-
rameter γ>0 is important to ensure good performance of the algorithm. It helps 
in tuning the weight vectors of which the dot product is already of the right 
sign, steering the vector output away from 0. Parameter µ is used to scale the 
clear margin importance, but can be left to 1 as it’s claimed to be of insignificant 
importance. The error function [2] to be used with the p-delta rule is rather 
complex, but tends to scale the error exponentially with the distance between 
the actual and desired output. 

Though it is hard for us to judge the level of difference between two liquid 
states, input patterns do generate identifiable state trajectories. The high dimen-
sional liquid state thus allows for easy pattern classification, even for memory-
less linear readout units like perceptrons [5]. The training of linear readouts is 
quite easy and even very robust; due to the high liquid dynamics it is very 
unlikely they’ll end up in local minima. This means that relatively simple and 
scalable training methods can be employed for use in the LSM. The p-Delta rule 
[2] also fits this description, as arbitrarily sized groups of perceptrons can be 
used as a readout unit, while training does not become overly complex. 
Therewith it makes the approximation property of such readout units scalable to 
the required level. Recently it has been shown that a readout unit consisting of 
just single neurons [28] can achieve roughly the same classification power as 
more sophisticated units like pools of perceptrons trained using the p-delta rule. 
Exact results have not been published, though, so it is yet to be seen how well 
single or pairs of (spiking) neurons can be employed for extracting information 
from the liquid state.  

 
 

4.3 Applications 
The concept of liquid state machines seems to be very powerful and there don’t 
appear to be any strong a priori limitations to their computational power. Using 
sufficiently large and dynamic generated networks of spiking neural microcir-
cuits as the liquid allows for somewhat biologically realistic real-time comput-
ing with fading memory. Their performance on a range of benchmark applica-
tions [48,50,51] seems to be quite in line with the expectations the model raises.  

One of the most well-known temporal benchmark tasks in literature is the 
Hopfield & Brody speech recognition task where recordings of spoken numbers 
zero to nine have to be correctly classified [31,32]. The dataset consisted of 10 
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recordings each of 5 female speakers, totalling to a set of 500 inputs. Each of 
these recordings was encoded in 40 individual spike trains. Their original solu-
tion dubbed ‘mus silicium’ or simply ‘organism’ had the rather unrealistic re-
quirement of a maximum of one spike per input line. The performance of this 
solution was not surpassed in an Internet competition.  

However, the average squared error after training of an LSM with a liquid 
of 135 integrate-and-fire neurons was lower than that of the much larger and 
more complicated solution by Hopfield & Brody [31,32]. With noise added, the 
difference in performance increased even more. The largest and most important 
difference between the two approaches was the real-time computation in the 
LSM. It classified the input streams directly after they ended and did not need 
400ms for evaluation of the generated levels of synchrony [48]. A complex 
blended combination of the LSM and spiking synchrony approaches was found 
to perform with reasonable performance as well [36]. 

The real-time parallel computation ability was explored in a task where 
various features of spike trains had to be extracted by different readout units at 
the same time. These features included, amongst others, the summation of spik-
ing rates over different time windows and the detection of both a spatio-
temporal pattern and spike activity coincidence. Though no exact performance 
measure was provided, it was both stated and shown in example that the LSM 
response was very near to the desired outputs [50]. 

Full spatial-temporal problems are of much higher complexity than the 
tasks described before, as the system will have to deal with correlations between 
different sensory input streams. The applicability of LSMs to such problems was 
explored by presenting it a simulated visual input grid in which an object (ball 
or bar) moved linearly. 36 readout units were trained to predict the sensory ac-
tivation by the object moving through the grid for 25ms and another such group 
for 50ms. Predicting ball movements is a complex task. It requires integration of 
information from past and present inputs about location, speed and object class. 
The most interesting part of the experiment was the unsupervised training of 28 
readout units to predict where the object was going to exit the sensor field. The 
average error on this task was about 4.9 degrees of angle of movement of the 
object [50]. As there was no investigation to the real complexity of the task, it 
might be that these results could be achieved by relatively simple integration of 
local activity in the network. Though it was shown that LSMs could be used for 
non-linear control, there was no real analysis about the true complexity of the 
task of moving the simulated robotic arm to designated positions [37]. 

The results of published experiments suggest that the LSM model with 
spiking neural networks as a liquid is generally powerful. However, no data is 
available yet on the performance of tasks with more direct and noisy input from 
the real world. Nor have there been any experiments specifically exploring their 
applicability on temporal pattern recognition, let alone for patterns from the real 
world. 
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Chapter 5 
Approach 
 
 
Even though all reports published on Liquid State Machines are very positive, a 
lot of big questions about the possibilities and applicability of the model remain 
unanswered. For starters, there has been no thorough investigation to what type 
of network integrates information best. Even though spiking neurons are more 
biologically realistic than rate-coding sigmoidal neurons it is open to debate 
whether they effectively add computational power [25]. We will investigate in 
what configuration integrate-and-fire neurons provide the best pre-processing 
for temporal pattern recognition. 

The main claim that a more dynamic liquid relates to higher computa-
tional power seems to be backed by the experiments comparing dynamic and 
static synapses. However, those results have been acquired on very limited ex-
periments and may not easily scale up for general LSM purposes [50]. Also, only 
relatively large networks have been tested as liquids for a small range of tasks. 
There’s no clarity on whether performance always scales up with column size, 
nor what network size can be expected to provide good performance for certain 
types of tasks [5]. We will compare the performance of static and dynamic syn-
apses for all experiments we run. 

 
 

5.1 Noise Sensitivity 
Having a low sensitivity to noise is important for any task that operates either 
in, or with data from the real world. Apart from the speech-recognition task 
where inputs were jittered and performance improved [48], no results have been 
published yet on what effect noise has on general LSM performance.  

Even so, the results acquired by those who took ‘liquid’ in LSM literally 
indicate a high noise resistance [22]. Their setup consisted of a glass bucket of 
water on top of an over-head projector and a web cam filming the interference 
patterns created by vibrating the water’s surface with motors. The filmed result 
was then fed into a perceptron for classification.  

Despite the extremely noisy nature of this setup they achieved to solve not 
only XOR, but could also discriminate ones and zeros from the Hopfield-Brody 
[31,32] task. The fact that no effort to reduce the level of noise in the system was 
necessary indicates that either Liquid State Machines can operate well under 
noise or the tasks were simpler than we assumed. However, results of experi-
ments specifically addressing noise resistance have not been published.  
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5.2 Pattern Recognition 
All published experiments using Liquid State Machines for temporal pattern 
recognition required the most simple form of recognition: classification of and 
between fixed patterns with little or no noise added to the liquid or input. While 
this still would be a daunting task for many of the recognition techniques cov-
ered in chapter 2, it is by no means realistic [14]. Classification of patterns gener-
ated from templates is much more complex and if successful, would be easy to 
apply in real world applications. Before this can be investigated however, it 
needs to be clarified whether the spiking neural networks used as a liquid do 
indeed provide short-term memory and whether exact spike timings in the in-
put are really important. 

 
 

5.3 Plan of Approach 
We will try to address these questions in our experiments, hopefully shedding 
more light on how well Liquid State Machines with spiking neural networks as 
the liquid can be made to operate in temporal pattern recognition tasks. Because 
noise resistance is so important in operating in the real world we will give this 
extra attention in our experiments. We can achieve this by adding jitter and us-
ing a template based input generation: instead of allowing our LSM to recognize 
the relatively simple stable end-states we will force it to pick out stable features 
in the liquid’s dynamics. By doing this performance is expected to be lower, but 
also much more stable. A more direct approach will be our investigation of the 
performance of an LSM on tasks where recorded inputs from real sensors are to 
be classified. These already have an inherent level of noise that will have to be 
overcome for usable classification or information extraction. 
 
 
5.4 Liquid Stabilization 
It is claimed that the high liquid dynamics ensure longer short-term memory 
and a better separation property. Basically the idea we set forward in this chap-
ter is that the more dynamic and non-linear neurons and synapses can react to 
input, the better. It may therefore seem awkward to propose stabilization of the 
liquid dynamics as a possible desirable effect, but we claim that it could possibly 
lead to a better separation property at lower computational costs.  

Though STDP is a destabilizing factor at individual synaptic level [39], at a 
larger scale it actually regulates network homeostasis [1], something highly de-
sirable. By applying STDP to a liquid of spiking neurons, we can let the network 
adapt its activity to the inputs it receives [61]. Experiments will have to show 
what effects this has on the separation property and overall performance. It may 
possibly lead to easier recognition of activity patterns for different classes of in-
puts. STDP might lead to more stable invariant features as the network could 
adapt to classes of input streams, possibly leading to more powerful temporal 
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pattern classification by the readout units. Experiments will also have to show 
whether this might reduce the need for dynamic synapses in the network.  
 
