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ABSTRACT
Data analysis is an inherently iterative process. That is, what we
know about the data greatly determines our expectations, and hence,
what result we would find the most interesting. With this in mind,
we introduce a well-founded approach for succinctly summarizing
data with a collection of itemsets; using a probabilistic maximum
entropy model, we iteratively find the most interesting itemset, and
in turn update our model of the data accordingly. As we only include
itemsets that are surprising with regard to the current model, the
summary is guaranteed to be both descriptive and non-redundant.
The algorithm that we present can either mine the top-k most in-
teresting itemsets, or use the Bayesian Information Criterion to
automatically identify the model containing only the itemsets most
important for describing the data. Or, in other words, it will ‘tell you
what you need to know’. Experiments on synthetic and benchmark
data show that the discovered summaries are succinct, and correctly
identify the key patterns in the data. The models they form attain
high likelihoods, and inspection shows that they summarize the data
well with increasingly specific, yet non-redundant itemsets.

Categories and Subject Descriptors
H.2.8 [Database management]: Database applications–Data mining

General Terms
Introduction, Theory, Algorithms, Experimentation, Conclusion

1. INTRODUCTION
Knowledge discovery from data is an inherently iterative process.

That is, what we already know about the data greatly determines our
expectations, and therefore, which results we would find interesting
and/or surprising. Early on in the process of analyzing a database,
for instance, we are happy to learn about the generalities underlying
the data, while later on we will be more interested in the specifics
that build upon these concepts. Essentially, this process comes down
to summarization: we want to know what is interesting in the data,
and we want this to be reported succinctly and without redundancy.
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As a simple example, consider supermarket basket analysis. Say,
we just learned that pasta and tomatoes are very often sold together,
and that we already know that many people buy wine. Then it is not
very interesting to find out that the combination of these three items
is also sold frequently. Even if we cannot predict this frequency
exactly, we can say that this pattern is redundant. At the same time,
at this stage of the analysis we are probably also not interested in
highly detailed patterns, e.g., an itemset representing the many in-
gredients of an elaborate Italian dinner. While its frequency may be
surprising, it is also very specific, and may well be better explained
by some more general patterns. Still, this itemset might be regarded
as highly interesting further on in the discovery process, after we
have learned those more general patterns, and, if this is the case, we
would like it to be reported at that time. Consequently, this is the
approach we adopt in this paper; we incrementally adjust our model
as we discover new patterns, to obtain a non-redundant summary.

As natural as it may seem to update a knowledge model during
the discovery process, few pattern mining techniques actually follow
such a dynamic approach of discovering patterns that are surprising
with regard to what we have learned so far. That is, while many
techniques provide a series of patterns in order of interestingness,
most score these patterns using a static model; during this process
the model, and hence the itemset scores, are not updated with the
knowledge gained from previously discovered patterns. For instance,
Tan et al. study 21 of the most well-known interestingness measures,
all of which are static, and most of which are based on the inde-
pendence model [24]. The static approach gives rise to the typical
problem of traditional pattern mining: overwhelmingly large and
highly redundant collections of patterns.

Our objective is to find a succinct summary of a binary dataset,
that is, to obtain a small, yet high-quality set of itemsets that de-
scribes key characteristics of the data at hand, in order to gain useful
insights. This is motivated by the fact that many existing algorithms
often return too large collections of patterns with considerable re-
dundancy, as discussed above. The view that we take in this paper
on succinctness and non-redundancy is therefore a fairly strict one.

To model the data, we use the powerful and versatile class of
maximum entropy models. We construct a maximum entropy distri-
bution that allows us to directly calculate the expected frequencies of
itemsets. Then, at each iteration, we return the itemset that provides
the most information, i.e., for which our frequency estimate was
most off. We update our model with this new knowledge, and con-
tinue the process. The non-redundant model that contains the most
important information is thus automatically identified. Therefore,
we paraphrase our method as ‘tell me what I need to know’.

While solving the maximum entropy model is infeasible in gen-
eral, we show that in our setting it can be solved efficiently, de-
pending on the amount of overlap between the selected patterns.



Similarly, we give an efficient method for estimating frequencies
from the model. Further, we provide an efficient convex heuristic
for pruning the search space for the most informative itemsets. This
approach allows us to mine our collection of itemsets on the fly, in-
stead of picking them from a larger candidate set which would have
to be mined and stored beforehand. Our approach is parameter-free:
no maximal error threshold needs to be provided, nor a minimum
support or a significance level. The best model can automatically
be determined through the Bayesian Information Criterion. Alterna-
tively, we can also mine the top-k most interesting itemsets. Finally,
the user can easily infuse background knowledge into the model (in
the form of itemset frequencies), to avoid redundancy with regard
to what the user already knows.

2. RELATED WORK
Selecting or ranking interesting patterns is a well-studied field in

data mining. Existing techniques can roughly be split in two groups.
The first group consists of techniques that measure how surprising

the support of an itemset is compared against some null hypothesis:
the more the observed frequency deviates from the expected value,
the more interesting it is. The simplest null hypothesis is the inde-
pendence model [1, 2]. More flexible models have been suggested,
for example, Bayesian Networks [14]. The major caveat of these
approaches is that the null hypothesis is static and hence we keep
rediscovering the same information. As a result, this will lead to
pattern collections with high levels of redundancy. The alternative
approach is to select itemsets using a dynamic hypothesis. That is,
when a new itemset is discovered, the model is updated such that
we take the already discovered information into account.

