

Krimp Minimisation for
Missing Data Estimation

Jilles Vreeken & Arno Siebes

Department of Information and Computing Sciences
Utrecht University
Technical Report UU-CS-2008-034
www.cs.uu.nl
ISSN: 0924-3275

KRIMP Minimisation for Missing Data Estimation

Jilles Vreeken and Arno Siebes
Department of Computer Science

Universiteit Utrecht
{jillesv,arno}@cs.uu.nl

Abstract

Many data sets are incomplete. For correct analysis of
such data, one can either use algorithms that are designed
to handle missing data or use imputation. Imputation has
the benefit that it allows for any type of data analysis. Ob-
viously, this can only lead to proper conclusions if the pro-
vided data completion is both highly accurate and main-
tains all statistics of the original data.1

In this paper, we present three data completion meth-
ods that are built on the MDL-based KRIMP algorithm.
Here, we also follow the MDL principle, i.e. the completed
database that can be compressed best, is the best comple-
tion because it adheres best to the patterns in the data.

By using local patterns, as opposed to a global model,
KRIMP captures the structure of the data in detail. Exper-
iments show that both in terms of accuracy and expected
differences of any marginal, better data reconstructions are
provided than the state of the art, Structural EM.

1 Introduction

Many data sets are incomplete. Whether dealing with
surveys, DNA micro arrays or medical data, missing values
are commonplace. However, properly dealing with miss-
ing values remains an open problem in data analysis. While
some specialised algorithms exist that are designed to han-
dle missing data, many are not, and can at most ignore miss-
ing values. From statistics, we know [14] this leads to biases
in the outcome of the analysis.

There are two ways to properly analyse incomplete data:

• Using specialised algorithms designed to handle miss-
ing data

• Completing the data by imputation

1This is an extended version of work published at IEEE International
Conference on Data Mining (ICDM’08) [22]

Of these two, imputation has the practical advantage that
one can analyse the completed database using any tool or
method desired. Obviously, this does require the imputation
to be as accurate as possible. That is, all statistics that one
computes from the completed database should be as close
as possible to those of the original data. The problem of im-
putation is thus: complete the database as well as possible.

However, determining what is ‘good’ cannot just be mea-
sured through accuracy: only for 100% correct estimations
we know for sure that all statistics are maintained. In this
paper we consider 0/1 databases in particular and categori-
cal databases in general. This allows us to properly validate
the quality of a completed database in the following man-
ner: we compare the support of a random item set in the
original (complete) database with its support in the com-
pleted database. The rationale is as follows. Analysing bi-
nary data is largely based on counting. If the support of
all item sets are correct, all counts will be correct. So, if
for random item sets that difference in support is nil, we
know that all counts are identical. Consequently, all statis-
tics computed on the completed database will be correct.

To achieve such high quality imputation we use the prac-
tical variant of Kolmogorov complexity, MDL (minimum
description length), as our guiding principle: the completed
database that can be compressed best is the best completion.
The driving thought behind this approach is that a comple-
tion should comply to the local patterns in the database: not
just filling in what globally would lead to the highest accu-
racy. By taking into account how specific values co-occur
locally, not only the global statistics on the data will be cor-
rect but also those measured on the local level.

We approximate this best result using KM, which stands
for KRIMP Minimisation. It is an iterative approach in
which each successive completion has a lower complex-
ity as measured through the compressibility of the data.
KM is built on the MDL-based KRIMP algorithm, that pro-
vides high quality data descriptions through compression
of the data using frequent item sets [21]. The code ta-
bles that form the outcome of KRIMP have been success-
fully used in classification [16], characterising differences

between databases [23] and generating data virtually indis-
cernible from the original [24].

Most good algorithms for missing data first estimate a
model on the data. Structural EM [11] is a good example of
this. Within the iterative EM process the learning of a Bayes
net is integrated. This leads to very good approximations of
the networks underlying the data, as well as state of the art
imputations.

KM is different in that it looks at the local patterns in
the data, rather than a building global model; such local
patterns are often smoothed out from a global stance. The
experiments show that the local approach is indeed superior
to the global approach, both in terms of accuracy and quality
of the completed databases.

2 The Problem

2.1 Preliminaries

Let I = {I1, . . . , In} be a set of binary (0/1 valued) at-
tributes. That is, the domainDi of item Ii is {0, 1}. A trans-
action (or tuple) over I is an element of

∏
i∈{1,...,n}Di. A

database D over I is a bag of tuples over I. This bag is
indexed in the sense that we can talk about the i-th transac-
tion.

An item set J is, as usual, a subset of I, i.e., J ⊆ I.
The item set J occurs in a transaction t ∈ D if ∀I ∈ J :
πI(t) = 1. The support of item set J in database D is
the number of transactions in D in which J occurs. That
is, suppD(J) = |{t ∈ D| J occurs in t}|. An item set is
called frequent if its support is larger than some user-defined
threshold called the minimal support or min-sup. Given the
A Priori property,

∀I, J ∈ P(I) : I ⊂ J → suppD(J) ≤ suppD(I)

frequent item sets can be mined efficiently levelwise, see [1]
for more details.

Note that while we restrict ourself to binary databases
in the description of our problem and algorithms, there is a
trivial generalisation to categorical databases. In the exper-
iments, we use such categorical databases.