 
5.5 Implementation Issues 
Apart from the suggestions and questions raised above, there are some other 
specific issues that need to be addressed. One of the most important ones is 
speed. Though spiking neurons can relatively easily be implemented in hard-
ware, simulation of this kind of neurons requires much more computational 
power than traditional artificial neurons do [46]. Though real-time pattern clas-
sification is the primary goal, especially during training and evaluation high 
simulation speeds are highly preferred. This leaves the big question how fast 
such large, dynamic and parallel networks can be simulated on standard se-
quential computers.  

CSIM, the open-source LSM implementation by Natschläger [52] has a 
number of serious drawbacks. Although being optimised and written in C++, 
simulation and training are rather slow, which can only partly be explained by 
its strong use of the Matlab environment for visualisation. Other limitations are 
the lack of freedom for alternating input presentation and most importantly 
general parameter adjustments. We have therefore developed our own experi-
ment framework that allows for easy and fast parameter space exploration, ex-
tensive logging and an easy to use graphical user interface. During the devel-
opment of this software we tried to keep the differences between the network 
details as limited as possible to enable (future) comparisons between results and 
software performance.  

Opposed to the spike-event-based simulation engine Natschläger chose to 
implement, we decided to use an iterative engine for our simulator. Event based 
simulators are theoretically faster, especially when network activity is sparse. 
However, our current full-traversal network operates at much higher speeds 
than CSIM. Typical simulations of liquids of 150 integrate-and-fire neurons run 
over 30 times faster than real time at 1ms resolutions on a typical workstation. 
Large networks of up to 2500 neurons with relatively high connectivity can still 
be simulated and trained at real time speeds, unlike what we could using CSIM. 
Apart from operational speed, the iterative nature of the network simulator also 
allowed us to enable extensive logging and visualization without taking a large 
performance hit. 
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Chapter 6 
Methods 
 
 
In order to investigate the usefulness of Liquid State Machines for the recogni-
tion of temporal patterns, we set up a series of experiments that should shed 
light on particular properties of the whole mechanism. In this chapter we will 
provide the reader with information about our general approach for setting up 
LSMs and running experiments.  
 

 
6.1 Generating Liquid State Machines 
Each network of integrate-and-fire neurons we used as a liquid was randomly 
generated, as were the connection weights from the liquid’s low-pass output 
filter to the readout perceptron(s). For each experiment reported about in the 
next chapter we tried to find the settings that would allow for optimal classifica-
tion. Initially we started our parameter-exploration in the vicinity of the parame-
ter ranges Maass used in his principal and later LSM papers [48,51].  

The neurons of the liquid pre-processor were assumed to be located on the 
integer positions of a 3-dimensional grid. These locations were only used during 
the build-up of the connectivity of the network, as connections were stochasti-
cally determined with the Euclidean distance as a parameter. We used a λ-
function (see equation 5.1) to calculate connection probabilities between pairs of 
neurons. This method allows for controlling both the average number and aver-
age length of synaptic connections with a single parameter λ. For each pair of 
neurons in the network a uniform random process determined whether an ac-
tual connection was formed, self-recurrent connections were not allowed.  
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where we used the values depicted in table X for the connection-dependent scal-
ing factor C, D is the Euclidean distance between the two neurons. The networks 
generated with this rule have a sparse and primarily local connectivity. A ran-
dom ten percent of the neurons were chosen to be inhibitory. While Maass 
wanted to use values close to empirically found biological data, we were mainly 
interested in its effect on the computational power of LSM setup. Initial experi-
ments showed that lower values for λ reduced chaotic effects while improving 
performance. We therefore opted for values around 1.2, instead of 2.0, for the 
key parameter λ. We will cover these findings in the next chapter.  
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Instead of using sensor neurons within the liquid, we provided a random 
ten percent of the neurons with sensory synaptic connections. These connections 
receive direct spike trains from our input generators and can be seen as coming 
from a neuron of which the input streams directly encode its activity. The syn-
aptic efficacy of the connections was uniformly chosen within a range of [0,ss] 
for sensory connections and [0,sn] for normal interconnectivity. We will provide 
the exact settings used for each experiment in the next chapter.  

All neurons had membrane time constants of 30ms, an absolute refractory 
period of 3ms for excitatory and 2ms for inhibitory neurons. The important 
membrane potential values were 
set to 0mV for reset and resting 
voltage and 15mV for the firing 
threshold. All neurons received a 
non-specific background current 
drawn from a normal distribution 
with a mean of 13.5nA and a 
standard deviation of 1nA. The 
input resistance was set to 1MΩ 
for all neurons. All synaptic delays 
were set to 1ms, irrespective of 
neuron types and grid distance. 

 
 

6.2 Simulation Overview 
Each experiment we ran consisted of a typically 50 individual runs. For each 
such run we generated a random liquid and appropriate readout unit(s). A run 
consists of 3 phases: initialisation, training and testing. During these three 
phases spike trains are being fed to sensory synapses of the networks. These in-
put streams are either fixed or generated on the fly from a probability template. 
At fixed intervals (typically 200ms) a low-pass filtered snapshot of the liquid 
state is presented to the readout units. For the classifying perceptrons this input 
is weighted and if above 0.0 the output is a high (1.0) signal, otherwise it is low 
(0.0). For continuous extraction we used simple linear perceptrons of which the 
output is simply the weighted input. We also randomly choose the next input 
stream generator at fixed intervals, generally of equal length. 

The output from the readout units is recorded at the last time step of each 
input interval. During the training phase either linear regression of the p-delta 
rule is applied to update the connections from the liquid to the readout unit. For 
classification the nth readout unit is supposed to only provide high output when 
the pattern of the nth class was presented. Classification performance is meas-
ured for each phase individually in percentage of correct identification. We only 
report the performance of the testing phase. 
 
 
6.3 Input 
A standard challenge in any data processing task is proper input and output 
transformation. Raw input data, i.e. the digitised data we acquire from sensors, 

 
C(a,b) Neuron b 

Inhibitory 
 
Excitatory 

Neuron a   
   Inhibitory 0.1 0.4 
   Excitatory 0.2 0.3 

 
Table 1. Neuron-type dependent scaling values 
for determining network connectivity. General 
trend is to generate few connections to inhibitory 
neurons, intuitively allowing those more feature 
specific reactions. [48]. 
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seldomly fits what the data processor understands, so often we are forced to 
translate it into signals it does. The output we receive after processing can pose a 
similar problem if it’s not easily clear what the data processor is telling us. Spik-
ing neurons use trains of individually timed spikes to transmit signals [63]. If we 
want to use such a network, we’ll have to make sure that we are able to properly 
translate our raw input into such spike trains. We also have to be prepared to 
receive and handle these temporal signals as the network’s output.  

The great computational power of spiking neurons lies in the fact that they 
react non-linearly to input; it is not so much the (average) number of incoming 
spikes that matters, but their exact timing that has a large effect on the output of 
the neuron [25]. This posed a problem that people have been struggling with 
ever since. The case is that we can quite easily devise methods to transform in-
put in the average activity of spike trains, but nobody has been able to find a 
general rule that allows good use of exact timings of spikes [10]. Whenever we 
want to interface spiking neural networks with input other than spikes (which is 
usually the case) we’ll thus have to find a good method to translate the temporal 
aspects of the input into spike trains [11]. As said, this is an art on itself and ex-
tremely important with respect to the theoretically achievable performance [46].  

To be able to analyse the performance of our LSM setup we chose to gen-
erate single Poisson spike trains using probability templates as input. We can 
control and check the characteristics of these spike trains and can determine 
much about what features can and possibly are being used by the LSM [12]. To 
allow for such analysis of what our LSM set-up is capable of, we will keep our 
set of experiments limited to tasks with individual input streams that are 
switched over time. All sensory synaptic connections receive direct input from 
this single input stream. While such single input streams are highly unrealistic 
from a biological point of view [14], the good thing is that it allows analysis on 
the complexity of the task. In contrast, this is nearly impossible for the Hopfield-
Brody speech recognition task [31], or actually nearly any published LSM appli-
cation. As our approach for transforming the rough sensor data acquired from 
artificial whisker sensors into identifiable probability templates is novel, we will 
describe it in detail in the results section of this thesis.  

