
Summarizing Data
with Informative Patterns

Proefschrift

voorgelegd tot het behalen van de graad van
doctor in de wetenschappen: informatica

aan de Universiteit Antwerpen
te verdedigen door

Michael MAMPAEY

Promotor: Prof. dr. Bart Goethals Antwerpen, 2011

Summarizing Data with Informative Patterns
Nederlandse titel: Databanken Samenvatten met Informatieve Patronen

The research in this thesis was supported by a Ph.D. grant of the Agency
for Innovation by Science and Technology in Flanders (IWT).

Typeset in Palatino using LATEX

ISBN 978-90-5728-348-2
D/2011/12.293/39

Copyright c© 2011 by Michael Mampaey

sum•ma•rize /"s2m@raIz/ v. To make
(or constitute) a summary of; to sum
up; to state briefly or succinctly.

Oxford English Dictionary

Acknowledgements

Throughout the past five years, many people have contributed either
directly or indirectly to this dissertation, and I would like to take the
opportunity to thank them. First of all, I am grateful to my advisor,

Bart Goethals, who got me interested in doing a Ph.D. in Data Mining in the
first place, for our discussions, scientific and otherwise. The organization of
the ECML PKDD conference in Antwerp was also a memorable experience.
Special thanks goes to the people that I have had the pleasure of collaborating
with; Wim Le Page, Nikolaj Tatti, and Jilles Vreeken. You played no small part
in this thesis coming to fruition. Thanks is due to the members of the doctoral
jury: Geoff Webb, Arno Siebes, Toon Calders, Floris Geerts, Jan Paredaens,
and Bart Goethals. Further, I would also like to thank all members—past and
present—of the ADReM research group and the Department of Mathematics
and Computer Science who made my stay at the University of Antwerp as
pleasant as it was; Adriana, Álvaro, Antonio, Bart, Boris, Calin, Céline, Floris,
Hai, Jan, Jan, Jeroen, Jeroen, Jilles, Joris, Juan, Koen, Kris, Mehmet, Nele,
Nghia, Nikolaj, Olaf, Philippe, Roel, Sandy, Tayena, and Wim. Finally, I
would like to thank my family and friends for their support.

Michael Mampaey
Antwerp, October 2011

i

Summary

A short summary of this dissertation is presented below. It was
obtained by applying the mtv algorithm (Chapter 6) to the full text
of the thesis, where each stemmed word was regarded as an item,

and every sentence as a transaction. Stop words, numbers, mathematical
symbols, and formulae were ignored. The resulting dataset consists of 2 231
sentences, and 23 855 words of which 1 861 are unique.

§

description length
maximum entropy model
background knowledge

row column margin
search space

code table
log likelihood
lazarus count

frequency estimate
minimum description length principle

p value
attribute cluster

frequent itemset mining
itemset collection

take account

iii

Summary

cluster description
mdl bic

penalty term
Markov chain

redundant rule
mutual information

absolute error
non redundant

binary categorical
relative error
random swap

itemset support
high quality

itemset frequency
dependence rule
association rule
low entropy set

independence model
mdl principle
refined mdl

well known
pattern mining

compute probability
correlated attribute

maximum entropy distribution
model likelihood
section discuss
count statistic
code length
identify best

block size
attribute set

iv

List of Publications

• T. Calders, B. Goethals, and M. Mampaey. Mining itemsets in the
presence of missing values. In Proceedings of the 22nd ACM Symposium
on Applied Computing (ACM SAC), Seoul, Korea, pages 404–408. ACM,
2007.

• B. Goethals, W. Le Page, and M. Mampaey. Mining interesting sets and
rules in relational databases. In Proceedings of the 25th ACM Symposium
on Applied Computing (ACM SAC), Sierre, Switzerland. ACM, 2010.

• N. Tatti and M. Mampaey. Using background knowledge to rank item-
sets. Data Mining and Knowledge Discovery, 21(2):293–309, 2010.

• M. Mampaey and J. Vreeken. Summarising data by clustering items. In
Proceedings of the European Conference on Machine Learning and Principles
and Practice of Knowledge Discovery in Databases (ECML PKDD), Barcelona,
Spain, pages 321–336. Springer-Verlag, 2010.

• M. Mampaey. Mining non-redundant information-theoretic dependen-
cies between itemsets. In Proceedings of the 12th International Conference
on Data Warehousing and Knowledge Discovery (DaWaK), Bilbao, Spain, vol-
ume 6263 of LNCS, pages 130–141. Springer, 2010.

• M. Mampaey, N. Tatti, and J. Vreeken. Tell me what I need to know:
Succinctly summarizing data with itemsets. In Proceedings of the 17th
ACM International Conference on Knowledge Discovery and Data Mining
(SIGKDD), San Diego, CA, pages 573–581. ACM, 2011. (Best Student
Paper)

v

List of Publications

• M. Mampaey, N. Tatti, and J. Vreeken. Data summarization with infor-
mative itemsets. In Proceedings of the 23rd Benelux Conference on Artificial
Intelligence (BNAIC), Ghent, Belgium, 2011.

• M. Mampaey and J. Vreeken. Summarizing categorical data by clus-
tering attributes. Manuscript currently submitted to: Data Mining and
Knowledge Discovery, 2011.

• M. Mampaey, J. Vreeken, and N. Tatti. Summarizing data succinctly
with the most informative itemsets. Manuscript currently submitted
to: Transactions on Knowledge Discovery and Data Mining, 2011.

vi

Contents

Acknowledgements i

Summary iii

List of Publications v

Contents vii

1 Introduction 1
1.1 Thesis Outline . 4

2 Preliminaries 7
2.1 Pattern Mining . 7
2.2 Information Theory . 15
2.3 Model Selection . 17

3 Mining Non-redundant Information-Theoretic
Dependencies between Attribute Sets 21
3.1 Introduction . 22
3.2 Related Work . 23
3.3 Strong Dependence Rules . 24
3.4 Rule Redundancy . 28
3.5 Problem Statement . 30
3.6 The µ-Miner Algorithm . 31
3.7 Experiments . 34
3.8 Conclusions . 39

vii

Contents

4 Summarizing Categorical Data by Clustering Attributes 41
4.1 Introduction . 43
4.2 Summarizing Data by Clustering Attributes 46
4.3 Mining Attribute Clusterings . 58
4.4 Alternative Approaches . 64
4.5 Related Work . 67
4.6 Experiments . 70
4.7 Discussion . 92
4.8 Conclusions . 94

5 Using Background Knowledge to Rank Itemsets 95
5.1 Introduction . 96
5.2 Statistics as Background Knowledge 98
5.3 Maximum Entropy Model . 100
5.4 Solving the Maximum Entropy Model 103
5.5 Computing Statistics . 104
5.6 Estimating Itemset Frequencies 111
5.7 Experiments . 111
5.8 Related Work . 118
5.9 Conclusions . 119

6 Succinctly Summarizing Data with Informative Itemsets 121
6.1 Introduction . 123
6.2 Related Work . 125
6.3 Identifying the Best Summary . 129
6.4 Problem Statements . 153
6.5 Mining Informative Succinct Summaries 156
6.6 Experiments . 160
6.7 Discussion . 175
6.8 Conclusions . 176

7 Conclusions 179

Nederlandse Samenvatting 183

Bibliography 189

Index 201

viii

Chapter 1

Introduction

During the past few decades, technological advances have made it
possible to cheaply acquire and store vast quantities of data of var-
ious kinds; for instance, scientific observations, commercial records,

medical data, government databases, multimedia, etc. Gathering such data is
vital to gain insight into a problem, to study a certain phenomenon, or to be
able to make informed decisions. Further, it is an integral part of the scientific
process. Nowadays, however, we have such vast amounts of data at our dis-
posal, that extracting information from it has become a nontrivial task. The
analysis of such data by hand is certainly no longer tractable. This situation
gives rise to the need for computational techniques that extract useful and
meaningful information from databases.

Knowledge discovery from data (KDD) has therefore rapidly emerged
as an important area of research. Particularly the field of data mining, a
key component in the knowledge discovery process, has gained a lot of mo-
mentum. Located at the intersection of statistics, artificial intelligence, and
database research, data mining is defined by Hand et al. [2001] as follows.

Data mining is the analysis of (often large) observational data sets
to find unsuspected relationships and to summarize the data in
novel ways that are both understandable and useful to the data
owner.

Several important (albeit vague) terms appear in this definition. The term
relationships is very broad, and can refer to any regularity or structure of

1

1. Introduction

the data in whatever form; this may include anything from local patterns to
classification models or clusterings. The keyword unsuspected is a crucial one,
as the aim of data mining is to discover relationships that are interesting,
surprising, or previously unknown. This inherently assumes that the data
analyst has some expectations about the data, which may or may not exist in
an explicit form. Any deviation from this expectation is deemed interesting,
and possibly worth a closer look; on the other hand, if a regularity in the data
completely conforms to the user’s expectations, it is indeed quite boring. We
can regard this expectation as the background knowledge of the user.

Summarizing the data means to present its characteristics to the data miner
in a succinct and concise manner, forming a small yet informative and man-
ageable piece of information. Ideally it should contain just the information
that the user needs, nothing more and nothing less. However, the results
of existing data mining techniques can often be quite complex and detailed,
or contain redundant information. For instance, in frequent itemset mining
the user can be overwhelmed with countless patterns. Finally, the outcome
of a data mining method should be understandable, meaning that it must be
intuitive for an analyst to grasp what the result signifies, such that her or she
is then able to take advantage of the acquired knowledge.

Data mining techniques can roughly be divided into two categories: local
and global ones. Global techniques aim to construct a model of the data as a
whole. Such models typically do not capture the data perfectly, but instead
try to describe its overall tendencies in order to describe or understand it,
or to be able to make predictions. Examples include clustering, classification
and regression, graphical modeling, or fitting the parameters of a Gaussian
distribution. Local techniques, on the other hand, describe particular aspects
of the data that are interesting in some way. Such local structures (e.g., fre-
quent itemsets), describe only a part of the data, rather than modeling it in
its entirety. An advantage is that they are often easy to interpret and not
difficult to mine. Typically, however, it is nearly impossible to consider all
interesting patterns in a dataset, for the simple reason that there may be far
too many of them to handle. It has been recognized that local pattern mining
in practice should either be accompanied by a pruning, ranking, or filtering
step, which drastically reduces the set of results while trying to retain in-
formativeness; or one should directly mine sets of patterns as a whole, by
considering how they relate to each other. This distinction between local and
global data mining techniques is not always a clear-cut one, though.

2

The aim and subject of this thesis is to investigate how local patterns can
be used to summarize data. To this end, we put forth some key concepts that
a summary should adhere to.

• Informativeness It goes without saying that a summary should con-
vey meaningful and useful information to a user, that is, a summary
should communicate significant structures that are present in the data.
As such, information theory plays an important theory in this disserta-
tion to measure interestingness. Further, we will also focus on taking
the data miner’s background knowledge into account, since what is
interesting to one person might not be so to another.

• Conciseness A summary must necessarily be succinct in order for a
user to be able to oversee and manage it. This conciseness may simply
refer the size of the summary, but it may also refer to its complexity.

• Interpretability Clearly, a concise black box method that can accu-
rately capture a given dataset, does not allow us to understand the data
any better. Therefore, we also list interpretability as a requirement. Lo-
cal patterns generally tend to be quite easy to understand. In this work
we mostly focus on two types of patterns: itemsets and attribute sets,
and this for binary and categorical data.

In a sense, a summary can be seen as a model of the data, although it is
not necessarily queryable or presented in a mathematical form. The summa-
rization approaches presented in this dissertation should be categorized as
exploratory data mining; our intent is to extend our knowledge of some given
dataset that we do not yet know much about. This is an inherently imprecise
problem with no clearly defined objective or a single correct solution. The
goal of this thesis is therefore not to develop one all-embracing summariza-
tion method. Rather, we will examine several approaches, since in practice
we may be confronted with different types of data and applications. Using
different ways to look at data, with different patterns, criteria, etc, can be
more insightful than using a single technique.

At this point, we remark the distinction between summarizing a given
dataset, and summarizing a collection of patterns. While many techniques
exist that start from a given collection of patterns, i.e., the result of a data
mining method, often to be able to reconstruct the original pattern set, our
aim is to directly summarize the data itself, making use of local patterns.

3

1. Introduction

1.1 Thesis Outline

This thesis is organized in seven chapters. Chapters 3 through 6 are based on
previously published work. The outline of the thesis is as follows.

Chapter 2 introduces preliminary definitions and notations regarding pat-
tern mining, information theory, and model selection. These preliminar-
ies form the basis for the subsequent chapters.

Chapter 3 presents an approach for discovering dependence rules between
sets of attributes using information-theoretic measures. We investigate
techniques to reduce the redundancy in the set of results, and present an
efficient algorithm to mine these rules.

The content of this chapter is based on:
M. Mampaey. Mining non-redundant information-theoretic dependen-
cies between itemsets. In Proceedings of the 12th International Conference on
Data Warehousing and Knowledge Discovery (DaWaK), Bilbao, Spain, volume
6263 of LNCS, pages 130–141. Springer, 2010.

Chapter 4 provides a technique to create a high-level overview of a dataset,
by clustering its attributes into correlated groups. For each attribute clus-
ter, a small distribution gives a description of the corresponding part of
the data. These groupings can subsequently be used as an approxima-
tive model for the data. To find good attribute clusterings, we employ
the Minimum Description Length principle.

The content of this chapter is based on:
M. Mampaey and J. Vreeken. Summarising data by clustering items. In
Proceedings of the European Conference on Machine Learning and Principles
and Practice of Knowledge Discovery in Databases (ECML PKDD), Barcelona,
Spain, pages 321–336. Springer-Verlag, 2010.
M. Mampaey and J. Vreeken. Summarizing categorical data by clus-
tering attributes. Manuscript currently submitted to: Data Mining and
Knowledge Discovery, 2011.

Chapter 5 studies the usage of intuitive statistics to construct a background
model for ranking itemsets. These statistics include row and column

4

1.1. Thesis Outline

margins, lazarus counts, and transaction bounds. Based on these statis-
tics, a Maximum Entropy model is presented, which can be constructed
and queried efficiently in polynomial time, and against which itemsets
are ranked.

The content of this chapter is based on:
N. Tatti and M. Mampaey. Using background knowledge to rank item-
sets. Data Mining and Knowledge Discovery, 21(2):293–309, 2010.

Chapter 6 introduces a novel algorithm to mine a collection of itemsets as
a global model for data. The proposed algorithm models the data us-
ing a Maximum Entropy distribution which is built based on a succinct
itemset collection. Techniques from Chapter 4 to ensure efficient com-
putation, and from Chapter 5 to infuse background knowledge, are in-
corporated into the algorithm. To discover the best collection of itemsets
that summarizes a given dataset, we employ the Bayesian Information
Criterion and the Minimum Description Length principle.

The content of this chapter is based on:
M. Mampaey, N. Tatti, and J. Vreeken. Tell me what I need to know:
Succinctly summarizing data with itemsets. In Proceedings of the 17th
ACM International Conference on Knowledge Discovery and Data Mining
(SIGKDD), San Diego, CA, pages 573–581. ACM, 2011. (Best Student Pa-
per)
M. Mampaey, J. Vreeken, and N. Tatti. Summarizing data succinctly
with the most informative itemsets. Manuscript currently submitted to:
Transactions on Knowledge Discovery and Data Mining, 2011.

Chapter 7 summarizes the main contributions of the dissertation and ends
with concluding remarks.

5

Chapter 2

Preliminaries

This chapter introduces some of the main concepts from pattern min-
ing, information theory, and model selection techniques such as mdl.
We establish preliminaries and notation as a basis for the subsequent

chapters, and give some pointers for further reading.

2.1 Pattern Mining

One of the most prolific areas of research within the data mining community
is without a doubt that of pattern mining. A pattern is any type of regularity
that is observed in data that may or may not be of interest. The term pat-
tern mining can generally refer to any type of pattern, and a variety of data
formats; e.g., substructure mining in graph data, sequential pattern mining
in temporal data, etc. Many interestingness measures have been defined for
these patterns, and many efficient algorithms to discover them have been
developed and applied in various practical situations.

The focus of this dissertation is on two particular types of patterns: item-
sets and attribute sets. Besides this, we will also consider rules between them.
Since the inception of frequent itemset mining (and association rule mining)
by Agrawal et al. [1993], several hundreds of papers have been published on
the subject, covering aspects ranging from the design of efficient algorithms,
over the definition of measures of interestingness, to combatting redundancy
and mining sets of patterns.

7

2. Preliminaries

The by now classic textbook example of frequent itemset mining is that of
supermarket basket analysis. In this setting we are given a product database
consisting of transactions that represent the purchases made by the customers
of a supermarket, and we wish to investigate their purchasing behavior. The
problem of frequent itemset mining then, is to find all sets of items—or item-
sets—that were frequently bought together. The management of the super-
market can subsequently use this acquired information to their advantage,
for instance, by adjusting product pricing.

Definitions

Below we present two sets of notations and definitions that are commonly
used in the itemset mining literature; the transactional notation for binary
data, and the categorical notation. Both sets of notations are commonly used
in the literature, and we will follow them in this thesis. Although we will
occasionally abandon mathematical rigor in favor of notational convenience
by using both notations interchangeably, in general it will be clear from the
context what is meant.

Transactional notation

Let I be the set of all items. An itemset X is a subset of I . For notational
convenience, we shall denote an itemset {x, y, z} briefly as xyz, and the union
X ∪Y of two itemsets as XY.

A binary dataset D is a set of transactions, where a transaction t is a pair
〈tid, I〉, consisting of a transaction identifier tid ∈ N, and an itemset I ⊆ I .
The set of all possible transactions is denoted T = N × 2I , or often just
T = 2I , disregarding the identifiers for simplicity. The empirical distribution
over T defined by a dataset D is denoted qD . A transaction t is said to contain
or support an itemset X, written as X ⊆ t, if for all items x in X it holds that
x ∈ t.I. The cover of an itemset is defined as the set of tids of the transactions
that contain it,

cover(X,D) = {t.tid | t ∈ D with X ⊆ t} .

The support of an itemset X in a dataset D is defined as the number of trans-
actions in D containing X,

supp(X,D) = |cover(X,D)| = |{t ∈ D | X ⊆ t}| .

8

2.1. Pattern Mining

Similarly, the frequency of an itemset X in D is the relative number of trans-
actions supporting X,

fr(X,D) = supp(X,D)
|D| .

An association rule between two itemsets X and Y is written as X ⇒ Y,
where usually both sets are assumed to be either disjoint (X ∩ Y = ∅) or
inclusive (X ⊆ Y), depending on the context. The support of a rule X ⇒ Y
is defined as the support of the union of its antecedent and its consequent,
X ∪Y. The confidence of an association rule X ⇒ Y is defined as

conf (X ⇒ Y,D) = supp(X ∪Y,D)
supp(X,D) .

In the definitions above, whenever the dataset D is clear from the context,
we omit it from notation.

Categorical notation

Let A = {a1, . . . , aN} be the set of attributes. Each attribute has a domain
dom(a), which is the set of possible values {v1, v2, . . .} it can assume. In this
thesis, we only consider categorical attributes, i.e., attributes with a discrete
and finite domain. Attributes whose domain equals {0, 1} are called binary.
The domain of a set of attributes X ⊆ A is simply the Cartesian product of
the individual attributes’ domains: dom(X) = ∏ai∈X dom(ai). A transaction t
overA is a vector of length N. The i-th element of t is denoted as ti ∈ dom(ai).
An item is defined as an attribute-value pair (ai = vi) where vi ∈ dom(ai).
For brevity, we write an itemset {(x1 = v1), . . . , (xk = vk)} as {(X = v)}.
A transaction t is said to contain an itemset {(X = v)}, if for each xi ∈ X it
holds that ti = vi. From here, we can define support, frequency, etc. as above.

Note that we can trivially transform a binary, transactional dataset into
a categorical dataset, by constructing a binary attribute for each item, and
setting it to 1 or 0 depending on its occurrence. In this case, frequent itemset
mining is often restricted to positive items, i.e., I = {(ai = 1) | ai ∈ A}.
We can consider negative items of the form (ai = 0) as well. An itemset also
containing negative items is called a generalized itemset, and often written as,
e.g., xyz where x and z are negative, and y is positive.

9

2. Preliminaries

Conversely, we can transform a categorical dataset into a transactional
one, by constructing an item for each possible attribute-value pair in the
categorical data.

Problem

The problem of frequent itemset mining (or FIM for short), is to find the col-
lection F of all itemsets whose support is higher than a user-defined thresh-
old minsup ∈ (0, |D|], or equivalently, all itemsets whose frequency is higher
than a threshold minfreq ∈ (0, 1]. In other words, to find

F = {X ⊆ I | supp(X,D) ≥ minsup} .

The itemsets in F are called frequent. This problem is known to be NP-hard.
Choosing a value for the minimum support parameter mostly depends

on the task and the dataset at hand. In general, however, it should be noted
that choosing a value that is too high tends to produce few results, which
often represent already known information. On the other hand, choosing a
value that is too low results in far too many patterns for the user to handle.
Finding a threshold value that achieves a proper balance can be tricky.

The problem of association rule mining is to find all rules whose confi-
dence is higher than a user-defined threshold minconf ∈ [0, 1], and for which
the union of the antecedent and consequent is frequent. From the definition
above, we see that the confidence of an association rule X ⇒ Y is calculated
from the supports of X and X ∪ Y. Association rule mining is therefore usu-
ally implemented in two phases, by first mining all frequent itemsets, and
then generating confident rules from them.

Besides support and confidence, many interestingness measures for item-
sets and association rules have been proposed in the literature. For an over-
view, see, e.g., [Tan et al., 2004, Geng and Hamilton, 2006, Wu et al., 2007].

Frequent Itemset Mining Algorithms

Over the years, many frequent itemset mining algorithms have been pro-
posed (see, e.g., [Goethals and Zaki, 2003, Bayardo et al., 2004]). These al-
gorithms typically make use of the monotonicity property, which allows an
efficient traversal of the search space.

10

2.1. Pattern Mining

Figure 2.1: A subset lattice over a set of four items {a, b, c, d}. In this example,
the frequent itemsets are indicated in gray. The border, represented by the
dashed line, separates the frequent from the infrequent itemsets.

∅

a b c d

ab ac ad bd

abd

bc cd

abc acd bcd

abcd

Property 2.1 (Support monotonicity). Given two itemsets X and Y, it holds that

X ⊂ Y ⇒ supp(X) ≥ supp(Y) .

This property (also called the Apriori property) implies that if an itemset
is infrequent, then all of its supersets are infrequent as well. Conversely, if an
itemset is frequent, we know that all of its subsets are frequent as well.

The search space of all itemsets (the powerset of I) forms a lattice [Davey
and Priestley, 1990]. Figure 2.1 shows an example of a subset lattice for
I = {a, b, c, d}. The itemsets that are frequent (in a here unspecified dataset)
are indicated in bold. As can be seen, the frequent itemsets all lie above the
border represented by the dashed line. We can traverse this lattice efficiently
using the Apriori property, in order to discover all frequent itemsets.

Below we present two famous frequent itemset mining algorithms, Apri-
ori and Eclat. Some other well-known algorithms include fp-growth [Han
et al., 2000] and lcm [Uno et al., 2004]. For in-depth surveys on frequent
pattern mining, see, e.g., [Goethals, 2003, Han et al., 2007].

11

2. Preliminaries

Apriori

The Apriori algorithm was independently proposed by Agrawal and Srikant
[1994] and Mannila et al. [1994]. It is reproduced here are as Algorithm 2.1.
Apriori is a breadth-first algorithm, which considers the search space in
levels. First 1-itemsets (itemsets of size 1) are considered, then 2-itemsets,
and so on. For each level k, a set Ck of candidate itemsets is constructed,
based on the frequent itemsets from the previous level. That is, a particu-
lar itemset of size k is considered only if all of its subsets of size k − 1 are
frequent—otherwise we automatically know that it is infrequent because of
the Apriori property (line 10). Each candidate is constructed by considering
pairs of frequent k-itemsets with a common (k− 1)-prefix (line 9). Then, for
each candidate itemset, the data is scanned to determine its support, and the
frequent ones are retained in the set Fk (line 5).

Algorithm 2.1: Apriori

input : a binary dataset D;
a minimum support threshold minsup

output: the set of frequent itemsets in D w.r.t. minsup
1 F ← ∅
2 k← 1
3 C1 ← {{x} | x ∈ I}
4 while Ck 6= ∅ do
5 Fk ← {X ∈ Ck | supp(X,D) ≥ minsup}
6 F ← F ∪Fk
7 Ck+1 ← ∅
8 for each X, Y ∈ Fk such that X[1 . . . k− 1] = Y[1 . . . k− 1] and

X[k] ≤ Y[k] do
9 Z ← X ∪Y[k]

10 if ∀Z′ ⊂ Z with |Z′| = k, it holds that Z′ ∈ Fk then
11 Ck+1 ← Ck+1 ∪ {Z}
12 end
13 end
14 k← k + 1
15 end
16 return F

12

2.1. Pattern Mining

While this pruning of candidates is very effective, the Apriori algorithm
is quite demanding in terms of memory usage; a candidate set on a single
level k can contain up to (N

k) itemsets, which may exceed the available mem-
ory, especially for large and dense datasets. Several optimizations of Apriori

have been proposed, e.g., by reducing the number of database scans, parti-
tioning the data, or by sampling [Goethals, 2003].

Eclat

The Eclat algorithm (see Algorithm 2.2) was introduced by Zaki et al. [1997].
Eclat uses the concept of tid lists. For an itemset X, this is simply its cover,
i.e., the tids of the transactions in D that contain X. Given two itemsets X1
and X2, it is easy to see that the tid list of X1∪X2 equals cover(X1)∩ cover(X2).
A dataset D is represented in vertical form; rather than consisting of trans-
actions containing items, the data consists of tid lists, where each item has
a list associated with it, containing the tids of the transactions it occurs in.
Further, the algorithm works with conditional datasets, i.e., D I is the restric-
tion of D to all transactions containing I. The Eclat algorithm performs a
depth-first traversal of the search space. As such, it does not fully utilize the
Apriori property, i.e., it does not check whether all subsets of some candidate
itemset are frequent. This has the disadvantage that the algorithm might
consider more candidate itemsets than the Apriori algorithm. However, this
also means that it spends less time checking whether subsets are frequent,
and moreover, due to its depth-first approach, the algorithm requires far less
memory. In practice, therefore, the algorithm tends to perform very well.

Heuristic improvements to Eclat include the use of diffsets [Zaki and
Gouda, 2003], and the ordering of the items based on their support.

Reducing the Output

Due to the fact that the complete set of frequent itemsets can be unwieldy
(often in the order of millions or billions), many approaches have proposed
to reduce this set. To this end, several notions of redundancy have been intro-
duced, in order to condense or summarize the full set of patterns. The idea
is to report only a subset of the patterns, such that the omitted ones can be
inferred. This can either be done losslessly or lossily. These techniques can
potentially reduce the set of patterns by several orders of magnitude.

13

2. Preliminaries

Algorithm 2.2: Eclat

input : a binary database D; a minimum support threshold minsup;
a set of items I ⊆ I (initially I = ∅)

output: the set of frequent itemsets F [I] with prefix I in D w.r.t. minsup
1 F [I]← ∅
2 for each item i ∈ I occurring in D do
3 F [I]← F [I] ∪ {I ∪ {i}}
4 Di ← ∅
5 for each item j ∈ I occurring in D such that j > i do
6 C ← cover(i,D) ∩ cover(j,D)
7 if |C| ≥ minsup then
8 Di ← Di ∪ {〈j, C〉}
9 end

10 end
11 F [I]← F [I] ∪ Eclat(D I , minsup, I ∪ {i})
12 end
13 return F [I]

An itemset X is called closed [Pasquier et al., 1999] if its support is strictly
higher than the support of all of its supersets, that is,

supp(X) > supp(Y) for all Y ⊃ X .

A collection of closed frequent itemsets allows us to reconstruct the complete
set of frequent itemsets; if a frequent itemset X does not occur in it (i.e., is
not closed), then we can simply look up its smallest proper superset, whose
support is equal to the support of X. If there is no such superset, then we
know that X was infrequent to begin with.

Related to closedness, an itemset is called a generator or free [Boulicaut
et al., 2003], if its support is strictly lower than the support of all of its subsets,

supp(X) < supp(Y) for all Y ⊂ X .

Another example are non-derivable itemsets [Calders and Goethals, 2007].
An itemset is called derivable if its support can be inferred exactly from the
supports of all its proper subsets. That is, using the Inclusion-Exclusion
principle we can calculate tight lower and upper bounds on supp(X) that are

14

2.2. Information Theory

based on supp(X′) for all X′ (X. If these bounds coincide, the support of
X is known exactly, and hence it can be seen as redundant. For example,
say we have an itemset X = abc. Then using Inclusion-Exclusion, we know
that, e.g., supp(abc) ≥ supp(ab) + supp(ac)− supp(a). For an itemset of size 3,
there are 23 such upper and lower bounds. The set of non-derivable frequent
itemsets is downward closed; if a frequent itemset is non-derivable, then so
are all of its subsets. From the set of all frequent non-derivable itemsets, we
can construct the full set of frequent itemsets; if X is frequent and derivable,
we can infer its support (possibly recursively) from its subsets.