The use of maximum entropy models in pattern mining has been
proposed by several authors [15, 26, 28, 30]. Discovering an item-
set collection with a good BIC score was suggested by Tatti and
Heikinheimo [28]. Alternatively, Tatti [27] samples collections and
bases the significance of an itemset on its occurrence in the discov-
ered collections. However, in order to guarantee that the score can
be computed, the authors restrict themselves to downward closed
and decomposable collections. The method of Tatti [26] uses local
models, that is, to compute the support of an itemset X , we are
only allowed to use sub-itemsets of X , and it outputs a p-value. A
threshold is needed to determine whether X is important. Related,
Webb [31] defines itemsets as self-sufficient, if their support differs
significantly from what can be inferred from their sub- and supersets;
therefore such a model is also local. Wang and Parthasarathy [30] in-
crementally build a maximum entropy model by adding itemsets that
deviate more than a given error threshold. The approach ranks and
adds itemsets in level-wise batches. This may still, however, lead
to redundancy within a batch of itemsets. The method introduced
by Kontonasios and De Bie [15] uses row and column margins
to construct a maximum entropy model of the data, from which
noisy tiles [9] are then discovered, using an MDL-based information
score. An important difference, however, is that the data is treated
as a single sample from the space of datasets, whereas we consider
distributions of transactions.

An alternative approach, called swap randomization, has been
suggested by Gionis et al. [10] and Hanhijärvi et al. [13]. The former
approach ranks itemsets using a static hypothesis, the latter uses a
dynamic hypothesis. Here as well, the authors treat the whole data
as a sample from the space of datasets, having the same certain set
of statistics, including row and column margins. The authors use an
MCMC approach to sample datasets and compute empirical p-values.
In both approaches, the framework needs a threshold for deciding
which itemsets are significant.

The MINI algorithm by Gallo et al. [7] similarly uses row and
column margins to rank itemsets. It first orders all potentially in-
teresting itemsets by computing their p-value according to these
margins. Then, as subsequent itemsets are added, the p-values are
recomputed, and the itemsets are re-ordered according to their new
p-values. This method, however, does not allow querying.

The method of Yan et al. [32] summarizes a collection of itemsets
by clustering them, and then representing each cluster as a profile.
The approach is different from ours, in that it summarizes a given
set of patterns, rather than the data itself.

KRIMP, by Siebes et al. [23], employs the MDL principle to select
those itemsets that together compress the data best. As such, patterns
that essentially describe the same part of the data are rejected. The
models it finds are not probabilistic, and therefore cannot easily be
used to calculate probabilities. Further, while non-redundant from
a compression point of view, many of the patterns it selects are
variations of the same theme. Other differences to our method are
that KRIMP considers its candidates in a static order, and that it is
not trivial to make it consider background knowledge.

It should be noted that in contrast to the algorithm that we propose
here, most of the above methods require the user to set one or several
parameters, such as a maximum error threshold or a significance
level. Many also cannot easily be used to estimate the frequency of
an itemset. Further, all of them are two-phase algorithms, i.e., they
require that the user provides a collection of candidate (frequent)
itemsets to the algorithm, which must be completely mined and
stored first, before running the actual algorithm.

3. PRELIMINARIES AND NOTATION
This section provides some preliminaries and the notation that we

will use throughout the paper.
By a transaction we mean a binary vector of size N generated by

some unknown distribution. The ith element in a random transac-
tion corresponds to an attribute or an item ai, a Bernoulli random
variable. We denote the set of all items by A = {a1, . . . , aN}. We
denote the set of all possible transactions by T = {0, 1}N.

The input of our method is a binary dataset D, which is simply a
sample of |D| (possibly non-distinct) transactions. Given the data
D we define an empirical distribution

qD(a1 = v1, . . . , aN = vN ) = |{t ∈ D | t = v}|/|D| .

An itemset X is a subset of A. For notational convenience,
given a distribution p, an itemset X = {x1, . . . , xL}, and a bi-
nary vector v of length L, we often use p(X = v) to denote
p(x1 = v1, . . . , xL = vL). If v consists entirely of 1’s, then
we use the notation p(X = 1). Given the data D, the frequency
of an itemset X is defined fr(X) = qD(X = 1). An indicator
function SX : T → {0, 1} of an itemset X maps a transaction t to
a binary value such that SX(t) = 1 if and only if t contains X .

The entropy of a distribution p over T is defined as

H(p) = −
∑
t∈T

p(A = t) log p(A = t) ,

where the base of the logarithm is 2, and by convention 0 log 0 = 0.

4. IDENTIFYING THE BEST SUMMARY
Our goal is to discover the set of itemsets C that provides the

most important information about the data, while containing as little
redundancy as possible. Here, we regard information as whether
we are able to reliably predict the data using these itemsets and
their frequencies. By non-redundancy, we mean that any subset of
C provides a significantly different description of the data. This



is equivalent to requiring that the frequency of an itemset X ∈ C
should be surprising with respect to C \X . In other words, we do
not want C as a collection to be unnecessarily complex, or capture
spurious information. We want it to contain only those itemsets that
we really need.

Informally, assume that we have a score s(C) which measures the
quality of an itemset collection C. Then our aim is to find that C
with the best score s(C). Analogously, if we only want to know k
itemsets, we look for the set C of size at most k, with the best s(C).

Next, we will detail how we define our models, how we define
this score, provide theoretical evidence why it is a good choice, and
discuss how to compute it efficiently.

EXAMPLE 1. As a running example, assume we have a transac-
tion dataset D with eight items, a to h. Furthermore, consider the
set of itemsets C = {abc, cd , def } with frequencies 0.5, 0.4 and 0.8,
respectively. Assume for the moment that based on C, our method
predicts that the frequency of the itemset agh is 0.19. Now, if we
observe in the data that fr(agh) = 0.18, then we can safely say that
agh is redundant because it does not contribute a lot. On the other
hand, if fr(agh) = 0.7, then the frequency of agh is surprising, and
therefore C ∪ {agh} would give an improved description of D.

4.1 Maximum Entropy Model
In our approach we make use of maximum entropy models. This

is a class of probabilistic models that are identified by the Maximum
Entropy principle [4] as those models that make optimal use of the
provided information. That is, they rely only on this information and
are fully unbiased otherwise. This property makes these models very
suited for identifying good patterns: by using maximum entropy
models to measure the quality of a set of patterns, we know that our
measurement only relies on the provided frequencies of the patterns,
and that it will not be thrown off due to some spurious structure in
the data. These models have a number of theoretically appealing
properties, which we will discuss after a formal introduction.