 
 

6.4 Output 
Decoding the output of the network poses us with similar encoding problems: 
because of activity sparseness we cannot simply use the binary output for our 
linear readout units.  At many moments in time no spikes will be fired at all and 
with no network activity the readout units have no cue to base their output on 
[48]. Due to their high non-linearity, the membrane potentials of the spiking 
neurons neither provide a good indication for determining the readouts [11]. 
Instead, we apply a low-pass filter on the output of the liquid neurons with a 
window that reflects their membrane time constant of 30ms. By doing this we 
do throw away a lot of temporal information, but as the experiments show it 
suffices for our need [51]. It does rightfully raise the question why to use spiking 
networks at all: it may seem like a computationally intensive variant of a stan-
dard rate-coding network. However, the network’s internal non-linear dynamics 
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do rely on the exact timings. Using a proper temporal output decoding could 
possibly enhance the computational power of the mechanism [5,37].  

During a fixed number of time steps input from one source gets fed to the 
sensor synapses of the liquid. Depending on the task, the liquid state is either 
extracted continuously at each step of simulated time or only at the last time 
step of an input period. We did not collect a series of liquid states to optimise 
our readout units with, but chose to train the LSMs on the fly; allowing the 
readout units to encounter a much more diverse range of inputs and so lowering 
the chance of over fitting.  

The weights of connections to the readout units, initially uniformly chosen 
in the domain of [–0.05,0.05], were updated at fixed training intervals using 
standard linear regression or the p-delta rule. We tested both these algorithms 
for all tasks, and will report on our findings in the last section of the results 
chapter. These intervals were typically of the same length as the input streams. 
After each input period the new generator was randomly chosen. We could 
choose to reset the liquid state at these moments by erasing all spikes in the 
network and setting the membrane potentials to uniformly chosen random val-
ues between their resting and threshold value. While others 
[22,26,37,48,49,50,58] choose to do this at every input switch, we primarily inves-
tigated the more realistic situation where this does not happen. Residual noise 
from previous inputs will thus be present in the network. This not only makes 
the initial network state noisier, but the full setup more realistic for continuous 
online usage. 

We used three distinct periods during each simulation, for initialisation of 
network activity, training and testing of performance. Apart from network acti-
vation, the initialisation phase allows STDP [61] to be applied before the actual 
training phase. Intuitively, changing network dynamics during the training and 
testing phases might disturb classification.  

As readout units we used perceptrons with a threshold value of 0.0 for bi-
nary classification and linear perceptrons for continuous output approximation 
tasks. Initial connection strengths were uniformly chosen between –0.05 and 
0.05. We trained these readout neurons at the end of each input presentation, 
primarily using the standard delta rule. In general just one neuron was used per 
readout, unless indicated otherwise. We used typical learning rates of 0.01 and 
0.15 for respectively the delta and p-delta rules [2]. For all experiments we will 
report on when we used settings that deviate from these standards. 
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Chapter 7 
Experiments and Results 

 
 
Liquid State Machines seem to provide a powerful and noise robust method for 
temporal pattern recognition and input classification, as well as allowing feature 
extraction on continuous input streams. We will investigate the applicability 
and performance of this method by means of experiments specifically set up to 
test particular properties. The main goal of our experiments is to identify the 
general applicability of liquid state machines with spiking neural networks as a 
liquid for realistic noisy temporal pattern recognition. We will therefore address 
noise robustness and the required level of parameter tweaking for acquiring op-
timal performance of the setup in particular. 
 
 
7.1 Temporal Activity Integration 
With the implementation of our LSM completed, we set off with a first set of ex-
periments to test whether it could indeed classify inputs. We chose to run a se-
ries of experiments with as simple as possible temporal input integration: classi-
fication of two independent Poisson random spike train generators with differ-
ent spike generation rates. A Poisson spike train (PST) consists of a series of in-
dependent Poisson experiments to determine whether a spike occurs at that par-
ticular moment in time [25]. Due to this independent probabilistic nature single 
individual moments in time do not help in classifying the input stream.  

The only variable in a Poisson experiment is the probability of a spike: on 
the long run the average number of spikes recorded will approximate this value. 
As there is no correlation between subsequent spikes, the Inter Spike Interval 
(ISI) property of the spike train also directly depends on the probability of a 
spike occurring. Due to the real-world nature of spike trains we do not refer to 
these spike probabilities directly but identify these by the average number of 
spikes over time in Hertz [38]. Together, this task requires the liquid to integrate 
the incoming spikes over an as long as possible period of time in order to allow 
accurate information on input averages to be extracted by the readout units.  

The interesting property of this task is that we can calculate the maximum 
possible performance. Because only the number of spikes is informative on what 
generator was used, we know that LSMs with higher performance than chance 
are using this cue to make the classification. The best strategy would be to make 
the decision only dependent on whether the recent number of spikes is above 
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the cutting point of the two used distributions. If we take a look at the distribu-
tion of average number of spikes within a 200ms window in Figure 10 we see 
that the distribution ‘bumps’ of the 10Hz and 100Hz generators are nicely apart. 
We can calculate the maximum performance by dividing the sum of the cor-
rectly classified averages by the total number of occurrences. As there is very 
little overlap the maximum performance in this case would be 99%. However, if 
we check Figure 10 we see that the overlap within an averaging window of 
30ms for these two generators is much greater. This means that if the liquid does 
not properly integrate much information in it’s dynamics, the readout units are 
expected to only extract information from within the membrane time constant 
time of 30ms. 

We tested three combinations of generators: 10Hz vs. 25Hz, 50Hz and 
100Hz. Data was acquired from 50 independent runs per combination, 200ms 
per generator period, 1000 training and testing periods summing up to in total 
400 seconds of simulated time per run. Though generating few spikes 10Hz and 
25Hz are realistic spike generation frequencies. During training, at the end of 
the input stream we trained one perceptron to classify what generator was used. 
The liquid consisted of one column of 3x3x8 integrate-and-fire neurons gener-

Figure 10. Average numbers of spikes generated by different random Poisson spike train genera-
tors within fixed intervals of 200ms (left) and 30ms (right). The only distinctive property for classi-
fication of these spike trains are their long-term averages, due to their stochastic nature no infor-
mation is encoded in individual spike timings. Averages acquired over 50.000 runs per generator. 
 
 

 
10Hz 
vs. 

Th. max 
200ms 

Th. max 
30ms 

Max perf. 
 

Avg. perf 
 

Std.dev 
 

25Hz 79.9 63.3 73.0 60.0 6.1 
50Hz 96.1 76.4 89.6 76.0 8.0 
100Hz 99.9 88.9 96.6 87.5 5.9 

 
Table 2. Theoretical maximum and actual attained performance in classification of two random 
Poisson spike train generators. Results achieved in 50 independent experiments per generator 
combination. Performance in percentage correctly classified patterns. 
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ated with synaptic upper bounds of sn=ss=2.5.10-7.  These parameters have been 
experimentally found by exploration of a large part of the parameter space and 
were chosen as they achieved highest average and maximum performance, 
where other settings did not always surpass the theoretical 30ms maximum. 
Performance is measured in how often the readout unit correctly indicates the 
current generator class. We use such small values in order to work in realistic 
domains of micro Volt thresholds and nano Ampere inputs, but all could be 
scaled up to more accustomed values. 

The results shown in Table 2 show us quite clearly that our LSM setup is 
indeed capable of correctly classifying input streams. We can see that the aver-
age performance is very close to the theoretical maximum with a 30ms integra-
tion period. If we take the standard deviation into account we can conclude that 
a good share of the generated networks do integrate information in the liquid 
dynamics, as their performance lies beyond what’s possible to extract from just 
the low-pass filtered state of individual neurons. We double-checked this by 
running a separate set of experiments in which we set sn to 0 to disable all inter-
nal network connections. The best individuals all approached the theoretical 
maximum performance for 30ms averaging windows, just as we would expect.  

Another observation worth mentioning is that the maximum performance 
does not reach the theoretical maximum for the full 200ms input period. We ran 
series in which we varied these periods. Longer experiments (400ms periods, 
results not shown) show only slightly higher averages while maximum per-
formance remains the same as with shorter integration periods. These longer 
time spans might help to cancel out residual noise in the network activity. To-
gether this indicates that the network’s fading memory-span lies below 200ms. 
The maximum performances relates to an integration span in the order of 60 ~ 
90ms, 2 to 3 times the membrane time constant and integration period of the 
low-pass filter. We found no significant differences in performance between us-
ing a single perceptron with the delta rule and training 1, 3 or 5 parallel percep-
trons using the parallel delta rule. 
 