Other examples of approaches to reduce a set of patterns include mining
maximal frequent itemsets [Bayardo, 1998, Gouda and Zaki, 2001], and non-
redundant association rules [Zaki, 2000].

Mining Sets of Patterns

The techniques mentioned in the previous section aim to reduce the output
of a pattern mining algorithm somehow, but often still result in relatively
large pattern sets. In recent years, methods have emerged that try to discover
even smaller sets of patterns. The key realization is that in order to end up
with a small, non-redundant pattern set, we must consider how the patterns
relate to each other, rather than considering them individually. The general
approach is to greedily add itemsets, either by considering them in some
order and only adding an itemset if some criterion is satisfied, or maintain-
ing a model of the data against which itemsets are evaluated, and updating
it for each new itemset that is added. See, for instance, [Knobbe and Ho,
2006b, Gallo et al., 2007, Bringmann and Zimmermann, 2009, Kontonasios
and De Bie, 2010, Vreeken et al., 2011].

2.2 Information Theory

To assess the interestingness of a pattern or set of patterns, this dissertation
heavily relies on concepts from information theory. This allows us to quantify
informativeness in a formal and well-founded way.

Central to the field of information theory is the notion of entropy, which
was introduced by Shannon [1948]. Entropy measures the information con-
tent of a given random variable. Say we have a message over some alphabet
that we want to transmit from a sender A to a receiver B, and we wish to do

15

2. Preliminaries

so efficiently, i.e., in as few bits as possible (assuming without loss of gen-
erality that we are sending it in binary). To this end, A and B must agree
on some code to transmit the message in. For instance, each symbol could
be represented by a bitstring of a certain fixed length. However, if A and
B have knowledge of the distribution over the symbols, they can use a code
such that the total expected length of the message is minimized. Shannon
showed that such a code is optimal if the length of a symbol’s code is equal
to − log p(x), where p(x) is the probability of symbol x. The expected length
of the message per symbol is then equal to −∑x p(x) log p(x). This is called
the entropy of the source. It describes how much information is contained
in X. Alternatively, entropy can be seen as a measure of the complexity or
uncertainty of the source; the more uncertain we are, the more bits we need
on average to transmit a message.

Formally, given a discrete random variable X with domain X and a prob-
ability distribution p, the entropy of X is defined as

H(X) = − ∑
x∈X

p(x) log p(x) .

The base of the logarithm above is 2, and by convention 0 log 0 = 0.
For a dataset D and an attribute set X, we can define the entropy of X as

H(X,D) = − ∑
x∈X

fr(X = x) log fr(X = x) ,

where X = dom(X).
Very often we may want to compare the information content of two ran-

dom variables, or express how close one is to the other. The Kullback-Leibler
divergence [Cover and Thomas, 2006] between two random variables X and
Y, with probability distributions p and q over a domain X , is defined as

KL (X‖Y) = ∑
x∈X

p(x) log
p(x)
q(x)

.

Informally, it tells us how different q is from p. The Kullback-Leibler diver-
gence expresses how many additional bits are needed on average per symbol
if we send a message that is distributed according to p, using a code that is
optimal for q instead. It is nonnegative, equal to zero if and only if p = q,
and asymmetric (hence it is not a distance metric).

16

2.3. Model Selection

Based on Kullback-Leibler, the mutual information between two random
variables X and Y with respective domains X and Y , is defined as the diver-
gence of their joint distribution r from the product distribution p · q,

I(X, Y) = KL (r‖p q)

= ∑
x∈X

∑
y∈Y

r(x, y) log
r(x, y)

p(x)q(y)

where p and q are the marginal distributions of r with respect to X and Y
respectively, i.e., p = rX and q = rY . If X and Y are independent then their
mutual information is equal to zero and vice versa. Mutual information can
conveniently be expressed in terms of entropy, as

I(X, Y) = H(Y)− H(Y | X)

= H(X)− H(X | Y)
= H(X) + H(Y)− H(X, Y)

where H(Y | X) is the conditional entropy of Y given X, and H(X, Y) is the
joint entropy of X and Y.

Several authors have introduced methods to asses the quality of patterns
based on information-theoretic concepts, see, e.g., [Jaroszewicz and Simovici,
2004, Heikinheimo et al., 2007].

2.3 Model Selection

The problem of finding a suitable model for a given dataset is far from trivial.
Given a family of possible models, the task is to pick the model that somehow
is best at capturing the data. Good model selection techniques generally
not only take into account how well a certain model fits the data, but also
consider the complexity of the model itself. Such techniques are guided by
Occam’s razor, which may be phrased as follows.

Given two hypotheses of equal explanatory power, the simplest
one is to be preferred.

Here, we briefly describe two model selection techniques used in this thesis.

17

2. Preliminaries

BIC

Given a dataset D and a probabilistic model p, the Bayesian Information
Criterion (bic) [Schwarz, 1978] is defined as

− log p(D) + k
2

log |D|

where k is the number of free parameters of p. The first term is the negative
log-likelihood of the model, so the better the model fits the data, the lower
this term gets. The second term is a penalty term, which is a function of the
complexity of p. Therefore, the simpler the model, the lower this penalty.

Note that the first term scales linearly with the size of D, whereas the
second term grows logarithmically. Therefore, the more data (or evidence)
that is available, the more the first term will outweigh the complexity penalty,
i.e., the more complex our model is allowed to be.

MDL

The Minimum Description Length (mdl) principle [Rissanen, 1978, Grün-
wald, 2005], like its close cousin mml (Minimum Message Length) [Wallace,
2005], is a practical version of Kolmogorov Complexity [Li and Vitányi, 1993].
All three embrace the slogan Induction by Compression. The mdl principle can
roughly be described as follows.

Given a dataset D and a set of models M, the best model M ∈ M is the
one that minimizes

L(M) + L(D | M)

in which

• L(M) is the length, in bits, of the description of M, and

• L(D | M) is the length, in bits, of the description of the data encoded
with model M.

This is called two-part mdl, or crude mdl. This stands opposed to refined
mdl, where model and data are encoded together [Grünwald, 2007]. In this
dissertation we use two-part mdl, because we are specifically interested in the
model. Moreover, although refined mdl has stronger theoretical foundations,
it cannot be computed except for some special cases.

18

2.3. Model Selection

The first term is the description length of the model. What this description
looks like, depends on the encoding that is used. Each model gets a code such
that the encoded message is uniquely decodable. In general, the length of this
code should reflect the complexity of the model. In order to be decodable,
the encoding should also satisfy Kraft’s inequality, i.e.,

∑
M∈M

2−L(M) ≤ 1 .

Besides as a penalty on its complexity, the description length of the model can
also be seen as an assertion of the prior expectation of that model. Namely,
we can define (up to normalization) a probability distribution Pr, where
Pr(M) = 2−L(M) is the prior probability of model M. In practice, however, it
is often more natural to specify a description than a probability distribution.
The second term describes the data itself, encoded with the model M. The
better the model fits the data, the shorter this description should be. Gener-
ally this corresponds again to the negative log-likelihood of the data, that is,
L(D | M) = − log p(D | M). Combining these two terms, we get a descrip-
tion length that aims to balance the fit of the model and its complexity.

From the point of view of communicating a message from a sender A to
a receiver B, in contrast to Section 2.2, both sender and receiver now have
no knowledge of the distribution of the data. Hence, they must first send a
model of the data, such that they can subsequently send the data itself, using
that model. (Note, however, that A and B still need to agree upon a code to
describe models.) According to the mdl principle, the model that minimizes
the total number of bits that A needs to send to B, is the best model.

Some approaches that use model selection techniques such as bic or mdl

in a pattern mining context include [Tatti and Heikinheimo, 2008, Tatti and
Vreeken, 2008, Kontonasios and De Bie, 2010, Vreeken et al., 2011].

19

Chapter 3

Mining Non-redundant
Information-Theoretic

Dependencies between
Attribute Sets

In this chapter we present an information-theoretic approach for min-
ing strong dependencies between attribute sets in binary data. We define
measures based on entropy and mutual information to asses the quality

of such rules. The problem of local redundancy is theoretically investigated
in this context, and we present lossless pruning techniques based on set clo-
sures, as well as lossy techniques based on rule augmentation. We introduce
an efficient and scalable algorithm called µ-Miner, using Quick Inclusion-
Exclusion to achieve fast entropy computation. The algorithm is empirically
evaluated through experiments on synthetic and real-world data.

This chapter is based on work published as:
M. Mampaey. Mining non-redundant information-theoretic dependencies between itemsets.
In Proceedings of the 12th International Conference on Data Warehousing and Knowledge Discovery
(DaWaK), Bilbao, Spain, volume 6263 of LNCS, pages 130–141. Springer, 2010.

21

3. Mining Dependencies between Attribute Sets

3.1 Introduction

The discovery of rules from data is an important problem in data mining.
Mining association rules in transactional datasets particularly has received
a lot of attention [Agrawal et al., 1993, Zaki et al., 1997, Han et al., 2000].
The objective of association rule mining is to find highly confident rules be-
tween sets of items frequently occurring together. This has been generalized
to, among others, relational tables with categorical or numerical attributes
[Srikant and Agrawal, 1996]. In this context, much attention has gone to
the discovery of (approximate) functional dependencies in relations [Kivinen
and Mannila, 1995, Huhtala et al., 1999a]. A functional dependency X ⇒ Y
between two sets of attributes is said to hold, if any two tuples agreeing on
the attributes of X also agree on the attributes of Y. Often it is desirable to
also find rules that almost hold, for instance if the data is noisy. Typically, an
error is associated with a functional dependency, which describes how well
the relation satisfies the dependency, commonly this is the minimum relative
number of tuples that need to be removed from the relation for the depen-
dency to hold [Kivinen and Mannila, 1995]. These tuples can be thought of
as being the exceptions to the rule. However, the fact that there are few tu-
ples violating a dependency X ⇒ Y, does not necessarily also mean that Y
strongly depends on X; in fact, X and Y might even be independent.

Therefore, we take an information-theoretic approach to mining depen-
dencies between sets of attributes in binary data. We express the dependence
of a rule based on the mutual information between the consequent and an-
tecedent. Furthermore, we use the entropy of a rule or attribute set to de-
scribe its complexity. We present an algorithm called µ-Miner that mines
rules with a high dependence and a low complexity, and does so efficiently
by making use of the Inclusion-Exclusion principle.

Further, we investigate what kinds of redundancy can occur in the collec-
tion of all low entropy, high dependence rules. For association rules, several
types of redundancy have been studied [Zaki, 2000, Balcázar, 2008]. In this
chapter we examine two types of redundancy; one that is lossless and based
on set closures, and one that is lossy and based on superfluous augmentation.
These techniques are then integrated into the algorithm.

The structure of this chapter is as follows. In Section 3.2 we discuss related
work. In Section 3.3 we define the measures we will use to assess dependence
rules, and investigate some of their theoretical properties. In Section 3.4,

22

3.2. Related Work

the issue of redundancy is treated. In Section 3.6 we present the µ-Miner

algorithm, which is experimentally evaluated in Section 3.7. The chapter
ends with conclusions in Section 3.8.

3.2 Related Work

The discovery of exact and approximate functional dependencies from rela-
tions has received a lot of attention in the literature. The Tane algorithm
proposed by Huhtala et al. [1999a] finds exact and approximate functional
dependencies in a relation, which have a low g3 error, defined as follows,

g3(X ⇒ Y) = min{
∣∣D′∣∣ | D′ ⊆ D and D \D′ satisfies X ⇒ Y}/|D| .

Tane is a breadth-first algorithm that works with transaction partitions in-
duced by attribute sets, which can be constructed in linear time with respect
to the size of the dataset. For two attribute sets X and Y, if the partition
induced by XY does not refine the partition induced by X, then X ⇒ Y is
a functional dependency. The error of an approximate dependency can also
be computed using these partitions. The main difference with our work is
the way that the strength of a dependency is measured, but also that Tane

only mines minimal rules, i.e., rules of the form X ⇒ Y for which |Y| = 1
and there is no X′ (X such that X′ ⇒ Y is an (approximate) functional
dependency. Further, we also consider the complexity of dependencies.

Dalkilic and Robertson [2000] propose to use conditional entropy to deter-
mine the strength of dependencies in relational data. Their does not focus on
rule discovery, but examines several properties and information inequalities
from a theoretical point of view.

Jaroszewicz and Simovici [2002] use information-theoretic measures to as-
sess the importance of itemsets or association rules on top of the traditional
support/confidence-based mining framework. They use Kullback-Leibler di-
vergence (of which mutual information is a special case), to determine the
redundancy of confident association rules. Given the supports of some sub-
sets of an association rule, its most likely confidence is computed, using a
maximum entropy model. If the actual confidence of the rule in the data is
close to the estimate, the rule is considered to be redundant.

Heikinheimo et al. [2007] mine all low entropy sets from binary data, as
well as tree structures based on these sets. A breadth-first mining algorithm

23

3. Mining Dependencies between Attribute Sets

is proposed that exploits the monotonicity of entropy, after which additional
structure is imposed on these sets, in the form of Bayesian trees. The nodes
of these trees correspond to attributes, and their directed edges express the
conditional entropy between the attributes. The paper also discusses the use
of high entropy sets, which are argued to be potentially interesting due to
the lack of correlation among their attributes.

3.3 Strong Dependence Rules

In this section we introduce our interestingness measures for attribute sets
and rules, and explore some of their theoretical properties.

Definitions

Definition 3.1 (Rule Entropy). Let X and Y be two disjoint attribute sets. The
entropy h of the rule X ⇒ Y is defined as the joint entropy of X and Y,

h(X ⇒ Y) = H(X ∪Y) .

It is easy to see that 0 ≤ h(X ⇒ Y) ≤ log |dom(XY)| = |X|+ |Y|.

Definition 3.2 (Rule Dependence). Let X and Y be two disjoint attribute sets.
We define the dependence µ of the rule X ⇒ Y as

µ(X ⇒ Y) =
I(X, Y)
H(Y)

.

By dividing the mutual information by H(Y) we obtain a normalized,
asymmetric measure, which ranges from 0 to 1. If X and Y are independent
then µ(X ⇒ Y) = 0, which means that X tells us nothing about Y. On the
other hand, it holds that µ(X ⇒ Y) = 1 if and only if X fully determines Y;
in this case the rule is called exact.

Properties

Here we describe some useful properties of h and µ, which we exploit later
to construct our algorithm.

Theorem 3.1 (Monotonicity of Entropy). Let X and X′ be two attribute sets. If
X ⊆ X′, then it holds that h(X) ≤ h(X′).

24

3.3. Strong Dependence Rules

Proof. Let us write X′ = X ∪ {x}. Using the chain rule of entropy, we have

H
(
X′
)
= H(X) + H(x | X) .

Since it holds that H(x | X) ≥ 0, we can conclude that H(X′) ≥ H(X).

Using the monotonicity of h, it is possible to efficiently traverse the search
space of all attribute sets to discover the ones with low entropy.

Theorem 3.2 (Antecedent Monotonicity). Let X, X′ and Y be attribute sets with
X ⊆ X′, then it holds that µ(X ⇒ Y) ≤ µ(X′ ⇒ Y).

Proof. Expanding the denominator in the definition of µ, we see that

I(X, Y) = H(Y) + H(X | Y)
≤ H(Y) + H

(
X′ | Y

)
= I(X′, Y) .

The inequality above follows directly from Theorem 3.1.

Theorem 3.2 implies that the more attributes we put in the antecedent of
a rule, the higher its dependence µ gets. However, this will also increase the
entropy of such the rule, and hence it will be pruned. Furthermore, some of
the attributes might be independent of the other ones, and it is quite likely
that such large rules display some sort of redundancy as described in the
next section.

Theorem 3.3 (Partial Monotonicity). Let X ⇒ Y be a rule, where X and Y are
disjoint. There exists an attribute y ∈ Y such that µ(X ⇒ Y) ≤ µ(Xy⇒ Y \ y).

Proof. Choose an attribute y′ ∈ Y that maximizes the term µ(Xy′ ⇒ Y \ y′).
Then we have

I(Xy′, Y \ y′)
H(Y \ y′)

≥
∑y∈Y I(Xy, Y \ y)

∑y∈Y H(Y \ y)
.

We prove that the second term is greater than or equal to µ(X ⇒ Y), i.e,

∑y∈Y I(Xy, Y \ y)

∑y∈Y H(Y \ y)
≥ I(X, Y)

H(Y)
,

25

3. Mining Dependencies between Attribute Sets

which is true if and only if

∑y∈Y H(Y \ y | Xy)

∑y∈Y H(Y \ y)
≤ H(Y | X)

H(Y)
.

This last inequality follows from combining the following two inequalities.

1
k ∑

y∈Y

H(Y \ y)
|Y \ y| ≥

H(Y)
|Y|

1
k ∑

y∈Y

H(Y \ y | Xy)
|Y \ y| ≤ H(Y | X)

|Y|

Here k = |Y|. For a proof of these inequalities, see Cover and Thomas [2006],
Theorems 17.6.1 and 17.6.3 respectively.

This last theorem allows us to systematically and efficiently construct all
rules X ⇒ Y with a high dependence based on a given low entropy set
Z = XY, in a levelwise fashion. Hence, it is not necessary to consider all 2|Z|

possible rules that can possibly be constructed from that attribute set.

Closedness

Due to the explosion of patterns commonly encountered in classic frequent
itemset mining, one often turns to mining a condensed representation of a
collection of frequent itemsets. Such pattern collections are typically much
smaller in magnitude, can be discovered faster, and it is possible to infer other
patterns from them. One example are maximal frequent itemsets [Bayardo,
1998, Gouda and Zaki, 2001]. Two other popular condensed representations
are closed and non-derivable frequent itemsets (see also Section 2.1), which
we extend to our approach.

The concept of closedness is well-studied for frequent itemset mining
[Pasquier et al., 1999]. An itemset is closed with respect to support if all
of its proper supersets have a strictly smaller support. A closure operator
can be defined that maps an itemset to its (unique) smallest closed superset,
i.e., its closure. Similarly, we can consider attribute sets that are closed with
respect to entropy. We formally do this as follows. The set inclusion rela-
tion (⊆) defines a partial order on the powerset P(A) of all attribute sets.
Further, a partial order, i.e., refinement (v), can be defined on the set Q(T)

26

3.3. Strong Dependence Rules

of all transaction partitions. A given attribute set X ∈ P(A) partitions T
into equivalence classes according to the value that X obtains in the transac-
tions, and conversely a partition in Q(T) corresponds to an attribute set in
P(A). Note that the entropy of an attribute set is computed using the sizes
of the equivalence classes in its corresponding partition. Let us call these two
mapping functions i1 and i2. It can be shown that i1 and i2 form a Galois
connection [Davey and Priestley, 1990] between (P(A),⊆) and (Q(T),v).
The composition cl := i2 ◦ i1 now defines a closure operator on P(A), which
satisfies the following properties for all attribute sets X ⊆ A.

X ⊆ cl(X) (extension)
cl(X) = cl(cl(X)) (idempotency)
X ⊆ X′ ⇒ cl(X) ⊆ cl(X′) (monotonicity)

Definition 3.3. We call an attribute set X ⊆ I closed if X = cl(X). The set X is
called a generator if for all X′ (X it holds that cl(X′) (X.

It holds that all proper supersets of a closed attribute set have a strictly
higher entropy and h(X) = h(cl(X)). All proper subsets of a generator have
strictly lower entropy. Note that a rule X ⇒ Y is exact, i.e., µ(X ⇒ Y) = 1, if
and only if X ⊆ XY ⊆ cl(X). Furthermore, if an exact rule X ⇒ Y is minimal,
i.e., there is no X′ ⊂ X such that X′ ⇒ Y is exact, then X is a generator.

Derivability

The notion of itemset derivability was introduced by Calders and Goethals
[2007]. Given the supports of all proper subsets of an itemset (X = 1),
it is possible, using the inclusion-exclusion principle, to derive tight lower
and upper bounds on its own support. If these bounds coincide we know
supp(X = 1) exactly, and (X = 1) is called derivable. The set of all fre-
quent itemsets can thus be derived from the set of all non-derivable frequent
itemsets. Similarly, we can define the derivability of an attribute set.

Definition 3.4. We call X h-derivable if its entropy can be determined exactly from
the entropies of its proper subsets.

Derivability (both for itemsets and attribute sets) is a monotonic property.
Interestingly, an attribute set X is h-derivable if and only if the corresponding
itemset (X = 1) is derivable with respect to its support.

27

3. Mining Dependencies between Attribute Sets

3.4 Rule Redundancy

Mining all low entropy, high dependence rules can yield a very large set
of patterns, which is not desirable for a user who wants to analyze them.
Typically, this collection contains a lot of redundant rules. In this section
we investigate how we can characterize, and consequently prune such rules.
We define two types of redundancy; one that is lossless, and based on the
closure of attribute sets, and one that is lossy, and based on the unnecessary
augmentation of the antecedent or consequent of a rule.

Closure-based Redundancy

As mentioned in the previous section, rules of the form X ⇒ cl(X) are always
exact. It should be clear that combining an arbitrary rule with an appropriate
exact rule yields a new rule with identical entropy and dependence. For
instance, if A⇒ B is exact, then µ(A⇒ C) = µ(AB⇒ C).

Theorem 3.4. Let X ⇒ Y and X′ ⇒ Y′ be two rules, where X ⊆ X′ ⊆ cl(X) and
Y ⊆ Y′ ⊆ cl(Y). Then h(X ⇒ Y) = h(X′ ⇒ Y′) and µ(X ⇒ Y) = µ(X′ ⇒ Y′).

Proof. Since cl(X) = cl(X′), it follows that H(X) = H(X′), and similarly
H(Y) = H(Y′) and H(XY) = H(X′Y′). Hence the theorem holds.

Since the entropy and dependence of such larger rules can be inferred
using the smaller rule and the closure operator, we call them redundant.
These minimal rules are constructed using generators.

Definition 3.5 (Closure-based Redundancy). A rule X ⇒ Y is redundant with
respect closure if{

X is not a generator or |Y| > 1 if µ(X ⇒ Y) = 1 ,
XY is not generator if µ(X ⇒ Y) < 1 .

Note that if XY is a generator, then X and Y are also generators, since the set of all
generators is downward closed.

Augmentation-based Redundancy

Here we define a stricter kind of redundancy that prunes rules which have
superfluous attributes added to their antecedents or consequents.

28

3.4. Rule Redundancy

Antecedent Redundancy

Suppose we have two rules with a common consequent, X ⇒ Y and X′ ⇒ Y,
where X′ = X ∪ {x}. Theorem 3.2 tells us that µ(X ⇒ Y) ≤ µ(X′ ⇒ Y).
Even though the latter rule has a higher dependence, it might be redundant
if x does not make a real contribution to the rule. For instance, if X and
x are independent, then µ(X′ ⇒ Y) is simply the sum of µ(X ⇒ Y) and
µ(x ⇒ Y). To characterize this type of redundancy we use the chain rule of
mutual information,

I(X′, Y) = I(X, Y) + I(x, Y | X) ,

where the last term is the conditional mutual information (which can be
written as I(x, Y | X) = H(x | X)− H(x | XY)). It is known that I does not
behave monotonically with conditioning. In the aforementioned case where
X and x are independent, we have I(x, Y | X) = I(x, Y). If X already explains
part of the dependency between x and Y, then I(x, Y | X) < I(x, Y), meaning
there is an “overlap” between X and x. Otherwise, if I(x, Y | X) > I(x, Y),
this means that under knowing X, the mutual information between x and Y
increases. Intuitively, it means that X′ tells us more about Y than the sum of
X and x separately—the rule X′ ⇒ Y is more informative than the sum of its
parts. This motivates the following definition.

Definition 3.6 (Antecedent Redundancy). A rule X ⇒ Y is redundant with
respect to antecedent augmentation, if there exists an attribute x ∈ X such that{

µ(X ⇒ Y) ≤ µ(X \ x ⇒ Y) + µ(x ⇒ Y), or
X \ x ⇒ Y is redundant .

From this definition it follows that µ(X ⇒ Y) > ∑x∈X µ(x ⇒ Y) when-
ever the rule X ⇒ Y is non-redundant.

Consequent Redundancy

Consider the rule X ⇒ Y and an attribute y /∈ XY. Unlike in the previous
section, µ is not monotonic with respect to augmentation of the consequent,
so in general the dependence of X ⇒ Yy can either be higher or lower than
that of X ⇒ Y. An increase in µ would mean that adding y to Y increases
the mutual information I(X, Y) more than it increases the entropy H(Y).

29

3. Mining Dependencies between Attribute Sets

Put differently, the relative increase in uncertainty from H(Y) to H(Yy) is
surpassed by the increase in the amount of information X gives about Y and
Yy, i.e., X gives relatively more information about Yy than it does about Y.

Definition 3.7 (Consequent Redundancy). A rule X ⇒ Y is redundant with
respect to consequent augmentation, if there exists an attribute y ∈ Y such that{

µ(X ⇒ Y) ≤ µ(X ⇒ Y \ y), or
X ⇒ Y \ y is redundant .

From this definition it follows that if the rule X ⇒ Y is non-redundant,
then it holds that ∀Y′ ⊂ Y : µ(X ⇒ Y′) < µ(X ⇒ Y).

Relation to Closure-based Redundancy

It turns out that augmentation redundancy is strictly stronger than closure-
based redundancy, as stated in the theorem below.

Theorem 3.5. If a rule X ⇒ Y is redundant with respect to closure, then it is also
redundant with respect to antecedent augmentation or consequent augmentation.

Proof. First, suppose µ(X ⇒ Y) = 1. If X is not a generator, then there exists
a generator X′ (X such that µ(X ⇒ Y) ≤ µ(X′ ⇒ Y) + µ(X \ X′ ⇒ Y), and
hence the rule is antecedent-redundant. Otherwise, if Y is not a singleton,
then µ(X ⇒ Y) = µ(X ⇒ Y′) for every non-empty Y′ ⊂ Y, and hence the
rule is consequent-redundant. Second, suppose that µ(X ⇒ Y) < 1. If XY
is not a generator, then there exists a generator X′Y′ ⊂ XY ⊆ cl(X′Y′) with
X′ ⊆ X and Y′ ⊆ Y. If X′ 6= X then the rule is antecedent-redundant, if
Y′ 6= Y then the rule is consequent-redundant.

3.5 Problem Statement

Given a binary dataset D, and user-defined thresholds hmax and µmin, find
all rules X ⇒ Y, where X, Y ⊆ A, such that

1. h(X ⇒ Y) ≤ hmax ,

2. µ(X ⇒ Y) ≥ µmin ,

3. X ⇒ Y is non-redundant .

30

3.6. The µ-Miner Algorithm

3.6 The µ-Miner Algorithm

In this section we present the µ-Miner algorithm (see Algorithm 3.1). As in-
put it takes a dataset D, a maximum entropy threshold hmax, and a minimum
dependence threshold µmin. The algorithm efficiently mines low entropy at-
tribute sets, and from these sets strong dependence rules are constructed.
Further, µ-Miner prunes rules that are closure redundant or augmentation
redundant. The calculation of entropy and dependence, and the checking of
redundancy is done by performing some simple arithmetic operations and
lookups, and only one scan of the database is required.

Algorithm 3.1: µ-Miner

input : a binary dataset D; a maximum entropy threshold hmax;
a minimum dependency threshold µmin

output: the non-redundant sets and rules in D w.r.t. hmax and µmin
1 L ← {{x} | x ∈ A and h(x) ≤ hmax}
2 AttributeSetMine(L, hmax, µmin)

Mining Attribute Sets

In the AttributeSetMine function (Algorithm 3.2), attribute sets with a low
entropy are mined. This recursive function takes a collection of attribute sets
with a common prefix as input, initially this is the set of all low entropy
singletons. The search space is traversed in a depth-first, right-most fashion.
This is far less memory-intensive than a breadth-first approach, and the right-
most order ensures that when an attribute set is considered, all of its subsets
will already have been visited in the past (lines 1&3), a fact we exploit later.
This implies that we need to impose an order on the attributes. In our imple-
mentation of µ-Miner we use a heuristic ordering based on the entropy of
the attributes, such that large subtrees of the search space are rooted by sets
which are expected to be have a high entropy, which allows us to potentially
prune large parts of the subspace.