Assume that we are given a set of itemsets C = {X1, . . . , Xk}.
Each itemset Xi has a frequency fr(Xi) in the data. We are inter-
ested in distributions that satisfy these frequencies, that is, let us
consider the following set of distributions

P = {p | p(Xi = 1) = fr(Xi) , i = 1, . . . , k} .

Among these distributions we are interested in only one, namely the
unique distribution that maximizes the entropy,

p∗C = argmax
p
{H(p) | p ∈ P} .

For notational convenience we will omit C from p∗ whenever it is
clear from the context. Although we restrict ourselves to itemset
frequencies here, many other patterns or count statistics that can be
expressed as linear combinations of transactions could be used, e.g.,
transaction lengths [29], association rule confidence, etc.

Computing the maximum entropy model, however, is not trivial.
Before we discuss the actual computation in Section 4.4, we first
cover how we will measure the quality of a model.

A natural first choice would be to directly measure the goodness
of fit, using the log-likelihood of the maximum entropy model,
that is, log p∗(D) =

∑
t∈D log p∗(A = t). However, this choice

suffers from overfitting: larger collections of itemsets will always
provide more information, hence allow for better estimates, and
therefore have a better log-likelihood. Consequently, we need to
prevent our method from overfitting. Therefore, we use the well-
founded Bayesian Information Criterion (BIC), which favors models
that fit the data well with few parameters. It has a strong theoretical
support in Bayesian model selection [22] as well as through the

Minimum Description Length principle [12]. The BIC score of a
collection C is defined as

s(C) = − log p∗C(D) + 1/2 |C| log |D| .

The smaller this score, the better the model. The first term is simply
the negative log-likelihood of the model, while the second term
is a penalty on the number of parameters—the number of item-
sets in our case. Consequently, the best model is identified as the
model that provides a good balance between high likelihood and low
complexity. Moreover, we automatically avoid redundancy, since
models with redundant itemsets are penalized for being too complex,
without sufficiently improving the likelihood (see Section 4.3).

4.2 Properties of the Model
In this subsection we discuss some properties of this quality

measure and theoretically demonstrate why the maximum entropy
model is indeed a good choice for our purpose.

We begin by stating a famous theorem that the maximum entropy
model has an exponential form. This form will help us to discover
the model and compute the likelihood term in the scoring function.

THEOREM 2 (THEOREM 3.1 IN [4]). Given a collection of
itemsets C = {Xi}ki=1 with frequencies fr(Xi), let us define P =
{p | p(Xi = 1) = fr(Xi)}. If there is a distribution in P that has
only non-zero entries, then the maximum entropy distribution p∗

can be written as

p∗(A = t) = u0

∏
X∈C

u
SX (t)
X ,

where uX ∈ R, and u0 is a normalization constant.

COROLLARY 3 (OF THEOREM 2). The log-likelihood of the
maximum entropy distribution p∗ for a set of itemsets C is equal to

log p∗(D) = |D|(log u0 +
∑
X∈C

fr(X) log uX) = −|D|H(p∗) .

Thus, to calculate the BIC score s(C), it suffices to compute the
parameters uX and u0 of the distribution p∗.

4.3 Reducing Redundancy
Here we show that our score favors itemset collections with low

redundancy, and make a theoretical link with some existing re-
dundancy reduction techniques for pattern mining. Due to space
restrictions, the proofs in this subsection have been omitted.

A baseline technique for ranking itemsets is to compare the ob-
served frequency against the expected value of some null hypothesis.
The next theorem shows that if the observed frequency of an itemset
X agrees with the expected value p∗(X = 1), then X is redundant.

THEOREM 4. Let C be a collection of itemsets and let p∗ be the
corresponding maximum entropy model. Let X /∈ C be an itemset
such that fr(X) = p∗(X = 1). Then s(C ∪ {X}) > s(C).

PROOF. We will prove the theorem by showing that the likeli-
hood terms for both collections are equal. Define the collection
C1 = C ∪ {X} and let P1 be the corresponding set of distributions.
Let p∗1 be the distribution maximizing the entropy in P1. Note that
since C ⊂ C1, we have P1 ⊆ P and hence H(p∗1) ≤ H(p∗). On
the other hand, the assumption in the theorem implies that p∗ ∈ P1

and so H(p∗) ≤ H(p∗1). Thus, H(p∗) = H(p∗1) and since the dis-
tribution maximizing the entropy is unique, we have p∗ = p∗1. This
shows that the likelihood terms in s(C) and s(C1) are equal. The
BIC penalty term is larger in s(C1) which concludes the proof.



Algorithm 1: ITERATIVESCALING(C)
input : itemset collection C = {X1, . . . , Xk}, frequencies

fr(X1) , . . . , fr(Xk)
output :parameters uX and u0 of the maximum entropy

distribution p∗C satisfying p∗C(Xi) = fr(Xi) for all i
1 initialize p;
2 while p has not converged do
3 for each X in C do
4 compute p(X = 1);
5 uX ← uX

fr(X)
p(X=1)

1−p(X=1)
1−fr(X)

;

6 u0 ← u0
1−fr(X)

1−p(X=1)
;

7 return p;

Theorem 4 states that adding an itemset X to C improves the score
only if its observed frequency deviates from the expected value. The
amount of deviation required is determined by the penalty term.
This gives us a convenient advantage over methods that are based
solely on deviation, since they require a user-specified threshold.

Two useful corollaries follow from Theorem 4, which we state
below. The first relates our approach to closed itemsets [21]. An
itemset is closed if all of its supersets have a strictly lower support.
An itemset is a generator if all of its subsets have a strictly higher
support. The second corollary provides a similar relation with non-
derivable itemsets [3]. An itemset is called derivable if its support
can be inferred exactly from the supports of all of its proper subsets.