 
7.2 Temporal Input-timing Integration  
With the knowledge that our LSM setup can indeed classify input streams and 
integrate information in its liquid dynamics, we were interested in its capabili-
ties to use exact spike timings. To investigate this we chose to pit fixed Inter-
Spike Interval (fISI) generators against the random Poisson generators we used 
in the previous experiment. Such a fixed inter-spike interval generators create 
randomly offset spike-trains of which the spikes follow each other with a fixed 
interval. The random offset (together with activity residue of previous genera-
tors) ensures that the readout units cannot just learn a fixed end-state, but have 
to identify a certain liquid dynamic for classification. By setting the long-term 
average spike generation rates equal for both types of generators we made sure 
that the LSM could not use the same strategy of linearly separating input or liq-
uid activity.  
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We tested three combinations of Poisson and ISI generators at 25Hz, 50Hz 
and 100Hz. Data was acquired from 50 independent runs per combination, 
100ms per generator period, 1000 training and testing periods. The learning rate 
to train the single readout perceptron was 0.01, while the liquid consisted of one 
column of 4x4x5 integrate and fire neurons generated with sn=ss=2.5.10-7.   

We can see in Table 3 that quite many runs achieved much higher per-
formance than would be possible when relying solely on the linear separation of 
average input activity. This means that actual spike timing has been taken into 
account. The maximum performance found for identifying 100Hz generators is 
very high, but does drop slightly with lower fire frequencies; as the standard 
deviation of the random Poisson spike trains decreases the LSM only have the 
input timings as a cue for correct classification. 

Even though we find quite a high standard deviation of the average 
performance, we see that on average quite many individually generated 
networks find a better strategy than just to rely on the average number of spikes: 
this would result in a performance of 50%. This means that actual spike timing 
is being taken into account. If we take a look at the maximum performance we 
see that this indeed must be the case as it’s far beyond what a simple uniform 
network activity strategy could achieve. Further evidence to support this can be 

 
Average 
input 
rate 

Th. max  
over 100ms 

Maximum 
performance 
 

Average per-
formance 

Standard 
deviation 

25Hz 68.1 82.6 62.0 8.6 
50Hz 67.7 80.4 59.7 7.0 
100Hz 67.4 95.6 67.4 11.0 

 
Table 3. Theoretical maximum and actual attained performance in classification of a random 
Poisson spike train generator and a fixed Inter-Spike Interval generator at the same average 
spiking rates. Results gathered in 50 independent runs per combination. Performance in per-
centage correctly classified patterns. 

 

Figure 11. Average (left) and maximum (right) performance plots for classification of a 50Hz
Poisson spike train and fixed inter-spike interval generators for different synaptic weight distribu-
tions. Synaptic weights are uniformly chosen between 0 and indicated values. While ‘sensor’ syn-
apses receive external pattern input, ‘normal’ synapses connect neurons in the liquid. 
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seen in Figure 11; high values for the uniform generation of the sensory synaptic 
weights relate to a lower average performance. This is in accordance with the 
visual (see fig. 12) and statistical analysis of the liquid dynamics that such 
higher values seem to over-steer network activity, i.e. the network activity 
seems to follow the sensory input directly, instead of showing more homoge-
nous activity patterns. 

Also, the highest attained performances were all well beyond the theoreti-
cal maximum for 100ms averaging that worked in the previous experiment. This 
means that the integrate-and-fire networks did encode informative features on 
input timings in their dynamics. And of course, that the readout perceptrons 
were able to extract this information  

 
 

7.3 Temporal Pattern Recognition 
In the previous experiments we have shown that the LSM setup can be applied 
for the classification of randomly generated template based patterns. The ‘tem-
plates’ we used were very simple in nature: uniformly distributed and fixed in-
terval spike trains. We will now up the ante by using more complex templates 
for spike train generation. Apart from testing the classification performance of 
such continuously generated patterns, we will also investigate with what per-
formance fixed patterns can be detected in a stream. This latter task is expected 
to be much more simple as the readout unit can get away by recognizing just the 
(more-or-less) stable end state of the fixed pattern. In order to make the task 
more challenging, we chose to have the readout units differentiate the continu-
ous stream from not just only one fixed pattern but also from three such fixed 
patterns.  

As generator templates we used linearly increasing, decreasing and sinoid 
probability templates. The sinoid period 
was set to 60π, scaled to an amplitude of 
0.05 and offset by 0.065. The linear 
generator was monotonously increasing 
from 0 to 0.2 over 250 time steps, after 
which it decreased to 0 again over an equal 
period. Input epochs were 250ms in length 
and each time the starting offset was 
chosen randomly. These function 
characteristics were chosen such that the 
resulting spike trains had a roughly equal 
average activity. It should be noted that 
these templates are very similar and that 
the class identification by the resulting 
spike trains is a very daunting task. 

The fixed patterns were generated 
from the same continuously generated 
stream against which they should be 
classified. To avoid lucky shots in the sense 
of using simple identifiable sets of patterns 

 

 
 
Figure 12. A typical liquid state snap-
shot of a network of 144 neurons. Aver-
age neuron activity is colour coded: the
darker blue the more active the neuron
was over 30ms. Yellow tinted neurons
receive the input patterns over sensory
synaptic connections. Internal connec-
tions are not shown. 
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by chance, we ran all these experiments 10 times in which a fresh set of fixed 
patterns was used. We pitted these fixed patterns against both the generator 
used to create them, as well as the ‘other’ generator (sinoid vs. linear). All ex-
periments consisted of 50 individual runs that all used randomly generated net-
works for the liquid.  

Performance was measured as the percentage of cases where the readout 
unit’s output was 1 at the end of the input period of the continuous random 
generator and 0 otherwise. The results of these experiments can be read in Table 
4. In contrast to the other performance tables we also provide the worst per-
forming LSM, as this sheds more light on the complexity of the task and the abil-
ity of LSMs of identifying (a number of) fixed patterns in a continuous stream.  

The results of these experiments show that, as expected, the liquid state 
machine framework is very suited for classification of individual patterns. The 
perfect maximum score and very high average performances found in the task 
of recognizing a single fixed pattern out of a continuous stream proofs the intui-
tive notion that it’s relatively easy for the readout perceptrons to identify stable 
end-states.  

The performances in the tasks of identifying a set of three different fixed 
patterns from a continuous generator are much more interesting. Table 4 shows 
the lowest maximum score, the overall average (500) and the lowest minimal 
performances found over ten separate experiments with different sets of fixed 
patterns. These results clearly indicate that the readout units are indeed capable 
of detecting stable features between a set of patterns, the maximum perform-
ances are near perfect for any combination of generator and set of fixed patterns.  

When we compare these results with the experiment of classifying the 
random sinoid from the linear generator we see a drop in performance of 
around 25% correct. Though this is a significant fall, it was sure expected for this 

 
Task Patterns Performance    
 Maximum Average Standard 

deviation 
Minimal 

Random sinoid vs.     
   1 fixed sinoid  100.0 99.4 1.3 91.2 
   3 fixed sinoids 96.4 81.3 11.0 52.8 
   3 fixed linear 99.7 94.5 5.0 72.0 
   1 random linear 78.0 67.3 7.6 50.6 
     
Random linear vs.     
   3 fixed sinoids  97.9 80.2 10.3 53.7 
   3 fixed linear 99.6 91.6 10.1 51.0 

 
Table 4. Performance in binary classification of template-based generated input streams. Fixed 
patterns are re-used throughout the experiment, while random streams were continuously sto-
chastically generated for each input presentation. Both streams had equal average activity and 
were randomly switched when after 200ms the classification decision had been made. The re-
sults of the fixed pattern experiments are the average of 10 independent experiments of 50 runs, 
each of those ten with a freshly generated set of fixed patterns. 
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is a much more complicated task. It does show us, however, that template based 
spike pattern generators can be used for class identification and that we can ex-
pect high performance if we can make these to use specific spike timings as 
these lead to more identifiable end-states of the liquid.  
 
 
7.4 Continuous Readouts 
All experiments we have presented till now have only been aimed at investigat-
ing the possibilities of using the LSM framework with networks of integrate-
and-fire neurons for identifying patterns after a fixed input period. The readout 
units were trained to recognize stable features in the state of the liquid at the 
end of the input, not to provide correct output during all of this period. Though 
handy, it would not be realistic to expect correct immediate classification; the 
identifying features simply lie in the temporal structure of the input. In fact, cer-
tain patterns might only be recognizable after a relatively long input period. 

There are three important questions if we are interested in the continuous 
classification of input patterns. The necessary length of input before a reliable 
decision can be made, the stability and reliability of the output of the readout 
units over time and what the time-span is during which the readouts provide 
reliable and correct classification. This last question is particularly important as 
we train our readout units at fixed intervals. The first question is extremely task 
dependent and therefore not interesting for our investigation. The other two 
questions can be addressed though by taking a look at the continuous output of 
readout units.  