31

3. Mining Dependencies between Attribute Sets

Algorithm 3.2: AttributeSetMine

input : an attribute set collection L; a maximum entropy threshold
hmax; a minimum dependency threshold µmin

output: the low entropy sets w.r.t. hmax
1 for X1 in L in descending order do
2 L′ ← ∅
3 for X2 < X1 in L do
4 X ← X1 ∪ X2
5 compute and store fr(X = 1)
6 h(X)← EntropyQie(X)
7 if X is not a generator then
8 report the corresponding exact rule(s)
9 else if h(X) ≤ hmax then

10 L′ ← L′ ∪ {X}
11 DependenceRuleMine(X, µmin)
12 end
13 end
14 L′ ← L′ ∪AttributeSetMine(L′, hmax, µmin)
15 end
16 return L′

Efficiently Computing Entropy

A straightforward method to compute h(X), is to perform a scan over the
database to obtain the frequencies of (X = v) for all values v ∈ {0, 1}|X|. In
total there are 2k such frequencies for k = |X|, however, at most |D| of them
are nonzero and hence this method requires O(|D|) time. If the database fits
in memory this counting method is perfectly feasible, otherwise it becomes
too expensive, since database access is required for each candidate itemset.
Another option is to use the partitioning technique used by Tane [Huhtala
et al., 1999a]. For each itemset a partition of the transactions is explicitly
computed in O(|D|) time, and then the sizes of the sets in the partition can
be used to compute h(X).

µ-Miner uses a different entropy computation method that does not re-
quire direct database access, and has a lower complexity, which is benefi-
cial especially for large datasets. We start from a simple right-most depth-

32

3.6. The µ-Miner Algorithm

Algorithm 3.3: EntropyQie

input : a binary dataset D; an attribute set X ⊆ A
output: h(X), the entropy of X

1 for each X′ ⊆ X do
2 p(X′)← fr(X′ = 1,D)
3 end
4 for each x ∈ X do
5 for each X′ ⊆ X where x ∈ X′ do
6 p(X′ \ x)← p(X′ \ x)− p(X′)
7 end
8 end
9 h(X)← −∑X′⊆X p(X′) log p(X′)

10 return h(X)

first itemset support mining algorithm similar to Eclat [Zaki et al., 1997],
and store the supports in a trie (line 5). When we have mined the support
of (X = 1), the frequencies of all (X = v) are computed with the stored
supports of all subsets, by using Quick Inclusion-Exclusion (Algorithm 3.3),
which takes O(k 2k−1) in general [Calders and Goethals, 2005]. However, we
can again use the fact that at most |D| frequencies are nonzero, hence this
counting method is O(min(k 2k−1, |D|)). The advantage of our method is that
it is fast and it does not require database access. The disadvantage is that the
supports of all mined itemsets must be stored, which may be a problem if
memory is scarce and hmax is set high. Note that if we were to restrict our-
selves to mining only non-derivable itemsets, we know that k ≤ dlog |D|e
[Calders and Goethals, 2007]. In this case the total number of frequencies we
need to store is O(|A|log |D|) in the worst case, which is polynomial in |A| for
a fixed database size, and polynomial in |D| for a fixed number of attributes.
At this point we can already prune many attribute sets that will not produce
any non-redundant rules, since we can detect whether an attribute set is a
generator. If it is not, we can simply output the corresponding functional
dependencies, and prune all of the attribute set’s supersets (line 7).

33

3. Mining Dependencies between Attribute Sets

Algorithm 3.4: DependenceRuleMine

input : a low entropy set X; a dependence threshold µmin
output: the non-redundant strong dependence rules based on X

1 K ← {X \ x ⇒ x | x ∈ X}
2 while K is not empty do
3 for each A⇒ B in K do
4 compute µ(A⇒ B)
5 if µ(A⇒ B) ≥ µmin then
6 if A⇒ B is non-redundant then
7 report A⇒ B
8 end
9 end

10 end
11 K ← {A \ a⇒ Ba | A⇒ B ∈ K, using Theorem 3.3}
12 end

Mining Non-redundant Dependence Rules

For each low entropy set, DependenceRuleMine (Algorithm 3.4) is called to
generate high dependence rules. It starts from rules with a singleton conse-
quent, and then moves attributes from the antecedent to the consequent. By
using the partial monotonicity property from Theorem 3.3, not all 2k possi-
ble rules need to be considered. Since we have the entropies of all subsets
available, we can compute the dependence by performing just a few lookups.
If a rule is found to have high dependence, it is checked whether the rule is
redundant (line 6). Again, since we have the entropies of all subsets available,
these redundancy checks can be performed quite efficiently.

3.7 Experiments

We run experiments to evaluate the efficiency of µ-Miner, the quality of the
discovered patterns, and the effect of our pruning techniques. The algorithm
is implemented in C++, and is made publicly available.1 All experiments
were executed on a Linux system with a 2.2GHz CPU and 2GB of memory.

1http://www.adrem.ua.ac.be/implementations

34

3.7. Experiments

Table 3.1: Characteristics of the datasets used in the experiments. Shown are
the number of attributes |A|, and the number of transactions |D|.

Dataset |A| |D|
Chess 75 3 196
Mushroom 52 8 124
Pumsb 100 49 046
Synthetic 16 1 000 000
Zoo 17 100

Datasets

We test our algorithm on datasets obtained from the UCI Machine Learn-
ing Repository [Frank and Asuncion, 2010] and the FIMI Dataset Reposi-
tory [Goethals and Zaki, 2003], as well as on a synthetically generated one.
The characteristics of these datasets can be found in Table 3.1.

First, we have some benchmark datasets taken from the FIMI repository:
Chess, Mushroom and Pumsb. The original Pumsb dataset contains 2 112 at-
tributes, in our experiments we used the top-100 high entropy attributes.
Mushroom originally has 119 attributes, for our experiments we removed
items with frequencies higher than 0.9 or lower than 0.1. These datasets
are used to test the efficiency of µ-Miner.

Second, we generated a Synthetic dataset which contains an embedded
pattern. We use it to evaluate the scalability of µ-Miner with respect to
the size of the database. The dataset consists of 1 000 000 transactions and
has 16 attributes. The 15 first attributes are independent and have random
frequencies between 0.1 and 0.9. The last attribute equals the sum of the
others modulo 2, i.e., the rule {1, . . . , 15} ⇒ {16} is a functional dependency.
Note that this dependency is also minimal.

Finally, we use the Zoo dataset, taken from the UCI Machine Learning
Repository, to asses the quality of the patterns that µ-Miner discovers. The
dataset contains instances of animals and has 17 attributes that describe some
of their properties such as has-feathers, lays-eggs, is-predator, etc. Two attributes
are non-boolean: nr-of-legs which is integer-valued, and type whose value can
be one of {mammal, bird, reptile, fish, amphibian, insect, mollusk}.

35

3. Mining Dependencies between Attribute Sets

101

102

103

104

105

106

107

108

109

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

nu
m

be
r

of
 p

at
te

rn
s

µmin threshold

chess
pumsb

mushroom

(a) Number of rules

101

102

103

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

tim
e

(s
ec

)

µmin threshold

chess
pumsb

mushroom

(b) Execution time

Figure 3.1: The number of returned rules and the execution time of µ-Miner

for varying values of the µmin threshold parameter.

Experimental Evaluation

First, we perform some experiments on the benchmark datasets. To begin
with, we set the value of hmax to a fixed value (1.5 for Chess, 2 for Pumsb, and
3.5 for Mushroom), and we vary the minimum dependence threshold µmin
between 0 and 1. As can be seen in Figure 3.1a, the number of rules increases
roughly exponentially when µmin is lowered. Noticeably, the execution times
stay roughly constant as µmin decreases, as shown in Figure 3.1b. This is
not surprising, since most computations are performed in the itemset mining
phase, and the computation of µ involves just a few lookups.

Then, we set the value of µmin to a fixed value (in this case 0.4 for all
datasets), and gradually increase the maximum entropy threshold hmax from
zero upward. In Figure 3.2a we see that for very low values of hmax no rules
are found. Then, the number of rules increases exponentially with hmax,
which is to be expected. In Figure 3.2b we see that this trend also translates
to the execution times. For lower thresholds (hmax ≤ 1) the runtimes stay
roughly constant, because they are dominated by i/o time.

Secondly, we evaluate the scalability of µ-Miner with respect to the size
of the database using the Synthetic dataset. The aim is to discover the em-
bedded functional dependency; in order to do this we set µmin to 1, and
hmax sufficiently high (say, 16). We compare µ-Miner with the Tane and

36

3.7. Experiments

100

101

102

103

104

105

106

107

108

109

 0 0.5 1 1.5 2 2.5 3 3.5 4

nu
m

be
r

of
 p

at
te

rn
s

hmax threshold

chess
pumsb

mushroom

(a) Number of rules

10-2

10-1

100

101

102

103

104

 0 0.5 1 1.5 2 2.5 3 3.5 4

tim
e

(s
ec

)
hmax threshold

chess
pumsb

mushroom

(b) Execution time

Figure 3.2: The number of returned rules and the execution time of µ-Miner

for varying values of the hmax threshold parameter.

Tane/mem implementations from [Huhtala et al., 1999b]. The main Tane al-
gorithm stores partitions to disk level per level, while the Tane/mem variant
entirely operates in main memory. The number of transactions is gradually
increased from 102 to 106, and the runtimes are reported in Figure 3.3a. In
Figure 3.3b the corresponding peak memory consumption of µ-Miner and
Tane/mem are reported. The disk space usage of Tane is omitted since it
is essentially the same as the memory usage of Tane/mem. We did not run
Tane with more than 2 · 105 transactions, since this required more than 10GB
of disk space for the largest level. Tane/mem could not be run with more
than 5 · 104 transactions due to memory constraints. Meanwhile, even for
the maximum number of transactions, µ-Miner requires less than 100MB
of memory. Figure 3.3a shows that all algorithms scale linearly with |D|,
although the slope is much steeper for Tane and Tane/mem, while the exe-
cution time of µ-Miner increases very slowly. At around 3 000 transactions,
µ-Miner overtakes Tane in speed, and at 105 transactions our algorithm is
already two orders of magnitude faster. The Tane/mem algorithm is faster
up to ±10 000 transactions, but cannot handle any datasets much larger than
that. At 50 000 transactions Tane/mem began swapping heavily. This ob-
served difference in speed can be explained entirely by the counting method.
Tane explicitly constructs a partition of size O(|D|) for each itemset (and
stores these to disk or in memory level per level), while our algorithm com-

37

3. Mining Dependencies between Attribute Sets

10-1

100

101

102

103

104

102 103 104 105 106

tim
e

(s
ec

)

Number of tuples

µ-Miner
TANE

TANE/MEM

(a) Scalability

106

107

108

109

1010

102 103 104 105 106

sp
ac

e
(b

yt
es

)

Number of tuples

µ-Miner
TANE/MEM

(b) Peak memory usage

Figure 3.3: Scalability and peak memory usage of µ-Miner and Tane on the
Synthetic dataset.

putes the required sizes of the partitions without actually constructing them.
For the most part, the increase in the execution time of µ-Miner can be ac-
counted for by the increase in time it takes to read the data file.

Next, let us investigate how pruning affects the size of the output. We
experimented on the Mushroom and the Pumsb datasets for different values
of hmax (3 for Mushroom and 1.5 for Pumsb) and µmin (0.2 and 0.8 for both
datasets). The results are shown in Figure 3.4. For the Mushroom dataset
pruning all non-minimal rules already reduces the output by roughly an
order of magnitude. Augmentation pruning reduces the output by an addi-
tional two orders of magnitude. For the Pumsb dataset pruning non-minimal
rules reduces the output by three orders of magnitude. Here augmentation
pruning reduces the output in size even further, by roughly two orders of
magnitude. This makes inspecting the resulting collection of rules far more
manageable for a user.

Finally, we asses the quality of the patterns discovered by µ-Miner. The
results of the Zoo dataset are used to demonstrate the usefulness of our al-
gorithm. We chose some simple examples from the output, these results are
easy to interpret since no expertise is required to understand the dataset. We
give some examples of high dependence rules. The simplest and strongest
rules are type ⇒ gives-milk, type ⇒ has-backbone, and type ⇒ has-feathers.
Each of these rules has an entropy of 2.36, and the dependency is 1, i.e., the

38

3.8. Conclusions

102

103

104

105

106

107

108

109

mushroom mushroom pumsb pumsb

nu
m

be
r

of
 p

at
te

rn
s

all rules
minimal rules

augmentation pruning

Figure 3.4: The number of returned rules with respect to the different types
of redundancy pruning, for the Mushroom and Pumsb datasets.

type of animal (mammal, bird, insect, etc.) completely determines whether it
gives milk, has a backbone, or has feathers. The rule lays-eggs, is-venomous⇒
gives-milk has an entropy of 1.41, and a dependence of 0.93. Thus, the
set {lays-eggs, is-venomous} almost completely determines {gives-milk}. The
fact that the rule is not exact is entirely due to the transaction for platypus,
the only animal that lays eggs, is venomous, and does give milk. In this
case we can speak of an approximate functional dependency. The subrules
lays-eggs ⇒ gives-milk and is-venomous ⇒ gives-milk separately have µ values
0.80 and 0.004. This shows that adding is-venomous (which is almost com-
pletely independent of gives-milk) to lays-eggs results in a rule that is more
informative than both rules separately. Finally, the rule has-hair, has-tail ⇒
lays-eggs, has-backbone has an entropy of 2.26, and a dependence of 0.70. The
rules has-hair, has-tail ⇒ lays-eggs and has-hair, has-tail ⇒ has-backbone sepa-
rately have lower µ values: 0.64 and 0.63.

3.8 Conclusions

We proposed the use of information-theoretic measures based on entropy and
mutual information to mine dependencies between sets of attributes. This
allows us to discover rules with a high dependence and a low complexity.
We investigated the problem of redundancy in this context, and proposed
two techniques to prune redundant rules. One is based on the closure of
attribute sets and is lossless, while the other, shown to supersede the first,

39

3. Mining Dependencies between Attribute Sets

is lossy and penalizes the augmentation of rules with superfluous attributes.
We presented an algorithm called µ-Miner, which mines such dependencies
and applies the pruning techniques above. Several experiments showed that
µ-Miner is efficient and scalable: it can easily handle datasets with millions
of transactions and does not require large amounts of memory. Furthermore,
the proposed pruning techniques were shown to be very effective in reducing
the size of the output by several orders of magnitude.

40

Chapter 4

Summarizing Categorical Data
by Clustering Attributes

For a book, its title and abstract provide a good first impression of
what to expect from it. For a database, however, obtaining a good first
impression is typically not so straightforward. While low-order statis-

tics only provide very limited insight, downright mining the data rapidly
provides too much detail for such a quick glance. In this chapter we propose
a middle ground, and introduce a parameter-free method for constructing
high-quality descriptive summaries of binary and categorical data. Our ap-
proach builds a summary by clustering attributes that strongly correlate, and
makes use of the Minimum Description Length principle to identify the best
clustering—without requiring a distance measure between attributes.

Besides providing a practical overview of which attributes interact most
strongly and in which value instantiations they typically occur, these sum-
maries are also probabilistic models that can be used as surrogates for the
data, and that can easily be queried. Extensive experimentation shows that
our algorithm discovers high-quality results: correlated attributes are cor-
rectly grouped together, which is verified both objectively and subjectively.

This chapter is based on work published as:
M. Mampaey and J. Vreeken. Summarising data by clustering items. In Proceedings of the Euro-
pean Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases
(ECML PKDD), Barcelona, Spain, pages 321–336. Springer-Verlag, 2010.
M. Mampaey and J. Vreeken. Summarizing categorical data by clustering attributes. Manuscript
currently submitted to: Data Mining and Knowledge Discovery, 2011.

41

4. Summarizing Categorical Data by Clustering Attributes

The discovered models can also be employed as surrogates for the data; as
an example of this we show that we can quickly and accurately estimate the
supports of frequent itemsets.

42

4.1. Introduction

4.1 Introduction

When handling a book, and wondering about its contents, we can simply
start reading it from A to Z. In practice, however, to get a good first impres-
sion we usually first consult the summary. For a book, this can be anything
from the title, abstract, or blurb, up to simply paging through it. The com-
mon denominator here is that a summary quickly provides high-quality and
high-level information about the book. Occasionally a summary may already
offer us exactly what we were looking for, but in general we just expect to
get sufficient insight to determine what the book contains, and whether we
need to read it further.

When handling a database, on the other hand, and wondering about its
contents and whether (or how) we should analyze it, it is quite hard to get a
good first impression. Naturally, we can inspect the schema of the database
or look at the labels of the attributes. However, this does not tell use what
is in the database. Basic statistics only help to a limited extent. For instance,
first order statistics can tell us which values of an attribute occur, and how
often. While sometimes this may be enough information, typically we would
like to see in a bit more detail what the data looks like. However, for binary
and categorical databases, further basic statistics are not readily available.
Ironically, for these types of data this means that even if the goal is only to
get a first impression, in order to acquire this we will have to analyze the data
in much more detail. For non-trivially sized databases especially, this means
investing more time and effort than we should at this stage of the analysis.

Having a good first impression of the data is very important when ana-
lyzing it, as data mining is an essentially iterative process [Hanhijärvi et al.,
2009], where each step in the analysis is aimed at obtaining new insight. This
insight in turn determines what other results we would find interesting, and
hence, determines how to proceed in order to extract further knowledge from
the data. As such, a good summary allows us to make an informed decision
on what basic assumptions to make and how to start mining the data.

To this end, we here propose a simple and parameter-free method for
providing high-quality summary overviews for categorical data, including
binary transaction data. These summaries provide insight in which attributes
are most correlated, as well as in what value configurations they occur. They
are probabilistic models of the data that can be queried fast and accurately,
allowing them to be used instead of the data. Further, by showing which

43

4. Summarizing Categorical Data by Clustering Attributes

attributes interact most strongly, these summaries can aid in selecting or con-
structing features. In short, like a proper summary, they provide both a good
first impression and can be used as a surrogate.

We obtain these summaries by clustering attributes that interact strongly,
such that attributes from different clusters are more or less independent.
We employ the Minimum Description Length (mdl) principle to identify the
best clustering, thus eliminating the need for the user having to specify any
parameters: the best summary is the attribute clustering that describes the
data best. Furthermore, our clustering approach does not require a distance
measure to be defined between attributes.

As an example of a summary and how it can be insightful, consider Fig-
ure 4.1, in which we depict the summary of a hypothetical large categorical
database. A summary provides information at two levels of detail. First, it
tells us which groups of attributes correlate most strongly. Here, we see that
attributes A and J are grouped together, as are attributes B–H, and that I
forms a singleton group. For these groups, by the mdl principle, we know
that the attributes within them interact strongly, while between the groups
the attributes can be considered virtually independent—if an attribute pro-
vides information about another one, we could have described the data in
fewer bits by considering them together. As such, we learn that I does not
interact much with any of the other attributes.

At the second level, summaries allow quick inspection of the attribute-
value distributions within the groups. In the example, we see that A and J
are each other’s inverse, and that attributes B–H have two strongly prevalent
value configurations, after which the frequencies drop off rapidly. While
a summary contains the frequencies of all attribute-value combinations per
group, typically one is most interested in the most prevalent, and hence we
here only show the top-5.

We will investigate and analyze summaries obtained from real data in Sec-
tion 4.6. Extensive experimentation shows that our method provides high-
quality results: correlated attributes are correctly grouped together, repre-
sentative features are identified, and the supports of frequent itemsets are
closely approximated in very short time. Randomization further shows that
our approach models statistically relevant structure in the data, providing
information far beyond simple first order statistics.

To the best of our knowledge, there currently do not exist light-weight
data analysis methods that can easily be used for summarization purposes.

44

4.1. Introduction

Database

Summary
summary

high
low
high
mid
high
high

0
1
1
1
0
1

0
0
1
0
0
1

low
high
low
mid
low
low

0
1
1
1
0
0

+
+
-
+
+
1

0
0
1
0
0
1

0
0
1
0
0
1

red
red

blue
blue

purple
1

0
1
1
1
0
1

A B F JIHGEDC

Categorical Data

E HGFDCBA J I

Correlated Attributes

low
mid
high

high
mid
low

A J
33
33
33

%

0
1

I
50
50

%

0
1
1
0
1

0
1
1
0
0

48
25
10
5
2

%B F HGE DC
0
1
0
0
0

0
1
0
1
0

0
1
0
1
0

red
blue
blue
blue
purple

+
-
+
-
+

...etc... ...

Correlated Values

Figure 4.1: Example of a database summary. A summary shows which
groups of attributes interact most strongly, as well as which value combi-
nations occur in the database. For presentational clarity, we only show the
top-5 most frequent value combinations for B–H here.

Instead, for binary and categorical data, a standard approach is to first mine
for frequent itemsets, the result of which quickly grows to many times the
size of the original database. Consequently, many proposals exist that focus
on reducing or summarizing these sets of frequent patterns, i.e., they choose
groups of representative itemsets such that the information in the complete
pattern set is maintained as well as possible. In this work, we do not sum-
marize the outcome of an analysis (i.e., a set of patterns), but instead provide
a summary that can be used to decide how to analyze the data further.

Existing proposals for data summarization, such as Krimp [Siebes et al.,
2006] and Summarization [Chandola and Kumar, 2005], provide highly de-
tailed results. Although this has obvious merit, analyzing these summaries
consequently also requires significant effort. Our method shares the ap-
proach of using compression to find a good summary. However, we do not
aim to find a group of descriptive itemsets. Instead, we look at the data on
the level of attributes, and aim to optimally group those attributes that inter-

45

4. Summarizing Categorical Data by Clustering Attributes

act most strongly. In this regard, to a certain extent our approach is related to
mining low-entropy sets [Heikinheimo et al., 2007], sets of attributes which
identify strong interactions in the data. An existing proposal to summarize
data by low-entropy sets, Less [Heikinheimo et al., 2009], requires a collection
of low-entropy sets as input, and the resulting models are not probabilistic
in nature, nor can they easily be queried. For a more complete discussion of
related work, please refer to Section 4.5.

This chapter is structured as follows. Section 4.2 formalizes the problem
and discusses how to distinguish good attribute clusterings. In Section 4.3
we present our method to discover good attribute clusterings. Section 4.4
discusses potential alternative search strategies. Related work is treated in
Section 4.5. We experimentally evaluate our method in Section 4.6. Lastly,
we round up with a discussion in Section 4.7 and conclude in Section 4.8.

4.2 Summarizing Data by Clustering Attributes

In this section we formally introduce our approach. We start with a short
recap of mdl (see Section 2.3), and after defining what an attribute clustering
is, we show how we can use mdl to identify the best clustering. We then
formalize the problem, and discuss the search space. Finally, we also discuss
a more refined encoding that takes cues from modern mdl theory.

Minimum Description Length

Given a dataset D and a set of modelsM, the best model M ∈ M is the one
that minimizes

L(M) + L(D | M)

in which

• L(M) is the length, in bits, of the description of M, and

• L(D | M) is the length of the description of the data encoded with M.

To use mdl, we have to define what our set of modelsM is, how a model
M describes a database, and how all of this is encoded in bits. Below, after
giving some further intuition on mdl, we will first discuss a two-part mdl

encoding for our summaries, as well as discuss a variant that draws from
insights from refined mdl.

46

4.2. Summarizing Data by Clustering Attributes

The reason we employ the mdl principle here, is that it gives us a well-
founded approach for selecting the model that best balances model complex-
ity and fit. That is, models that encode the data concisely, i.e., for which
L(D | M) is low, are considered to be good models, because they are able
to exploit, and ultimately describe, the structure of the data. In practice, this
term often corresponds to the negative log-likelihood of the model.

However, it is possible to come up with an arbitrarily complex model
that describes the data arbitrarily well—in the most extreme case one could
use a ‘model’ that just states the data verbatim, which is clearly a form of
overfitting. Therefore, a model that has a long description, i.e., for which
L(M) is large, is likely to overfit the data, and hence considered to be bad.
Models that can be described succinctly, on the other hand, are less prone
to overfitting, and additionally also tend to be easier to interpret. Of course,
models that are too simple probably will not describe the data very well.

The mdl principle provides an appropriate balance between these ex-
tremes, by taking both model fit and model complexity into account. mdl

is tightly linked to lossless data compression—the best model is the one that
best compresses the data. It is also often formulated as a sender/receiver
framework, where a sender wants to communicate the data to a receiver, in
an as succinct as possible message. The sender encodes both the model and
the data, and transmits them to the receiver, who decodes them to obtain the
original data. The goal in this chapter is purely to model and summarize the
data, not to actually compress or transmit it. However, it is useful to keep
this analogy in mind.

Given this basic intuition, let us next formalize how to losslessly encode
a model and how to encode the data given that model.

MDL for Attribute Clustering

The main idea for our data summaries are attribute clusterings. Therefore, we
first formally define the concept of an attribute clustering.

Definition 4.1. An attribute clustering C = {A1, . . . , Ak} of a set of attributes A
is a partition of A, that is,

1. every attribute belongs to a cluster:
⋃k

i=1 Ai = A ,
2. all clusters are pairwise disjoint: ∀i 6= j : Ai ∩ Aj = ∅ ,
3. there are no empty clusters: ∀Ai ∈ C : Ai 6= ∅ .

47

4. Summarizing Categorical Data by Clustering Attributes

Informally speaking, an attribute clustering is simply a grouping of the
attributes A. In order to give the user a bit more information, for each cluster
we also include the distribution of the attribute-value occurrences in the data.

Given this definition, we can formalize how we actually encode our mod-
els and data, such that we can apply the mdl principle to distinguish good
summaries from bad ones. We start by specifying how we encode our mod-
els, since then the encoding of the data follows straightforwardly. In our
case, a model is a partition of the attributes, A, together with descriptions
of which value combinations occur how often, for each per partition, i.e., the
distributions within the clusters.

Encoding the Partition Let us first describe how we can encode an attribute
partition. Recall that the number of unique partitions for a set of n attributes
is given by the well-known Bell number, denoted Bn, which can be computed
using a simple recursive formula:

Bn+1 =
n

∑
k=0

(
n
k

)
Bk ,

with base case B0 = 1. Now, using a basic approach in information theory,
we can fix a canonical order on the set of partitions, which allows us to enu-
merate all possible partitions. More importantly, this allows us to uniquely
and efficiently identify a particular partition using log Bn bits. This is called
a model-to-data code [Vereshchagin and Vitanyi, 2004], and is the encoding
we use to identify the partition of A of a given attribute clustering.

Encoding the Code Tables Next, we formalize how to encode the joint dis-
tribution of clusters by using code tables. A code table is a simple two-column
table that has an entry for each possible value v from the domain of a cluster
Ai. The left-hand column contains the value, and the right-hand column the
corresponding code. By making sure the used codes are uniquely decod-
able, we can straightforwardly and losslessly translate between a code and
the associated values. We give an example of a code table in Figure 4.2. Note
that the frequencies of the value occurrences are not explicitly included in
the code table, we will show below that we can derive these exactly from the
lengths of the codes in the right-hand column. Also, if a value combination
does not occur in the data (when its frequency is zero), it is omitted from the
code table, and it does not get a code.

48

4.2. Summarizing Data by Clustering Attributes

Code Table

a b c code(Ai = v) L(code(v)) fr(Ai = v)

1 1 1 0 1 bits 50.00%
1 1 0 10 2 bits 25.00%
1 0 1 110 3 bits 12.50%
0 1 0 1110 4 bits 6.25%
0 0 0 1111 4 bits 6.25%

Figure 4.2: Example of a code table CTi for an attribute cluster Ai = {a, b, c}
containing three binary attributes. The (optimal) codes depicted here are
included for illustration purposes, in practice we are only interested in their
lengths, L(code(v)). Assuming the database contains 256 transactions, the
description length of this code table is 44 bits.

We encode the entries in the left-hand column as follows. Again using
a model-to-data code, we can identify one of the values of an attribute a in
log |dom(a)| bits, given that the size of the domain of a is |dom(a)|. Therefore,
the description length of a value v of a set of attributes Ai is equal to

∑
a∈Ai

log |dom(a)| = log |dom(Ai)| .

The entries in the right-hand column of a code table are the codes that
will be used to encode the data. Clearly, these codes should be as efficient as
possible, which is why we employ an optimal prefix code. A prefix code (or,
confusingly also known as a prefix-free code) is a code that can be uniquely
decoded without requiring a prefix. A well-known result from information
theory [Shannon, 1948, Cover and Thomas, 2006] states that a prefix code is
optimal when

L(code(Ai = v)) = − log fr(Ai = v)

for all v ∈ dom(Ai).
The choice of one particular optimal coding scheme over another (for in-

stance, Huffman coding [Cover and Thomas, 2006], which we used to obtain
the codes in Figure 4.2), is irrelevant: recall that in mdl we are not concerned
about actual materialized codes, but that we only want to measure complex-
ity. Hence, we are only interested in the lengths of the theoretically optimal
code the equation above gives us.

49

4. Summarizing Categorical Data by Clustering Attributes

So, basically, the encoded length of the right-hand side column of a code
table is simply the sum of each of the code lengths. However, in order to be
able to uniquely decode a code table, we need to take one further element
into account: we need to know when a bit representation of a code ends.
Therefore, before a code is given, we specify its length in a fixed number of
bits; since the frequency of an itemset that occurs in the data is at least 1/|D|,
its corresponding code length is at most log |D|, and hence the length of the
code can be stated in log log |D| bits.

Now, a binary string so-representing a distribution viz. code table can
unambiguously be decoded: by the association between code lengths and
frequencies we can derive the frequencies of the values on the left-hand side
by regarding the code lengths found on the right-hand side. By adding these
frequencies together, we know the distribution is fully specified when this
sum is equal to one. Therefore, the description length of the code table CTi
of an attribute cluster Ai can be computed as

L(CTi) = ∑
v∈dom(Ai)
fr(Ai=v) 6=0

log |dom(Ai)|+ log log |D| − log fr(Ai = v) .