COROLLARY 5 (OF THEOREM 4). Let C be a collection of
itemsets. Assume that X,Y ∈ C such that X ⊂ Y and fr(X) =
fr(Y ) 6= 0. Assume that Z /∈ C such that X ⊂ Z ⊂ Y . Then
s(C ∪ {Z}) > s(C).

COROLLARY 6 (OF THEOREM 4). Let C be a collection of
itemsets. Assume that X /∈ C is a derivable itemset and all sub-
itemsets of X are included in C. Then s(C ∪ {X}) > s(C).

Corollaries 5 and 6 connect our approach with popular techniques
for removing redundancy—so-called condensed representations.
The advantage of our method is that it does not have to be exact. For
example, in Corollary 5, fr(X) does not have to equal fr(Y ) exactly
in order to reject Z from C. This allows us to prune redundancy
more aggressively.

4.4 Efficiently Computing the Model
Computing the maximum entropy model comes down to finding

the u0 and uX parameters from Theorem 2. To achieve this, we use
the well-known Iterative Scaling procedure [5], which is given as
Algorithm 1. Simply put, it iteratively updates the parameters of the
distribution, until it converges to the maximum entropy distribution
p∗ which satisfies a given set of constraints—itemset frequencies in
our case. The distribution is initialized with the uniform distribution,
which is done by setting the uX parameters to 1, and u0 = 2−N

to normalize. Then, for each itemset X ∈ C, we adjust the corre-
sponding parameter uX to enforce p(X = 1) = fr(X) (line 5,6).
This process is repeated in a round robin fashion until p converges,
and it can be shown [5] that p always converges to the maximum
entropy distribution p∗. Typically the number of iterations required
for convergence is low (usually < 10 in our experiments).

EXAMPLE 7. In our running example, with C = {abc, cd , def },
the maximum entropy model has three parameters u1, u2, u3, and
a normalization factor u0. Initially we set u1 = u2 = u3 = 1 and

u0 = 2−N = 2−8. Then we iteratively loop over the itemsets and
scale the parameters. For instance, for the first itemset abc with
frequency 0.5, we first compute its current estimate to be 2−3 =
0.125. Thus, we update the first parameter u1 = 1 · (0.5/2−3) ·
((1 − 2−3)/0.5) = 7. The normalization factor becomes u0 =
2−8 · 0.5/(1 − 2−3) ≈ 2.2 · 10−3. Next, we do the same for cd ,
and so on. After a few iterations, the model parameters converge to
u1 = 28.5, u2 = 0.12, u3 = 85.4, and u0 = 3 · 10−4.

The main bottleneck of this procedure is the inference of an
itemset’s probability on line 4 of the algorithm,

p(X = 1) =
∑

t∈T ;SX (t)=1

p(A = t) .

Since this sum ranges over all possible transactions containing X , it
is infeasible to do this in a brute force manner for any non-trivial
number of items N . In fact, it has been shown that querying the
maximum entropy model is PP-hard [25].

Therefore, in order to be able to query the model efficiently,
we introduce a partitioning scheme, which makes use of the fact
that many transactions have the same probability. Observe that an
itemset collection C partitions T into blocks of transactions which
contain the same set of itemsets. That is, two transactions t1 and t2
belong to the same block T if and only if SX(t1) = SX(t2) for all
X in C. Therefore, we know that p(A = t1) = p(A = t2). This
definition allows us to define SX(T ) = SX(t) for any t ∈ T and
X ∈ C. We denote the partition of T induced by C as TC . We can
now compute the probability of an itemset as

p(X = 1) =
∑

T∈TC ;SX (T )=1

p(A ∈ T ) .

The sum has been reduced to a sum over blocks of transactions, and
the inference problem has been moved from the transaction space
T to the block space TC . In our setting we will see that |TC | � |T |,
which makes inference a lot more feasible. In the worst case, this
partition may contain 2|C| blocks, however, through the interplay of
the itemsets, it can be as low as |C| + 1. As explained further on,
we can exploit, or even choose to limit, the structure of C, such that
practical computation is guaranteed.

All we must do now is obtain the block probabilities p(A ∈ T ).
Since all transactions t in a block T have the same probability
p(A = t) = u0

∏
X∈C u

SX (t)
X , it suffices to compute the number of

transactions in T to get p(A ∈ T ). So, let us define e(T ) to be the
number of transactions in T , then

p(A ∈ T ) =
∑
t∈T

p(A = t) = e(T )u0

∏
X∈C

u
SX (T )
X .

Algorithm 2 describes COMPUTEBLOCKSIZES. In order to com-
pute the block sizes e(T ), we introduce a partial order on TC . Let

sets(T ; C) = {X ∈ C | SX(T ) = 1}

be the itemsets in C that occur in the transactions of T . Note that
every block corresponds to a unique subset of C, but conversely not
every subset of C corresponds to a transaction block. We can now
define the partial order on TC as follows,

T1 ⊆ T2 if and only if sets(T1; C) ⊆ sets(T2; C) .

In order to compute the size e(T ) of a block, we first compute its
cumulative size,

c(T ) =
∑
T ′⊇T

e
(
T ′
)
,



Algorithm 2: COMPUTEBLOCKSIZES(C)
input : itemset collection C = {X1, . . . , Xk}
output :block sizes e(T ) for each T in TC

1 for T in TC do
2 X ← sets(T ; C);
3 B ←

⋃
{X ∈ X };

4 c(T )← 2N−|B|;

5 sort the blocks in TC ;
6 for Ti in TC do
7 e(Ti)← c(Ti);
8 for Tj in TC , with j < i do
9 if Ti ⊂ Tj then

10 e(Ti)← e(Ti)− e(Tj);

11 return TC ;

which is the number of transactions that contain all the itemsets
in sets(T ; C), and possibly others as well. Let X = sets(T ; C),
and let B =

⋃
X∈X X . That is, B are the items that occur in all

transactions of T . Then it holds that c(T ) = 2N−|B|, where N is
the total number of items. Finally, to extract the block sizes e(T )
from the cumulative sizes c(T ), we use the inclusion-exclusion
principle. To that end, we topologically sort the blocks such that if
T2 ⊂ T1, then T1 occurs before T2. Then we simply iterate over
the blocks in reverse, and subtract the sizes of their super-blocks,

e(T ) = c(T )−
∑
T ′)T

e
(
T ′
)
.