Figure 13 shows the binary output of a perceptron trained to recognize a 
fixed spike train from a continuous random stream each 200ms, both streams 
based on the same sinoid template used in the previous experiment. Perform-

Figure 13. Continuous output plots of a readout unit Task was to recognize the randomly gener-
ated spike train, based on a sinoid probability function, by an output of zero and to identify one
particular fixed pattern by an output of one. Readout consisted of a single perceptron trained using
the p-delta rule and acquired a score of 99.6% correct over a 50.000ms testing period (2500 testing
moments). Input class in blue (slightly offset and scaled for better visual comparison) and actual
output in red. Bottom figure is a detail of top, zoomed in on time steps 11.000 to 12.000. 
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ance of this particular single perceptron trained using the parallel delta rule was 
99.6% over 2500 test cases. Run time of the experiment was much longer than 
plotted in Figure 13, but would not have been much more informative.  

The output of the readout unit is very unstable over time. It neighs more to 
‘1’ while dipping to ‘0’ for shorter periods of time at seemingly random inter-
vals. However, output is regularly stable for about 30ms just before the readout 
moments of a class ‘0’. This may be correlated with the low-pass output filter, 
but not fully. Though they lengthened, these stable periods did not surpass 
much beyond 40 to 50ms. These periods of stable output indicates that the net-
work activity around these moments has identifiable stable features that are 
picked up by the readout unit. The readout units cannot be used for continu-
ously identifying what pattern is being presented, as their performance is only 
reliable after 200ms of input. Other examples (with lower performance) pro-
vided a more stable output of ‘0’ with occasional short jumps to ‘1’ at appropri-
ate readout times.  

We ran a vast set of experiments in which we attempted to enhance the 
duration of reliable pattern classification. We trained readout units not only at 
the end of each input period but at fixed intervals of 10, 25, 50 or 100 time steps. 
Results were simply bad for the training intervals lower than 100ms. This can be 

Figure 14. Continuous output plots for readout units trained to provide the average input over
different integration periods. Respectively (top to bottom) 30ms, 50ms, 100ms and 200ms. Liquid
activation was presented to the readout units low-pass filtered over 30ms (top row) and 80ms. Two
rightmost pictures are details of the left counterparts. Output from readout units in red, target val-
ues in green. 
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explained by the liquid dynamics being too dynamic for the readout units to 
pick up stable features during the full input presentation. Using multiple (1,3,5) 
parallel perceptrons only improved performance a couple percent points above 
chance, much less than would be expected of these theoretically very powerful 
readout mechanisms. Using a single perceptron for classification and training 
intervals of 100ms for input periods of 200ms showed an overall drop in per-
formance to a maximum of 88.4% and an average of 78.6%, but did provide 
more stable and reliable continuous readout outputs. Generally the output 
switched to the right classification after 100ms of input and remained relatively 
stable for the duration of the input stream. 

Besides classification of input, it is possible to do other forms of computa-
tion on continuous input streams [48,50]. As we are currently investigating pat-
tern recognition on single input streams the number of useful operations is lim-
ited. However, without going too far out of our way we can gain extra insight in 
the temporal integration properties and therefore memory-span of the liquid by 
requiring a set of readout units to approximate the average input over different 
periods of time.  

In this set of experiments we added four extra linear neurons that were 
trained to provide the input average over 30, 50, 100 and 200ms. We ran these 
experiments with both 30ms and 80ms as the integration periods for the low-
pass filter. The four plots in Figure 13 show the response of these readout units 
after training, along with their target value plotted in green. The plots in the top 
row were taken from experiments that provided the standard 30ms low-pass 
filtered liquid state to the readout units, in the experiment shown in bottom row 
an averaging window of 80ms was used. 

These plots give good insight in the relation between the integration pe-
riod of the low-pass filter and the amount of dynamics the readout units get 
presented: the shorter the averaging window the more chaotic the input and be-
cause these are simple linear neurons also their output. The readout units that 
get the 30ms average liquid state can approximate the input average very well 
over 30ms and 50ms and increasingly less so for longer periods. Oppositely, the 
80ms averaging filter allows the readouts to approximate the average input ac-
tivity over 100ms very well and reasonably for 200ms, but removes much of the 
liquid dynamics that allow these linear neurons to pick up the short term input 
averages.  

Another obvious conclusion we can draw from these plots is that all read-
out rely on the same features, as their output is roughly the same after training, 
only scaled differently. Inspection of their weight vectors shows that these are 
not uniformly distributed and that overall liquid activity is not used as a queue 
per se. This is in check with the sensory synaptic connections not controlling 
their post-synaptic neurons completely and the observation that network activ-
ity remains for a good while (>100ms) after input has seized.  

The main conclusion we have to draw is that the networks we used as liq-
uid integrate the average input very well, even over time-spans much longer 
than can be expected from the membrane time constants of the individual neu-
rons. The reason for the readout units not to approximate these averages very 
well beyond the integration period of the input filter is the linear nature of these 
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readouts combined with the input-filter itself. In case of the 80ms filter the short-
term dynamics are effectively filtered out, while the 30ms filter does not provide 
enough stable features that the single perceptron can rely on. Using a low-pass 
filter to translate the liquid state is seemingly too coarse for fine-grained tasks.  

Though we will cover the application of dynamic synapses in the liquid 
more thoroughly later on, we should remark here that in this set of experiments 
these synapses tended to make the networks a tad too dynamic for continuous 
feature extraction. We were unable to train perceptrons to approximate the av-
erage input. The output of trained readouts remained completely chaotic. Visual 
inspection of the liquid did reveal more ‘waves’ of activity in the liquid. As 
fixed-interval classification performance did not drop significantly, we recon 
that the low-pass output filter might not translate the liquid state properly for 
continuous readouts.  
 
 
7.5 Artificial Whisker-data Pattern Recognition 
All experiments presented above used only simple stochastically generated in-
put streams. While these spike trains did help us to provide insight in the possi-
bilities of using liquid state machines in temporal pattern recognition, they were 
not very realistic input. Apart from the Hopfield-Brody speech recognition task 
[31,32] we are not aware of any attempt of using LSMs to classify patterns of real 
world data. Though speech recognition might proof very useful in the future, 
we are not very much interested in dealing with this problem using our LSM 
setup. Speech can be analysed very well in chunks, from which its many high-
level features can be extracted [15]. In our opinion the LSM has many strengths 
that enable it to be applied to raw input streams, which is why we propose to 
use this method for near real-time identification of textures using artificial 
whisker sensors.  

 

Figure 15. (Left) An artificial whisker sensor and its signal on the oscilloscope screen. The sensor
consists of a strand (here a real rat whisker) glued to the membrane of a small electro microphone.
The signal is amplified before being fed to the A/D converter that sends it to the computer that
records the signal. (Right) Recording of a full sweep (back and forth) of an artificial whisker sensor
against a piece of sandpaper (grain 120).  
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The ambitious European Union IST project ‘Artificial Mouse’ aims at the 
development of an ‘artificial mouse’: “an autonomous system that combines 
visual and tactile information processing to achieve object recognition, naviga-
tion and memory formation”. The Zurich AI Lab is one of the labs that collabo-
rate to build this robot and focuses primarily on artificial whiskers [8,44] and 
sensory integration. They built a series of artificial whisker sensors (see fig. 15), 
basically by attaching some random thread or a whisker from a cat or rat to the 
membrane of a small electro microphone. Statistical analysis of the signals ac-
quired by brushing these sensors against various textures indicates (see fig. 15) 
these can indeed be discriminated [27]. Though a receptive field method has 
been developed, the project is currently looking into methods of higher biologi-
cally realism and in-tune with neurobiology data found in experiments with real 
rats: LSMs provide a suited means of potentially real-time texture recognition, 
definitely more biologically plausible than (off-line) statistical analysis. Also, 
part of the rat brain involved in texture recognition seems to resemble cortical 
micro-columns, groups of heterogeneous directed neurons that process informa-
tion [13,56].  

Though these recordings are very easy for humans to distinguish by just 
hearing them, they do proof to be hard to discriminate using known techniques. 
At the Zurich Institute for Neuro-Informatics attempts have been made to base 
classification on overall frequency power, but performance did not improve 
much beyond chance (Weiller, D., personal comm.). The signals are very noisy 
and unlike small bits of speech do not show nice blobs in their spectrograms (see 
fig. 16) but a seemingly rather randomly distributed series of peaks across many 
frequency bands. Also, as there are no clear onsets, peaks and offsets in these 
spectrograms this more or less disqualifies the method Hopfield [32] used to 
transform recordings into spike-trains.  