Using this encoding, clusters that have many value instantiations that are
distributed irregularly will require many bits. Similarly, attribute clusters
with few, evenly distributed values, are much cheaper. In other words, we
favor simple distributions.

Encoding the Data Now that we know how to encode a clustering, we can
discuss how to determine L(D | C), the length of the encoded description of
D given a clustering C. This is done straightforwardly. First, each transaction
t ∈ D is partitioned according to C. We then encode a tuple by replacing
the value in each part by the corresponding code in the code tables. Since an
itemset (A = v) occurs |D| fr(A = v) times in the data, the encoded size of
D restricted to a single cluster A is equal to

L(DA | C) = − ∑
t∈D

log fr(A = tA)

= −|D| ∑
v∈dom(A)

fr(A = v) log fr(A = v)

= |D|H(A) .

50

4.2. Summarizing Data by Clustering Attributes

That is, the description length of the data with respect to an attribute cluster
is proportional to its entropy, which is a measure of complexity.

Putting all of the above together, the definition of the total encoded size
L(C,D) is as follows.

Definition 4.2. The description length of a categorical dataset D using an attribute
clustering C = {A1, . . . , Ak} of size k is defined as

L(C,D) = L(C) + L(D | C) ,

where

L(D | C) = |D|∑k
i=1 H(Ai)

L(C) = log Bn + ∑k
i=1 L(CTi)

L(CTi) = ∑
v∈dom(Ai)
fr(Ai=v) 6=0

log |dom(Ai)|+ log log |D| − log fr(Ai = v)

Note that in the middle line, we can simply take the sum over all code
table lengths, i.e., we do not need to indicate how many code tables there are
(this is captured in the log Bn term), nor do we need to separate them with
additional bits, since the descriptions of the code tables are self-terminating.

Further, remark that we implicitly make a basic assumption. To use the
above definition, we assume that the number of attributes, their domains
(their sizes in particular), and the number of transactions in the database are
known beforehand to both sender and receiver. The reason not to include
these in our formalization is simple: we are aiming to summarize a single
given dataset. Clearly, these properties are constant over all models we would
consider for one dataset, and hence, including these would increase the total
description length only by a constant term, independent of the actual data
instance and model, which makes no difference when comparing different
clusterings. If for one reason or another it would be required to explicitly
include the cost of these values into the total description length, one could
do so by using a Universal Code for integers [Rissanen, 2007].

Problem Statement

Our goal is to discover a summary of a binary or categorical dataset, in the
form of a partitioning of the attributes of the data; separate attribute groups

51

4. Summarizing Categorical Data by Clustering Attributes

should be relatively independent, while attributes within a cluster should
exhibit strong interaction. Formally, the problem we address is the following.
Given a database D over a set of categorical attributes A, find the attribute
clustering C∗ that minimizes L(C,D),

C∗ = arg min
C

L(C,D) = arg min
C

L(C) + L(D | C) .

By this problem statement, we identify the optimal clustering by mdl.
Note that we do not require the user to specify any parameters, e.g., a pre-
determined number of clusters k. Essentially, this is done automatically, as k
follows from the clustering that has the shortest description.

Search Space

The search space to be considered for our problem is rather large. The total
number of possible partitions of a set of n attributes equals the Bell number
Bn, which is at least Ω(2n). Therefore we cannot simply enumerate and test
all possible partitions, except for the most trivial cases. We must exploit the
structure of the search space somehow, in order to efficiently arrive at a good
clustering of the attributes.

The refinement relation of partitions naturally structures the search space
into a lattice. A partition C is said to refine a partition C ′ if for all A ∈ C
there exists an A′ ∈ C ′ such that A ⊆ A′. The transitive reduction of the
refinement relation corresponds to the merger of two clusters into one (or
conversely, splitting a cluster into two nonempty parts). As such, the search
space lattice can be traversed in a stepwise manner.

The maximal, most refined clustering contains a singleton cluster for each
individual attribute. We call this the independence clustering, denoted I , since
it corresponds to the independence distribution. On the other hand, the
least refined, most coarse partition consists of only one cluster containing all
attributes, which corresponds to the full joint distribution.

Note that L(C,D) is not (strictly or weakly) monotonically increasing or
decreasing with respect to refinement, which would make determining the
optimum trivial—this would require that there be at least one monotonic
path between I and {A}. As far as we know, other useful properties that
could be exploited to identify the optimal clustering efficiently, such as con-
vertibility, also do not apply to this setting. Therefore, we resort to heuristics.

52

4.2. Summarizing Data by Clustering Attributes

In this case, we will employ a greedy hierarchical clustering strategy, the
details of which are discussed in Section 4.3. Another option could be to
consider to use a branch-and-bound method, however, we choose the greedy
approach due to its very low computational complexity, as stated below.

Measuring Similarities between Clusters

Based on the definition of L(C,D) above, we can derive a similarity measure
between clusters that will turn out to be useful later on. Let C be an attribute
clustering and let C ′ be the result of merging two clusters Ai and Aj in C,
the merged cluster being denoted Aij = Ai ∪ Aj. Hence, C is a refinement of
C ′. Then the difference between the description lengths of C and C ′ defines a
similarity measure between Ai and Aj.

Definition 4.3. For a dataset D, we define the similarity of two clusters Ai and Aj
in a clustering C as

CSD(Ai, Aj) = L(C,D)− L(C ′,D) ,

where C ′ = C \ {Ai, Aj}
⋃{Ai ∪ Aj}. Whenever D is clear from the context, we

simply write CS(Ai, Aj).

If Ai and Aj are highly correlated, then their merger results in a better
clustering with a lower description length, and hence their similarity is pos-
itive. Otherwise, if the clusters are more or less independent, their merger
increases the description length, and their similarity is negative. The fact
that CS expresses a similarity is further illustrated by the following property,
which allows us to calculate cluster similarity without having to compute the
total description length of a clustering.

Property 4.1. Let C be an attribute clustering of A, with Ai, Aj ∈ C, and let D be
a categorical dataset. Then

CSD(Ai, Aj) = |D|I(Ai, Aj) + ∆L(CT) ,

where
I(Ai, Aj) = H(Ai) + H(Aj)− H(Aij)

is the mutual information between Ai and Aj, and

∆L(CT) = L(CTi) + L(CTj)− L(CTij) .

53

4. Summarizing Categorical Data by Clustering Attributes

Property 4.1 shows that we can decompose cluster similarity into a mu-
tual information term, and a term expressing the difference in code table
description length. Both of these values are high when Ai and Aj are highly
correlated, and low when they are more or less independent. It is interesting
to note that CS is a local measure, that is, it only depends on Ai and Aj, and
is not influenced by the other clusters in C.

Canonical Description Length

It can be useful to compare the description length L(C,D) of a clustering C
to a baseline description of the data; a description that does not use a model,
but simply communicates the data ‘as is’. However, there are many different
ways to encode a database, all with different description lengths. A very
natural approach is to use an encoding assuming a uniform distribution of
the values. In this encoding, every value of an attribute a have the same
length, namely log |dom(a)|.

Definition 4.4. The canonical description length of a dataset D is defined as

Lc(D) = |D| ∑
a∈A

log |dom(a)| = |D| log |dom(A)| .

For example, if D is a binary dataset, its canonical description length is
equal to |D||A| bits, i.e., each entry requires exactly one bit.

It can be argued that if for some model C, we observe that L(C,D) �
Lc(D), we can safely say that C captures or explains a true regularity of the
data, and hence C is a good model. On the other hand, if D mostly just
consists of random noise (that is, it does not exhibit any structure), then for
any model C we will find that L(C,D) ≥ Lc(D); if such is the case, we should
conclude that the data does not exhibit any structure that our model can fit.

Refining the Encoding

The description length of an attribute clustering for a certain dataset as de-
scribed above, is often called two-part or crude mdl, since it separately encodes
the model and the data. Refined mdl [Grünwald, 2007] is an improvement
of two-part mdl that does not explicitly encode model and data separately.
Rather, it uses a so-called Universal Code to describe the data. A universal
code is a code that we can employ without having any prior information, and

54

4.2. Summarizing Data by Clustering Attributes

for which the lengths of the code words are within a constant factor of the
optimal codes. As such, using universal codes avoids the potential bias that
can occur in two-part mdl.

Although refined mdl has stronger theoretical foundations, it cannot be
computed except for some special cases; those for which we have a universal
code. As only a very limited number of universal codes is known, for distri-
butions of relatively simple objects, the practical application of refined mdl

is limited. However, we can refine our encoding somewhat by using a notion
from modern mdl theory: prequential coding [Grünwald, 2007].

By prequential coding, we are not explicitly transmitting the codes that
will be used to encode the data—and so, we lose any potential bias that the
explicit encoding of those codes might give. Rather than using explicit fixed
code words, we encode the data using an implicitly assumed distribution
on the data, and iteratively update this distribution (and hence, the codes)
after every transmitted/received code word. As such, by each update the
distribution changes slightly, and hence so does the underlying code table,
and thus the encoding of the data that is to be transmitted.

It may seem that by not explicitly including a cost for using long code
words, we do not penalize against this. However, the penalty is actually hid-
den in the description of the data, since there is always an overhead incurred
by using a code table that does not exactly represent the distribution of the
data, i.e., by using a code table that is suboptimal.

Before we discuss the size of this penalty, let us first specify how we can
employ prequential coding in our setting. When we start transmitting the
data, instead of using the actual attribute-value frequencies of the data, we
start without such prior knowledge and use a uniform distribution over these
frequencies, by assigning some constant occurrence count c to each possible
value in the domain of an attribute set. Then, we transmit the first value by
encoding it using an optimal code derived from this usage distribution, as
defined earlier in this section. After this value is transmitted, we adjust the
distribution by incrementing the occurrence count of that particular value
by 1. Clearly, this changes the usage distribution, and hence the codes in the
code table must be recomputed in order to remain optimal. We simply repeat
this process iteratively for every transaction, until we have transmitted all of
the data. After all the data has been sent, the codes in the code table are
the same as when we would have transmitted them explicitly—that is, if we
disregard the c constant.

55

4. Summarizing Categorical Data by Clustering Attributes

The choice of the initial count c has an influence on the overhead. If c is
taken very large, updating the code table with new data has little effect. For
c→ ∞, the overhead tends to KL (u‖fr), where u is the uniform distribution.
On the other hand, if c is extremely small, say some ε > 0, adding data will
wildly change the code table to extremes, leading to larger codes for certain
values, especially when the data is not very large. In both cases, for |D| → ∞,
the relative overhead converges to zero, however, in practice the amount of
available data is limited, and therefore c does have an impact on the encoded
length. A natural and often chosen value is c = 0.5 [Grünwald, 2007].

Let us consider the description length of the data for a single attribute
cluster, using prequential coding. Let l be the number of distinct values that
can occur, let mi be the count of each such value vi in the domain of the cluster
(i.e., mi = supp(vi)), and let m = ∑l

i=1 mi be the total number of transactions
(i.e., m = |D|). If in the j-th encountered tuple, we observe a value v that has
up till now occurred mv times, then its current frequency in the code table is
(mv + 0.5)/(j + 0.5 l). Hence its code length is − log ((mv + 0.5)/(j + 0.5 l)).
Adding all code lengths together, we obtain

− log
∏l

i=1 ∏mi−1
j=0 (j + 0.5)

∏m−1
j=0 (j + 0.5 l)

= log
Γ(m + 0.5 l)/Γ(0.5 l)

∏l
i=1 Γ(mi + 0.5)/Γ(0.5)

= log Γ(m + 0.5 l)− log Γ(0.5 l)−
l

∑
i=1

(
log ((2mi − 1)!!)−mi

)
,

where Γ is the gamma function, which is an extension of the factorial function
to the complex plane, that is, Γ(x + 1) = xΓ(x), with relevant base cases
Γ(1) = 1 and Γ(0.5) =

√
π.

Interestingly, even though the distribution and hence the code lengths
constantly change during the encoding of D, the total description length
does not depend on the order in which the tuples are processed.

The number of values l in the formula above can be extremely large if
we take it to be the size of the domain of a cluster. However, in practice
it will be a lot smaller than the full domain, especially for large attribute
sets. Therefore, we can first specify the values that can occur. We do this
using a model-to-data code for all nonempty subsets of dom(A), which takes
log(2|dom(A)| − 1) bits.

56

4.2. Summarizing Data by Clustering Attributes

Definition 4.5. The refined description length of the data for a single cluster A,
using prequential coding, is given by

Lr(A,D) = log(2|dom(A)| − 1) + log Γ(m + 0.5 l)− log Γ(0.5 l)

−
l

∑
i=1

(
log ((2mi − 1)!!)−mi

)
,

where l = |{v ∈ dom(A) | fr(A = v) 6= 0}| is the number of values with non-
zero support in the data. The refined description length of an attribute clustering
C = {A1, . . . , Ak}, using prequential coding, is then equal to

Lr(C,D) = log(Bn) +
k

∑
i=1

Lr(Ai,D) .

Querying a Summary

Besides providing insight into which attributes interact most strongly, and
which of their values typically co-occur, our summaries can also be used as
surrogates for the data. That is, they form probabilistic models, being the
product of independent distributions on clusters of attributes that can easily
and efficiently be queried.

For categorical data, querying comes down to calculating marginal prob-
abilities, i.e., determining itemset frequencies. The frequency of an itemset
(X = v) can simply be estimated from an attribute clustering by splitting
up the itemset over the clusters, and calculating the product of the marginal
frequencies of the subsets in each separate cluster.

This splitting up is justified by the fact that all relevant correlations be-
tween attributes are captured by a good clustering. Note that the more at-
tributes are clustered together, the more detail the corresponding code table
contains about their correlations, hence making better frequency estimations
possible. In fact, for the trivial complete clustering, where all attributes are
grouped together, we will obtain exact frequencies. As our summaries are
constructed with the goal of capturing the key correlations as well as pos-
sible using as few and simple code tables as possible, we expect to obtain
highly accurate, but not exact frequency estimations.

57

4. Summarizing Categorical Data by Clustering Attributes

Definition 4.6. Let C = {A1, . . . , Ak} be a clustering of A, and let (X = v) be an
itemset, with v ∈ dom(X). Then the frequency of (X = v) is estimated as

f̂r(X = v) =
k

∏
i=1

fr(X ∩ Ai = vi) ,

where vi is the sub-vector of v for the corresponding attributes in X ∩ Ai.

For instance, let A = {a, b, c, d, e, f } and C = {abc, de, f}, and consider the
itemset (abef = 1), then f̂r(abef = 1) = fr(ab = 1) · fr(e = 1) · fr(f = 1).

Since the code table for each cluster Ai contains the frequencies of the
values for Ai—because of the one-to-one mapping between code length and
frequency—we can use our clustering model as a very efficient surrogate for
the database. For a cluster Ai, let Ωi be the subset of values in dom(Ai)
having a nonzero frequency in D. The complexity of frequency estimation is
then upper bounded by

O

(
k

∑
i=1
|Ai ∩ X||Ωi|

)
≤ O (|X||D|) .

If |Ωi| � |D|, querying the summary is significantly faster than querying
the data. Note that this automatically holds for small clusters for which
|dom(A)| < |D|.

4.3 Mining Attribute Clusterings

Now that we have defined how we can identify the best clustering, we need
a way to discover it. In this section we present our algorithm, and investigate
its properties and computational complexity.

Algorithm

As discussed in the previous section, the search space we have to consider
is extremely large, making it is infeasible to examine the search space ex-
haustively, and thus we settle for heuristics. In this section we introduce our
algorithm, which finds a good attribute clustering C for a dataset D, with a
low description length L(C,D).

58

4.3. Mining Attribute Clusterings

Algorithm 4.1: AttributeClustering

input : a categorical dataset D over a set of attributes A
output: an attribute clustering C = {A1, . . . , Ak} minimizing L(C,D)

1 C ← {{a} | a ∈ A}
2 Cmin ← C
3 compute and store CSD(Ai, Aj) for all i 6= j
4 while |C| > 1 do
5 Ai, Aj ← arg maxi,jCSD(Ai, Aj)

6 C ← C \ {Ai, Aj}
⋃{Ai ∪ Aj}

7 compute and store CSD(Aij, Al) for all l 6= ij
8 if L(C,D) < L(Cmin,D) then
9 Cmin ← C

10 end
11 end
12 return Cmin

We use a greedy bottom-up hierarchical clustering algorithm that tra-
verses the search space by iteratively merging clusters such that in each
step the description length is minimized. The pseudo-code is given in Al-
gorithm 4.1. We start by placing each attribute in its own cluster (line 1),
which corresponds to the independence model. Then, we iteratively find the
pair of clusters whose merger results in a clustering with the smallest de-
scription length. From Section 4.2 we know that this is the pair of clusters
with the highest similarity, which can be computed locally (5). The clusters
are merged (6), and the algorithm continues. We maintain the clustering with
the shortest description (8–9), and finally return the best clustering (12).

This results in a hierarchy of clusters, which can be represented visually
as a dendrogram, as shown in Figure 4.3. The clustering at the bottom cor-
responds to the independence distribution, while the clustering at the top
represents the joint empirical distribution of the data. In the figure, merges
that result in a lower description length are depicted with solid lines. Their
height corresponds to the (cumulative) decrease in description length. An
advantage of this approach is that it allows us to visualize how the clusters
were formed, and how they are structured internally.

59

4. Summarizing Categorical Data by Clustering Attributes

The graph in Figure 4.4 shows how the description length behaves as a
function of k (the number of clusters), during a run of the algorithm on the
binary Connect dataset. Starting at k = n, the description length L(C,D) grad-
ually decreases as correlated clusters are merged. This indicates that there is
structure present in the data, which is exploited to obtain a shorter descrip-
tion of it. Note that the description length of the data, L(D | C), decreases
monotonically, since a less refined clustering uses more information, and
hence fits the data better. The total description length continues to decrease
until k = 7, which yields the best clustering found for this dataset. After-
wards, L(C,D) increases again, due to the fact that the decrease in L(D | C)
does not outweigh the dramatic increase of L(C), which means that the mod-
els are getting far too complex past this point.

a b c d e f g h i j k l

Ac
cu

m
ul

at
ed

 d
is

ta
nc

e
be

tw
ee

n
cl

us
te

rin
gs

 (i
n

bi
ts

)

.13 .14 .00 .04 .16 .09 .30 .08 .39 .05 .09
Attributes

Pair-wise Mutual Information

0

5000

10000

15000

20000

Figure 4.3: Example of a dendrogram depicting a hierarchy of attribute clus-
terings, for a subset of the attributes of the categorical Markov dataset. Merges
that save bits are depicted with solid lines; their height corresponds to the
cumulative drop in description length. There are three attribute clusters in
this example, namely a–c, d–h, and i–l.

60

4.3. Mining Attribute Clusterings

 0

 1x106

 2x106

 3x106

 4x106

 5x106

 0 10 20 30 40 50 60 70 80 90 100 110 120

D
es

cr
ip

tio
n

le
ng

th
 (b

its
)

Number of clusters

best clustering

L(C,) L( | C) L(C)

Figure 4.4: Evolution of the encoded length L(C,D) with respect to the num-
ber of clusters k, on the binary Connect dataset. The clustering with the lowest
description length is located at k = 7.

Stopping Criterion

Figure 4.4 seems to suggest that L(C,D), as a function of k, has a single min-
imum. That is, first the description length decreases until a local optimum
is reached, and afterwards the description length only increases. Naturally,
the question arises whether this is the case in general; if so, the algorithm
can terminate as soon as a local minimum is detected. Intuitively, we would
expect that if the current best cluster merger increases the total description
length, then any future merger is probably also a bad one. However, the
following counterexample shows that this is not necessarily true.

Consider the dataset D in Figure 4.5 with four binary attributes {a, b, c, d}.
Assume that a, b, and c are independent, and that for every transaction of D it
holds that d = a⊕ b⊕ c, where ⊕ denotes exclusive or (xor). Now, using this
dependency, let D contain a transaction for every v ∈ {0, 1}3 as values for abc,
with multiplicity, say, 10. Then every pair of clusters whose union contains
strictly less than four attributes (e.g., Ai = ab and Aj = d) is independent. As
the algorithm starts to merge clusters, the data description length L(D | C)

61

4. Summarizing Categorical Data by Clustering Attributes

a b c d multiplicity

0 0 0 0 × 10
0 0 1 1 × 10
0 1 0 1 × 10
0 1 1 0 × 10
1 0 0 1 × 10
1 0 1 0 × 10
1 1 0 0 × 10
1 1 1 1 × 10

Figure 4.5: An exclusive or (xor) dataset. The last attribute equals the xor

of the first three. The rightmost column denotes the number of times each
transaction occurs, i.e., there are 80 transactions.

remains constant (namely 4|D|), but the code tables become more complex,
and thus L(C) and L(C,D) increase. Only at the last step, when the two last
clusters are merged, can the structure be captured and L(D | C) decreases to
3|D|, leading to a decrease of the total description length.

Note, however, that the drop in encoded length in the last step depends
on the number of transactions in the database. In the above example, if
the multiplicity of every unique transaction is 10, the complete clustering
would be preferred over the independence clustering. However, if there are
fewer transactions (say, every unique transaction occurs only once), then even
though the dependencies are the same, the algorithm decides that the best
clustering corresponds to the independence model, i.e., that there is no sig-
nificant structure. Intuitively this can be explained by the fact that if there
is only a small number of samples then the observed dependencies might be
coincidental, but if many transactions exhibit it, the dependencies are truly
present. This is one of the advantages of using mdl to select models.

This example shows that in general we should not stop the algorithm
when the description length attains a local minimum. Nevertheless, it is a
very synthetic example with a strong requirement on the number of trans-
actions. For instance, if we generalize the xor example to 20 attributes, the
minimum number of transactions for it to be detected already runs in the
millions. Moreover, in none of our experiments with real data did we en-
counter a locally minimal description length that was not a global minimum.

62

4.3. Mining Attribute Clusterings

Therefore, we can say that in practice it is acceptable to stop the algorithm
when we encounter a clustering with a locally minimal description length.

Algorithmic Complexity

Naturally, a summarization method should be fast, because our aim is to
get a quick overview of the data. Notwithstanding the search for efficient
algorithms in data mining, in practice many exhibit an exponential runtime.
Here we show that our algorithm is polynomial in the number of attributes.

In the first iteration, we compute the description length of each singleton
{a}, and then determine which two clusters to merge. To do this, we must
compute O(N2) cluster similarities, where N = |A|. Since we might need
some of these similarities later on, we store them in a heap, such that we can
easily retrieve the maximum. Now say that in a subsequent iteration k we
have just merged clusters Ai and Aj into Aij. Then we can delete the 2k− 3
similarities from the heap that are no longer of use, and we need to compute
and insert k− 2 new similarities, namely those between Aij and the remaining
clusters. Since heap insertion and deletion is logarithmic in the size of a heap,
maintaining the similarities in an iteration with k clusters, takes O(k log k)
time. The initial filling of the heap takes O(N2 log N). Since the algorithm
performs at most N iterations, we see that the time complexity of maintaining
the cluster similarities is O(N2 log N) + ∑1

k=N O(k log k) = O(N2 log N).
Next we discuss the complexity of computing the similarities. Say that

in an iteration k, we must compute the similarities CSD(Ai, Aj) between the
last merged cluster Ai and all other remaining clusters Aj. This requires
collecting all nonzero frequencies fr

(
Aij = v

)
, and we do this by simply it-

erating over all transactions t and computing
∣∣t ∩ Aij

∣∣, which takes O(N|D|)
per pair in the worst case. Computing the initial similarities between all
pairs of singletons takes O(N2|D|). Hence, over all iterations, the similarity
computations take O(N2|D|) + ∑1

k=N O(kN|D|) = O(N3|D|).
Therefore, the total time complexity of AttributeClustering is

O(N3|D|) .

The dominant cost in terms of memory usage comes from the heap con-
taining the cluster similarities. Since at any point there are at most N different
clusters, the memory complexity of the algorithm is O(N2).

63

4. Summarizing Categorical Data by Clustering Attributes

4.4 Alternative Approaches

Since we employ a greedy algorithm, we do not necessarily find the glob-
ally optimal attribute clustering. Here we discuss some potential alternative
search strategies.

Vertical Clustering

A very straightforward approach to clustering attributes is to use any one
of the wealth of existing clustering algorithms that cluster rows of data, and
adapt it to our setting. By simply transposing the data, and applying say, k-
means, we are done. However, the issue is not that trivial. While transposing
data could conceptually make sense for binary data, this is arguably not the
case for categorical data in general. Even so, most, if not all, clustering algo-
rithms require a distance measure between tuples, which means we would
need a distance measure for attributes. For categorical data, an often used
measure is Hamming distance, the number of locations with unequal values.
If two attributes have the same value in many transactions, clearly they are
very similar. However, the converse is not true, e.g., two binary attributes
that are each other’s inverse are clearly correlated. Moreover, attributes with
different domains would be incomparable. A similar argument can be made
for Manhattan or Euclidean distances.

Turning to the area of information theory, a good choice is to use a dis-
tance measure based on mutual information. Specifically, let a1 and a2 be two
attributes, then we could use the distance d(a1, a2) = H(a1, a2) − I(a1, a2).
This is a proper metric: it is symmetric, nonnegative, zero if and only if both
attributes are a function of one another (i.e., there exists a bijection between
them), and it obeys the triangle inequality. It reaches a maximum of H(a1, a2)
when a1 and a2 are independent. We could additionally choose to normalize
d, e.g., by dividing by H(a1, a2).

However, using pairwise distances on attributes can only get us so far,
as the following small example shows. Consider a dataset with six binary
attributes that is the cartesian product of two (independent) xor truth tables.
Each pair of attributes in this dataset is independent, and has the same dis-
tance of 2. Consequently, no algorithm based on pairwise distances will be
able to detect that there are two groups of three correlated attributes in this
dataset, regardless of the algorithm that is used.

64

4.4. Alternative Approaches

Finally, we might consider directly using the mutual information between
clusters. Let A1 and A2 be two attribute clusters, then the distance between
the clusters is d(A1, A2) = H(A1, A2) − I(A1, A2). In this case, the best
clustering is always the complete clustering. In the absence of a complexity
penalty term, this requires the user to specify a parameter k for the number
of clusters. Moreover, the choice of a specific search strategy is crucial here.
The mutual information between a large and a small cluster will typically be
larger than the mutual information between two small clusters. If one clus-
ter becomes large, it will typically have a high similarity with other clusters.
Hence, it will tend to ‘eat up’, as it were, the smaller clusters, rather than that
the small clusters would merge together, resulting in a very heterogeneous,
unbalanced clustering, which is not likely to be a desirable result.

Divisive Hierarchical Clustering

Instead of taking a bottom-up, agglomerative approach, a top-down divisive
hierarchical clustering algorithm could be considered. Such an algorithm
would start at the least refined clustering, and then iteratively split a clus-
ter such that the description length decreases maximally. However, this ap-
proach is far from feasible, since already in the first step, the algorithm needs
to consider 2|A|−1− 1 possible splits (i.e., there are 2|A| − 2 proper nonempty
subsets; their complements describe the same splits). While a divisive ap-
proach does consider more clusterings than an agglomerative one, and hence
could possibly discover a clustering with a lower description length, its ex-
ponential behavior makes it unsuitable for summarization purposes.

Beam Search

Beam search attempts to balance the level-wise, large-coverage approach of
breadth-first search, with the memory efficiency of depth-first or greedy
search. Starting with an initial state, a beam containing the b best solutions is
maintained at each level, where b is called the beam width. The beam at the
next level consists of the b best scoring neighbor states of the solutions in the
current beam. Note that when the beam width is set to one, beam search is
equivalent to the greedy algorithm. On the other hand, if we set b to infinity,
the algorithm is simply breadth-first search. Since beam search considers a
larger part of the search space, it tends to perform better for larger beams.

65

4. Summarizing Categorical Data by Clustering Attributes

However, in practice the beam tends to exhibit little variability, and thus often
does not lead to considerably better results. Further, both time and memory
complexity are multiplied by a factor b. We empirically compare our greedy
agglomerative approach to beam search in the experiments.

Simulated Annealing

Simulated annealing [Kirkpatrick, 1984] is a probabilistic optimization tech-
nique that tries to avoid finding a locally but not globally optimal solution,
by not only greedily moving towards better neighbor solutions in the search
space, but also heuristically moving to worse ones. The idea is borrowed
from the physical process of annealing, where a material is heated and then
gradually cooled down to form a crystal structure, which is a low energy
state. The probability of transitioning to a neighboring state is dependent on
the difference in energy of both states, and the current temperature of the
system. As the temperature decreases, the probability of going to a higher
energy state decreases. Many parameters influence the end result, such as
the initial temperature, the cooling schedule, the material, etc.