2.2 Missing Data

A database D has missing data, if some of its values are
denoted by ‘?’. The ?-values denote that we do not know
what the actual value is, it might be a 0 or a 1. In the tradi-
tional market-basket example, this means, e.g., that we do
not know whether or not Beer was bought in a given trans-
action.

The literature, see, e.g., [17, 20], distinguishes the fol-
lowing three different types of missing data mechanisms.

MCAR which stands for missing completely at random. It
means that the fact that a data value is missing does not
depend on any of the values in the transaction, includ-
ing itself.

MAR which stands for missing at random. This means that
the fact that a data value is missing may depend on one
or more of the observed values, it does not depend on
the “true” value of any of the missing values.

NMAR which stands for not missing at random. This
means that the fact that a data value is missing may
depend on the true value of a missing data value.

NMAR is a very problematic case. Without background
knowledge, unbiased analysis of the data is impossible. As
the vast majority of the literature, we restrict ourselves to
MAR and MCAR only.

2.3 Database Completion

Completing a database simply means that each question
mark is replaced by a definite value, i.e., a 1 or a 0. More
formally we have the following definition.

Definition 1. LetD andDc be two databases over I. More-
over, let D have missing data, whereas Dc is complete, i.e.,
Dc has no missing data. Then, Dc is a completion of D iff

1. D and Dc both have k transactions, D = {t1, . . . , tk}
and Dc = {s1, . . . sk};

2. ∀i ∈ {1, . . . , k} ∀I ∈ I : πI(ti) ∈ {0, 1} → πI(ti) =
πI(si)

An algorithm A that completes any incomplete database is
called a completion algorithm.

There are many possible completions of an incomplete
database. In fact, if D has k unknown values, there are 2k

completions. Clearly, not all completions are equally use-
ful. To define quality measures, we assume that we know
the true complete database, denoted by Dt. The most obvi-
ous quality measure of a completion is accuracy.

Definition 2. Let D,Dt, and Dc be databases over I, such
that D is incomplete, Dt is the true completion of D and
Dc is an arbitrary completion of D. Moreover, let m be the
number of missing values inD and n the number of missing
data values in D on which Dt and Dc agree. The accuracy
of Dc is given by

acc(Dc) =
n

m

Clearly, a 100% accurate completion of D will allow for
unbiased estimates on Dc. However, accuracy is a very
strict measure. If Dc is simply a permutation of the rows

2

of Dt, the accuracy can be arbitrarily low. Whereas such
a permutation still allows for unbiased estimates! Still, ac-
curacy is the most generally used quality measure for data
completion [17].

Alternatively, we could define accuracy upto permuta-
tions. However, this would yield its computation rather
hard. It would require the search for a permutation that
yields maximal accuracy (in the strict sense as defined
above).

To define a less strict quality measure, recall that the
goal of a completion is to allow unbiased statistics. That
is, statistics or models computed on Dc should be as close
as possible to their counterparts computed on Dt. Most
statistical analysis of categorical data depends crucially on
counts and sums. Often subtables are created using selec-
tions and projections, and counts and sums on these subta-
bles are computed.

In the case of 0/1 data, selections correspond to item sets;
in fact we have the following simple result.

Theorem. Let D be a complete database over I, let
J ,K ⊆ I, with J ∩ K = ∅, and let I ∈ I \ (J ∪ K).
The number of 1’s I has in the subtable created by the se-
lection ∧

J∈J
J = 1 ∧

∧
K∈K

K = 0

on D, is given by

suppD(J ∪ {I})− suppD(J ∪ K ∪ {I})

Similarly, the number of 0’s for I is given by

suppD(J)− suppD(J ∪ K ∪ {I})

Proof. A transaction t satisfies the selection if it has 1’s for
all elements of J and 0’s for all elements of K. In other
words, it should be in the support of J , but not in the sup-
port of K.

Given that sums are counts on 1’s on 0/1 databases and
that the above theorem is invariant under suitable projec-
tions, we have the following corollary.

Corollary 1. Let D,Dt, and Dc be databases over I, such
thatD is incomplete,Dt is the true completion ofD andDc

is an arbitrary completion of D. If for all item sets J ⊆ I,

suppDc(J) = suppDt(J)

then all counts and sums on project-select subtables on Dc

equal their counterpart on Dt.

With this result in mind, our new quality measure, we
can measure how good the support of item sets in a com-
pleted database is.

Definition 3. Let D,Dt, and Dc be databases over I, such
thatD is incomplete,Dt is the true completion ofD andDc

is an arbitrary completion of D. Moreover, let ε, δ ∈ R. Dc

is (ε, δ)-correct if for a random (frequent) item set I

P (|suppDt(I)− suppDc(I)| > ε) ≤ δ

In other words, the support of item sets on (ε, δ)-correct
completions are almost always close to the correct value.
The lower ε and δ are, the better the completion is. As an
aside, note that (ε, δ)-correctness is invariant under permu-
tations; the sum is a commutative operator.

There is a simple relation between accuracy and (ε, δ)-
correctness, as given by the following theorem.