EXAMPLE 8. Assume again that we have a dataset with eight
items (a to h), and an itemset collection containing three itemsets
C = {abc, cd , def } with frequencies 0.5, 0.4 and 0.8.

Table 1 shows the sizes of the transaction blocks. Note that while
there are 256 transactions in T , there are only 7 blocks in TC , whose
sizes and probabilities are to be computed (the eighth combination,
abc and def but not cd , is clearly impossible).

Let us compute the sizes of the first three blocks. For the first
block, B = abcdef and therefore c(T ) = 4, for the second block
B = abcd , and for the third block B = abc. Since the first block
is the maximum with respect to the order ⊆, its cumulative size is
simply its size, so e(T ) = 4. For the second block, we subtract the
first block, and obtain e(T ) = 16−4 = 12. From the third block we
subtract the first two blocks, and we have e(T ) = 32−12−4 = 16.
Now, to compute, say, p(abc = 1), we simply need the sizes of the
blocks containing abc, and the current model parameters,

p(abc = 1) = 4(u0u1u2u3) + 12(u0u1u2) + 16(u0u1).

Lastly, the algorithm can be significantly optimized as follows.
Assume that we can divide C into two disjoint groups C1 and C2, such
that if X1 ∈ C1 and X2 ∈ C2, then X1 ∩X2 = ∅. Let B =

⋃
C1

be the set of items occurring in C1. Theorem 2 implies that p∗(A) =
p∗(B)p∗(A\B). In other words, the maximum entropy distribution
can be factorized into two independent distributions, namely p∗(B)
and p∗(A\B), more importantly, the factor p∗(B) depends only on
C1. Consequently, if we wish to compute the probability p∗(X = 1)
such that X ∈ B, we can ignore all variables outside B and all
itemsets outside C1. The number of computations to perform by
COMPUTEBLOCKSIZES can now be greatly reduced, since in the
case of independence |TC | = |TC1 | × |TC2 |, and we can simply
compute the block sizes for TC1 and TC2 separately. Naturally, this

decomposition can also be applied when there are more than two of
such disjoint groups of itemsets.

Further, in order to guarantee that we can apply the above sepa-
ration, we could reduce the solution space slightly by imposing a
limit on the number of items or itemsets per group, such that the
number of blocks remains small. Alternatively, we could first parti-
tion the items of the dataset into smaller, approximately independent
groups [16], and then apply the algorithm for each group separately.

4.5 Including Frequencies of Individual Items
Often it is useful to inspect the frequencies of the individual

items (i.e., the column margins) in a dataset, since they supply
basic, yet intuitive and easily calculable information about the
data. For instance, they say which combinations of items are
more (or less) likely to occur together frequently. However, in
our method we cannot add the set of all singleton itemsets I to a
collection C, since the number of transaction blocks would become
|TC∪I | = |T | = 2N, by which we would be back at square one.
We sketch (due to space restrictions) how this can be solved easily.
Let C′ = C ∪ I. We continue working with TC rather than TC′ .
As before, the maximum entropy model has an exponential form:
p∗C′(A = t) = u0

∏
X∈C u

SX (t)
X

∏
i∈I v

Si(t)
i . The second prod-

uct defines an independence distribution v = v0
∏

i v
Si(t)
i . Then

p∗C′(A ∈ T ) = v(A ∈ T )u0
v0

∏
X∈C u

SX (T )
X . Thus, we simply

need to compute v(A ∈ T ), which is computed very similar to
e(A ∈ T ), with COMPUTEBLOCKSIZES. Hence, we can include
the item frequencies at an only marginal additional cost.

4.6 Querying the Model
We have seen how we can efficiently query the probability of an

itemset X ∈ C when given the maximum entropy distribution p∗.
In order to compute the probability of an arbitrary itemset Y that is
not a member of C, we do the following. We first set G = C ∪ {Y }
and compute the block probabilities e(T ) = v(A ∈ T ) for T in TG
by calling COMPUTEBLOCKSIZES. Then, we can simply use the
parameters of p∗ to compute p∗(Y = 1),

p∗(Y = 1) =
∑

T∈TG
SY (T )=1

v(A ∈ T )
u0

v0

∏
X∈C

u
SX (T )
X .

Thus, to obtain the probability of an itemset, it suffices to compute
the block probabilities in TG , for which we know that |TG | ≤ 2|TC |.

4.7 Computational Complexity
Let us analyze the complexity of ITERATIVESCALING. To this

end, we define ps(C) = |TC | as the number of blocks in a par-

tition. Note that ps(C) ≤ min
(
2|C|, 2N

)
. The computational

complexity of COMPUTEBLOCKSIZES is O(ps(C)2) for a given

Table 1: Transaction blocks for the running example above,
with X1 = abc, X2 = cd , and X3 = def .