In our setting, states are attribute clusterings, and the neighbors of a clus-
tering C are all clusterings that are the result of either merging two of its
clusters, or splitting one. The description length acts as the energy function.
For the temperature, we employ a geometric cooling schedule: in iteration
i, the temperature is decreased by a factor α: ti+1 = αti. In this way, the
number of iterations and the cool down rate are directly linked. We choose
t0 = 1, and set α such that tn = αn becomes equal to zero in double floating
point precision. When in a certain state C, we randomly choose to do either
a split or a merge, and then uniformly pick a neighbor state C ′, and compute
the difference in description length. The energy is normalized by estimating
the maximal possible difference by sampling.

The probability of switching from a state C to a state C ′ in the i-th iteration
is given by

Pr(C → C ′) = min
(

exp
−CS(C, C ′)/Z

λαi , 1
)

.

The λ constant acts as a scaling parameter, and Z is a normalization factor.
If CS is positive, i.e., if C ′ has a lower description length than C, the transi-
tion is always made. On the other hand, if CS is negative, C ′ has a higher
description length, and the transition is only made probabilistically based on

66

4.5. Related Work

the magnitude of CS and the current temperature, which decreases over time.
The algorithm is initiated in a random clustering.

Since simulated annealing has the potential to move away from a local
minimum, unlike true greedy approaches, it has the potential to find better
solutions. However, due to its inherently non-deterministic nature, a single
run is not likely to give us a satisfactory answer—rather, the algorithm will
have to be run many times, and even then we still have no guarantee that
the best solution we encountered is anywhere close to the global optimum.
Furthermore, by considering both groupings and splits of the current clus-
tering, this approach is computationally heavy, as we have to calculate up to
an exponential number of switching probabilities per step. We empirically
compare our greedy agglomerative approach to simulated annealing in the
experimental section.

4.5 Related Work

The main goal of our approach is to offer a good first impression of a cate-
gorical dataset. For numerical data, averages and correlations can easily be
computed, and more importantly, are informative. For binary and categorical
data, such informative statistics beyond simple counts are not readily avail-
able. As such, our work can be seen as to provide an informative ‘average’
for categorical data; for those attributes that interact strongly, it shows how
often their value combinations occur.

Most existing techniques for summarization are aimed at giving a suc-
cinct representation of a given collection of itemsets. Well-known exam-
ples include closed itemsets [Pasquier et al., 1999] and non-derivable item-
sets [Calders and Goethals, 2007], which both provide a lossless reduction of
the complete pattern collection.

A lossy approach that provides a succinct summary of the patterns was
proposed by Yan et al. [2005]. The authors cluster groups of itemsets and
describe these groups using profiles, which can be characterized as conditional
independence distributions on a subset of the items, which can subsequently
be queried. Experiments show that our method provides better frequency
estimates, while requiring fewer clusters than profiles. Wang and Karypis
[2004] give a method for directly mining a summary of the frequent pattern
collection for a given minsup threshold. Han et al. [2007] provide a more
complete overview of pattern mining and summarization techniques.

67

4. Summarizing Categorical Data by Clustering Attributes

For directly summarizing data rather than pattern sets, however, fewer
proposals exist. Chandola and Kumar [2005] propose to induce k transac-
tion templates such that the database can be reconstructed with minimal
loss of information. Alternatively, the Krimp algorithm [Vreeken et al., 2011,
Siebes et al., 2006] selects those itemsets that provide the best lossless com-
pression of the database, i.e., the best description. While it only considers
the 1s in the data, it provides high-quality and detailed results, which are
consequently not as small and easily interpreted as our summaries. Though
the Krimp code tables can generate data virtually indistinguishable from the
original [Vreeken et al., 2007], they are not probabilistic models and cannot
be queried directly, so they are not immediately suitable as data surrogates.

Wang and Parthasarathy [2006] build probabilistic Maximum Entropy
models of the data by incrementally adding those itemsets into the model
that deviate more than a given error threshold—considering the data as a bag
of independent samples. The approach ranks and adds itemsets in level-wise
batches, i.e., first itemsets of size 1, then of size 2, and so on. In Chapter 6 we
improve over this method by avoiding the level-wise approach, and instead
iteratively incorporate the itemset that increases the likelihood of the model
most. Furthermore, by employing the Bayesian Information Criterion and
mdl, the set of most informative itemsets can be identified without requir-
ing any parameters. De Bie [2011b] proposes to use the Maximum Entropy
principle to instead model the data as a whole—considering it as a mono-
lithic sample. In [Kontonasios and De Bie, 2010] it is shown that this model
can be used very effectively to rank and select itemsets with regard to the
information they provide, while also taking their complexity into account.

All the above-mentioned techniques differ from our approach in that they
model the data in relatively high detail using itemsets, whereas we provide
a more high level summary that identifies the most strongly interacting cate-
gorical attributes, and their most prevalent attribute-value combinations.

Somewhat related to our method are low-entropy sets [Heikinheimo et al.,
2007], attribute sets for which the entropy lies below a given threshold. As en-
tropy is strongly monotonically increasing, typically many low-entropy sets
are discovered even for low thresholds. This pattern explosion is often even
worse than in frequent itemset mining. Heikinheimo et al. [2009] introduced
a filtering proposal called Less, to select those low-entropy sets that together
describe the data well. In our approach, instead of filtering, we discover
attribute sets with low entropy directly on the data.

68

4.5. Related Work

Orthogonal to our approach, the maximally informative k-itemsets (miki
for short) by Knobbe and Ho [2006a] are k items (or patterns) that together
split the data optimally, found through exhaustive search. Bringmann and
Zimmermann [2007, 2009] propose a greedy alternative to this exhaustive
method that can consider larger sets of items. Our approach groups attributes
together that correlate strongly, so the correlations between groups are weak.

Since our approach employs clustering, the work in this field is not un-
related. However, clustering is foremost concerned with grouping rows to-
gether, typically requiring a distance measure between objects. Co-clustering
[Chakrabarti et al., 2004], or bi-clustering [Pensa et al., 2005] is a type of clus-
tering in which clusters are simultaneously detected over both attributes and
rows. Chakrabarti et al. [2004] also employ the mdl principle to identify the
best clustering, however, whereas our approach is to identify groups of cat-
egorical attributes for which the attribute-value combinations show strong
correlation, their approach identifies locally dense areas in sparse binary ma-
trices, and is not trivially extendable for categorical data.

Au et al. [2005] present an algorithm that clusters features in gene expres-
sion data, taking into account a target attribute, in order to do classification.
To this end the authors introduce a distance measure between attributes,
based on their mutual information. However, as argued in Section 4.4, this
may not always be a good choice. The algorithm is a variant of the k-means
algorithm—using mode attributes rather than means. Since the number of
clusters k is a parameter of the algorithm, the authors propose to simply run
the algorithm for all possible values of k, and select the clustering minimiz-
ing a defined score. The application of the paper is classification of gene
expression data, which often suffers from the n � p problem, i.e., the num-
ber of variables (p) is far greater than the number of samples (n). This has
implications for the significance of the correlation (or mutual information)
between attributes, and might lead to overfitting. Our algorithm takes this
into account by using the mdl principle.

Dhillon et al. [2003] provide an algorithm that clusters words in text data
for classification. For each word cluster, a feature is constructed as a weighted
average of the distributions of the separate words in the cluster. While this
inherently discards some information, it also reduces the number of features,
making classification easier, and does not discard as much information as
feature selection would. To find the clusters, an algorithm similar to k-means
is presented. The word clusters are then used in a naive Bayes classifier. The

69

4. Summarizing Categorical Data by Clustering Attributes

number of clusters k is a parameter of the algorithm, however, in this case it
arguably is not a goal to find an optimal clustering, but to reduce the number
of features purely for performance reasons, and hence it is probably desirable
to be able to control this parameter.

Our formalization can also be regarded as a distance measure between
categorical attributes (or, categorical data in general). As such, the method
by Das et al. [1997] is both interesting and relevant. There, the authors take an
orthogonal approach by measuring the similarity of a set of binary attributes
not by regarding the similarity over the selected attributes, but by considering
the marginal frequencies of a set of other attributes, called probes. Although
experimental results show that some true similarities between attributes are
captured, the measure and its results do lack an intuitive interpretation, and
the selection of probes is manual, requiring further development in order to
be used in practice.

4.6 Experiments

In this section we experimentally evaluate our method and validate the qual-
ity of the discovered attribute clusterings.

Setup

We implemented our algorithm in C++, and make the source code available
for research purposes.1 All experiments were executed on 2.67GHz (six-core)
Intel Xeon X5650 machines with 12GB of memory, running Linux. All re-
ported runtimes were obtained using a single-threaded version of the im-
plementation. Unless stated otherwise, empirical p-values were calculated
against the scores of 1 000 randomized models or datasets, providing a res-
olution of at most 0.1%. For all experiments we recorded memory usage
during summary construction, which amounted to at most a few megabytes
excluding the database itself.

Datasets

We evaluate our method on nineteen different datasets, covering a wide range
of different data characteristics. We use five synthetic datasets and fourteen

1http://www.adrem.ua.ac.be/implementations

70

4.6. Experiments

Table 4.1: The basic characteristics of the datasets used in the experiments.
Shown are the number of attributes |A|, the number of transactions |D|,
the canonical description length Lc(D), and the description length of the
independence clustering L(I ,D).

Binary Data |A| |D| L(I ,D) Lc(D)
Independent 50 20 000 895 079 1 000 000
Markov 50 20 000 999 159 1 000 000
DAG 50 20 000 970 485 1 000 000
Accidents 468 340 183 25 991 622 159 205 644
BMS-Webview-1 497 59 602 1 201 522 29 622 194
Chess 75 3 196 142 812 239 700
Connect 129 67 557 3 593 260 8 714 853
DNA Amplification 391 4 590 191 428 1 794 690
Mammals 121 2 183 121 572 264 143
MCADD 198 31 924 2 844 465 6 320 952
Mushroom 119 8 124 443 247 966 756
Pen Digits 86 10 992 605 413 945 312

Categorical Data

Independent 50 20 000 2 037 016 2 109 825
Markov 50 20 000 2 036 871 2 109 824
Chess 37 3 196 71 651 120 122
Connect 43 67 557 2 013 066 4 604 239
MCADD 22 31 924 1 966 658 2 168 968
Mushroom 23 8 124 267 334 388 268
Pen Digits 17 10 992 377 801 430 723

real-world and benchmark datasets, all of which, save one, are publicly avail-
able. Their basic characteristics are presented in Table 4.1.

The binary and categorical Independent datasets have independent attrib-
utes with randomly drawn frequencies. The attributes of the Markov datasets
form a Markov chain. In the binary version each attribute is a copy of the
previous one with a random copy probability, the first attribute having a 50%
probability of being one. Similarly, the categorical version has attributes with
up to eight values per attribute, and each attribute depends on the previous

71

4. Summarizing Categorical Data by Clustering Attributes

one according to a randomly generated contingency table. The categorical
Independent and Markov data are generated such that they have the same col-
umn margins. The DAG dataset is generated according to a directed acyclic
graph among its binary attributes. Each attribute depends on at most four of
its preceding attributes, according to randomly generated contingency tables.

Next, we use fourteen real-world and benchmark datasets. The well-
known categorical Chess, Connect, and Mushroom datasets were obtained from
the UCI Machine Learning Repository [Frank and Asuncion, 2010]. Their bi-
nary counterparts were obtained from the FIMI Dataset Repository [Goethals
and Zaki, 2003], and simply contain one binary attribute for each attribute-
value pair in the categorical versions. The Accidents and BMS-Webview-1
datasets were also obtained from the FIMI Dataset Repository.

The DNA Amplification database contains data on DNA copy number am-
plifications. Such copies activate oncogenes and are hallmarks of nearly all
advanced tumors [Myllykangas et al., 2006]. Amplified genes represent tar-
gets for therapy, diagnostics and prognostics.

The Mammals data2 consists of presence records of European mammals
within geographical areas of 50×50 km2 [Mitchell-Jones et al., 1999].

The categorical MCADD data was obtained from the Antwerp University
Hospital. MCADD (Medium-Chain Acyl-coenzyme A Dehydrogenase Defi-
ciency) [Baumgartner et al., 2005, Van den Bulcke et al., 2011] is a deficiency
newborn babies are screened for during a Guthrie test on a heel prick blood
sample. The instances are represented by a set of 21 features: twelve dif-
ferent acylcarnitine concentrations measured by tandem mass spectrometry
(TMS), together with four of their calculated ratios and five other biochemi-
cal parameters, each of which we discretized using k-means clustering with
a maximum of ten clusters per feature.

Finally, the Pen Digits data was obtained from the LUCS-KDD data li-
brary [Coenen, 2003], and contains handwritten samples of the digits 0–9.
The attributes correspond to eight x and y coordinates on a grid, describing
the trace of a certain digit, which is indicated by the class label.

Evaluation

Table 4.2 presents an overview of the results of our algorithm for the used
datasets. We show the number of clusters k in the clustering that our algo-

2http://www.european-mammals.org/

72

4.6. Experiments

Table 4.2: Results of our attribute clustering algorithm. Shown are the num-
ber of identified groups of attributes k, the description length L(C,D) and
the wall clock time used to discover the clusterings. Further, we show the
relative description lengths L(C,D)

L(I ,D) and L(C,D)
Lc(D) with respect to the description

length of the independence clustering and canonical description length

Compression ratio

Binary Data k L(C,D) time L(I ,D) Lc(D)
Independent 49 895 078 1 s 99.9% 89.5%
Markov 15 884 943 4 s 88.6% 88.5%
DAG 12 797 588 5 s 82.2% 79.8%
Accidents 116 16 893 671 120 m 65.0% 10.6%
BMS-Webview-1 140 1 078 905 16 m 89.8% 3.6%
Chess 11 58 457 1 s 40.9% 24.4%
Connect 7 1 559 773 88 s 43.4% 17.9%
DNA Amplification 56 82 209 33 s 42.9% 4.6%
Mammals 28 98 515 2 s 81.0% 37.3%
MCADD 12 1 816 628 146 s 63.9% 28.7%
Mushroom 9 169 425 13 s 38.2% 17.5%
Pen Digits 5 333 032 10 s 55.0% 35.2%

Categorical Data

Independent 50 2 037 016 4 s 100.0% 96.5%
Markov 20 1 932 611 12 s 94.9% 91.6%
Chess 9 57 353 1 s 80.0% 47.7%
Connect 7 1 554 827 11 s 77.2% 33.8%
MCADD 11 1 785 850 6 s 90.8% 82.3%
Mushroom 3 150 012 1 s 56.1% 38.6%
Pen Digits 5 309 788 1 s 82.0% 71.9%

rithm finds, its description length L(C,D)—both absolute and relative to the
description length of the independence clustering L(I ,D) and of the canon-
ical description length Lc(D)—and the wall clock time the algorithm took to
complete. A low number of clusters and a short description length indicate
that our algorithm successfully models structure that is present in the data.

73

4. Summarizing Categorical Data by Clustering Attributes

For most datasets we see that the number of clusters k is much lower than
the number of attributes |A|. In fact, these numbers are such that it is in-
deed feasible to inspect the clusters by hand. Many of the datasets are highly
structured, which can be seen from the strong compression ratios the clus-
terings achieve with respect to their canonical description lengths. Lastly, the
table also shows that our algorithm usually needs just a handful of seconds
to discover the clustering.

Below, we investigate the discovered clusterings in closer detail.
For the categorical Independent data, we see that the algorithm identifies

50 clusters of single attributes, which correctly corresponds to the generating
independence distribution. For the binary Independent data, though, the algo-
rithm concludes that there are 49 clusters. Upon further inspection, it turns
out that the two attributes that are grouped together are not really indepen-
dent in the data. In fact, their joint distribution differs significantly from their
product distribution (p-value 0.04). This actually makes an interesting point,
because mdl does not specifically attempt to discover the ‘true’ underlying
model (which for the synthetic data is available to us), but instead simply
tries to describe the data best. For the data instance under consideration
here, where by chance two attributes happen to be somewhat correlated, the
algorithm cannot but conclude that they should be clustered together.

The attributes in both Markov datasets form a Markov chain, so we expect
that nearby attributes are clustered together. This is indeed what happens:
each cluster consists of consecutive attributes. Figure 4.3 shows the resulting
dendrogram for a subset of the attributes in the categorical dataset. Further,
if we look at the mutual information between pairs of adjacent attributes, we
see that the pairs with high mutual information tend to be grouped together,
whereas pairs with low mutual information are not.

Likewise, in the DAG dataset, which has attribute dependencies forming
a directed acyclic graph, the clusters contain attributes which form tightly
linked subgraphs. Figure 4.6 depicts the dependency graph between the at-
tributes of the DAG dataset. The width of the edges is proportional to the
mutual information between the corresponding attributes. Note that this is
done for illustration purposes only, since pairwise mutual information does
not capture all information, as pointed out in Section 4.4. The discovered
clusters are drawn in rectangles. As the figure shows, the edges inside clus-
ters are generally bold, while the few inter-cluster edges are usually thin.
This is a good indication of the quality of the discovered clustering.

74

4.6. Experiments

13

4 5

2

6 7

9

810

12 11

13 14

15

17 16

1918

2120

22

23 24

26

27

25

28

29

31

30

32

33

34

35

37

38

36

3940

4143

4546

47 4849

50

42

44

Figure 4.6: Dependency graph of the attributes of the DAG dataset, along
with the discovered attribute clusters drawn in rectangles. The width of an
edge between two nodes is proportional to the mutual information between
the corresponding attributes.

75

4. Summarizing Categorical Data by Clustering Attributes
Ite

m
s

(o
nc

og
en

es
)

Transactions (patients)

Figure 4.7: A selected sub-matrix of the DNA Amplification data and the cor-
responding discovered attribute clusters, which are separated by the dotted
lines. For presentation purposes the figure is rotated sideways

The DNA Amplification dataset is an approximately banded dataset [Gar-
riga et al., 2008]: the majority of the ones form a staircase pattern, and are
located in blocks along the diagonal. In Figure 4.7, a selected subset of the
rows and columns of the data is plotted, along with some of the attribute
clusters that our algorithm finds. The 1s in the data are drawn dark, the 0s
are white. For presentation purposes the figure has been rotated. The clus-
tering clearly distinguishes the blocks that form the staircase pattern, even
though the data is quite noisy. These blocks correspond to related oncogenes
that are often amplified in conjunction. Further, the clusters contain genes
located close to each other on their respective chromosomes. Inspecting the
code tables, we see that the attributes within them are strongly correlated:
for all code tables, the value with the highest frequency consists of zeroes
(well over 90%, note this is a sparse dataset), and is followed by the value
consisting of ones, whereas the remaining values have considerably lower
frequencies. This shows that the attributes in a single cluster are usually
either all present or all absent, far more than expected under independence.

The Connect dataset contains all legal grid configurations with eight discs,
of the well-known Connect Four game. The game grid has 7 columns and 6
rows, and for each of the 42 locations there is an attribute describing whether
it is empty, or which one of the two players has positioned a disc there. Fur-
thermore, a class label describes which player can win or whether the game
will result in a draw. Note that as we are mining the data exploratorily,

76

4.6. Experiments

we consider the class label as ‘just another attribute’. For both versions of
the data, the algorithm discovers 7 clusters. Upon inspection, it turns out
that each of these clusters corresponds to a single column in the game, i.e.,
the structure found by the algorithm reflects the physical structure of the
game, even though our algorithm has no knowledge of this. Whereas dif-
ferent columns are more or less independent, attributes within a column are
dependent: an empty location cannot have a nonempty location above it.
This is also observed in the code tables: all occurring values correspond to
configurations with zero or more filled locations at the bottom, with empty
locations above that. Since the full grid contains only eight discs, the highest
frequency values in the code tables are the relatively sparse ones. Further-
more, the class label is placed in the cluster of the middle column; this is
a very plausible finding, since any horizontal or diagonal row of four must
necessarily pass through the middle column, making it key to winning the
game. Additionally, we note that in the binary dataset items originating from
the same categorical attribute are grouped together, rather than being spread
over different clusters.

For both the Chess and Mushroom datasets, we observe that the discovered
clusterings for the categorical and binary datasets are not exactly the same.
The algorithm makes a few more merges in the categorical case, but other-
wise the discovered clusterings are comparable. For these datasets we also
see in the binary variants that items originating from the same attribute in
general tend to be clustered together. Interestingly, the (absolute) descrip-
tion lengths are very similar for both variants of the datasets, being slightly
smaller in the categorical case. The explanation lies in the fact that for the cat-
egorical data we already know which values a given attribute may assume,
while for the binary versions we do not know which items belong to the same
attributes, which indirectly increases the cost to describe the code tables.

The attributes of the MCADD dataset consist of 12 different acylcarnitine
concentrations measured by tandem mass spectrometry (TMS), together with
4 of their calculated ratios and 5 other biochemical parameters, and the class
label which indicates whether MCADD is present. This recessive metabolic
disease affects about one in 10 000 people while around one in 65 is a carrier
of the responsible mutated gene. If left undiagnosed, this rare disease is
fatal in 20% to 25% of the cases and many survivors are left with severe
brain damage after a severe crisis. In the results, we see that acylcarnitines
and corresponding calculated ratios are detected and grouped together. For

77

4. Summarizing Categorical Data by Clustering Attributes

instance, the attributes for C8 and C10 are in a cluster together with the ratio
C8

C10 . Further, the class label cluster also contains the ratio C8
C12 , which is one

of the features commonly used in diagnostic criteria by experts and was also
discovered in previous in-depth studies [Baumgartner et al., 2005].

Finally, for the Pen Digits datasets, we discover five attribute clusters. Each
cluster consists entirely of either x or y coordinates. Besides spatially, the co-
ordinate attributes are also temporally clustered: coordinates appearing first
along the trace of a digit are grouped together, as are coordinates drawn later.
More specifically, the x coordinates are split in three groups: beginning, mid-
dle, and end. The y coordinates are split in a beginning, and a middle–end
cluster. This last cluster also contains the class label, which means that the
class label is correlated to the vertical coordinates of the pen when drawing
the latter half of a digit, a statement the authors deem plausible. The binary
variant of this datasets results in a very similar summary, i.e., barring a few
exceptions, items originating from the same attributes are grouped together
in the same way as with the categorical data.

The above examples show that the attribute clusterings discovered by our
algorithm are of high quality. We find structure between correlated attributes,
which can be seen from the strong compression ratios and relatively small
number of clusters. When subjectively investigating the resulting clusters
themselves, they are easily interpretable and highly insightful.

Having established that we can achieve good results, we investigate what
the contribution of our encoding is. We compare our defined description
length L(C,D) with the description length Lr(C,D), which uses prequential
coding (see Section 4.2). Table 4.3 shows the results for the discovered clus-
terings using Lr(C,D) as the description length. We note that the numbers
of clusters discovered are comparable, usually slightly higher. Prequential
encoding tends to be a bit more conservative in merging clusters, whereas
our encoding tends to prefer clusterings with a lower number of clusters; for
our purpose, this is a positive thing. Furthermore, the description lengths for
both encodings are in the same ballpark.

It is important to emphasize, however, that we cannot simply compare
the description lengths of two different clusterings under two different en-
codings. Nonetheless, the fact that the returned best clusterings for both
encodings tend to be alike, and have a similar description length, is a good
indication that our encoding is close to the theoretically clean refined mdl.
Upon inspection, the discovered clusters are often comparable to the ones

78

4.6. Experiments

Table 4.3: Results of our algorithm using the description length Lr(C,D),
which uses prequential coding. Shown are the number of discovered clus-
ters k, and the absolute and relative description length with respect to the
description length of the independence and canonical clusterings.

Binary Data k Lr(C,D) Lr(C,D)
Lr(I ,D)

Lr(C,D)
Lc(D)

Independent 48 894 855 99.9% 89.5%
Markov 11 880 567 88.1% 88.1%
DAG 8 774 276 82.5% 77.4%
Accidents 171 17 253 821 66.4% 10.8%
BMS-Webview-1 97 1 045 076 87.3% 3.5%
Chess 15 60 892 42.7% 25.4%
Connect 15 1 632 662 45.4% 18.7%
DNA Amplification 76 77 598 41.2% 4.3%
Mammals 29 92 990 76.9% 35.2%
MCADD 23 2 050 896 72.1% 32.4%
Mushroom 18 248 494 56.1% 25.7%
Pen Digits 12 379 027 62.6% 40.1%

Categorical Data

Independent 50 2 036 444 100.0% 96.5%
Markov 15 1 908 282 93.7% 90.4%
Chess 7 56 107 78.5% 46.7%
Connect 7 1 552 621 77.1% 33.7%
MCADD 7 1 756 006 89.3% 81.0%
Mushroom 6 188 540 70.7% 48.6%
Pen Digits 4 303 282 80.3% 70.4%

discovered using our L(C,D) description length, however, for many datasets
the clusters discovered using Lr(C,D) tend to be of a slightly lower subjec-
tive quality. For instance, for the binary Connect data we do not obtain the
seven column clusters that were obtained before. Consequently, since the
results using our encoding are comparable or better than those using pre-
quential coding, and additionally since our encoding is more intuitive, from
this point on we will only be using our description length L(C,D).

79

4. Summarizing Categorical Data by Clustering Attributes

Randomization

Next, we investigate whether our algorithm is generally capable of discov-
ering structure beyond what can be straightforwardly explained by simpler
statistics. As such, for the binary datasets, we here consider the row and
column margins, i.e., the number of ones per row and column. The idea is
that if for some data the discovered attribute clustering simply follows from
the margins of the data, then we would obtain the same result on any other
dataset with the same margins. By considering random data with the same
margins as the real datasets, we can so check whether our models are in-
deed able to model structure of the data at hand beyond what follows from
its margins (assuming these datasets contain more structure than that). For
random data we expect our approach to return the independence clustering.

To obtain the random data samples needed for these experiments, we use
swap randomization, which is the process of randomizing data to obscure
the internal dependencies, while preserving the row and column margins of
the data [Gionis et al., 2007]. This is achieved by applying individual swap
operations that maintain these margins. That is, one randomly finds two
items a and b, and two transactions, such that a occurs in the first transaction
but not in the second, and vice versa. Then, a swap operation simply swaps
these items. This is a Markov Chain Monte Carlo process, which has to be
repeated many times, as often as is required to break down the significant
structure of the data, i.e., the mixing time of the chain; as suggested by Gionis
et al. [2007], we use five times the number of ones in the data.

For each dataset we create 1 000 swap randomized datasets. We then cal-
culate the average number of clusters our algorithm finds, and the average
description length. Table 4.4 shows the results. We see that for all datasets
the number of clusters is very close to the number of attributes, indicating
that the structure that was present in the original datasets, was not simply a
consequence of the row and column margins. Furthermore, the description
lengths are much higher than those for the clusterings discovered in the orig-
inal data. In fact, the third to last column shows that the average description
length is almost exactly equal to the description length of the independence
clustering. The last column shows the empirical p-value of our results,

p =
|{D′ | L(C ′,D′) ≤ L(C,D)}|+ 1

|{D′}|+ 1
,

80

4.6. Experiments

3.5925 3.5926 3.59271.5587 1.5588
x 106

0

20

40

60

80

140

N
um

be
r o

f d
at

as
et

s

Total compressed size (bits)

Original
data

120

100

Figure 4.8: Distribution of the description lengths of 1 000 swap randomized
instances of the binary version of the Connect dataset. The description length
of the original data is indicated by the arrow.

where {D′} is the set of 1 000 swap randomized datasets. This is the empir-
ical probability of observing a description length at least as low as L(C,D),
Figure 4.8 shows the description length distribution of the swap randomized
versions of the Connect dataset. We see that the description length of the orig-
inal dataset is significantly lower than that of any of the swap randomized
datasets. The p-values show that this holds for all the binary datasets, ex-
cept for Independent; the structure of this dataset can of course be completely
described by the column margins only.

Our algorithm is greedy in nature, and therefore does not necessarily
discover the optimal clustering, that is, the clustering C∗ which globally min-
imizes L(C,D). To get an idea of how good the discovered clustering is, we
compare it to random clusterings. We uniformly sampled 1 000 random k-
attribute clusterings for each dataset (where k is the size of the discovered
clustering), and compute their description lengths. Table 4.5 shows for each
dataset the absolute and relative average description length and standard de-
viation. For most datasets the relative description length is still less than
100%, indicating that even random clusterings can capture some of the struc-
ture, especially for strongly structured datasets. However, we also see that for
all datasets (except trivially for the categorical Independent data) the descrip-
tion length for random clusterings is much worse than that of the original
discovered clustering (see Table 4.2). From the empirical p-values in the last
column of Table 4.5, we can see that our algorithm significantly outperforms

81

4. Summarizing Categorical Data by Clustering Attributes

Table
4.4:

Sw
ap

random
ization

experim
ents

on
the

binary
data,

for
1

000
sw

ap
random

ized
datasets.

Show
n

are
the

average
num

ber
of

clusters
k,

the
average

absolute
description

length
L
(C
′,D
′),

the
de-

scription
length

L
(C

,D
)

of
the

originaldata,the
average

relative
description

length
w

ith
respect

to
both

the
independence

clustering
description

length
L
(I

,D
′)

and
the

canonicaldescription
length

L
c (D

′),and
the

em
piricalp-value

for
the

originaldata.