Theorem. Let D,Dt, and Dc be databases over I, such
that D is incomplete, Dt is the true completion of D and
Dc is an arbitrary completion of D. If Dc is (0, 0)-correct,
then there exists a permutation σ of the rows ofDc such that
σ(Dc) = Dt

Proof. Let ψ be a maximal injective partial function ψ :
Dt → Dc such that ψ(t) = t. Moreover, let s ∈ Dc\ψ(Dt).
Let the pair (J ,K) be the partition of I, such that s has
value 1 for all items in J and value 0 for all items in K.
This means that s is in the support of J minus the support
of K. Since the support of all item sets are equal on Dc and
Dt, this means that we can extend ψ to have s in its image.
This contradicts maximality and, hence, Dc \ ψ(Dt) = ∅.
Thus ψ is a bijection between D and Dc.

Clearly, if a completion is 100% accurate, it is also
(0, 0)-correct. If (0, 0)-correctness is not attainable, the two
measures differ. Due to the invariance of (ε, δ)-correctness,
it is a more flexible quality measure.

(ε, δ)-correctness is defined for a random item set, what-
ever the support of an item set. Many of these item sets
will have a very low support, in fact, the vast majority will
have support 0. For statistical analysis, however, item sets
with a very low support are not very interesting. Statistics
computed on small data sets, including the frequency of an
item set(!), are not very stable. Small pertubations to the
database may cause large changes of these statistics. Hence,
for the purposes of subsequent statistical analysis it is better
to have a high (ε, δ)-correctness considering frequent item
sets only, rather than having a high (ε, δ)-correctness con-
sidering all item sets.

All frequent item sets is, unfortunately, still a large space
to sample from. It is well-known that the set of all closed
frequent item sets is often far smaller than the set of all fre-
quent item sets. Moreover, for any frequent item set I , there
is a closed frequent item set J such that the support of I
equals the support of J . Hence, if we know that for the
closed frequent item sets suppDt(J) ≈ suppDc

(J), then
this also holds for the frequent item sets.

3

Given these observations, we sample the closed frequent
item sets to estimate (ε, δ)-correctness in our experiments.

2.4 The Completion Problem

With these quality measures at hand we formalise our
completion problem as follows.

The Completion Problem:

Devise a completion algorithm A that yields
an (ε, δ)-correct completion for any incomplete
database with ε and δ as low as possible.

We settle for as low as possible because there may not
be enough information in the database to derive the (0, 0)-
correct completion. For example, if I has only one item,
the database has only one transaction and its value is miss-
ing! Either {1} and {0} are possible, and there is no algo-
rithm that will reliably choose correctly. For all practical
purposes, though, (0, 0) is well approximable.

3 The KRIMP Algorithm, a brief introduction

In this work, the KRIMP algorithm plays an important
role. This MDL based algorithm for item set mining was
recently introduced by Siebes et al. [21], although not yet
by that name. For the convenience of the reader we provide
a brief introduction to this algorithm here.

The MDL principle [13] can be paraphrased as: Induc-
tion by Compression. Slightly more formal, it can be de-
scribed as follows. Given a set of modelsH, the best model
H ∈ H for data set D is the one that minimises

L(H) + L(D|H)

in which

• L(H) is the length, in bits, of the description of H

• L(D|H) is the length, in bits, of the description of the
data when encoded with H .

The key idea of this compression based approach is the
code table. A code table has item sets on the left-hand side
and a code for each item set on its right-hand side. The item
sets in the code table are ordered descending on 1) item set
length and 2) support. The actual codes on the right-hand
side are of no importance: their lengths are. To explain how
these lengths are computed the coding algorithm needs to
be introduced. A transaction t is encoded by KRIMP by
searching for the first item set c in the code table for which
c ⊆ t. The code for c becomes part of the encoding of
t. If t \ c 6= ∅, the algorithm continues to encode t \ c.
Since it is insisted that each code table contains at least all

singleton item sets, this algorithm gives a unique encoding
to each (possible) transaction. The set of item sets used to
encode a transaction is called its cover. Note that the coding
algorithm implies that a cover consists of non-overlapping
item sets. The length of the code of an item in a code table
CT depends on the database we want to compress; the more
often a code is used, the shorter it should be. To compute
this code length, we encode each transaction in the database
D. The frequency of an item set c ∈ CT is the number of
transactions t ∈ D which have c in their cover. The relative
frequency of c ∈ CT is the probability that c is used to
encode an arbitrary t ∈ D. For optimal compression of D,
the higher P(c), the shorter its code should be. In fact, from
information theory [8], we have the Shannon code length
for c, which is optimal, as:

lCT (c) = − log(P (c|D)) = − log
(

freq(c)∑
d∈CT freq(d)

)
The length of the encoding of a transaction is now sim-

ply the sum of the code lengths of the item sets in its cover.
Therefore the encoded size of a transaction t ∈ D com-
pressed using a specified code table CT is calculated as fol-
lows:

LCT (t) =
∑

c∈cover(t,CT)

lCT (c)

The size of the encoded database is the sum of the sizes
of the encoded transactions, but can also be computed from
the frequencies of each of the elements in the code table:

LCT (D) =
∑
t∈D

LCT (t)

= −
∑

c∈CT

freq(c) log
(

freq(c)∑
d∈CT freq(d)

)