X1 X2 X3 c(T ) e(T ) p(A = t)

1 1 1 4 4 u0u1u2u3

1 1 0 16 12 u0u1u2

1 0 0 32 16 u0u1

0 1 1 16 12 u0u2u3

0 1 0 64 36 u0u2

0 0 1 32 16 u0u3

0 0 0 256 160 u0



Algorithm 3: MTV(D)
input :binary dataset D, background knowledge itemsets B,

integer k if mining top-k
output : itemset collection C

1 I ← items in D;
2 C ← B ;
3 while s(C) decreases and |C| < k do
4 X ← FINDBESTITEMSET(∅, I, ∅);
5 C ← C ∪ {X};
6 p∗C ← ITERATIVESCALING(C);
7 compute s(C);
8 return C;

collection C. Assume now that we can partition C into L disjoint
parts C = C1 ∪ · · · ∪ CL, such that if X ∈ Ci and Y ∈ Cj then
X ∩ Y = ∅. As mentioned in Section 4.4, we can now simply
compute L independent distributions at a lower total cost. Denoting
Bi =

⋃
X∈Ci X , it holds that ps(Ci) ≤ min

(
2|Ci|, 2|Bi|

)
. If Ci

cannot be partitioned further, this usually means that either |Ci| is
small, or the itemsets in Ci overlap a lot and ps(Ci)� 2|Ci|. The to-
tal execution time of ITERATIVESCALING is O(K

∑L
i=1 ps(Ci)

2),
where K is the number of iterations, which is usually low. The com-
plexity of estimating the frequency of an itemset requires running
COMPUTEBLOCKSIZES once and hence equals O(

∑L
i=1 ps(Ci)

2).

5. PROBLEM STATEMENT
In this section we formally state the problem we intend to solve,

based on the theory introduced above.

THE PROBLEM. Given a collection of itemsets B that represents
our background knowledge of a dataset D, a collection of potentially
interesting itemsets F , and an integer k, find the subset C ⊆ F of
size at most k, such that s(B ∪ C) is minimal.

Note that F can simply consist of all itemsets, or be restricted to
e.g. a collection of frequent itemsets. If we do not wish to constrain
the size of C, and essentially disregard k, we can simply set k =∞.
Also note that the problem statement does not require F to be
explicitly available beforehand, i.e., it does not have to be mined or
materialized in advance (we postpone the details to Section 6.2).

6. MINING SUCCINCT SUMMARIES
In Section 4 we described how to compute the maximum entropy

model and its BIC score given a set of itemsets. Finding the optimal
collection as stated in Section 5, however, is clearly infeasible. The
size of the search space is

∑k
j=0

(|F|
j

)
≤ 2|F|. If we do not restrict

the candidate itemsets, then the number of all non-singleton itemsets
is |F| = 2N−N−1. Moreover, the score function is not monotonic,
which prevents us from straightforwardly exploring the search space.

Therefore, we resort to using a heuristic, greedy approach. Start-
ing with a set of itemsets representing our background knowledge—
for instance the singletons—we incrementally construct our sum-
mary by iteratively adding the itemset that reduces the BIC score
the most. The algorithm stops either when k interesting itemsets
are found, or when the score no longer decreases. The pseudo-
code for our MTV algorithm, which mines Maximally informaTiVe
summaries, is given as Algorithm 3.

6.1 A Heuristic for Scoring Itemsets
Finding the best itemset to add to the current collection is prac-

tically infeasible, since it involves solving the maximum entropy

model for each and every candidate. This remains infeasible even
if we restrict the search space (for example, using only frequent
itemsets). Therefore, instead of selecting the candidate that opti-
mizes the BIC score directly, we select the candidate that maximizes
a heuristic which expresses the divergence between its frequency
and its estimate. To derive and motivate this heuristic we first need
the following theorem.

THEOREM 9. Given an itemset collection C, it holds that

argmin
X

s(C ∪ {X}) = argmax
X

KL
(
p∗C∪{X} ‖ p∗C

)
= argmin

X
KL
(
qD ‖ p∗C∪{X}

)
where KL is the Kullback-Leibler divergence between two distri-
butions, defined as KL(p ‖ q) =

∑
x p(x) log

p(x)
q(x)

, and qD is the
empirical distribution of the data.

PROOF. Let us write G = C ∪ {X}. Corollary 3 states that
− log p∗G(D) = |D|H(p∗G). In addition, we can show with a
straightforward calculation that KL(p∗G ‖ p∗C) = H(p∗C)−H(p∗G).
Therefore, minimizing s(G) is equivalent to maximizing the diver-
gence KL(p∗G ‖ p∗C). The second equality follows similarly.

Thus, we search for the itemset X such that the new distribution
diverges maximally from the previous one, or equivalently, brings us
as close to the empirical distribution as possible. The heuristic that
we use is an approximation of the KL divergence, where we group
the terms containing X in one term, and the terms not containing X
into another term. We define h : [0, 1]× [0, 1]→ R+ as

h(x, y) = x log
x

y
+ (1− x) log

1− x

1− y
.

We then pick the itemset maximizing h(fr(X) , p∗(X = 1)), which
we will denote simply as h(X) when fr and p∗ are clear from the
context. To compute this heuristic, we only need the frequency of X ,
and its estimate according to the current p∗ distribution. This gives
us a measure of the divergence between fr(X) and p∗(X = 1), i.e.,
its surprisingness given the current model.

The following theorem gives and indication of how KL and h
relate to one another.

THEOREM 10. For an itemset collection C and itemset X , it
holds that

0 ≤ h(X) ≤ KL
(
p∗C∪{X} ‖ p∗C

)
.

Moreover, h(X) = 0 if and only if KL
(
p∗C∪{X} ‖ p∗C

)
= 0, i.e.,

when fr(X) = p∗(X = 1).

PROOF. The second inequality follows from the log-sum inequal-
ity. The equality to zero is trivially verified.

6.2 Looking for the Best Itemset
In order to find the itemset maximizing h, we take a depth-first

branch-and-bound approach. We exploit the fact that h is convex,
and employ the bound introduced by Nijssen et al. [20] to prune
large parts of the search space as follows. Say that for a candidate
itemset X in the search space, its maximal possible extension in the
branch below it is X ∪ Y (denoted XY ), then for any itemset W
such that X ⊆W ⊆ XY , it holds that

h(W ) ≤ max {h (fr(X), p∗(XY )) , h (fr(XY ), p∗(X))} .

If this bound is lower than the best value of h seen so far, we know
that no (local) extension W of X can ever become the best itemset
with respect to h, and therefore we can safely prune the branch of
the search space below X . The algorithm is given in Algorithm 4.