 

Figure 16. Spectral analysis of recording of the word ‘one’ (left) and the whisker sensor response
to a single sweep over sandpaper (right, raw data shown in fig. 15). While human speech has many
nice properties that help temporal processing, like different on and offsets on various frequency
bands, audio processing of whisker recordings suffers from very high levels of noise and very few
identifying features.  
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Because no suited method for generating spike trains from noisy data was 
available and our stochastic spike-train templates worked very well in the pre-
vious tasks we decided to try and build such probability templates for a set of 
different textures [10]. Miriam Fend generously provided us with the data from 
long experiments where an artificial whisker was being swept back and forth by 
a small motor against a large set of textures. Each experiment was done with 
motor speeds of 1Hz and 4Hz. Each experiment consisted of 100 sweeps back 
and forth against one texture. The analog data from the sensor and the motor 
commands were converted and recorded at 4KHz. The full data set covers 25 
different textures. 

Figure 15 shows the sensor output data from one full sweep against sand-
paper (grain 120): even when there is no contact with the texture the sensor 
readouts have high levels of noise, as can be seen in the ‘silent’ parts of the 
sweep and in the lower frequency bands of the power spectrogram of this re-
cording. These high levels of noise can ruin the whole purpose of building a 
template that holds the right temporal information. To build fair probability 
templates we therefore calculated the ‘average’ sweep over the full texture re-
cording. Though reduced, these averages still show high amounts of noise. 
However, we can be certain that we have captured the most important temporal 
traits of the full recording in this average sweep. The remaining levels of noise 
should not necessarily be problematic, as these are uniform and will be present 
in all recordings. 

We analysed these average sweeps using power spectrographs (see fig. 
16). While these seemed to be very ambiguous at first sight, we did notice a 
number of temporal differences in the more coarse spectrographs. When inves-
tigating the plots of single frequency bands we found peaks of different ampli-
tude and timings, exactly what we need for generating a useable probability 
template. 

 

Figure 17. Temporal probability templates for spike train generation. Templates were generated
from single frequency power bands of recordings of artificial whisker sensors swept back and forth
(two peaks) against a certain texture. The raw data is easily identified by hearing it, but very am-
biguous in all sorts of statistical analysis. Though very similar, the resulting spike trains could be
correctly classified by our LSM setup. 
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Our first attempt for constructing these templates was to use the power 
spectrum of the frequency band between 1000 and 1200Hz. We did this by tak-
ing the power spectrograph with 10 bands of 200Hz each and allowing half-
window overlap. From this full analysis we took the absolute value of the 6th 
band, as this type of analysis provides the data in imaginary numbers. To re-
move the highest levels of jitter we applied a smoothing filter with a window 
length of 12. Then we normalized between 0 and 1 after pronouncing the peaks 
more by taking the square. This method provided templates that we can use for 
the generation of stochastic spike trains and as can be seen in Figure 17 have 
identifiable temporal features as peaks.  

We ran a series of experiments with spike trains generated using this 
probability template generation model. Instead of using the full template we de-
cided to use only 200ms of the first sweep; we’ve shown in previous experi-
ments that the memory span of our present liquid does not last over 200ms, the 
silent period between the back and forth sweep would kill all informative liquid 
activity. The templates were scaled such that the average number of spikes gen-
erated by these 200ms parts would be roughly equal. 

Table 5 shows part of the results of this first set of experiments. Multiple 
texture templates were tested, but results were all very similar. We printed those 
of classifying glossy paper (GP) and sandpaper (grain 120, SP120) as these are 
very easy to differentiate by hearing. Their recordings, analysis and templates 
are very alike though. The performance of near 70% in classifying the continu-
ously generated streams indicates that although our encoding method isn’t per-
fect it does allow for good classification between the two patterns. The results in 
identifying fixed patterns are in line with our previous experiments with sinoid 
and linear templates. 

 
 

 
Task Patterns Max. 

perf 
Avg. 
perf. 

Std. 
dev. 

Min. 
perf. 

Fixed SP120 vs.     
   1 fixed SP120 100.0 99.8 0.2 99.4 
   1 fixed GP 100.0 100.0 0.0 100.0 
     
Random SP120 vs.     
   1 fixed SP120 100.0 99.7 0.9 94.3 
   1 fixed GP 94.0 86.9 5.1 78.0 
   3 fixed SP120 93.0 82.0 8.7 56.5 
   1 random GP 69.3 57.8 5.0 51.0 
   1 random 60Hz 78.5 62.3 7.6 50.5 

 
Table 5. Performance in binary classification of template-based generated input streams, in 
percentage correctly classified. Fixed patterns are re-used throughout the experiment, while 
random streams were continuously stochastically generated for each input presentation. Both 
streams had equal average activity and were randomly switched when after 200ms the classifi-
cation decision had been made. The results of the fixed pattern experiments are the average of 
10 independent experiments of 50 runs, each of those ten with a freshly generated set of fixed 
patterns. 
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7.6 Liquid Optimisation 
In order to try to increase the classification performance we investigated a large 
part of the parameter space of our LSM setup. We found striking differences in 
the effects of certain parameters when compared to the first two experiments. 
Figure 18 shows the effects of different combinations of synaptic efficacies for 
normal and sensory connections. It shows the importance of the strength of the 
sensory synapses to the maximum classification performance, a sharp contrast 
with our findings for the first two experiments (see fig 18.). Apparently the rec-
ognition of complex temporal and noisy patterns requires a neural pre-processor 
with different properties. 

For all experiments we tested the effects of differently sized and shaped 
pre-processing networks. The LSM and ESM theory says that larger and more 
dynamic networks should lead to better performance. Intuition tells us its plau-
sible that this generates more identifiable network states, allowing the readout 
units easier classification. Our findings contradict this notion. Figure 19 shows 

 

Figure 18. Average (left) and maximum (right) performance plots for classification of spike trains
generated using probability templates of sandpaper (grain 240) and rough carton. Synaptic weights
for connections to and within the liquid are uniformly chosen between 0 and indicated values. Sen-
sor synapses receive external pattern input; normal synapses connect neurons in the liquid. Notice
the difference in form of the both plots when compared to those of Fig 11. of the temporal integra-
tion task of the first experiment. 

 

 

Figure 19. Performance in classification of 
whisker sensor texture recordings of fleece and 
cotton for differently sized pre-processing spiking 
neural networks. In all networks 20% of the neu-
rons were provided with a sensory synapse. 
Small networks of just 9 neurons provide equally 
good pre-processing as large networks of up to 
198 neurons, contradicting common beliefs about 
the computational powers of the ‘liquid’ net-
works. 
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the acquired maximum, average and minimal performances over 50 runs in the 
classification of spike trains generated using probability templates created from 
the whisker recordings of fleece and cotton. It is striking that there is no correla-
tion between the size of the networks and their resulting performance: even very 
small networks of 9 integrate-and-fire neurons function well enough as pre-
processors for this complex task! For all our tasks we found that small networks 
could provide good classification if we provided 20% of the neurons with sen-
sory synapses. Researchers at the Frauenhofer Institute found similar results 
when using an evolutionary approach to optimise the networks used in Echo 
State Machines. For a number of tasks performance increased with the network 
size, but for an equally large set of tasks (very) small networks provided equally 
good pre-processing (Van der Zant, personal comm.) as large networks. 

We tested the effects of applying dynamic synapses [49] in the liquid net-
works for all experiments described above. We ran these experiments using both 

the parallel delta rule [2] and 
standard linear regression, and 
using the values for depression and 
facilitation Maass and Markram 
proposed [48]. Other than for the 
continuous readout task we found 
that the classification performance 
was virtually identical to that of 
networks with simple static weight 
synapses. Table 6 shows the 
performance on the inter-spike 
interval classification task of our 
second experiment. The average 
and minimal performance, as well 
as the standard deviation are 
virtually identical for both our 
normal static setup and that using 
dynamic synapses.  

 
rPST vs. fISI, 
50Hz 

Normal +STDP +DS +STDP 
+DS 

Maximum perf. 82.4 72.2 78.0 82.6 
Average perf. 61.3 59.1 61.2 64.2 
Std. Dev. 2.7 6.1 3.4 8.6 
Minimal perf. 50.0 50.0 50.2 51.8 

 
Table 6. Performance in classification of a random Poisson spike train (rPST) and randomly 
offset fixed inter-spike interval (fISI) generators, in percentage correctly classified. Normal indi-
cates the usage of a 4x4x4 network of integrate-and-fire neurons using static synapses with 
weights uniformly distributed between 0 and 1.5.10-7. Other columns provide results for when 
spike-timing dependent plasticity (+STDP) and/or dynamic synapses (+DS) were applied.  