To find the optimal code table using MDL, we need to
take into account both the compressed database size as de-
scribed above as well as the size of the code table. For the
size of the code table, we only count those item sets that
have a non-zero frequency. The size of the right-hand side
column is obvious; it is simply the sum of all the different
code lengths. For the size of the left-hand side column, note
that the simplest valid code table consists only of the single-
ton item sets. This is the standard encoding (st), of which
we use the codes to compute the size of the item sets in the
left-hand side column. Hence, the size of the code table is
given by:

L(CT) =
∑

c∈CT :freq(c)6=0

lst(c) + lCT (c)

4

Siebes et al. [21] defines the optimal set of (frequent) item
sets as that one whose associated code table minimises the
total compressed size:

L(CT) + LCT (D)

KRIMP starts with a valid code table (only the collection
of singletons) and a sorted list of candidates. These candi-
dates are assumed to be sorted descending on 1) support and
2) item set length. Each candidate item set is considered by
inserting it at the right position in CT and calculating the
new total compressed size. A candidate is only kept in the
code table iff the resulting total size is smaller than it was
before adding the candidate. If it is kept, all other elements
of CT are reconsidered to see if they still positively con-
tribute to compression. For more details see [21].

4 Completion Algorithms

Another way to paraphrase the MDL principle is: the
better a model compresses the database, the closer it ap-
proximates the underlying data distribution. The key point
of both MAR and MCAR is that they do not perturb this
underlying distribution. Hence, in the spirit of MDL, one
can say: the best completion is the completion that allows
for the best compression.

A straightforward implementation of this idea, however,
runs the risk of surpressing the natural variation in the data.
The more data that is missing, the higher this risk becomes.
How susceptible an algorithm is to this risk can be analysed
by estimating (ε, δ)-correctness. The more susceptible an
algorithm is, the worse the (ε, δ)-correctness will be.

Next, note that for D with n missing binary values the
search space consists of 2n possible completions. Clearly,
finding the best completion quickly becomes infeasible,
even for moderate amounts of missing values. Further, there
is no structure that we can exploit to prune this search space.
Therefore, we settle for heuristics that approximate the best
compressable Dc by making local decisions.

We introduce three such completion algorithms, based
on KRIMP, in this section. For the first two algorithms,
Simple Completion and sc Krimp Completion, we assume
that there is enough complete data to allow sc Krimp to dis-
cover good code tables. Moreover, KRIMP Completion uses
randomisation to minimise the risk of variation surpression.
The third algorithm, called KRIMP Minimisation, does no
longer rely on the assumption that there is enough complete
data.

4.1 Simple Completion

A simple way to impute a missing value is using the max-
imal likelihood estimator. For KRIMP this reduces to short-
est encoded length. Let t ∈ D be a transaction with missing

values and denote by C(t) the set of all its possible comple-
tions. The Simple Completion algorithm SC replaces t by
that element of C(t) that has the shortest encoded length.

More precisely, let D = Dcomp ∪ Dinc such that all
transactions in Dcomp are complete, while all transactions
inDinc are incomplete. The SC algorithm, Fig. 1, first com-
putes a code table CT , by running KRIMP on Dcomp. Next,
each incomplete transaction by its shortest completion.

SC(D)

1 CT := KRIMP(Dcomp)
2 foreach t ∈ Dinc

t := argmins∈C(t) LCT (s)
3 return Dcomp ∪ Dinc

Figure 1. The SC Algorithm

4.2 KRIMP Completion

By always choosing the most likely candidate, the SC
algorithm may have a detrimental effect on the support of
some item sets. Suppose, e.g., that the encoded length of
(1, 1) is slightly shorter than (1, 0). Then each occurrence
of (1, ?) will be replaced by (1, 1) by SC. This leads to an
overestimate of the support of (1, 1) and an underestimate
of the support of (1, 0). The KRIMP Completion algorithm
KC, see Fig. 2, remedies this by choosing an element of
C(t) with a chance proportional to its encoded length. More
precisely, we again assume that D = Dcomp ∪ Dinc as be-
fore. Again KRIMP is first run on Dcomp. The resulting
code table CT defines a probability distribution PCT (t) on
C(t) given by:

PCT (t)(s) =
2−LCT (s)∑

u∈C(t) 2−LCT (u)

The completion of t is chosen from C(t) according to this
distribution. The function CHOICE(C(t), CT) makes this
random choice.

KC(D)

1 CT := KRIMP(Dcomp)
2 foreach t ∈ Dinc

t := CHOICE(C(t), CT)
3 return Dcomp ∪ Dinc

Figure 2. The KC Algorithm

5

4.3 KRIMP Minimisation

For KC to work, we need enough complete data for
KRIMP to compute a good code table. If there is not enough
complete data, the result of KC may be arbitrarily bad. To
handle such a lack of sufficient complete data, we take an
EM-like [9] approach.

KM(D)

1 Dc := random completion of D
2 while not converged

CT := KRIMP(Dc)
Dc := KC(D)

3 return Dc

Figure 3. The KM Algorithm

The KRIMP Minimisation algorithm KM starts with a
random completion of the incomplete database D. Then it
iterates through a number of KRIMP and KC steps. In the
KRIMP step it compresses the current complete database. In
the KC step it completes the incomplete database D using
the code table computed in the KRIMP step. This is con-
tinued as long as the total encoded length of the completed
database shrinks. The algorithm returns the final completed
database. It has the shortest encoded length of the consid-
ered completions, hence the name of the algorithm.