Binary
D

ata
k

L
(C
′,D
′)

L
(C

,D
)

L
(C
′,D
′)

L
(I

,D
′)

L
(C
′,D
′)

L
c (D

′)
em

pirical
p-value

Independent
49.2

895
078

895
078

99.9%
89.5%

51.5%
M

arkov
48.9

999
157

884
943

99.9%
99.9%

<
0.1%

D
A

G
48.9

970
481

797
588

99.9%
97.0%

<
0.1%

A
ccidents

198.2
25

987
733

16
893

671
99.9%

16.3%
<

0.1%
BM

S-W
ebview

-1
221.1

1
195

928
1

078
905

99.5%
4.0%

<
0.1%

C
hess

58.8
142

748
58

457
99.9%

59.5%
<

0.1%
C

onnect
81.0

3
592

592
1

559
773

99.9%
41.2%

<
0.1%

D
N

A
A

m
plification

194.1
190

422
82

209
99.5%

10.6%
<

0.1%
M

am
m

als
62.3

121
048

98
515

99.5%
45.8%

<
0.1%

M
C

A
D

D
163.7

2
844

348
1

816
628

99.9%
45.0%

<
0.1%

M
ushroom

77.5
443

042
169

425
99.9%

45.8%
<

0.1%
Pen

D
igits

64.6
605

330
333

032
99.9%

64.0%
<

0.1%

82

4.6. Experiments

1.200 1.2051.195

160

1.050 1.010
x 106

0

20

40

60

80

140

N
um

be
r o

f r
an

do
m

iz
ed

 c
lu

st
er

in
gs

Total compressed size (bits)

Discovered
clustering

120

100

Figure 4.9: Distribution of the description lengths of 1 000 random k-
clusterings, for the BMS-Webview-1 dataset. The description length of the
clustering discovered by our algorithm is indicated by the arrow.

randomly generated clusterings. In fact, none of the random clusterings had
a lower description length than the one discovered by our algorithm (again,
except for Independent). Figure 4.9 depicts the description length distribu-
tion for the BMS-Webview-1 dataset, of the 1 000 randomly generated random
attribute clusterings, together with the description length of the clustering
found by our algorithm.

Beam Search and Simulated Annealing

In this subsection we investigate whether we can improve our algorithm by
employing different search strategies. We ran experiments using beam search
for a range of beam widths. Table 4.6 shows the results for b equal to 2, 5,
10, and 15. Note that using a beam width of 1 corresponds to our original
algorithm. For most datasets and parameter settings, the discovered sum-
maries are exactly the same as for a beam with of 1. In the other cases, some
summaries with a lower description length were discovered, however, this
relative decrease is barely noticeable (i.e., 10−3 or less). Meanwhile, it is clear
that both runtime and memory consumption grow as the beam size is in-

83

4. Summarizing Categorical Data by Clustering Attributes

Table
4.5:

A
verage

description
length

over
1

000
random

ly
generated

k-partitions,relative
to

the
canon-

ical
description

length
of

the
datasets.

Show
n

are
the

average
absolute

description
length

L
(C
′,D

),
the

description
length

L
(C

,D
)

ofthe
originaldiscovered

clustering,the
relative

description
length

w
ith

stan-
dard

deviation,and
the

em
piricalp-value

of
the

originaldiscovered
clustering.

Binary
D

ata
L
(C
′,D

)
L
(C

,D
)

L
(C
′,D

)
L

c (D
)

standard
deviation

em
pirical

p-value

Independent
930

878
895

078
93.1%

0.3%
<

0.1%
M

arkov
994

857
884

943
99.5%

0.7%
<

0.1%
D

A
G

976
662

797
588

93.2%
1.1%

<
0.1%

A
ccidents

25
830

095
16

893
671

16.2%
0.1%

<
0.1%

BM
S-W

ebview
-1

1
200

869
1

078
905

4.1%
0.0%

<
0.1%

C
hess

135
785

58
457

56.6%
1.9%

<
0.1%

C
onnect

3
274

147
1

559
773

37.6%
0.9%

<
0.1%

D
N

A
A

m
plification

199
770

82
209

11.1%
0.1%

<
0.1%

M
am

m
als

117
597

98
515

44.5%
0.3%

<
0.1%

M
C

A
D

D
3

575
766

1
816

628
56.6%

1.9%
<

0.1%
M

ushroom
341

035
169

425
35.3%

0.7%
<

0.1%
Pen

D
igits

654
217

333
032

69.2%
2.4%

<
0.1%

C
ategoricalD

ata

Independent
2

037
016

2
037

016
96.5%

0.0%
100.0%

M
arkov

2
240

147
1

932
611

115.9%
9.2%

<
0.1%

C
hess

70
424

57
353

59.6%
1.0%

<
0.1%

C
onnect

1
916

691
1

554
827

41.6%
0.6%

<
0.1%

M
C

A
D

D
2

169
650

1
785

850
100.0%

10.9%
<

0.1%
M

ushroom
179

259
150

012
46.2%

3.7%
<

0.1%
Pen

D
igits

399
095

309
788

92.7%
7.8%

<
0.1%

84

4.6. Experiments

Table 4.6: Results for the beam search experiments for various beam widths.
The table gives the description length L(C,D) of the best discovered clus-
tering, relative to the canonical description length Lc(D). The first column
repeats the results from Table 4.2, and is equivalent to the case b = 1. The
model that compresses best is depicted in boldface at the smallest beam
width for that score.

Binary Data L(C,D)
Lc(D) b = 2 b = 5 b = 10 b = 15

Independent 89.5% 89.5% 89.5% 89.5% 89.5%
Markov 88.5% 88.5% 88.5% 88.5% 88.5%
DAG 79.8% 79.7% 79.7% 79.7% 79.7%
Accidents 10.6% 10.6% 10.6% 10.6% 10.6%
BMS-Webview-1 3.6% 3.6% 3.6% 3.6% 3.6%
Chess 24.4% 24.4% 24.4% 24.4% 24.4%
Connect 17.9% 17.9% 17.9% 17.9% 17.9%
DNA Amplification 4.6% 4.6% 4.6% 4.6% 4.6%
Mammals 37.3% 37.3% 37.3% 37.3% 37.3%
MCADD 28.7% 28.7% 28.7% 28.7% 28.7%
Mushroom 17.5% 17.4% 17.4% 17.4% 17.4%
Pen Digits 35.2% 35.2% 35.2% 35.2% 35.2%

Categorical Data

Independent 96.5% 96.5% 96.5% 96.5% 96.5%
Markov 91.6% 91.4% 91.4% 91.4% 91.4%
Chess 47.7% 47.7% 47.7% 47.7% 47.7%
Connect 33.8% 33.8% 33.8% 33.8% 33.8%
MCADD 82.3% 82.3% 82.0% 82.0% 82.0%
Mushroom 38.6% 38.6% 38.3% 38.3% 38.3%
Pen Digits 71.9% 71.9% 71.9% 71.9% 71.9%

creased, namely by a factor b. Therefore, it does not seem to be favorable to
add a beam to our algorithm, since neither the results nor the performance
can notably be improved upon. The reason for this is that although beam
search considers more search paths, the beam tends to exhibit very little vari-
ability and hence usually ends up with the same result.

Table 4.7 gives the results of similar experiments using simulated anneal-

85

4. Summarizing Categorical Data by Clustering Attributes

ing. For each dataset, we execute 100 runs, where a single run consists of
1 000 iterations. The best clustering over those 100 runs is then reported. We
repeat the experiments for varying settings of the λ scaling parameter. For the
synthetic datasets, we see that simulated annealing performs approximately
the same as our algorithm, i.e., the compression ratios are comparable. For
most of the other datasets, however, the results are noticeably worse than our
algorithm. Only for MCADD does simulated annealing provide a marginally
better result. The influence of the λ parameter seems to be that the compres-
sion ratios decrease slightly for larger λ, although not much. This is because
the λ parameter controls the decrease of the probability threshold to move
away from a local optimum. Due to the inherently nondeterministic nature
of the simulated annealing algorithm, we must perform many runs, but we
do not know how many in advance. Furthermore, in practice the simulated
annealing algorithm has many more parameters than we used in our exper-
iments, e.g., the cooling schedule, and tuning these parameters can prove
to be difficult. Hence, simulated annealing does not seem to provide any
improvement over our algorithm.

Frequency Estimation

Finally, in this subsection we investigate how well our summaries can be
used as surrogates of the data. We do this by using the code tables to es-
timate itemset frequencies, as described in Section 4.2. For each dataset we
first mine the top-10 000 closed frequent itemsets.3 Then, for each itemset in
this collection, we estimate its frequency using the discovered attribute clus-
tering, and compute both its absolute and relative error. For comparison, we
generate 1 000 random k-clusterings, estimate their frequencies, and average
the mean absolute and relative errors. The results are shown in Table 4.8.

Although frequency estimation is not the main goal of our approach, the
results we obtain are very good. For most datasets, the average absolute error
is less than 1%. Furthermore, the average relative error is usually also just
a few percentage points. For the datasets where the relative error is larger,
we see that the cause for this lies with the fact that the itemsets in those
datasets have a very low average frequency. Compared to the random k-

3More precisely, we use the largest minimum support threshold such that the number of
frequent closed itemsets is at least 10 000; therefore the total number of itemsets may be slightly
larger. For the DNA Amplification data, there are only 1 946 closed itemsets with nonzero support.

86

4.6. Experiments

Table 4.7: Results for the simulated annealing experiments for various set-
tings of the λ parameter. The table gives the description length L(C,D) of
the best discovered clustering, relative to the canonical description length
Lc(D). The first column repeats the results from Table 4.2. The best perform-
ing model is depicted in boldface.

Binary Data L(C,D)
Lc(D) λ = 100 λ = 101 λ = 102 λ = 103

Independent 89.5% 89.5% 89.5% 89.5% 89.5%
Markov 88.5% 88.6% 88.6% 88.6% 88.5%
DAG 79.8% 80.3% 80.5% 80.0% 80.3%
Accidents 10.6% 15.8% 15.8% 15.6% 15.7%
BMS-Webview-1 3.6% 4.0% 4.0% 4.0% 4.0%
Chess 24.4% 30.9% 28.8% 30.9% 28.1%
Connect 17.9% 28.2% 26.3% 28.0% 26.9%
DNA Amplification 4.6% 10.0% 10.0% 10.1% 10.0%
Mammals 37.3% 40.4% 40.4% 40.6% 40.2%
MCADD 28.7% 43.2% 43.1% 43.3% 43.1%
Mushroom 17.5% 25.8% 24.0% 24.6% 24.7%
Pen Digits 35.2% 47.1% 48.2% 48.7% 48.1%

Categorical Data

Independent 96.5% 96.5% 96.5% 96.5% 96.5%
Markov 91.6% 92.4% 92.0% 92.2% 91.8%
Chess 47.7% 48.0% 48.0% 48.1% 48.0%
Connect 33.8% 34.2% 34.3% 34.2% 34.2%
MCADD 82.3% 82.1% 82.1% 82.1% 82.1%
Mushroom 38.6% 39.7% 39.5% 39.7% 39.7%
Pen Digits 71.9% 73.8% 72.3% 72.5% 72.1%

clusterings, we see that our algorithm always performs better on average, and
this difference is significant, as can be seen from the empirical p-values in the
last column. Further, as the code tables corresponding to a k-clustering (with
k < n) inherently contain more information on how the attributes interact
than for the independence clustering—which is an n-clustering, and hence
by definition contains no correlations between attributes—our algorithm also
performs better than the independence model in estimating count queries.

87

4. Summarizing Categorical Data by Clustering Attributes

Table
4.8:

Frequency
estim

ation
of

the
top-10

000
closed

frequent
item

sets.
D

epicted
are

the
average

frequency
fr

of
the

item
sets

in
the

originaldata,the
average

absolute
and

relative
errors

of
the

frequency
estim

ates
using

our
m

odel,the
average

absolute
and

relative
errors

for
1

000
random

k-partitions,and
the

em
piricalp-values

of
the

result
of

our
algorithm

for
the

relative
estim

ation
error

A
ttribute

C
lustering

R
andom

k-partition

Binary
D

ata
fr ∣∣∣ fr−

f̂r ∣∣∣
| fr−

f̂r|
fr

∣∣∣ fr−
f̂r ∣∣∣

| fr−
f̂r|

fr
em

pirical
p-value

Independent
29.0%

0.1%
0.5%

1.3%
4.5%

<
0.1%

M
arkov

15.7%
0.3%

2.0%
1.3%

7.9%
<

0.1%
D

A
G

25.5%
0.6%

2.4%
2.1%

8.7%
<

0.1%
A

ccidents
55.8%

1.4%
2.7%

2.9%
5.3%

<
0.1%

BM
S-W

ebview
-1

0.1%
0.1%

83.8%
0.1%

91.2%
<

0.1%
C

hess
81.2%

1.0%
1.2%

1.4%
1.7%

0.2%
C

onnect
88.8%

0.4%
0.4%

2.2%
2.5%

<
0.1%

D
N

A
A

m
plification

0.7%
0.1%

53.3%
4.2%

86.6%
<

0.1%
M

am
m

als
43.0%

13.3%
31.7%

19.8%
46.8%

<
0.1%

M
C

A
D

D
2.6%

0.2%
8.7%

0.3%
13.1%

<
0.1%

M
ushroom

12.5%
1.3%

13.6%
5.1%

44.9%
<

0.1%
Pen

D
igits

6.1%
2.9%

52.1%
3.3%

58.5%
<

0.1%

C
ategoricalD

ata

Independent
10.2%

0.1%
1.3%

0.1%
1.3%

100.0%
M

arkov
11.7%

0.3%
2.7%

0.6%
5.1%

<
0.1%

C
hess

81.2%
0.5%

0.6%
1.3%

1.6%
<

0.1%
C

onnect
88.8%

0.4%
0.4%

2.2%
2.5%

<
0.1%

M
C

A
D

D
2.6%

0.2%
8.5%

0.3%
13.1%

<
0.1%

M
ushroom

12.5%
2.8%

2.5%
38.8%

380.7%
<

0.1%
Pen

D
igits

6.1%
3.0%

53.8%
3.3%

58.9%
1.3%

88

4.6. Experiments

Av
er

ag
e

ab
so

lu
te

 e
rr

or

True Frequency

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 0.016

Average item
set size

error size

Figure 4.10: The average estimation error per frequency, and the average
itemset size per frequency for the Mushroom dataset.

Figure 4.10 shows the average estimation error in function of the fre-
quency of the top-10 000 closed itemsets for the Mushroom dataset, in bins
with a width of 5%. We see that the error tends to grow as the frequency
decreases; the reason for this lies in the fact that low-frequency itemsets tend
to be larger (as also depicted in the figure), and hence we have to combine
information from more code tables, which makes the estimate less precise,
since in doing so we make more independence assumptions.

In Figure 4.11 we plot the cumulative probability of the absolute estima-
tion error for the Connect and Mushroom datasets. For every ε ∈ [0, 1] we
determine the probability δ that the absolute error | fr(X)− f̂r(X) | is greater
than ε. For both datasets we see that the discovered clustering outperforms
the random k-clusterings, which in turn only marginally improve upon the
independence model. For instance, in the Mushroom dataset we see that prob-
ability of an absolute estimation error larger than 5% is about 40% for the
random models, whereas for our discovered clustering this is only 1%.

In Table 4.9 the speed of querying code tables is demonstrated. For each
dataset, we generate 100 000 itemsets uniformly, with sizes uniformly picked
between 2 and the size of the largest transaction. First, we measure the query
speed of a straightforward counting algorithm, which iterates over all trans-
actions, and increases a counter whenever the queried itemset is contained in

89

4. Summarizing Categorical Data by Clustering Attributes

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 0.05 0.1 0.15 0.2 0.25

δ=
Pr

(e
rr

or
>
ε)

Absolute error ε

Best clustering
Random k-clustering

Indep. clustering

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 0.05 0.1 0.15 0.2 0.25

δ=
Pr

(e
rr

or
>
ε)

Absolute error ε

Best clustering
Random k-clustering

Indep. clustering

Figure 4.11: Probability of a frequency estimation error larger than ε for
Connect (left) and Mushroom (right) on the top-10 000 closed frequent itemsets.

a transaction. Second, we measure the speed of querying by using code tables
rather than the data itself. Both methods were implemented in C++, com-
piled with the same compilation flags, and executed on the same machine.
The first and third column show the average query time in milliseconds per
itemset. For all datasets, using approximate querying is considerably faster,
often an order of magnitude or more. Constructing the code tables, however,
also takes time, and hence there is a point up to which querying the data is
still cheaper. The rightmost column shows the number of queries such that
the time taken to construct the model plus the time to perform the queries,
is equal to querying the data (measured in a resolution of ten itemsets). For
most datasets, the takeover point lies at a few thousand queries.

Lastly, we compare the frequency estimation capabilities of our attribute
clusterings with the profile-based summarization approach by Yan et al.
[2005]. A set of (overlapping) profiles summarizes a given set of patterns—
rather than the data itself. A profile can be seen as a conditional inde-
pendence distribution on a subset of the items, which can subsequently be
queried. Although summarization with profiles is different from our clus-
tering approach, we can compare the quality of the frequency estimates.
We mimic the experiments by Yan et al. [2005] on the Mushroom and BMS-
Webview-1 datasets, by comparing the average relative error, also called resto-
ration error in the paper. The collection of itemsets contains all frequent closed
itemsets for a minsup threshold of 25% and 0.1% respectively. For Mushroom
we attain a restoration error of 2.31%, which is lower than the results re-
ported by Yan et al. [2005] for any number of profiles. For BMS-Webview-1

90

4.6. Experiments

Table 4.9: The speed of direct querying versus frequency estimation, aver-
aged over 100 000 randomly sampled itemsets, and the point at which the
aggregate model construction and approximate querying time overtakes ex-
act querying. Values in italics are extrapolated.

Summary

Binary Data query construction estimation takeover

Independent 2.37 ms 1 s 0.02 ms 740
Markov 2.27 ms 4 s 0.04 ms 1 400
DAG 2.31 ms 5 s 0.11 ms 2 450
Accidents 45.18 ms 120 m 2.07 ms 166 968
BMS-Webview-1 1.91 ms 13 m 0.29 ms 596 913
Chess 0.32 ms 1 s 0.03 ms 1 790
Connect 7.52 ms 88 s 0.06 ms 15 220
DNA Amplification 0.24 ms 33 s 0.16 ms 412 500
Mammals 0.20 ms 2 s 0.05 ms 5 390
MCADD 2.49 ms 146 s 0.08 ms 60 380
Mushroom 0.50 ms 13 s 0.05 ms 28 140
Pen Digits 0.58 ms 10 s 0.10 ms 31 660

Categorical Data

Independent 0.53 ms 4 s 0.05 ms 6 170
Markov 0.53 ms 12 s 0.11 ms 28 510
Chess 0.09 ms 1 s 0.04 ms 5 380
Connect 2.52 ms 11 s 0.07 ms 5 810
MCADD 0.59 ms 6 s 0.06 ms 9 030
Mushroom 0.17 ms 1 s 0.05 ms 2 850
Pen Digits 0.21 ms 1 s 0.07 ms 3 270

our restoration error is 70.4%, which is on par with Yan et al.’s results when
using about 100 profiles. Their results improve when increasing the num-
ber of profiles. However, the best scores require over a thousand profiles,
arguably not a feasible number of profiles to inspect by hand.

91

4. Summarizing Categorical Data by Clustering Attributes

4.7 Discussion

The experiments show that our method discovers high-quality attribute clus-
terings. The description lengths of the discovered summaries are noticeably
low compared to the canonical description lengths, which indicates that our
algorithm successfully exploits the structure of the data. Moreover, inspec-
tion of the returned clusterings shows that on synthetic data, the discovered
attribute clusterings are in accordance with their respective generative pro-
cesses, while on real data correlated attributes are correctly grouped, and the
discovered clusterings are intuitive and logical. Through inspection of the
code tables of clusters, we showed that the user is given clear insight in the
distribution of the data over the grouped attributes, and can easily identify
the prevalent attribute-value combinations.

The comparison between encodings shows that our basic two-part mdl

encoding provides performance similar to or even slightly better than the the-
oretically more refined encoding, which tends to be more conservative. Ad-
ditionally, our basic encoding has the advantage of being more interpretable.
While our algorithm is greedy, and therefore does not necessarily produce
an optimal result, experiments showed that the discovered summaries ob-
tain significantly lower description lengths than for random clusterings. The
swap randomization experiments validate that our approach identifies struc-
ture that can generally not be explained through simple statistics, i.e., the row
and column margins of the data. As such, we meet our goal that our sum-
maries provide basic insight in the data that goes beyond first order statistics.

The experiments on alternative search strategies show that beam search
and simulated annealing do not provide any noticeable improvement over
our algorithm, which indicates that our greedy search indeed exploits the
structure of the search space well. Finally, we demonstrated that besides the
fact that attribute clusterings are a simple and intuitive way to gain insight
into a dataset, they can also be used as queryable surrogates for the data;
itemset frequencies of the top-10 000 closed frequent itemsets are approxi-
mated quickly and with very high precision.

As such, we have shown that the summaries we discover provide useful
insight into the data beyond simple first order statistics, and can hence be
used as a quick first inspection of the basic structure of the data, for instance
in order to decide whether and how the data should be analyzed in detail.
Moreover, as they are simply groupings of attributes, and counts of the value

92

4.7. Discussion

combinations thereof, they can be straightforwardly included explicitly as
background knowledge in other mining algorithms, in order to prevent dis-
covery of results that can be explained by what we already know [Hanhijärvi
et al., 2009, Mampaey et al., 2011].

While much of the focus in data mining research is on detailed data anal-
ysis, we point out the importance of lightweight methods providing basic
insight in data, to the end of making an informed decision on whether and
how to mine the data at hand. Although such methods clearly should be fast,
it is important to stress that the ease of interpreting their results is key.

Besides basic insight, other possible uses for our summaries include fea-
ture selection and feature construction. While not the aim of this work, and
hence we do not go into detail, one could consider only clustering attributes
with the target label, in order to identify by mdl the set of features that to-
gether best describe the target. Alternatively, one could consider each cluster
as a new feature, choosing either all, or only the most prevalent, value com-
binations as its values. A related interesting future use for our summaries
would be fast approximate frequent itemset mining, as the possible combi-
nations of attribute-values can be effectively enumerated by a-priori.

Although the experiments show that high-quality summaries are discov-
ered, by the greedy nature of our approach we have no guarantees on how
well we approximate the optimum. While this is an often-encountered prob-
lem in mdl, it may be worthwhile to investigate whether a connection can
be made to well-studied optimization problems, such as setcover, for which
optimality bounds are known.

By using mdl to discover a summary, our method is parameter-free: the
amount and structure in the data determines what model is chosen. In gen-
eral, mdl can be regarded as data hungry. That is, the more data is available,
the better more complex correlations can be detected. In general, our method
is best applied to data of at least 100s of rows.

Even though the experiments show that our algorithm is fast in practice,
we see room for improvements. For instance, the algorithm can trivially be
parallelized, as well as optimized by using tid-lists. The main bottleneck of
our approach is the first step of the clustering, where all pair-wise distances
have to be computed; it would be worthwhile to develop bounds or heuris-
tics to postpone calculation of distances between attributes that will not be
considered for joining. However, we especially regard the development of
fast approximate summarization techniques for databases with many transac-

93

4. Summarizing Categorical Data by Clustering Attributes

tions and/or attributes as an important topic for future research, in particular
as many data mining techniques cannot consider such datasets directly, but
could be made to consider the summary surrogate.

In this work we only consider categorical data, for which it is difficult
to construct a sensible distance measure. As such, it would be interesting
to investigate whether our approach can be extended toward ordinal data,
which would require non-trivial extension of the encoding. Another, related,
as well as important, open problem is the generation of summaries for het-
erogeneous data, e.g., consisting of both numeric and categorical attributes.

4.8 Conclusions

In this chapter we introduced a method for getting a good first impression of
a dataset with categorical attributes. Our parameter-free method builds sum-
maries by clustering attributes that strongly correlate, and uses the Minimum
Description Length principle to identify the best clustering, without requir-
ing a distance measure between attributes. The result offers an overview of
which attributes interact most strongly, and in what value instantiations they
typically occur. Furthermore, since they form probabilistic models of the
data, these summaries are good surrogates for the data that can be queried
efficiently and accurately. Experiments showed that our method provides
high-quality results that correctly identify groups of correlated attributes,
and can be used to obtain close approximations of itemset frequencies.

94

Chapter 5

Using Background Knowledge
to Rank Itemsets

Assessing the quality of discovered results is an important open
problem in data mining. Such assessment is particularly vital when
mining itemsets, since commonly many of the discovered patterns

can be easily explained by background knowledge. The simplest approach to
screen uninteresting patterns is to compare the observed frequency against
the independence model. Since the parameters for the independence model
are the column margins, we can view such screening as a way of using the
column margins as background knowledge.

In this chapter we study techniques for more flexible approaches to in-
fusing background knowledge. Namely, we show that we can efficiently use
additional easy-to-interpret statistics such as row margins, lazarus counts,
and transaction bounds. We demonstrate that these statistics describe forms
of data that occur in practice and have been studied in data mining.

To infuse the information efficiently we use a maximum entropy ap-
proach. In general, solving a maximum entropy model is infeasible, but we
demonstrate that for our setting it can be solved in polynomial time. Experi-
ments show that more sophisticated models fit the data better and that using
more information improves the frequency prediction of itemsets.

This chapter is based on work published as:
N. Tatti and M. Mampaey. Using background knowledge to rank itemsets. Data Mining and
Knowledge Discovery, 21(2):293–309, 2010.

95

5. Using Background Knowledge to Rank Itemsets

5.1 Introduction

Discovering interesting itemsets from binary data is one of the most studied
branches in pattern mining. The most common way of defining the interest-
ingness of an itemset is by its frequency, the fraction of transactions of the
data in which all items co-occur. This measure has a significant computa-
tional advantage since frequent itemsets can be discovered using level-wise
or depth-first search strategies (see Section 2.1). These itemsets can then be
presented to the user, in a ranking starting from the most interesting ones.
The drawback of frequency is that we cannot infuse any background knowl-
edge into the ranking. For example, if we know that the items a and b occur
often, then we should expect that ab also occurs relatively often.

Many approaches have been suggested to infuse background knowledge
into ranking itemsets. The most common approach is to compare the ob-
served frequency against the independence model. This approach has the
advantage that we can easily compute the estimate and that the background
knowledge is easily understandable. The downside of the independence
model is that it contains relatively little information. For example, if we know
that most of the data points contain a small number of ones, then we should
infuse this information for ranking patterns. For a more detailed discussion
see the related work in Section 5.8.

Assessing the quality of patterns can be seen as a part of the general idea
where we are required to test whether a data mining result is statistically sig-
nificant with respect to some background knowledge (see [Hanhijärvi et al.,
2009] as an example of such a framework). However, the need for such as-
sessment is especially important in pattern mining due to two major prob-
lems. Firstly, the number of discovered patterns is usually extremely large,
so a screening/ranking process is needed. Secondly, many of the discovered
patterns reflect already known information, so we need to incorporate this
information such that we can remove trivial results.

The aim of this chapter is to study how we can infuse background knowl-
edge into pattern mining efficiently. In our approach we will build a global
statistical model based on the given knowledge. We set the following goals.

1. The background knowledge should be simple to understand.

2. We should be able to infer the model from the data efficiently.

3. We should be able to efficiently compute expected itemset frequencies.

96

5.1. Introduction

While these goals seem simple, they are in fact quite strict. For example,
consider modeling attribute dependencies by using Bayesian networks. First
of all, inferring the expected frequency of an itemset from the Bayesian net-
work is done using a message passing algorithm, and is not guaranteed to be
computationally feasible [Cowell et al., 1999]. Further, understanding parent-
child relationships in a Bayesian network can be discombobulating.

We will consider the following simple statistics: column margins, row
margins, number of zeroes between ones (lazarus counts), and the bound-
aries of ones. We will use these statistics individually, but also consider dif-
ferent combinations of them. While these are simple statistics, we will show
that they describe many specific types of dataset structures, such as banded
datasets or nested datasets.

We will use these statistics and the maximum entropy principle to build
a global model. In a general setting, inferring such a model is an infeasible
problem. However, we will demonstrate that for our statistics, inferring the
model can be done in polynomial time. Once this model is discovered we
can use it to assess the quality of an itemset by comparing the observed fre-
quency against the frequency expected by the model. The more the observed
frequency differs from the expected value, the more significant is the pattern.

We should point out that while our main motivation is to assess itemsets,
the discovered background model is a true statistical global model and is
useful for other purposes as well, such as model selection or data generation.

Example 5.1. Consider a dataset D with 3 items, a, b, and c, and 12 transactions,
represented here in binary form.