Algorithm 4: FINDBESTITEMSET(X , Y , Z)
input : itemset X , remaining items Y , currently best set Z
output : itemset between X and XY maximizing h, or Z

1 compute fr(X) and p∗(X);
2 if h(X) = h(fr(X) , p∗(X)) > h(Z) then
3 Z ← X;

4 compute fr(XY ) and p∗(XY );
5 b ← max{h(fr(X), p∗(XY )), h(fr(XY ), p∗(X))};
6 if b > h(Z) then
7 for y ∈ Y do
8 Y ← Y \ {y};
9 Z ← FINDBESTITEMSET(X ∪ {y}, Y , Z);

10 return Z;

Table 2: Synthetic and real datasets used in the experiments.
|A| |D| minsup |F|

Independent 50 100 000 15% 25 110
Markov 20 100 000 5% 8 748
Mosaic 50 100 000 10% 12 256

Abstracts 3 933 859 1% 101 673
Chess (kr-k) 58 28 056 0.1% 19 620
DNA Amplification 391 4 590 0.5% 672 345
Mammals 121 2 183 20% 2 169 624
Mushroom 119 8 124 5% 3 755 512
Paleo 139 124 2% 635 496

An advantage of this approach is that we do not need to collect
the frequencies of all candidate itemsets beforehand. Instead, we
just compute them on the fly as we need them (line 1). For instance,
if we wish to pick itemsets from a collection F of frequent itemsets
for some minimum support threshold, we can integrate the support
counting in the depth-first traversal of the algorithm, rather than
first mining and storing F in its entirety. Since for real datasets and
non-trivial minimal support thresholds billions of frequent itemsets
are easily discovered, this is indubitably a great benefit.

7. EXPERIMENTS
In this section we experimentally evaluate our method and em-

pirically validate the quality of the returned summaries. We imple-
mented a prototype of our algorithm in C++, and provide the source
code for research purposes.1 All experiments were executed on a
six-core Intel Xeon machine with 12GB of memory, running Linux.

We evaluate our method on three synthetic datasets, as well as on
six real datasets. Their basic characteristics are given in Table 2. The
Independent data has independent items with random frequencies
between 0.2 and 0.8. In the Markov dataset each item is a noisy copy
of the previous one, with a random copy probability between 0.2
and 0.8. The Mosaic dataset is generated by randomly planting five
itemsets of size 5 with random frequencies between 0.2 and 0.5, in a
database with 1% noise. The Abstracts dataset contains the abstracts
of all accepted papers at the ICDM conference up to 2007, where
words have been stemmed and stop words removed. The Chess
(kr-k) dataset was obtained from the UCI ML Repository [6], and
converted into binary form. The DNA data contains information on
DNA copy number amplifications. Such copies activate oncogenes
and are hallmarks of nearly all advanced tumors [19]. The Mammals
1http://www.adrem.ua.ac.be/implementations

presence data consists of presence records of European mammals
within geographical areas of 50×50 km2 [17, 18]. The Mushroom
dataset was obtained from the FIMI dataset repository [11]. Finally,
Paleo is a dataset of fossil records.

Our method is inherently parameter-free. That is, given enough
time, it can select the best set of itemsets from the complete space of
possible itemsets. However, although our algorithm is quite efficient,
in practice it may not always be feasible to consider all itemsets for
dense or large datasets. In general, choosing a larger candidate space,
yields better models. In our experiments we therefore consider
collections of frequent itemsets F mined at support thresholds as
low as feasible. The actual thresholds and corresponding size of
F are depicted in Table 2. Note that the minsup threshold is used
to limit the size of F , and is strictly speaking not a parameter of
the algorithm itself. For the synthetic datasets, we let the algorithm
decide on the best summary size, that is, we set k = ∞. As for
the real datasets, we do impose a maximum of k itemsets that our
algorithm may select. We set k such that the runtime remains within
one hour. In all experiments, we initialize C with the singleton
itemsets, i.e., we start from the independence model.

7.1 Model BIC Scores
In Table 3 we give the scores of top-k summaries, the time re-

quired to compute them, and for comparison we include the score
of the independence model. We see that for most datasets the BIC
score (and thus relatedly the negative log-likelihood) decreases a
lot, which implies that the summaries we find are of high quality.
For very structured datasets, such as DNA, this improvement is very
large, while it only takes a handful of itemsets to achieve this.

7.2 Summary Evaluation
Here we inspect the discovered data summaries in closer detail.
For the Independent dataset we see that the first itemset that

the algorithm tries to add immediately increases the BIC score.
Therefore, the summary contains only singleton itemsets, which
correctly corresponds to the independence model.

With the Markov data we notice that the itemsets in the summary
are all quite small, and consist of consecutive items. This is in
line with expectations, since the items form a Markov chain. The
algorithm finds that together with the individual items, a summary
of 21 itemsets suffices.

The summary of the Mosaic data contains the itemsets that were
used to construct the dataset. Figure 1 depicts the evolution of the
BIC score. We see that as the five embedded itemsets are discovered,
the BIC score is drastically reduced. Afterwards, some additional
itemsets are discovered, which contain items from two or more of the
generating itemsets. However, they are not noise, and are needed to

Table 3: The BIC scores of the discovered models, compared to
the independence model. (Lower scores are better.)

k time s(C) s(indep)

Independent 0 10 s 4 494 656 4 494 656
Markov 21 4 834 s 1 826 576 2 000 143
Mosaic 19 686 s 812 792 2 168 276

Abstracts 24 2 774 s 254 974 256 937
Chess (kr-k) 15 3 104 s 774 899 787 078
DNA Amplification 132 3 303 s 91 125 185 499
Mammals 13 1 826 s 107 268 120 132
Mushroom 15 1 817 s 343 367 441 903
Paleo 13 2 307 s 7 787 8 822
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Figure 1: BIC scores for the Mosaic dataset for increasing k.
The minimum BIC score is attained at k = 19.

explain the overlapping behavior of some of the generating itemsets.
When k reaches 20, the BIC score increases, and the algorithm
stops. (Due to the scale of the plot this is not clearly visible in
Figure 1.) Therefore, the algorithm decides that the dataset can be
best described with 19 itemsets, of which 5 (the generating itemsets)
clearly provide the most information.