Note that KM will always terminate. The total encoded
size shrinks with every step. Since the encoded size of any
finite database is finite, KM can only execute a finite num-
ber of iterations.

5 Related Work

Imputation has a long history. One of the first known
examples, Hot Deck imputation [2], was employed by the
US census bureau in the fifties. It replaces missing records
by random draws from complete records from the same lo-
cal area. As such, it may be regarded as a crude form of
k nearest-neighbour imputation [25]. Since, more advanced
systems for editing survey data have been developed, in par-
ticular for hierarchical demographic data. Examples include
GEIS and SPEER [15] for continuous and DISCRETE [6]
and CANCEIS [3] for discrete survey data. These systems
all rely on nearest-neighbour algorithms for imputation [4].
As such, they require a distance function on the data, unlike
parameter-free methods.

Regression, mean substitution and mean-mode [14] im-
putation have a greedy nature that harms the variance in
the completed data [2]. Using some randomness circum-
vents this, which is why both Multiple Imputation (MI) [19]

and Expectation Maximisation (EM) [9] are still the current
state of the art.

To start with the latter, imputation through EM is the
process of maximising the likelihood of the data given a
distribution. Iteratively, it adapts the model to the data and
re-imputes it. EM has been shown to provide very accurate
probability estimations. Its model, however, has obviously
to be chosen according to the data. For categorical data the
log-linear model may be used. Still, by its exponential size
in the number of attributes, this is only feasible for datasets
with only few variables [20]. KRIMP Minimisation follows
a similar iterative approach. However, it optimises the com-
pressed size of the database, not its likelihood.

Integrating a structure learner into the EM process leads
to even better results. Structural EM (SEM) [10, 11] learns
Bayes nets during the modeling phases. SEM has been
shown to provide high quality probability estimates, and
very good approximations of the original Bayes nets. How-
ever, it is computationally expensive and thereby only feasi-
ble for moderately sized datasets. A stark difference to our
approach is that SEM learns a global Bayes network on the
data, whereas KRIMP considers the data in more detail by
using local patterns.

Multiple imputation [19] states that the data should be
imputed multiple times, thus providing different datasets. It
does not dictate which data completion algorithm should be
used, though typically either by sampling from predefined
distributions [5] or by applying EM. The resulting datasets
need to be analysed individually, after which the results are
aggregated. For many data mining approaches this is non-
trivial.

6 Experiments

In this section we empirically evaluate the performance
of the three proposed data completion methods. All results
of the experiments in this section are averaged over 10 inde-
pendent runs, unless indicated otherwise. Further, in these
experiments we consider the case of 1 missing value per
transaction, on average. Again, unless indicated otherwise.
The (ε, δ)–correctness is calculated over the closed frequent
item set collection as mined on the complete test data.

6.1 Datasets

We use a range of data sets to validate our methods.
From the widely used UCI repository [7] we took seven
databases. Further, for fair comparison to the Bayesian
Structural EM method, we generated data from the well-
known alarm network. This data was generated using the
GenInstance program, made available by Nir Friedman in
the LibB Bayes Network tool library [12].

6

Table 1. Statistics of the data sets used in the experiments.
Dataset #attributes |I| |D| acc.random acc.baseline % min-sup
alarm 37 105 5000 37.8% 79.9% 50.0
chess (kr vs k) 7 58 28056 16.5% 23.0% 0.7
led7 8 24 3200 50.0% 61.2% 0.03
let.Recog 17 102 20000 20.2% 57.5% 1.2
mushroom 23 119 8124 28.8% 57.6% 1.2
penDigits 17 86 10992 21.8% 35.7% 0.9
tic–tac–toe 10 29 958 33.2% 45.2% 0.1
wine 14 68 178 20.5% 43.5% 0.6

Table 2. Imputation quality measurements. Missing values estimated using SIMPLE COMPLETION (SC)
and KRIMP COMPLETION (KC), trained on complete data, using 10-fold cross-validation. For the (ε, δ)-
measurements, ε was fixed, calculating δ per imputed database. All values relative (%).

MCAR MAR
baseline SC KC SC KC

Dataset % miss ε δ acc. δ acc. δ acc. δ acc. δ acc.
alarm 2.7 0.1 39.1 79.9 4.2 84.0 5.5 80.0 6.9 85.1 5.6 81.2
chess 14.3 0.4 50.2 23.0 1.1 28.3 0.5 25.4 1.4 28.2 0.3 25.8
led7 12.5 0.2 43.0 61.2 3.1 85.9 2.8 80.8 3.5 87.3 3.0 82.2
let.Recog 5.9 0.1 26.0 57.6 0.2 70.1 0.0 67.1 0.4 71.4 0.0 68.6
mushroom 4.3 0.5 30.3 57.6 0.0 76.9 0.0 74.7 0.3 77.1 0.5 76.3
penDigits 5.9 0.04 82.1 35.7 5.3 70.0 5.4 67.3 6.5 68.7 6.6 65.6
tic–tac–toe 10.0 0.5 10.0 45.2 0.0 84.9 0.0 82.8 0.0 84.8 0.0 82.3
wine 7.1 1.1 6.0 43.5 3.0 53.0 3.0 51.9 3.0 53.0 3.0 49.7

The details for these data sets are depicted in Table 1.
Apart from their base statistics, we provide the imputation
accuracies on MCAR data as achieved by 1) choosing a
random possible value and 2) the baseline estimator that
chooses the most frequent of the possible values.