 

 
Figure 20. We can approximate the effect on the
synaptic efficacy of differences in post and pre-
synaptic firing times by simply using boxes. For
network stability it is important that the LTD box is
shallow and long, while the effect of LTP is
stronger but only happens within a short window
of time. Picture by Van Leeuwen, M. used with
permission. 
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We also investigated the effects of dynamic synapses on the more complex 
texture recognition task. In the identification of sandpaper 120 and glossy paper 
the average maximum performance over 50 individual experiments was at 
75.3% correct, opposed to the 69.3% correct for the setup with static synapses. 
Average and minimum performances remained the same though, as did the 
standard deviation. To achieve these results we used ss=1.0.10-7 and sn=1.5.10-7 and 
trained the single readout perceptron using the p-delta rule with a learning rate 
of 0.15. 

To investigate our hypothesis that spike-timing dependent plasticity cre-
ates a network homeostasis that leads to better classification, we used a form of 
multiplicative box-form STDP [6]. In laymen terms this means that we prevent 
saturation of the weights by using a multiplicative form of weight change, 
avoiding the network fixation that many models of additive STDP allow. Box-
form indicates that we approximate the real synaptic change (fig. 6) by simply 
choosing two boxes: one long and shallow one for LTD and one short and rela-
tively high for LTP. Together this forms the following STDP equation to calcu-
late the change in synaptic weight per combination of pre and post-synaptic 
spikes.  
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we use ∆t to indicate the difference in timing of the spikes, A- and A+ are 
the multiplicative constants for which we both use 0.01. Function W describes 
the form and height of the LTD and LTP (see fig. 20). We used a box lengths of 
20ms (-40 to –20ms) and 15ms (5 to 20ms) with heights of respectively –0.3 and 
0.5 for LTD and LTP. 

The results of applying this type of STDP to the detection of the fixed inter-
spike interval generator can be seen in Table 6. While on itself STDP does not 
have a particular good effect on performance, when combined with dynamic 
synapses it does lead to a slightly higher percentage of correctly classified gen-
erators. Especially when we take the standard deviation into account this 
change is significant. Table 7 shows the results of the texture recognition of a 
towel, classifying 7 fixed spike patterns from the continuous generator. Again, 

 
1 random vs. 
7 fixed Towel 

Normal STDP p-delta 
STDP  

STDP  
DS 

p-delta 
STDP 

 DS 
Maximum perf.    86.8 78.2 71.7 86.6 87.8 
Average perf. 68.3 67.1 67.1 71.6 79.1 
Std. Dev. 5.7 3.4 1.5 12.6 10.7 
Minimal perf. 54.8 53.8 63.7 50.3 50.4 

 
Table 7. Performance in binary classification of template-based generated input streams, in 
percentage correctly classified. Both streams had equal average activity and were randomly 
switched when after 200ms the classification decision had been made. The results of the fixed 
pattern experiments are the average of 10 independent experiments of 50 runs, each of those ten 
with a freshly generated set of fixed patterns. 
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STDP alone has little good effect. Combined with the p-delta rule, however, it 
leads to very clustered performance over 50 independent runs. In combination 
with dynamic synapses the results are slightly better than for the static network. 
When the readout units are trained using the p-delta rule we find a massive in-
crease in average performance of over 11%.  

Only in these experiments we saw an increase in performance when using 
the p-delta rule for training the readout units. In all other experiments we did 
apply this rule, but never found radically better results. Though these results are 
preliminary, we can see the pattern that the combination of applying STDP, dy-
namic synapses and using the parallel-delta rule for training the readout units 
leads to significantly higher performance in the classification of complex pat-
terns. 
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Chapter 8 
Conclusions 
 
 
We set up a full range of experiments to investigate the possibilities of using a 
Liquid State Machine with networks of randomly connected integrate-and-fire 
spiking neurons as ‘liquid’ pre-processor for temporal pattern recognition. Our 
first set of experiments further confirmed that these networks integrate informa-
tion in their internal dynamics: the performance of the single-perceptron read-
out units trained using the standard delta rule was beyond the theoretical 
maximum of what could be expected from just the averaging window length. 
These experiments showed that the fading short-term memory-span, or tempo-
ral integration of input activity period of these networks lays around 60 to 
100ms. This shows that information is encoded in the network dynamics, as 
these time spans are well beyond the 30ms membrane time constants of the in-
dividual neurons. This conclusion is also backed by the observation that per-
formance dropped significantly when we shut down the internal network dy-
namics. By using different types of input generators we confirmed that informa-
tion about individual input timings is integrated. Together, this means that net-
works of spiking neurons can be used as pre-processors for temporal input and 
features can be extracted from their dynamic states by linear networks such as 
perceptrons. 

 
 

8.1 Temporal Pattern Recognition 
With the knowledge that temporal features and individual timings of input are 
integrated reliably we ran a series of experiments that aimed at investigating 
real temporal pattern classification. We chose to use probability templates to 
generate classes of spike trains. Instead of applying (temporal) jitter to fixed 
streams, templates capture the concept that class information is encoded in gen-
eral temporal patterns. Some biological sensors are thought to work in similar 
probabilistic manner, but operate with population encoding to allow for more 
reliable input. We only investigated single input streams, though.  

We used simple functions as probability templates and after training our 
setup could perfectly identify fixed patterns from other (sets of) fixed patterns. 
More importantly, with nearly equal performance it could differentiate fixed 
patterns from various continuous stream classes. Simple perceptrons prove to be 
good classifiers when coupled with good liquids: all best individuals could clas-
sify multiple fixed patterns against the continuous generator of the same class 
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with performances of 96% correct classification and up. In this experiment how-
ever, the most interesting results were those of the classification of continuously 
generated input streams. Though significantly lower than for fixed patterns, 
scores of nearly 80% show that spiking neural networks can pre-process tempo-
ral input such that readout units as simple as single perceptrons are able to iden-
tify key dynamic features.  

The weight vectors of the trained readout units show strong connections to 
a small number of neurons in the pre-processing network and mostly weak con-
nections to the rest. This indicates that particular features have been identified 
for making the classification decision, instead of relying solely on general net-
work activity. 

 
 

8.2 Continuous Information Extraction 
All tasks described above required input class identification by the readout units 
at fixed time intervals, at the end of the input stream. Exploration over time 
shows that their output is only reliable for roughly 30ms around these readout 
moments, but cannot be used for continuous classification. Attempts to train 
readouts for such a continuous task failed: the perceptrons are unable to follow 
full state trajectories.  

However, the dynamic network state does allow for computation on the 
continuous input stream. We showed that linear neurons could indeed extract 
continuous features by training a group of readout neurons to provide the net-
work’s average input frequency over various time spans. The presentation of the 
liquid state to the readout neurons is very important. The averaging window 
length of the low-pass filter dictated the perceptron output dynamics, making 
approximation (far) beyond it impossible. Though visually identical, dynamic 
synapses made the network dynamics too chaotic to allow for proper approxi-
mation. Performance on continuous categorization however is on par with liq-
uid networks using static synapses. 

 
 

8.3 Texture Recognition 
We took the frequency power over time of a broad (200Hz) band of recordings 
from artificial whisker sensors [19,44] being swept over various textures to cre-
ate temporal probability templates. We used these templates to generate spike 
trains that correlate with the original textures. Our setup could perfectly identify 
fixed patterns generated from these templates from both opposing fixed and 
randomly generated streams. Again, our readout units could identify multiple 
patterns; this is not trivial, as these patterns were much more complex.  

By using only 200ms of the full templates we acquired classification per-
formances of continuously stochastically generated input streams of around 65 
to 70% correctness. This performance is top notch in comparison with classifica-
tion based on overall frequency power spectra. 
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8.4 Dynamic Liquid Optimisation 
We applied a model of multiplicative box-form spike timing dependent-
plasticity to enhance the separation property. This method altered the network 
weights based on the correlation between pre and post-synaptic activity. This 
leads to regulation of network homeostasis, as over-activity is depressed and 
correlated activity is stimulated. We found no improvements in the classification 
performance over networks with fixed synaptic weights. However, when ap-
plied to networks with very low synaptic weights, STDP could bring perform-
ance to optimal levels. It does add a set of extra parameters that need fine-
tuning and adds significantly in the computational cost of network simulation.  

We tested dynamic synapses [49] for all experiments described above and 
their effect failed to impress us. While the computational load of the simulations 
increased tremendously, classification performance of the readout units did gen-
erally not improve significantly. Dynamic synapses seem to make the liquid a 
tad too dynamic for continuous information extraction by the linear percep-
trons. This might have everything to do with the low-pass filter we apply before 
we present the liquid state to the readout units; short-term dynamic trajectories 
might be dampened too much.  