D =


(0, 0, 1), (0, 0, 1), (0, 1, 0), (0, 1, 0),
(1, 0, 0), (1, 0, 0), (1, 0, 1), (0, 1, 1),
(1, 1, 0), (1, 1, 1), (1, 1, 1), (1, 1, 1)


Item a occurs in 7 out of 12 transactions. The same holds for items b and c. If D
obeyed the independence model, then the number of transactions with two items ac-
tive should be around 12× 3× (7/12)2 × 5/12 ≈ 5. However, we have in D only
3 out of 12 transactions with two items active. Hence, row margins, the fractions of
transactions containing k ones, for k = 0, . . . , 3, cannot be explained by the indepen-
dence model in this case. Thus, we are motivated to build a model which incorporates
the row margins. Our expectation is that such model will have a better likelihood.

97

5. Using Background Knowledge to Rank Itemsets

5.2 Statistics as Background Knowledge

In this section we introduce several count statistics for transactional data, and
indicate for which types of datasets they are useful. A statistic is a function
S : T →N mapping a transaction t to an integer. All statistics are of the form
qD(S(A) = k), where qD is the empirical distribution, i.e., our background
knowledge will be the fraction of transactions in the data for which S(t) = k.

Column Margins

The simplest of statistics one can consider are the column margins or item
probabilities. These probabilities can be used to define an independence
model. This model has been used before in other works to estimate itemset
frequencies [Brin et al., 1997, Aggarwal and Yu, 1998]. It has the advantage
of being computationally fast and easy to interpret. Typically, however, it is
a rather simplistic model and few datasets actually satisfy the independence
assumption. Due to its simplicity and widespread use, we include the item
probabilities in all of our models.

Row Margins

We define ones(A) to be a random variable representing the number of ones
in a random transaction. We immediately see that ones(A) obtains integer
values between 0 and N. Consequently, p(ones(A) = k) is the probability of
a random transaction having k ones. Given a transaction t ∈ T , we will also
denote by ones(t) the number of ones in t, that is,

ones(t) =
N

∑
i=1

ti .

The use of row margins (in conjunction with column margins) has been
proposed before by Gionis et al. [2007], to asses the significance of (among
others) frequent itemsets. However, their approach is different from ours (see
Section 5.8). In said article, it is shown that for datasets with very skewed row
margin distribution, most frequent itemsets, clusterings, correlations, etc. can
be explained entirely by row and column margins alone. Supermarket basket
datasets fall into this category, since the transactions in such data typically
contain only a handful of items.

98

5.2. Statistics as Background Knowledge

Lazarus Counts

A lazarus event in a transaction is defined as the occurrence of a zero within
a string of ones.1 This requires that a total order is specified on the attributes
in A. For simplicity, we assume that this order is a1 < · · · < aN . Let t ∈ T
be a transaction, then the lazarus count of t is defined as

laz(t) = |{ti = 0 | there exist a, b s.t. a < i < b and ta = tb = 1}| .

The lazarus count of a transaction ranges from 0 to N − 2. If the lazarus
count of t is 0, then t is said to satisfy the consecutive-ones property.

A specific case of datasets with the consecutive-ones property are banded
datasets. These are datasets whose rows and columns can be permuted such
that the non-zeroes form a staircase pattern. The properties of such banded
binary matrices have been studied by Garriga et al. [2008], who presented
algorithms to determine the minimum number of item perturbations it would
take for a dataset to be fully banded. A banded or approximately banded
dataset can be characterized as follows: the majority of the transactions will
have a low lazarus count, and typically the row margins are low as well.

Transaction Bounds

For certain types of data it can be useful to examine at which positions the
ones in the transactions of a dataset begin and end; or, what the lowest and
highest items in the transaction are. Given a transaction t ∈ T , we define the
first and last statistics as

first(t) = min{i | ti = 1} ,

last(t) = max{i | ti = 1} .

If t contains only zeroes, then we define first(t) = last(t) = 0.
A dataset is called nested if for each pair of rows, one is always a subset

of the other [Mannila and Terzi, 2007]. For such data, the rows and columns
can be permuted such that the rows have consecutive ones starting from the
first column. Thus, assuming the permutation is done, transactions in nested

1The term lazarus event hails from the paleontology literature, when a lack of evidence of
occurrence would suggest that a species seems to have become extinct at a certain time period,
only to reappear later on. The name refers to a biblical character that was raised form the dead.
In Dutch, however, the phrase being lazarus means to be really, really drunk.

99

5. Using Background Knowledge to Rank Itemsets

datasets will have a low lazarus count and low left bound first(t). Nestedness
has been studied extensively in the field of ecology for absence/presence data
of species (see, for example, [Mannila and Terzi, 2007] for more details).

5.3 Maximum Entropy Model

The independence model can be seen as the simplest model that we can in-
fer from binary data. This model has many nice computational properties:
learning the model is trivial and querying it is a simple and fast procedure.
Moreover, a fundamental theorem shows that the independence model is the
distribution maximizing the entropy among all the distributions that have
the same frequencies for the individual items. Our goal is to define a more
flexible model. We require that we should be able to infer such model effi-
ciently and we should be able to make queries. In order to do that we will
use the Maximum Entropy principle [Csiszár, 1975, Jaynes, 1982].

Definition of the Maximum Entropy Model

Say that we have calculated a certain set of statistics from a dataset and we
wish to build a distribution, such that this distribution satisfies the same
statistics. The maximum entropy approach gives us the means to do that.

More formally, assume that we are given a function S : T → N mapping
a transaction t to an integer value. For example, this function can be ones(t),
the number of ones in a transaction. Assume that we are given a dataset
D with N attributes and let qD be its empirical distribution. We associate
a statistic nk with S for any k = 1, . . . , K as the proportion of transactions
in the data for which S(t) = k, that is, nk = qD(S(A) = k), where K is the
maximum value that S can attain. Since T is finite, we know that K < ∞.

In addition to the statistics {nk} we also wish to use the margins of the
individual attributes, that is, the probability of an attribute having a value
of 1 in a random transaction. We denote these column margins by mi =
qD(ai = 1), where i = 1, . . . , N.

The distribution p∗ is the unique distribution maximizing the entropy
among the distributions having the statistics mi and nk. To be more precise,
we define P to be the set of distributions satisfying the statistics mi and nk,

P = {p | p(ai = 1) = mi, p(S(A) = k) = nk for i = 1, . . . , N, k = 1, . . . , K} .

100

5.3. Maximum Entropy Model

The maximum entropy distribution maximizes the entropy in P ,

p∗ = arg max
p∈P

H(p) . (5.1)

Note that P and consequently p∗ depend on the statistics mi and nk, yet we
have omitted them from the notation for the sake of clarity.

Our next step is to demonstrate a classic result that the maximum entropy
distribution has a specific form. In order to do so, we start by defining in-
dicator functions Mi : T → {0, 1} such that Mi(t) = ti, that is, Mi indicates
whether the attribute ai has a value of 1 in a transaction t. We also define
Tk : T → {0, 1} such that Tk(t) = 1 if and only if S(t) = k.

Theorem 5.1 (Theorem 3.1 in [Csiszár, 1975]). The maximum entropy distribu-
tion given in Equation 5.1 has the form

p∗(A = t) =

{
u0 ∏N

i=1 uMi(t)
i ∏K

k=1 vTk(t)
k if t /∈ Z

0 if t ∈ Z
(5.2)

for a set Z ⊆ T , and real-valued parameters ui, vk, where u0 acts as a normalization
factor. Moreover, a transaction t is in Z if and only if p(A = t) = 0 for all
distributions p in P .

Equation 5.2 is guaranteed to hold only if a certain technical assumption
is made about P . We need to assume that for each transaction t there is
a distribution p such that p(A = t) > 0. Generally, this will not be true.
In our setting, the transactions in Z are the ones that are inconsistent with
the statistics mi and nk. For example, a transaction t where Mi(t) = 0, but
the corresponding row margin mi = 1; or, Tk(t) = 1, but the corresponding
statistic nk = 0. However, these special cases can easily be taken into account,
and hence this technicality is not a problem in practice.

Our goal is now to discover the parameters ui and vk, and provide an
algorithm for making queries from this model.

Example 5.2. The margins for the toy example given in Example 5.1 are m1 =
m2 = m3 = 7/12, and n0 = 0, n1 = 1/2, n2 = 1/4, n3 = 1/4. The parameters
for the maximum entropy model for these margins are u0 = 1/8, u1 = u2 = u3 = 1,
and v0 = 0, v1 = 4/3, v2 = 2/3, and v3 = 2. We can verify that these are correct
by simply computing that p∗ has the desired margins. For example,

p∗(ones(A) = 1) = 4/3(1/8 + 1/8 + 1/8) = 1/2 .

101

5. Using Background Knowledge to Rank Itemsets

It turns out that we can represent our maximum entropy model as a mix-
ture model. Such a representation will be fruitful when we are solving and
querying the model. To see this, let ui and vk be the parameters in Eq. 5.2.
We define a distribution q for which we have

q(A = t) = Z−1
q

N

∏
i=1

uMi(t)
i ,

where Zq is a normalization constant so that q is a proper distribution. Since
Mi depends only on ai we see that q is actually an independence distribution.
This allows us to replace the parameters ui with more natural parameters
qi = q(ai = 1). A simple calculation reveals that

ui =
q(ai = 1,A− ai = 0)

q(A = 0)
=

qi ∏j 6=i(1− qj)

∏j(1− qj)
=

qi
1− qi

.

Hence it is easy to compute qi from ui and vice versa. It should be stressed
that qi is not necessarily equal to mi, the column margin of ai in the data.

Example 5.3. Consider the parameters ui in Example 5.2. We see that qi = 1/2,
since ui = 1 = 0.5/(1− 0.5) = qi/(1− qi). Hence in this case the distribution q
is actually the uniform distribution.

Our next step is to consider the parameters vk for the statistic S. First, we
define a distribution

r(S(A) = k) = Z−1
r vkq(S(A) = k) ,

where Zr is a normalization constant such that r is a proper distribution.
We can now express the maximum entropy model p∗ using r and q. By
rearranging the terms in Eq. 5.2 we have

p∗(A = t) =
vk
Zr

q(A = t) = r(S(A) = k)
q(A = t)

q(S(A) = k)
, (5.3)

where k = S(t). The right-hand side of the equation is a mixture model.
According to this model, we first sample an integer, say 1 ≤ k ≤ K, from r.
Once k is selected we sample the actual transaction from q(A = t | S(A) = k).

We should point out that we have some redundancy in the definition of r.
Namely, we can divide each vk by Zr and consequently remove Zr from the
equation. However, keeping Zr in the equation proves to be handy later on.

102

5.4. Solving the Maximum Entropy Model

Example 5.4. In our toy example, assume that the parameters of q are qi = 1/2.
Consequently, q is the uniform distribution, and q(S(t) = 0) = q(S(t) = 3) = 1/8
and q(S(t) = 1) = q(S(t) = 2) = 3/8, where we take S(t) = ones(t). Thus, the
values for vk are then v0 = 0/(1/8) = 0, v1 = (1/2)/(3/8) = 4/3, v2 =
(1/4)/(3/8) = 2/3, and v3 = (1/4)/(1/8) = 2. Note that these are exactly
the parameters give in Example 5.2. The reason for this is that we started with the
correct parameters qi.

Combining Multiple Statistics

We can generalize our model by allowing multiple statistics together. By
combining statistics, we can construct more detailed models that are based
on relatively simple background information.

We distinguish two alternatives to combine count statistics. Assume, for
the sake of exposition, we have two statistics S1 : T → N and S2 : T → N,
with S1(t) ≤ K1 and S2(t) ≤ K2 for all t ∈ T . Then we can either consider
using the joint probabilities qD(S1(A) = k1, S2(A) = k2) for k1 ≤ K1 and
k2 ≤ K2; or, we may use the marginal probabilities qD(S1(A) = k1) and
qD(S2(A) = k2) separately. The joint case can be easily reduced to the case of
a single statistic by constructing a new statistic S′ = S1 + (K1 + 1)S2. Solving
and querying the model in the marginal case can be done using the same
techniques and the same time complexity as with the joint case; we simply
marginalize this joint statistic.

5.4 Solving the Maximum Entropy Model

In this section we introduce an algorithm for finding the correct distribu-
tion. We will use the classic Iterative Scaling procedure. For more details on
this algorithm and the proof of correctness we refer to the original paper by
Darroch and Ratcliff [1972].

The generic Iterative Scaling algorithm is a framework that can be used
for discovering the maximum entropy distribution given any set of linear
constraints. The idea is to search the parameters and update them in an iter-
ative fashion so that the statistics we wish to constrain will converge towards
the desired values. In our case, we update ui and vk iteratively so that the
statistics of the distribution will converge into mi and nk. The sketch of the
algorithm is given in Algorithm 5.1.

103

5. Using Background Knowledge to Rank Itemsets

Algorithm 5.1: IterScale

input : a set of column margins mi; a set of statistics nk
output: the maximum entropy distribution p∗ satisfying mi and nk

1 repeat
2 for each i = 1, . . . , N do

// update qi such that p∗(ai = 1) = mi
3 d← p∗(ai = 1)
4 c← mi(1− d)/((1−mi)d)
5 qi ← qic/(1− (1− qi)c)
6 Zr ← ∑K

k=1 vkq(S(A) = k)
7 end

// update vk such that p∗(S(A) = k) = nk
8 for each k = 1, . . . K do pk ← p∗(S(A) = k)
9 for each k = 1, . . . K do vk ← vknk/pk

10 Zr ← 1
11 until p∗ converges
12 return p∗

In order to use the Iterative Scaling algorithm we need techniques for
computing the probabilities p∗(ai = 1) and p∗(S(A) = k), for a statistic S
(lines 3 and 8). The former is a special case of computing the frequency of an
itemset p∗(X = 1) and is detailed in Section 5.6. For the latter, assume that
we have an algorithm, say ComputeStatProb, which given a set of probabili-
ties p1, . . . , pN will return the probabilities p(S(A) = k) for each k = 1, . . . , K,
where p is the independence model parameterized by pi, i.e., p(ai = 1) = pi.
Using only ComputeStatProb we are able the obtain the required probabili-
ties. Note that Equation 5.3 implies that we can compute p∗(S(A) = k) from
q(S(A) = k). To compute the latter we call ComputeStatProb with pi = qi
(for i = 1, . . . , N) as parameters.

5.5 Computing Statistics

In order to use the Iterative Scaling algorithm we need an implementation of
ComputeStatProb, a routine that returns the probabilities of statistic S with
respect to the independence model. In this section we describe for several

104

5.5. Computing Statistics

Table 5.1: Time and memory complexity of the ComputeStatProb algorithm
for various count statistics. N is the number of attributes, and K is the num-
ber of distinct values the statistic can assume.

Statistic memory time

row margins (from scratch) O(K) O(KN)
row margins (update method) O(N) O(N)
lazarus counts O(K) O(KN)
transaction bounds O(N2) O(N2)
joint row margins and lazarus counts O(N2) O(K2N)
joint row margins and transaction bounds O(N3) O(KN2)

statistics how they can be computed efficiently—namely for row margins,
lazarus counts, and transaction bounds. Since ComputeStatProb is called
multiple times, its runtime consumption is pivotal. Naturally, memory and
time requirements depend on the statistic at hand. In Table 5.1 the complex-
ities of ComputeStatProb are listed for several statistics and joint statistics.
All statistics are computed using the same general dynamic programming
idea: to compute the statistics for items {a1, . . . , ai}, we first solve the prob-
lem for items {a1, . . . , ai−1}, and using that result we will be able to com-
pute efficiently the statistics for {a1, . . . , ai}. To simplify notation, we define
Ai = {a1, . . . , ai} to be the set of the first i items.

Row Margins

The first statistic we consider is the number of ones in a transaction ones(t),
ranging from 0 to N. We must calculate the probabilities p(ones(A) = k),
where p is the independence model. Let us write pi = p(ai = 1), the prob-
ability of attribute ai attaining the value of 1. We first introduce a way of
computing the probabilities from scratch. In order to do that, note the fol-
lowing identity for k > 0.

p(ones(Ai) = k) = pi p(ones(Ai−1) = k− 1) + (1− pi)p(ones(Ai−1) = k)
(5.4)

This identity holds since p is the independence model. Hence, to compute
p(ones(A) = k) we start with p(ones(a1) = k), add a2, a3, and so on, until

105

5. Using Background Knowledge to Rank Itemsets

we have processed all variables and reach A. Algorithm 5.2 gives the pseudo
code of ComputeRowMarginsProb. Note that we are simultaneously com-
puting the probabilities for all k. We can perform the computation in O(N2)
steps and O(N) memory slots.

We can improve this further by analyzing the flow of the Iterative Scaling
algorithm. The algorithm calls ComputeStatProb either using parameters
p1 = q1, . . . , pN = qN , or p1 = q1, . . . , pi = 1, . . . , pN = qN for some i.

Assume that we have q(ones(A) = k) from the previous computation.
These probabilities will change only when we are updating qi. To achieve
more efficient computation we will first compute q(ones(A) = k | ai = 1)
from q(ones(A) = k), update qi and then update q(ones(A) = k). To do that
we can reverse the identity given in Eq. 5.4 into

p(ones(A− ai) = k) =
1

1− pi
(p(ones(A) = k)− pi p(ones(A− ai) = k− 1)) ,

if k = 1, . . . , N. When k = 0 we have

p(ones(A− ai) = 0) = p(ones(A) = 0)/(1− pi) .

Using these identities we can take a step back and remove ai from A. To
compute q(ones(A) = k | ai = 1) we can apply the identity in Eq. 5.4 with
pi = 1. Once qi is updated we can again use Eq. 5.4 to update q(ones(A) = k).
The UpdateRowMarginProb algorithm is given as Algorithm 5.3. All these
computations can be done in O(N) time, and O(N) space.

Often, we are only interested in small transactions (for instance when
dealing with supermarket data, which is typically very sparse), especially
when N is large. Therefore, we can consider a truncated (and more general)
version of ones(t) by defining

ones(t; K) = min(ones(t) , K) .

Hence, p(ones(A; K) = k) is the probability of a random transaction having
k ones, if k < K. On the other hand p(ones(A; K) = K) = p(ones(A) ≥ K)
is the probability of a random transaction having at least K ones. The range
of ones(A; K) is 0, . . . , K. We can exploit the fact that p(ones(A) ≥ K) =
1−∑K−1

k=0 p(ones(A) = k) to reduce computation time. More specifically, the
runtime of ComputeRowMarginProb is reduced from to O(N2) to O(NK),
and its memory usage from O(N) to O(K). The time and memory complexity
of ComputeRowMarginProb, on the other hand, both remain O(N).

106

5.5. Computing Statistics

Algorithm 5.2: ComputeRowMarginProb

input : an independence distribution p with parameters p1, . . . , pN
output: the probabilities ck = p(ones(A) = k) for k = 0, . . . , N

1 c0 ← 1
2 for k = 1, . . . , N do
3 ck ← 0
4 end
5 for i = 1, . . . , N do
6 for k = i, . . . , 1 do
7 ck ← pi · ck−1 + (1− pi) · ck
8 end
9 c0 ← (1− pi) · c0

10 end
11 return all ck

Lazarus Events

Our aim is to efficiently compute the probabilities p(laz(A) = k) where p
is an independence distribution. Again, let us write pi = p(ai = 1). The
desired probabilities are computed incrementally in N steps, starting from
p(laz(a1) = k), up to p(laz(A) = k). In order to determine the lazarus count
probabilities, we use an auxiliary statistic, the last occurrence last(t).

We will compute the probabilities p(laz(A) = k, last(A) = j) and then
marginalize them to obtain p(laz(A) = k). To simplify the notation below,
we define the probability

p(i)(k, j) = p (laz(Ai) = k, last(Ai) = j) .

First, assume that last(Ai) = i, which implies that ai = 1. In this case the
lazarus count increases by i− last(Ai−1)− 1. We have the following identity

p(i)(k, i) = pi

k

∑
l=0

p(i−1)(l, i + l − k− 1) , (5.5)

for k = 1, . . . , i− 2. For the boundary cases, for k = 0 and i > 1 we have

p(i)(0, i) = pi pi−1(0, i− 1) + pi p(i−1)(0, 0) ,

107

5. Using Background Knowledge to Rank Itemsets

Algorithm 5.3: UpdateRowMarginProb

input : the probabilities ck = p(ones(A) = k) for an independence
distribution p with parameters p1, . . . , pN ;
an updated probability p′j for item aj

output: the updated probabilities ck = p(ones(A) = k) for k = 0, . . . , N
// remove item aj

1 c0 ← c0/(1− pj)

2 for k = 1, . . . , N do
3 ck ←

(
ck − pj · ck−1

)
/(1− pi)

4 end
// re-add item aj with new probability p′j

5 for k = N, . . . , 1 do
6 ck ← p′j · ck−1 + (1− p′j) · ck

7 end
8 c0 ← (1− p′j) · c0

9 return all ck

and finally when k = 0 and i = 1 we obtain

p(1)(0, 1) = p(laz(a1) = 0, last(a1) = 1) = p1 .

Secondly, consider the instances where last(Ai) < i, in which case ai must
be equal to 0. We obtain p(i)(k, j) = (1− pi)p(i−1)(k, j) for all k = 0, . . . , i− 2
and j = 0, . . . , i− 1.

Using the equations above, we are able to compute p(laz(A) = k) using
O(N2) memory slots. Specifically, for N(N − 1)/2 + 2 out of all N2 − 1 com-
binations of j and k, is p(laz(A) = k, last(A) = j) potentially nonzero. Since
in each step a quadratic number of probabilities is updated, O(N3) time is
needed. However, we can reduce this to quadratic time and linear space. First
of all, note that the right-hand side of Equation 5.5, being a sum of size linear
in k, can be rewritten as a sum of constant size. Moreover, this sum only uses
probabilities involving {a1, . . . , ai−1} having ai = 1, which were computed in

108

5.5. Computing Statistics

the previous step. Hence for k > 1, the probability p(i)(k, i) equals

p(i)(k, i) = pi

k

∑
l=0

p(i−1)(l, i + l − k− 1)

= pi p(i−1)(k, i− 1) + pi

k−1

∑
l=0

p(i−1)(l, i + l − k− 1)

= pi p(i−1)(k, i− 1) + pi
1− pi−1

pi−1
p(i−1)(k− 1, i− 1) .

For k = 1, it holds that

p(i)(1, i) = pi p(i−1)(1, i− 1) + pi p(i−1)(0, i− 2))

= pi p(i−1)(1, i− 1) + pi
1− pi−1

pi−1
p(i−1)(0, i− 1)− pi p(i−1)(0, 0) .

Finally, noting that

p(laz(A) = k, last(A) ≤ j) = p(laz(A) = k, last(A) ≤ j− 1)

+ p(j)(k, j)
N

∏
i=j+1

(1− pi) ,

we can compute p(laz(A) = k) by gradually summing the second terms. The
probability p(j)(k, j) can be computed in constant time using p(j−1)(k, j− 1)
and p(j−1)(k, j − 1) only. Hence we can discard the terms p(n)(k, n), where
n < j − 1. Therefore, only O(N) memory and O(N2) time is needed. The
ComputeLazarusProb algorithm for the lazarus count statistic is given in
Algorithm 5.4.

Joint Transaction Bounds

We need to compute p(first(A) = i, last(A) = j) for an independence dis-
tribution p, with i, j = 0, . . . , N. For the sake of brevity, let us denote
p(i, j) = p(first(A) = i, last(A) = j). Note that p(i, j) is nonzero if i = j = 0
or 0 < i ≤ j. Hence there are (N2 + N)/2 + 1 probabilities to compute. We
distinguish three cases

p(i, j) =


∏N

k=1(1− pk) if i = j = 0 ,
pi ∏k 6=i(1− pk) if i = j 6= 0 ,

∏i−1
k=1(1− pk)pi pj ∏N

k=j+1(1− pk) if 0 < i < j .

109

5. Using Background Knowledge to Rank Itemsets

Algorithm 5.4: ComputeLazarusProb

input : an independence distribution p with parameters p1, . . . , pN
output: the probabilities ck = p(laz(A) = k) for k = 0, . . . , N − 2
// ck = p(laz(A) = k, last(A) < i) after the i-th round
// rk = p(Z(i, k, i)) after the i-th round
// s = p(Z(i− 1, 0, 0)) after i-th the round
// u = ∏N

j=i 1− pj after i-th the round
1 r0 ← p1
2 s← 1
3 u← ∏N

j=1 1− pj

4 for each i = 2, . . . , N do
5 u← u/(1− pi−1)
6 for each k = 0, . . . , i− 2 do
7 ck ← ck + urk
8 end
9 for each k = i− 2, . . . , 2 do

10 rk ← pi

(
rk +

1−pi−1
pi−1

rk−1

)
11 end
12 s← s(1− pi−1)

13 r1 ← pi

(
r1 +

1−pi−1
pi−1

r0 − s
)

14 r0 ← pi (r0 + s)
15 end
16 for each k = 0, . . . , N do
17 ck ← ck + rk
18 end
19 return all ck

110

5.6. Estimating Itemset Frequencies

We can construct the p(i, j) in quadratic time, by looping over i and j, and
maintaining the products ∏i

k=1(1− pk) and ∏N
k=j(1− pk), which can be up-

dated in constant time in each iteration. Using these products and the in-
dividual item probabilities, we can construct p(i, j). The pseudo code of
ComputeBoundsProb is given in Algorithm 5.5.

5.6 Estimating Itemset Frequencies

We noted before that computing p∗(ai = 1) is a special case of computing the
frequency of an itemset p∗(X = 1). In order to do that let us write

p∗(X = 1) =
K

∑
k=1

p∗(X = 1, S(A) = k) =
K

∑
k=1

vk
Zr

q(X = 1, S(A) = k) .

Let us denote y = q(X = 1) = ∏aj∈X qj. Note that since q is the independence
model, we have q(S(A) = k, X = 1) = yq(S(A) = k | X = 1). Now, to
compute the quantity q(S(A) = k | X = 1) we call ComputeStatProb with
parameters pj = qj if aj /∈ X and pj = 1 if aj ∈ X.

Example 5.5. Assume that our model is the same toy model as given in Example 5.2.
Let us compute the frequency estimate of X = ab. Since q is the uniform distribution,
q(ab = 1) = 1/4, and q(ones(A) = 2 | ab = 1) = q(ones(A) = 3 | ab = 1) =
1/2. Given that v2 = 2/3 and v3 = 2, the estimate is then

p∗(ab = 1) =
1
4

(
2
3

1
2
+ 2

1
2

)
=

1
3

.

Note that this is exactly the frequency of the itemset ab in D given in Example 5.1.

5.7 Experiments

In this section we present the results of experiments on synthetic and real
data. The source code of the C++ implementation of the algorithm is publicly
available for download.2

2http://www.adrem.ua.ac.be/implementations

111

5. Using Background Knowledge to Rank Itemsets

Algorithm 5.5: ComputeBoundsProb

input : an independence distribution p with parameters p1, . . . , pN
output: the probabilities cj,k = p(first(A) = j, last(A) = k)

for j, k = 0, . . . , N
1 r ← 1
2 for j = 1, . . . , N do
3 if j = 1 then
4 r ← p1
5 else
6 r ← r · pj · (1− pj−1)/pj−1
7 end
8 for k = N, . . . , j do
9 if j < k then

10 if k = N then
11 s← pk
12 else
13 s← s · pk · (1− pk+1)/pk+1
14 end
15 else
16 if k = N then
17 s← 1
18 else
19 s← s · (1− pk+1)/pk+1
20 end
21 end
22 cj,k ← r · s
23 end
24 end
25 r ← r · (1− pN)/pN
26 c0,0 ← r
27 return all cj,k

112

5.7. Experiments

Table 5.2: The datasets used in the experiments. Shown are the number of
attributes |A| and the number of transactions |D|.

Dataset |A| |D|
Independent 20 100 000
Clusters 20 100 000
Markov 20 100 000

BMS-Webview-1 150 52 840
Chess 75 3 196
DNA Amplification 391 4 590
Retail 221 81 998

Datasets

The basic characteristics of the datasets we used are given in Table 5.2.
We created three synthetic datasets. The first one has independent items

with randomly chosen frequencies. The second dataset contains two clusters
of equal size. In each cluster the items are independent with a frequency
of 25% and 75% respectively. Hence, the row margin distribution has two
peaks. In the third synthetic dataset, the items form a Markov chain. The
first item has a frequency of 50%, and then each subsequent item is a noisy
copy of the preceding one, that is, the item is inverted with a 25% probability.

The DNA Amplification dataset [Myllykangas et al., 2006] describes DNA
copy number amplifications. The remaining real-world datasets we used are
obtained from the FIMI Repository [Goethals and Zaki, 2003]. The Chess
data contains chess board descriptions. The BMS-Webview-1 dataset contains
clickstream data from an e-commerce website [Kohavi et al., 2000], and the
Retail dataset contains market basket data from an anonymous Belgian su-
permarket [Brijs et al., 1999]. For those two last datasets, the rare items with
a frequency lower than 0.5% were removed. This resulted in some empty
transactions which were subsequently also deleted.

Note that for the lazarus count and transaction bound statistics, an order
is needed on the items. In this work we resort to using the order in which the
items appear in the data. Despite the fact that this order is not necessarily
optimal, we were able to improve over the independence model.