We use the closed frequent pattern set as candidates for
KRIMP. Being generated from a Bayes net, the alarm
dataset contains no local structure. The absence hereof
leads to a gigantic explosion in the number of patterns;
hence we have to use a high min–sup for this database.

6.2 Creating Missing Values

We consider two types of missing data: missing com-
pletely at random (MCAR) and missing at random (MAR).

To create MCAR test data, we start with complete data.
From it, for as many missing values we want to create,
transactions are independently uniformly sampled. From
each, one value is uniformly chosen and removed.

For the MAR case, we use the class labels and the three-
valued bp variable for alarm as the depending attributes.
For each of their values, a probability table was generated to
indicate the chance of the other attributes being missing. We
sample over this table to remove values, while still choosing
the target transactions uniformly.

6.3 Sufficient Complete Data

First, we study how our methods perform provided with
complete training data. Here, we thus consider Simple
Completion and KRIMP Completion. This experiment was
set up using 10-fold cross validation. Leaving the training-
data undamaged, we created missing values in the test–
folds.

The results of this experiment are presented in Table 2.
The accuracy scores of both our methods are much better
than that of the baseline methods (scores for the random
chooser in Table 1). This is even more the case for correct-
ness: for all these databases the random estimator scores a
100% chance of finding a marginal differing more than ε.
Choosing the most frequent value is a better strategy, but
still scores up to 50% chance of finding incorrect counts.
Both SC and KC, however, do get very close to the optimal
(0,0)–score.

Comparing between our two methods directly, we see
that the greedy SC acquires better accuracy scores, as ex-
pected. However, this comes at a surprisingly slight cost
on the (ε, δ)–correctness. Given sufficient complete train-
ing data even the greedy method maintains the proper local
variance of the data. Both the SC and KC imputed data can
be regarded statistically identical to the original. This goes

7

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

6% missing

12% missing
18% missing
24% missing

chess led7 l.Recog mushroompendigits tictactoe wine
-20

0

20

40

60

80

100

120

140

Dataset

R
el

at
iv

e
K

ri
m

p
-c

o
m

p
le

xi
ty

 (%
)

incomplete
completed

ε

δ

Figure 4. (left) (ε, δ)-correctness of SIMPLE COMPLETION on the Letter Recognition dataset. 10 fold
cross-validated, trained on complete data. One missing value missing on average per transaction
equals 5.9% missing data, 2 values 11.8%, 3 values 17.6% and 4 values 23.5%. ε in % (!). (right)
Relative difference in KRIMP complexity for incomplete and KM-completed data.

for both MCAR and MAR, for which no strong differences
in performance were found.

These experiments further show that there is no strong
degradation of performance for increasing amounts of miss-
ing data. To show this in more detail, in the left hand side
plot in Figure 4 we show a plot of the (ε, δ)-correctness
of Simple Completion of the let.Recog dataset for 6 to
24% missing data. While the related accuracy scores only
drop marginally (from 70.1 to 69.1!), the attained (ε, δ)-
correctness is even more impressive. Even with almost a
quarter of the data missing, SC still achieves (0.003, 0.01)-
correctness.

6.4 Insufficient Complete Data

Second, we consider the problem for when no (suffi-
cient) complete training data is available. We therefore now
employ KRIMP Minimisation instead of KRIMP Comple-
tion.

The results of this set of experiments is presented in Ta-
ble 3. If we first look at the accuracy measurements, we no-
tice that the imputation accuracies are actually often higher
than we saw just before. Through the (ε, δ)–correctness we
can see that no magic is going on, as for all datasets these
scores have actually decreased. Thus, through the incom-
pleteness of the training data both methods are hindered in
grasping the true data distribution.

Further, we see that the greedy nature of SC expectedly
leads to a decrease in the data quality. For all datasets the
accuracy provided by KM are only slightly lower than SC.
This small loss in accuracy is compensated for by a strong
gain in (ε, δ)–correctness. For KM, these scores are up to

an order better than SC and often approximate the scores
attained on the complete training data.

The right hand plot of Figure 4 shows further proof of
the data reconstruction ability of KM. To compress the data
with missing values, KRIMP typically requires 30% more
bits than it does to encode the original data. Clearly, the
missing values refrain it from encoding using the most ap-
propriate patterns. However, through iterative imputation,
KM is able to approximate the KRIMP complexity of the
original data within a single percent. As noise is canceled,
the KM-imputed data has slightly lower complexity than
the unseen original.

These experiments also showed that KM rapidly con-
verges to this approximate original complexity: only three
iterations were required for six of the datasets, two more
for the data on mushroom edibility. Further, we noticed that
while KM is nondeterministic in initialisation and imputa-
tion, the resulting accuracies, correctness and data complex-
ities are all virtually equal.