The preliminary results of the combination of STDP and dynamic synapses 
were very encouraging. We saw maximum performance levels increase slightly 
above those of static synapses, while the average performance improved be-
tween 5% and 10%. In the classification of the fixed inter-spike interval genera-
tor we noticed a significant increase in the minimum performance of 5%. All 
these results were attained using the p-delta rule for the training of the readout 
units. While in all other experiments did not lead to improved performance in 
these cases of more dynamic liquids the differences were striking.  

 
 

8.5 LSM Parameter Tweaking 
Throughout all the experiments we explored important parts of the parameter 
space of our LSM setup. From these results we distilled a set of settings that al-
lowed us to run all of our tasks with satisfactory performance. It should be 
noted that these settings do not automatically lead to optimal classification per-
formance. 

Standard, we used static synapses with uniformly generated weights of 
upper bounds of 1.5.10-7 for both sensory and normal connections. This is a very 
task-specific setting. The standard size of the networks we used was 150 neu-
rons distributed on a 5x5x6 grid. Column shape did not proof to be of impor-
tance. With 20% of the neurons provided a sensory synaptic connection, even 
networks as small as 9 neurons did perform as well as any other liquid.   

Network connectivity is very important however. While good results can 
still be achieved with lambda values of 2.0 we found that values of 1.2 lead to 
generally better performing set-ups. Lower connectivity leads to lower network 
activity and reduces chaotic effects in the network dynamics. Our analysis of 
this observation is that more local connectivity provides a more direct mapping 
from the input for the readout neurons: they are not required to ‘see’ through a 
lot of network dynamics.  
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Chapter 9 
Discussion 
 
 
Though strong theory has been developed about the computational power of 
spiking neurons, there have been few applications that really use their dynamics 
and pulse-coding capabilities. The liquid state machine is novel in the sense that 
it uses the non-linear dynamics of spiking neural networks instead of trying to 
tame them. As such, it is the first model in which these networks can be used for 
a broad range of computational tasks with continuous input, including temporal 
pattern recognition. We researched the usability of Liquid State Machines for 
temporal pattern recognition on continuous input streams. [45]. We trained 
readout units of single and parallel perceptrons using both linear regression and 
the parallel-delta rule to extract information from low-pass filtered snapshots of 
the state of the pre-processing ‘liquid’ network. We purposely did not use artifi-
cial problems as temporal XOR or the parity problem. While these are interest-
ing from a computational perspective, we feel they would not provide us much 
insight in the applicability of our setup for real world temporal pattern recogni-
tion.  

In our experiments we showed that information about both long-term 
temporal features and specific timings of the inputs are integrated in the internal 
dynamics of the liquid and the readout units can use these for classification. The 
recognition performance of fixed patterns was perfect. While visual inspection 
of the activity patterns in the liquid did not reveal any differences in the activity 
patterns, the readout units can be trained to extract features that identify the 
class of continuously random generated input streams with high performance. 
This allows for using the LSM framework in classification of patterns in real 
world data. We tested this for texture recognition with artificial whiskers [44]. 
Single broad frequency band power spectra can be used as stochastic temporal 
templates for generating spike trains. We achieved scores of up to 70% correct 
identification of these very alike and highly noisy inputs after pre-processing by 
randomly generated networks of spiking neurons. 

 
However, it is necessary to point out that this randomness of these pre-
processors is quite relative: the parameter ranges from which the values are 
drawn are slim. Generating liquids randomly seems to imply that the networks 
drawn from these distributions have similar computational powers, while they 
do not. While many of these parameters do have an effect on the average per-
formance, the best individuals found all classify with roughly equal perform-
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ance. Such ‘good’ networks apparently pre-process input much better for classi-
fication by the readout units, as their performance generally lies far beyond the 
average performance of the whole batch.  

This indicates that the internal wiring of these networks is very important 
in creating the right type of network dynamics. We haven’t found any obvious 
differences in the wiring or dynamics of ‘good’ and ‘normal’ networks. It should 
be investigated whether different settings or methods for connecting these net-
works could lead to more reliable generation of networks that do their pre-
processing task well. Further, it would be interesting to see whether networks 
that pre-process classification information well are also optimised for other 
forms of computation on the input streams. 

 
We explored large parts of the parameter space of our LSM setup and reported 
the settings that lead generally to good classification. Due to their input charac-
teristics there seems to be no ultimate set of parameters that guarantees optimal 
performance. Apart from tweaking the settings for each task evolution could be 
employed for parameter optimisation. Classification performance could further 
possibly be optimised by using decaying or adaptive learn rates in the training 
of the readout units, instead of the fixed learn rates we used in our experiments. 
We incorporated these features in our experimentation software and we will re-
port on our findings in the near future.  

Our software, though not of the theoretically more efficient spike-event 
kind, allowed for running experiments very fast: in total we have simulated 
over a year of time just for the results presented. We have shown that networks 
of over 1000 spiking neurons can easily be simulated on standard desktop 
hardware. However, one of our more surprising findings was that very small 
networks of only 9 neurons often suffice for good pre-processing. This might 
only go for single input streams and that larger networks operate better at inte-
grating information from more inputs and modalities. However, these findings 
are contradictory with the theory [34,35,48,49,51] that large networks and com-
plex dynamics lead to better performance. 

 
We showed that single perceptrons are unable to provide reliable continuous 
classification output based on low-pass filtered network states. Different meth-
ods of presentation of the liquid state to the readout units might allow for better 
classification and feature extraction; providing a set of average filters as input 
would allow the readout units to control their dynamics better. We think that 
continuous classification might be possible with just a single filter, by training a 
series of perceptrons at different(ly offset) intervals. A cascade of activity over 
these readout units would indicate the presence of a specific pattern. Parallel 
perceptrons could be suited for identifying state trajectories, though we did not 
find satisfactory results.  

Further experiments will have to provide more insight in the applicability 
of LSMs for the classification of the high-resolution and complex temporal data 
generated by artificial whiskers. Our method of transforming the recordings 
into spike trains will have to be optimised to make better use of exact spike tim-
ings. Also, experiments with multiple input streams from a number of fre-
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quency bands will have to be run with more (identifying) information about the 
original texture it is expected that this will lead to higher performance in this 
complex pattern recognition task. Future work includes incorporating this 
method on a mobile robot [20,21] and using arrays of active whisker sensors [19] 
for real-time object and texture recognition. 

 
We ran a set of preliminary experiments to explore the effects of optimising liq-
uid dynamics using spike-timing dependent plasticity, dynamic synapses and 
the parallel delta-rule. Combined these three new techniques lead to considera-
bly improved performance. When applied to a network of dynamic synapses 
STDP with synaptic redistribution could possibly even further increase the 
computational capabilities of the circuit [40]. We will investigate these cases in 
future work. 

One particularly important question regarding LSMs is the necessity of us-
ing spiking neural networks for the liquid pre-processor. While being new, fresh 
and funky there is no apparent reason that recurrent neural networks with dy-
namic synapses could not provide equally useful dynamics at much lower com-
putational costs [34]. Future experiments will have to compare these two differ-
ent types of networks. Though the dynamics in the liquid are apparently very 
important [5], intuitively there have to be some stable invariant features in the 
liquid that the readout units can rely on, as there is no information to be re-
trieved from sheer chaos. Recent work shows that it is possible to extract invari-
ants from a dynamic structure, a technique called slow-feature analysis [67]. 
Most work on such slowly varying feature extraction has been done on cells 
from the visual cortex, a brain region so highly specialized to its task that the 
technique might not be so easily applied to other dynamic structures [4]. It can 
best be described as an advanced, continuous form of principle component 
analysis (PCA) that can extract the behaviour of the more stable features using 
functions over time. This technique might be used to lower the computational 
cost during normal operation, as instead of a full spiking neural network the ex-
tracted stable features might provide enough information. 
 
The results we’ve obtained show that the Liquid State Machine model is very 
promising for use in real world temporal pattern recognition. Fixed state and 
dynamic template based pattern recognition are just two of the strengths of this 
novel method. The main problems are the reliable generation of good pre-
processing neural networks and the presentation of the liquid state to the read-
out units. A more general issue is the proper transformation of continuous ana-
log input streams into spike trains. For use in AI and robotics it will be espe-
cially interesting to see how well LSMs can be used for the integration of differ-
ent sensory modalities, one of the most difficult problems that exists in the field. 
Though its possibilities have not yet been fully explored, the Liquid State Ma-
chine provides a powerful new mechanism for temporal pattern recognition and 
real-time parallel computation on continuous input streams. 
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