The transactions in the Mammals data represent geographical
areas of 50×50 km2 in Europe. The itemsets discovered here repre-
sent sets of mammals that co-exist in these regions. Investigating
the areas where these sets of mammals are present, reveals that
many of them form contiguous geographically sound territories, e.g.,
Scandinavia, the Iberian peninsula, or Eastern Europe. (Pictures are
not shown here due to lack of space.)

In the case of the DNA data, our algorithm reached more than 100
iterations within one hour. As this dataset is banded, it contains a
lot of structure [8]. Our method correctly discovers these bands, i.e.,
blocks of consecutive items corresponding to related genes, lying
on the same chromosomes. The first few dozen sets are large, and
describe the general structure of the data. Then, as we continue, we
start to encounter smaller itemsets, which describe more detailed
nuances in the correlations between the genes. Figure 2 depicts a
detail of the DNA dataset (note that the figure is transposed), together
with a few of the itemsets from the discovered summary.

7.3 Comparison with Other Methods
In Table 4, we give the top-10 itemsets in the Abstracts dataset,

as discovered by our method (top left), KRIMP [23] (top right),
Kontonasios and De Bie’s method [15] (bottom left), and Tiling [9]
(bottom right). We see that our algorithm discovers recognizable
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Figure 2: Detail of the DNA dataset (right), along with some of
the discovered itemsets (left). (Figure is rotated to the left.)

Table 4: Top-10 itemsets of the Abstracts dataset for our method
(top left), KRIMP [23] (top right), Kontonasios and De Bie [15]
(bottom left), and Tiling [9] (bottom right).

machin support svm vector algorithm experiment result set
associ mine rule demonstr space

algorithm frequent mine pattern larg databas
analysi discrimin lda linear consid problem

algorithm cluster dimension high knowledg discoveri
nearest neighbor demonstr experiment

bay naiv rule mine associ databas
frequent itemset mine algorithm base approach cluster

analysi compon princip state art
dimension high real subspac synthet global local

vector machin support algorithm mine
discov frequent effici pattern mine algorithm algorithm base

associ rule database mine algorithm result set
train learn classifi perform set approach problem

frequent itemset method propos
dimensional high cluster mine result experiment

synthetic real algorithm perform
seri time base model

decis tree classifi set method
experiment propos problem approach result algorithm gener

data mining topics such as support vector machines, frequent itemset
mining and principle component analysis. Further, there is little
overlap between the itemsets, and there is no variations-on-the-same-
theme type of redundancy present.

For KRIMP we depict the itemsets from the code table which have
the highest usage. From a compression point of view, the items
in these sets co-occur often, and thus result in small codes for the
itemsets. Arguably, this does not necessarily make them the most
interesting, however, and we observe that some rather general terms
such as state [of the] art or consider problem are ranked highly.
The results of Kontonasios and De Bie’s algorithm, based on the
Information Ratio of tiles, are different from ours, but seem to be
more or less similar in quality for this particular dataset. Finally, for
Tiling we provide the top-10 itemsets of size at least two. Without
this size restriction, only singletons are returned, which, although
having the largest area, are not very informative. Still, the largest
discovered tiles are of size two, and contain quite some redundancy,
for instance, the top-10 contains only 13 (out of 20) distinct items.

8. DISCUSSION
The approach introduced in this paper fulfills several intuitive

expectations one might have about summarization, such as succinct-
ness, providing a characteristic description of the data, and having
little redundancy. The experiments show that quantitatively we can
achieve good BIC scores with only a handful of itemsets, and that
these results are highly qualitative and meaningful; moreover, we
can discover them in a relatively short amount of time.

In this paper we consider data mining as an iterative process.
By starting off with what we already know, we can identify those
patterns that are the most surprising. Simply finding the itemset that
is most surprising, is a problem that Hanhijhärvi et al. summarize as
‘tell me something I don’t know’. When we repeat this process, in
the end, we will have identified a group of itemsets that ‘tell me all
there is to know’ about the data. Clearly, this group strongly overfits
the data. This is where BIC provides a solution, as it automatically
identifies the most informative group. Hence, we paraphrase our
approach as ‘tell me what I need to know’.

The view that we take here on succinctness and non-redundancy
is fairly strict. Arguably, there are settings conceivable where lim-
ited redundancy (at the cost of brevity) can give some robustness
to a technique, or provide alternative insights by restating facts
differently. However, this is not the intention of this paper, and



we furthermore argue that to this end our method can perfectly be
complemented by techniques such as redescription mining [33].

There are a number of possible improvements for our method. We
are interested in refining the penalty in our score. Our current score
only penalizes the number of elements in C, not their complexity
(e.g., their size). Such a refinement would make it more strict, and
could provide better results. Another problem setting in which our
method is applicable, is that of finding the best specialization of
a given itemset X . That is, to identify the superset Y of X that
provides the best score s(C ∪ {Y }). This setup allows experts to
interactively discover interesting itemsets. As part of future work,
we are currently investigating this in practice for finding patterns in
proteomics and mass-spectrometry data.

9. CONCLUSION
In this paper we introduced a well-founded method for iteratively

mining a non-redundant collection of interesting itemsets from trans-
action data. We employ the Maximum Entropy principle to build a
probabilistic model of the data, use this model to iteratively identify
the most surprising itemsets, and then update our model accordingly.
As such, unlike static interestingness models, our approach does
not return patterns that are redundant with regard to what we have
learned, and keeps the result set succinct yet informative.

Experiments show that we discover succinct summaries, which
correctly identify important patterns in the data. The resulting
models attain high log-likelihoods, and are easy to interpret.
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