6.5 Comparing to SEM

Now that we have verified that KM provides good data
completions, we will compare it to the state of the art in
imputation: Bayes Structural EM (SEM) [11]. Structural
EM incorporates the learning of a Bayes net on within the
EM [9] process. Iteratively it is learned and used to re-
impute the data, until the process converges.

In order to learn Bayes Nets on incomplete training data,
we used Friedman’s publicly available implementation of
Structural EM [12]. Its search process can be initialised in
various ways, here we used initialisation with random trees.

8

Table 3. Imputation quality measurements. Missing values estimated using SIMPLE COMPLETION (SC)
and KRIMP MINIMISATION (KM), trained on incomplete data. For the (ε, δ)-measurements, ε was fixed,
calculating δ per imputed database. All values relative (%).

MCAR MAR
SC KM SC KM

Dataset % miss ε δ accuracy δ accuracy δ accuracy δ accuracy
alarm 2.7 0.7 16.4 84.0 3.0 82.5 17.3 85.7 5.4 83.6
chess 14.3 0.1 15.8 35.4 3.6 33.7 18.8 32.7 4.2 28.2
led7 12.5 1.0 32.7 72.7 1.2 79.2 17.2 82.8 1.2 81.1
let.Recog 5.9 0.8 16.4 64.2 4.8 61.9 14.2 67.1 5.9 65.3
mushroom 4.3 0.5 4.4 76.3 4.1 74.2 4.1 74.5 0.3 70.9
penDigits 5.9 0.1 8.8 66.6 3.8 67.2 11.8 64.6 5.3 65.7
tic–tac–toe 10.0 0.5 3.6 50.5 2.7 46.4 5.2 47.6 3.7 42.3
wine 7.1 1.1 5.3 55.2 4.9 54.6 6.9 50.3 5.1 48.8

Table 4. Imputation quality measurements for MCAR and MAR test data. Missing values estimated
using KRIMP MINIMISATION (KM) and Structural EM (SEM), trained on incomplete data. For the (ε, δ)-
measurements, ε was fixed, calculating δ per imputed database. All values relative (%).

MCAR MAR
KM SEM KM SEM

Dataset % miss ε δ accuracy δ accuracy δ accuracy δ accuracy
alarm 2.7 0.5 6.7 82.5 15.2 80.9 8.0 83.6 37.8 82.5
chess 14.3 0.1 4.1 33.7 24.5 23.5 4.2 28.2 33.2 22.7
led7 12.5 0.5 0.9 79.2 2.6 76.1 0.8 81.1 2.3 79.1
tictactoe 10.0 1.0 0.2 46.4 3.1 36.3 0.4 42.3 3.9 41.4
wine 7.1 1.6 4.9 54.6 7.9 46.1 1.1 48.8 12.8 27.5

Other settings were explored, but no significant differences
in performance were found. For the actual inference on
these Bayes nets for the missing values, we used the Bayes
Network Toolbox for Matlab (BNT) [18]. As both learning
the Bayes nets and inference are computationally expensive,
we do not consider all datasets in this comparison.

The results of this experiment are presented in Table 4.
From it, we first notice that KM attains higher imputation
accuracies than SEM for three out of the five datasets. How-
ever, the general quality of the KM imputed databases, as
measured through the (ε, δ)–correctness scores, is quite dra-
matically better than the Bayes net driven SEM approach.
This shows that the detail provided by the local-pattern
based KRIMP code tables allow for imputation that adheres
much better to the local statistics of the original data than
possible from a global model. Even for the alarm dataset
(with relatively few missing values), SEM is unable to score
a win. Although this dataset contains no local structure, and
we were forced to use high min–sup values for KRIMP, the
resulting code tables still allow for better reconstruction of
the original data than with the SEM induced global Bayes
Net model.

Similar to the previous experiments, no strong trend

presents itself when we compare between MCAR and
MAR. For KM accuracy is harmed slightly on average, but
its (ε, δ)-correctness remains stable or even improves. For
SEM, however, we do see that for both alarm and chess the
data quality does suffer significantly.

7 Discussion

The experimental results of our methods show that com-
pression is a very viable approach to the data completion
problem. All three our parameter-free data completion algo-
rithms show that approximating the best compressible com-
pleted database leads to high quality imputation.

Provided with undamaged training data, SC provides
highly accurate estimates. The method was shown to be
robust: even up to 24% missing values, both accuracy and
(ε, δ)–correctness of the completed data are very high.

For the realistic case of only insufficient complete train-
ing data being available, KRIMP Minimisation is the right
choice for a data completion algorithm. It finds good ap-
proximations of the best compressible completed database,
and is shown to provide both provide high accuracy and
very good (ε, δ)–scores. Further, the complexity of the orig-

9

inal data is approximated within a single percent.
Compared to the state of the art in missing value estima-

tion, Structural EM, the completions that KM offers provide
both higher accuracy and adhere better to all count statistics
of the original data.

Here we only consider the code tables from the KRIMP
compressor. As the proposed methods operate straightfor-
wardly, it is possible to employ other compression schemes
instead, for instance to better suit other data types.

8 Conclusions

In this paper we considered the problem of high quality
imputation of missing data. To test this objectively we pro-
pose (ε, δ)–correctness to measure the difference between
two databases in terms of count statistics.

We presented three KRIMP–based methods for imputa-
tion of incomplete datasets. All follow the MDL–principle:
the completed database that can be compressed best is the
best completed database. This, because then the imputa-
tions adhere to the local patterns that are present in the
database, instead of only keeping its global statistics cor-
rect.

Both the greedy Simple Completion and randomised
KRIMP Completion offer high performance when sufficient
complete training data is available. By minimising the com-
pressed size of the imputed data, KRIMP Minimisation per-
forms evenly well when no complete data is available. Be-
sides providing high accuracy, all three completion algo-
rithms render imputations that particularly respect the vari-
ance of the original data.

Our methods consider local patterns in the data, rather
than a global model; such local patterns are often smoothed
out from a global stance. The experiments show that the lo-
cal approach is indeed superior to the global approach, both
in terms of accuracy and quality of the completed databases.

References

[1] R. Agrawal, H. Mannila, R. Srikant, H. Toivonen, and A. I.
Verkamo. Fast discovery of association rules. In Advances
in Knowledge Discovery and Data Mining, pages 307–328.
AAAI, 1996.

[2] P. Allison. Missing Data – Quantitative Applications in the
Social Science. Sage Publishing, 2001.

[3] M. Bankier. Canadian census minimum change donor impu-
tation methodology. In Proceedings of the UN/ECE Work-
shop on Data Editing, 2000.

[4] R. Bruni. Discrete models for data imputation. Discrete
Applied Mathematics, 144:59–69, 2004.

[5] S.van Buuren. Multiple imputation of discrete and continu-
ous data by fully conditional specification. Statistical Meth-
ods in Medical Research, 16:219–242, 2007.

[6] B. Chen, W. Winkler, and R. Hemmig. Using the DIS-
CRETE edit system for ACS surveys. Technical report, U.S.
Bureau of the Census, 2000.

[7] F. Coenen. The LUCS-KDD discretised/normalised ARM
and CARM data library: http://www.csc.liv.ac.uk/˜frans/
KDD/Software/LUCS KDD DN/. 2003.

[8] T. Cover and J. Thomas. Elements of Information Theory,
2nd ed. John Wiley and Sons, 2006.

[9] A. Dempster, N. Laird, and D. Rubin. Maximum likelihood
from incomplete data via the EM algorithm. Journal of the
Royal Statistical Society, Series B, 39:1–38, 1977.

[10] N. Friedman. Learning bayesian networks in the presence
of missing values and hidden variables. In Proceedings of
International Conference on Machine Learning, pages 125–
133, 1997.

[11] N. Friedman. The bayesian structural EM algorithm. In
Proceedings of the International Conference on Uncertainty
in AI, pages 129–138, 1998.

[12] N. Friedman and G. Elidan. LibB for Windows/Linux
programs 2.1: http://www.cs.huji.ac.il/labs/compbio/LibB.
2008.

[13] P. D. Grünwald. Minimum description length tutorial. In
P. Grünwald and I. Myung, editors, Advances in Minimum
Description Length. MIT Press, 2005.

[14] J. Han and M. Kamber. Data Mining: Concepts and Tech-
niques. Morgan Kaufmann, 2001.

[15] J. Kovar and W. Winkler. Comparison of GEIS and SPEER
for editing economic data. Technical report, U.S. Bureau of
the Census, 2000.

[16] M.van Leeuwen, J. Vreeken, and A. Siebes. Compression
picks the item sets that matter. In Proceedings of the 10th
European Conference on Machine Learning and Principles
and Practice of Knowledge Discovery in Databases, pages
585–592, 2006.

[17] R. Little and D. Rubin. Statistical Analysis with Missing
Data (2nd Edition). John Wiley and Sons, 2002.

[18] K. Murphy. Bayes net toolbox for Matlab:
http://www.cs.ubc.ca/˜murphyk/Software/BNT/. 1997.

[19] D. Rubin. Multiple imputation for nonresponse in surveys.
John Wiley and Sons, 1987.

[20] J. Schafer. Analysis of incomplete multivariate data. Mono-
graphs on Statistics and Applied Probability, 72, 1997.

[21] A. Siebes, J. Vreeken, and M. van Leeuwen. Item sets that
compress. In Proceedings of the SIAM Conference on Data
Mining, pages 393–404, 2006.

[22] J. Vreeken and A. Siebes. Filling in the blanks – Krimp
minimisation for missing data. In Proceedings of the IEEE
International Conference on Data Mining, 2008.

[23] J. Vreeken, M. van Leeuwen, and A. Siebes. Characteris-
ing the difference. In Proceedings of the ACM SIGKDD In-
ternational Conference on Knowledge Discovery and Data
Mining, pages 765–774, 2007.

[24] J. Vreeken, M. van Leeuwen, and A. Siebes. Preserving
privacy through data generation. In Proceedings of the IEEE
International Conference on Data Mining, pages 685–690,
2007.

[25] I. Wasito and B. Mirkin. Nearest neighbour approach in the
least-squares data imputation algorithms. Journal of Infor-
mation Sciences, 167:1–25, 2005.

10

	technischrapportvoorblad - krimp minimisation for missing data estimation
	technischrapportpaper - Krimp Minimisation for Missing Data.pdf