113

5. Using Background Knowledge to Rank Itemsets

Table 5.3: Performance details of the algorithm. For each dataset, we show
the time required to learn the various models, and the number of iterations
until the algorithm converges.

Margins Lazarus Bounds

Dataset iter time iter time iter time

Independent 2 0.01 s 2 0.02 s 2 0.02 s
Clusters 2 0.01 s 9 0.07 s 10 0.07 s
Markov 2 0.01 s 8 0.05 s 12 0.07 s

BMS-Webview-1 3 5 s 14 45 s 93 267 s
Chess 3 0.6 s 400 153 s 28 8 s
DNA Amplification 8 313 s 96 90 m 119 66 m
Retail 4 26 s 11 110 s 19 171 s

Model Performance

Table 5.3 shows for each model the wall clock time and the number iterations
the algorithm required to converge. For the majority of the datasets and
models, we see that this is quite fast; often only a handful of iterations is
required, and the runtime can usually be expressed in minutes or seconds.

In Table 5.4, we examine the log-likelihood of the learned models. We
train the model on the whole data and then compute its likelihood, giving
it a bic penalty (see Section 2.3), equal to k

2 log |D| where k is the number
of free parameters of each model. This penalty rewards models with few
parameters, while penalizing complex ones.

Compared to the independence model, the likelihoods are all better on all
datasets with the exception of the Independent data. This is expected since the
Independent data is generated from an independence distribution, so using
more advanced statistics will not improve the bic score.

When looking at the other two synthetic datasets, we see that the margin
model has the highest likelihood for the Clusters data, and the lazarus model
for the Markov data. The Clusters data has two clusters, in both of which
the items are independent. The distribution of the row margins has two
peaks, one for each cluster. This information cannot be explained by the
independence model alone, and adding this information improves the log-

114

5.7. Experiments

Table 5.4: The bic scores (negative log-likelihood plus bic penalty) of the
datasets for different models. The best (lowest) values are indicated in bold.

Dataset Independent Margins Lazarus Bounds

Independent 1 658 486 1 658 630 1 658 621 1 658 779
Clusters 2 000 159 1 719 959 1 889 308 1 946 942
Markov 2 000 159 1 938 960 1 861 046 1 890 648

BMS-Webview-1 836 624 778 361 783 733 774 773
Chess 142 054 132 921 131 870 137 213
DNA Amplification 185 498 173 305 107 739 109 572
Retail 1 796 126 1 774 291 1 783 054 1 775 588

likelihood dramatically. The attributes in the Markov dataset are ordered
since they form a Markov chain. More specifically, since each attribute is
a (noisy) copy of the previous one, we expect the transactions to consist of
only a few blocks of consecutive ones, which implies that their lazarus count
is quite low, and hence the lazarus model performs well.

Chess is originally a categorical dataset, which has been binarized to con-
tain one item for each attribute-value pair. Hence, it is a rather dense dataset,
with constant row margins, and lazarus counts and bounds centered around
a peak. That is, Chess does not obey the independence model and we see that
the likelihoods of all models are better than that of the independence model.

The likelihood of the lazarus model for the DNA Amplification dataset,
which is very close to being fully banded [Garriga et al., 2008], is substan-
tially lower than that of the independence model and the margin model,
which indicates that using lazarus counts is a good idea in this case. The
bounds model comes in second, also performing very well, which can again
be explained by the bandedness of the data.

Finally, BMS-Webview-1 and Retail are sparse datasets. The margin model
performs well for both datasets. Therefore we can conclude that a lot of the
structure of these datasets is captured in the row and column margins.

Frequency Estimation of Itemsets

Next, we perform experiments on estimating the supports of a collection of
itemsets. The datasets are split in two parts, a training set and a test set.

115

5. Using Background Knowledge to Rank Itemsets

We train the models on the training data, and use the test data to asses the
frequency estimates of the top-10 000 closed frequent itemsets in the test data
(or all closed itemsets if there are fewer).

Table 5.5 reports the average absolute and relative errors of the frequency
estimates, for the independence, row margins, lazarus, and bounds models.
For the Independent data, the independence model performs best, since the
other models overfit the data. For all other datasets, except Chess, we see
that using more information reduces both the average absolute and relative
error of the frequency estimates. For instance, for Clusters the average ab-
solute error is reduced from 9.39% to 0.2% using row and column margins,
and likewise for Markov the average relative error is reduced from 47.8% to
21.11%. The DNA Amplification, Retail and BMS-Webview-1 data are sparse.
Therefore, the itemset frequencies are very low, as well as the absolute errors,
even for the independence model. However, the relative errors are still quite
high. In this case our models also outperform the independence model. For
example, the relative error is reduced from 92.61% to 79.77% by using the
margins model on the BMS-Webview-1 dataset. For DNA Amplification, the
average relative error drops 5% using lazarus counts.

The only exception is the Chess dataset where the average absolute and
relative errors do not improve over the independence model. Note, however,
that this dataset is originally categorical, and contains a lot of dependencies
between the items. Interestingly enough, our models perform better than the
independence model in terms of (penalized) likelihood. This suggests that
in this case using additional information makes some itemsets that were not
significant with respect the independence model, significant with respect a
more suitable model.

The last experiment (given in Table 5.6) is the average improvement of
log-likelihood of each itemset compared to the independence model. Let f
be the empirical frequency of itemset X from the test data, and let p be the
estimate given by one of the models, then the log-likelihood of X is computed
as |D|(f log p + (1− f) log(1− p)). We compute the difference between the
log-likelihoods for the independence model and the other models, and take
the average over the top 10 000 closed frequent itemsets. Again, for Indepen-
dent and Chess, the independence model performs the best. For all the other
datasets, we clearly see an improvement with respect to the independence
model. For Clusters and Markov, the average log-likelihood increases greatly,
and is highest for the margin model. For BMS-Webview-1, DNA Amplification,

116

5.7. Experiments
Ta

bl
e

5.
5:

A
ve

ra
ge

ab
so

lu
te

an
d

re
la

ti
ve

er
ro

r
of

th
e

to
p-

10
00

0
cl

os
ed

fr
eq

ue
nt

it
em

se
ts

in
th

e
te

st
da

ta
.

Lo
w

er
sc

or
es

ar
e

be
tt

er
.

In
de

pe
nd

en
t

M
ar

gi
ns

D
at

as
et

ab
so

lu
te

re
la

ti
ve

ab
so

lu
te

re
la

ti
ve

In
de

pe
nd

en
t

0.
11

%
±

0.
10

%
1.

54
%
±

01
.2

3%
0.

11
%
±

0.
10

%
1.

52
%
±

01
.2

1%
C

lu
st

er
s

9.
39

%
±

0.
73

%
63

.0
8%
±

11
.8

1%
0.

20
%
±

0.
11

%
1.

37
%
±

00
.8

6%
M

ar
ko

v
4.

79
%
±

2.
29

%
47

.8
0%
±

20
.8

6%
2.

19
%
±

1.
64

%
21

.1
1%
±

13
.4

1%

BM
S-

W
eb

vi
ew

-1
0.

11
%
±

0.
07

%
92

.6
1%
±

17
.2

7%
0.

10
%
±

0.
06

%
79

.7
7%
±

23
.9

4%
C

he
ss

1.
81

%
±

1.
35

%
2.

35
%
±

01
.8

0%
01

.9
4%
±

1.
43

%
2.

52
%
±

01
.9

1%
D

N
A

A
m

pl
ifi

ca
ti

on
0.

58
%
±

1.
08

%
85

.8
9%
±

30
.9

1%
0.

56
%
±

1.
04

%
84

.2
7%
±

31
.7

6%
R

et
ai

l
0.

05
%
±

0.
11

%
48

.8
9%
±

27
.9

5%
0.

04
%
±

0.
09

%
37

.7
0%
±

28
.6

4%

La
za

ru
s

Bo
un

ds

D
at

as
et

ab
so

lu
te

re
la

ti
ve

ab
so

lu
te

re
la

ti
ve

In
de

pe
nd

en
t

0.
11

%
±

0.
10

%
01

.5
4%
±

1.
23

%
0.

12
%
±

0.
10

%
1.

61
%
±

01
.3

0%
C

lu
st

er
s

7.
00

%
±

1.
12

%
47

.0
4%
±

10
.7

7%
8.

21
%
±

0.
93

%
55

.3
3%
±

11
.9

2%
M

ar
ko

v
2.

27
%
±

1.
61

%
22

.4
1%
±

14
.8

8%
3.

36
%
±

2.
24

%
33

.5
4%
±

21
.1

2%

BM
S-

W
eb

vi
ew

-1
0.

11
%
±

0.
06

%
88

.3
5%
±

20
.8

7%
0.

11
%
±

0.
06

%
90

.6
0%
±

18
.6

3%
C

he
ss

2.
06

%
±

1.
49

%
2.

68
%
±

01
.9

9%
1.

81
%
±

1.
35

%
2.

35
%
±

01
.7

9%
D

N
A

A
m

pl
ifi

ca
ti

on
0.

45
%
±

0.
75

%
80

.2
4%
±

72
.7

3%
0.

54
%
±

0.
94

%
82

.6
3%
±

31
.3

8%
R

et
ai

l
0.

04
%
±

0.
10

%
42

.9
0%
±

27
.8

1%
0.

04
%
±

0.
09

%
43

.7
1%
±

27
.2

7%

117

5. Using Background Knowledge to Rank Itemsets

Table 5.6: The average improvement of itemset log-likelihoods over the inde-
pendence model for the top-10 000 closed frequent itemsets in the test data.
Higher scores are better.

Dataset Margins Lazarus Bounds

Independent 0.03 ± 0.12 −0.00 ± 0.09 −0.10 ± 0.36
Clusters 4 517.4 ±1 168.3 2 412.6 ±1 030.1 1 353.2 ±660.4
Markov 1 585.9 ±1 310.5 1 536.9 ±1 283.2 931.5 ±854.1

BMS-Webview-1 135.79 ± 90.32 64.72 ± 40.41 57.71 ±62.95
Chess −0.40 ± 0.52 −0.81 ± 0.98 0.01 ± 0.17
DNA Amplification 119.9 ± 235.7 133.1 ± 274.5 106.2 ±224.8
Retail 9.69 ± 22.49 4.62 ± 11.05 5.37 ±24.94

and Retail, the increase in likelihood is somewhat lower. The reason for this
is that both the estimates and observed frequencies are small and close to
each other. For DNA Amplification the average increase is highest when using
lazarus counts, while for BMS-Webview-1 and Retail the margin model is best.

5.8 Related Work

A special case of the presented framework greatly resembles the work done
by Gionis et al. [2007]. In that work the authors propose a procedure for
assessing the results of a data mining algorithm by sampling datasets having
the same margins for the rows and columns as the original data. While the
goals are similar, there is a fundamental difference between the two frame-
works. The key distinction is that we do not differentiate individual rows.
Thus we do not know that, for example, the first row in the data has 5 ones
but instead we know how many rows have 5 ones. The same key difference
can be seen between our method and Rasch models where each individual
row and column of the dataset is given its own parameter [Rasch, 1960].

Our approach and the approach given by Gionis et al. [2007] complement
each other. When the results that we wish to assess do not depend on the
order or identity of transactions, it is more appropriate to use our method.
An example of such data mining algorithms is frequent itemset mining. On
the other hand, if the data is to be treated as a collection of transactions, e.g.,

118

5.9. Conclusions

for segmentation, then we should use the approach by Gionis et al. [2007].
Also, our approach has a more theoretically sound ground since for sampling
datasets the authors in [Gionis et al., 2007] rely on MCMC techniques with
no theoretical guarantees that mixing has actually happened.

Comparing frequencies of itemsets to estimates has been studied in sev-
eral works. The most common approach is to compare the itemset against
the independence model [Brin et al., 1997, Aggarwal and Yu, 1998]. A more
flexible approach has been suggested in [Jaroszewicz and Simovici, 2004,
Jaroszewicz and Scheffer, 2005] where the itemset is compared against a
Bayesian network. In addition, approaches where the maximum entropy
models derived from some given known itemsets are suggested in [Meo,
2000, Tatti, 2008]. A common problem for these more general approaches is
that the deriving of probabilities from these models is usually too complex.
Hence, we need to resort to either estimating the expected value by sampling,
or build a local model using only the attributes occurring in the query. In the
latter case, it is shown by Tatti [2006b] that using only local information can
distort the estimate and that the received frequencies are not consistent with
each other. Our model does not suffer from these problems since it is a global
model from which the frequency estimates can be drawn efficiently.

5.9 Conclusions

In this chapter we considered using count statistics such as row and column
margins, lazarus counts, and transaction bounds as background knowledge
to predict itemset frequencies. To this end we built a maximum entropy
model from which we draw estimates for the frequency of itemsets and com-
pare the observed value against the estimate. We introduced efficient poly-
nomial techniques for solving and querying the model. Experiments showed
that using these additional statistics improves the model in terms of likeli-
hood and in terms of predicting itemset frequencies.

119

Chapter 6

Succinctly Summarizing Data
with Informative Itemsets

Knowledge discovery from data is an inherently iterative and incre-
mental process. That is, what we know about the data greatly deter-
mines our expectations, and therefore, which results we would find

interesting and/or surprising. Given new knowledge about the data, our ex-
pectations will change, and hence, in order to avoid reporting and analyzing
redundant results, knowledge discovery algorithms need to follow a similar
iterative updating procedure.

With this in mind, we introduce a well-founded approach for succinctly
summarizing data with the most informative itemsets; using a probabilistic
maximum entropy model, we iteratively find the itemset that provides us
the most novel information—that is, for which the frequency in the data,
given what we already know about it, surprises us the most—and in turn we
update our model accordingly. As we use the Maximum Entropy principle
to obtain unbiased probabilistic models, and only include those itemsets that

This chapter is based on work published as:
M. Mampaey, N. Tatti, and J. Vreeken. Tell me what I need to know: Succinctly summarizing
data with itemsets. In Proceedings of the 17th ACM International Conference on Knowledge Discovery
and Data Mining (SIGKDD), San Diego, CA, pages 573–581. ACM, 2011. (Best Student Paper)
M. Mampaey, J. Vreeken, and N. Tatti. Summarizing data succinctly with the most informa-
tive itemsets. Manuscript currently submitted to: Transactions on Knowledge Discovery and Data
Mining, 2011.

121

6. Succinctly Summarizing Data with Informative Itemsets

are most informative with regard to the current model, the summaries we
construct are guaranteed to be both descriptive and non-redundant.

The algorithm presented in this chapter to mine these summaries can ei-
ther discover the top-k most informative itemsets, or it can employ either
the Bayesian Information Criterion (bic) or the Minimum Description Length
(mdl) principle to automatically identify the set of itemsets that as a whole
provides the best summary of the data. In other words, our method can auto-
matically ‘tell you what you need to know’ about the data, without requiring
the user to set any parameters. Further, it is a one-phase algorithm; rather
than picking itemsets from a user-provided candidate set, itemset supports
are mined on the fly. We also provide an efficient method to compute the
maximum entropy distribution, using Quick Inclusion-Exclusion.

Experimental evaluation of our method using synthetic, benchmark, and
real data, shows that the discovered summaries are succinct, and correctly
identify the key patterns in the data. The models they form attain high
likelihoods, and inspection shows that they summarize the data well with
increasingly specific, yet non-redundant itemsets.

122

6.1. Introduction

6.1 Introduction

Knowledge discovery from data is an inherently iterative process. That is,
what we already know about the data greatly determines our expectations,
and therefore, which results we would find interesting and/or surprising.
Early on in the process of analyzing a database, for instance, we are happy
to learn about the generalities underlying the data, while later on we will be
more interested in the specifics that build upon these concepts. Essentially,
this comes down to summarization: we want to know what is interesting in
the data, and we want this to be reported succinctly and without redundancy.

As a simple example, consider supermarket basket analysis. Say we just
learned that pasta and tomatoes are sold together very often, and that we al-
ready knew that many people buy wine. Then it would not be very interesting
to be told that the combination of these three items is also sold frequently;
although we might not have been able to predict the sales numbers exactly,
our estimate would most likely have come very close, and hence we can say
that this pattern is redundant.

At the same time, at this stage of the analysis we are probably also not
interested in highly detailed patterns, e.g., an itemset representing the many
ingredients of an elaborate Italian dinner. While the frequency of this item-
set may be surprising, the pattern is also highly specific, and may well be
better explained by some more general patterns. Still, this itemset might be
regarded as highly interesting further on in the discovery process, after we
have learned those more general patterns, and if this is the case, we would
like it to be reported at that time. In a nutshell, that is the approach we adopt
in this chapter: we incrementally adjust our model as we iteratively discover
the most informative patterns, in order to obtain a non-redundant summary.

As natural as it may seem to update a knowledge model during the dis-
covery process, and in particular to iteratively find those results that are most
informative with regard to what we have learned so far, few pattern mining
techniques actually follow such a dynamic approach. That is, while many
techniques provide a series of patterns in order of interestingness, most score
these patterns using a static model; during this process the model, and hence
the itemset scores, are not updated with the knowledge gained from previ-
ously discovered patterns. For instance, Tan et al. [2002] study 21 of the most
well-known interestingness measures, all of which are static, and most of
which are based on the independence model. The static approach inherently

123

6. Succinctly Summarizing Data with Informative Itemsets

gives rise to the typical problem of traditional pattern mining: overwhelm-
ingly large and highly redundant collections of patterns.

Our objective is to find a succinct summary of a binary dataset, that is, to
obtain a small, yet high-quality set of itemsets that describes key character-
istics of the data at hand, in order to gain useful insights. This is motivated
by the fact that many existing algorithms often return too large collections
of patterns with considerable redundancy, as stated above. The view that we
take in this chapter on succinctness and redundancy is therefore fairly strict.

While we are not the first to propose a method that updates its scor-
ing model dynamically—examples include the swap randomization-based
approach by Hanhijärvi et al. [2009], and the compression-based approach
by Vreeken et al. [2011]—there are several differences with the existing ap-
proaches. For instance, the former requires generating many complete ran-
domized databases in order to estimate frequencies, whereas our model is
probabilistic and allows for direct frequency calculation. The models for the
latter are not probabilistic, and while non-redundant with respect to com-
pression, due to its coding strategy can contain patterns that are variations of
the same theme. We will discuss related work in closer detail in Section 6.2,
but let us first discuss the basic properties of our approach.

To model the data, we use the powerful and versatile class of maximum
entropy models. We construct a maximum entropy distribution that allows
us to directly calculate the expected frequencies of itemsets. Then, at each
iteration, we return the itemset that provides the most information, i.e., for
which our frequency estimate was most off. We update our model with
this new knowledge, and continue the process. The non-redundant model
that contains the most important information is thus automatically identified.
Therefore, we paraphrase our method as ‘tell me what I need to know’.

While in general solving the maximum entropy model is infeasible, we
show that in our setting it can be computed efficiently—depending on the
amount of overlap between the selected patterns. Similarly, we give an effi-
cient method for estimating frequencies from the model. Further, we provide
a convex heuristic for effectively pruning the search space when mining the
most informative itemsets. This heuristic allows us to mine collections of can-
didate itemsets on the fly, instead of picking them from a larger candidate
collection that has to be materialized beforehand. Another important aspect
of our approach is that it is parameter-free: no maximal error threshold or
significance level needs to be provided, nor is the user required to provide

124

6.2. Related Work

a minimum support threshold for the candidate collection—although, we do
allow the user to specify a collection of itemsets from which to select the most
informative summary.

We formalize the problem of identifying the most informative model both
by the Bayesian Information Criterion (bic), as well as by the Minimum De-
scription Length (mdl) principle; both are well-known and well-understood
model selection techniques that have natural interpretations. Alternatively,
due to its iterative nature, our algorithm can also mine the top-k most inter-
esting itemsets. Finally, our approach easily allows the user to infuse back-
ground knowledge into the model (in the form of itemset frequencies, column
margins, and/or row margins), to the end that redundancy with regard to
what the user already knows can be effectively avoided.

Experiments on real and synthetic data show that our approach results in
succinct, non-redundant data summaries using itemsets, and provide intu-
itive descriptions of the data. Since they only contain a small number of key
patterns from the data, they can easily be inspected manually by the user,
and since redundancy is reduced to a minimum, the user knows that every
pattern he or she looks at will be informative.

This chapter is organized as follows. First, Section 6.2 discusses related
work. In Section 6.3 we give an introduction to Maximum Entropy models
and how we can use these to measure the interestingness of a set of item-
sets efficiently. We give a formal problem statement in Section 6.4. Next,
we present our algorithm in Section 6.5. In Section 6.6 we report on the
experimental evaluation of our method. We round up with a discussion in
Section 6.7 and conclude in Section 6.8.

6.2 Related Work

Selecting or ranking interesting patterns is a well-studied topic in data min-
ing. Existing techniques can roughly be split into two groups.

Static Approaches

The first group consists of techniques that measure how surprising the sup-
port of an itemset is compared against some null hypothesis: the more the
observed frequency deviates from the expected value, the more interesting
it is. The simplest null hypothesis is the independence model [Brin et al.,

125

6. Succinctly Summarizing Data with Informative Itemsets

1997, Aggarwal and Yu, 1998]. More flexible models have been suggested,
for example, Bayesian Networks [Jaroszewicz and Simovici, 2004]. The major
caveat of these approaches is that the null hypothesis is static and hence we
keep rediscovering the same information. As a result, this will lead to pattern
collections with high levels of redundancy.

Swap randomization was proposed by Gionis et al. [2007] and Hanhijärvi
et al. [2009] as a way to assess the significance of data mining results by means
of randomization. To this end, Gionis et al. [2007] gave an algorithm by
which randomized data samples can be drawn by simply repeatedly swap-
ping values locally, such that the background knowledge is maintained—that
is, essentially a Markov chain is defined. Then, by repeatedly sampling such
random datasets, one can assess the statistical significance of a result by cal-
culating empirical p-values. While the original proposal only considered
row and column margin as background knowledge, Hanhijärvi et al. [2009]
extended the approach such that cluster structures and itemset frequencies
can be maintained.

While a very elegant approach, swap randomization does suffer from
some drawbacks. First of all, there are no theoretical results on the mixing
time of the Markov chain, and hence one has to rely on heuristics (e.g., swap
as many times as there are ones in the data). Second, since typically many
swaps are required to obtain a randomized sample of the data, and finding
suitable swaps is non-trivial, the number of randomized datasets we can
realistically obtain is limited, and hence so is the p-value resolution by which
we measure the significance of results. As our approach is to model the data
probabilistically by the Maximum Entropy principle, we do not suffer from
convergence issues, and moreover, as our model is analytical in nature, we
can calculate exact probabilities and p-values.

Dynamic Approaches

The alternative approach to measuring informativeness statically, is to rank
and select itemsets using a dynamic hypothesis. That is, when new knowl-
edge arrives, e.g., in the form of a most interesting pattern, the model is
updated such that we take this newly discovered information into account,
and hence we avoid reporting redundant results. The method presented in
this chapter falls in this category.

126

6.2. Related Work

Besides extending the possibilities for incorporating background knowl-
edge into a static model, the aforementioned approach by Hanhijärvi et al.
[2009] further argues that by iteratively updating the randomization model,
redundancy is naturally eliminated.

The mini algorithm by Gallo et al. [2007] also uses row and column mar-
gins to rank itemsets. It first orders all potentially interesting itemsets by
computing their p-value according to these margins. Then, as subsequent
itemsets are added, the p-values are recomputed, and the itemsets are re-
ordered according to their new p-values. This method, however, does not
allow querying, and requires a candidate collection to be mined beforehand.

Krimp, by Siebes et al. [2006], Vreeken et al. [2011], employs the mdl prin-
ciple to select those itemsets that together compress the data best. As such,
patterns that essentially describe the same part of the data are rejected. The
models it finds are not probabilistic, and cannot straightforwardly be used to
calculate probabilities (although Vreeken et al. [2007] showed data strongly
resembling the original can be sampled from the resulting code tables). Fur-
ther, while non-redundant from a compression point of view, many of the
patterns it selects are variations on the same theme. The reason for this lies
in the encoding scheme Krimp utilizes: it is cheaper to encode highly specific
itemsets with one relatively long code, than to encode it with multiple slightly
shorter codes. Other differences to our method are that Krimp considers
its candidates in a static order, and that it is not trivial to make it consider
background knowledge. A recent extension of Krimp by Siebes and Kersten
[2011] is the Groei algorithm, which identifies the optimal set of k itemsets
by beam search, instead of identifying the optimal set overall.

Modeling by Maximum Entropy

The use of maximum entropy models in pattern mining has been proposed
by several authors, e.g., [Wang and Parthasarathy, 2006, Tatti and Heikin-
heimo, 2008, Tatti, 2008, Kontonasios and De Bie, 2010, De Bie, 2011b]. Dis-
covering itemset collections with good bic scores was suggested by Tatti and
Heikinheimo [2008]. Alternatively, Tatti [2010] samples collections and bases
the significance of an itemset on its occurrence in the discovered collections.
However, in order to guarantee that the score can be computed, the authors
restrict themselves to a particular type of collections: downward closed and
decomposable collections of itemsets.

127

6. Succinctly Summarizing Data with Informative Itemsets

The method of Tatti [2008] uses local models. That is, to compute the
support of an itemset X, the method only uses sub-itemsets of X, and outputs
a p-value. Unlike our approach, it requires a threshold to determine whether
X is important. Relatedly, Webb [2010] defines itemsets as self-sufficient, if
their support differs significantly from what can be inferred from their sub-
and supersets; therefore such a model is also local.

Wang and Parthasarathy [2006] incrementally build a maximum entropy
model by adding itemsets that deviate more than a given error threshold. The
approach ranks and adds itemsets in level-wise batches, i.e., first itemsets of
size 1, then of size 2, and so on. This may still, however, lead to redundancy
within a batch of itemsets.

De Bie [2011b] proposed an alternative to swap-randomization for obtain-
ing randomized datasets, by modeling the whole data by maximum entropy,
using row and column sums as background information; besides faster, and
more well-founded, unlike swap-randomization this approach does not suf-
fer from convergence issues. Furthermore, by its analytical nature, exact
p-values can be calculated. Kontonasios and De Bie [2010] used the model to
analytically define an interestingness measure, Information Ratio, for noisy
tiles, by considering both the expected density of a tile, and the complexity
of transferring the true tile to the user.

Although both approaches model data by the Maximum Entropy princi-
ple, there exist important differences between the two approaches. The most
elementary one is that while we regard the data as a bag of samples from a
distribution, De Bie considers it to be a monolithic entity. That is, De Bie
models the entire binary matrix, while we construct a probabilistic model for
individual rows. Roughly speaking, De Bie considers the location of a row
in the matrix to be important, whereas we do not. Both these approaches
have different advantages. While our approach intuitively makes more sense
when modeling, say, a supermarket basket dataset, which consists of individ-
ual independent samples, the monolithic approach is more suited to model
data where the rows have meaning, say, for a dataset where we have mammal
presences per location. Moreover, while for our models it is straightforward
to include itemset frequencies (which does not include specifying transaction
identifiers), such as “tomatoes and pasta are sold in 80% of the transactions”,
this is currently not possible for the whole-dataset model. Additionally, while
the De Bie framework in general allows the background knowledge of a user
to be false, in this work we only consider background knowledge that is con-

128

6.3. Identifying the Best Summary

sistent with the data. As opposed to Kontonasios and De Bie [2010], we do
not just rank patterns according to interestingness, but formalize model se-
lection techniques (specifically bic and mdl) such that we can identify the
optimal model, and hence avoid discovering overly complex models.

As overall comments to the methods described above, we note that in con-
trast to our approach, most of the above methods require the user to set one
or several parameters, such as maximum error thresholds or significance lev-
els. Many also cannot easily be used to estimate itemset frequencies. Further,
all of them are two-phase algorithms, i.e., they require that the user provides
a collection of candidate (frequent) itemsets to the algorithm, which must be
completely mined and stored first, before running the actual algorithm.

6.3 Identifying the Best Summary

Our goal is to discover the collection of itemsets and frequencies C that is the
most informative about the data D, while also being succinct and containing
as little redundancy as possible. By informative we mean that we should be
able to reliably describe or predict the data using these itemsets and their
frequencies. By non-redundancy we mean that every element of C provides
significant information for describing the data that cannot be inferred from
the rest of C. This is equivalent to requiring that the frequency of an itemset
X ∈ C should be surprising with respect to C \ X. In other words, we do
not want C to be unnecessarily complex as a collection, or capture spurious
information. We want it to contain only those itemsets that we really need.

Informally, assume that we have a quality score s(C,D) which measures
the quality of an itemset collection C with respect to D. Then our aim is to
find that C with the best score s(C,D). Analogously, if we want to restrict
our attention to only k itemsets, we look for the collection C of size at most k,
with the best score s(C,D).

Next, we will detail how we define our models, how we define this score,
provide theoretical evidence why it is a good choice, and discuss how to
compute it efficiently.

Example 6.1. As a running example, assume that we have a binary dataset D with
eight items, a to h. Furthermore, consider the set of itemsets C = {abc, cd, def} with
frequencies 0.5, 0.4 and 0.8, respectively. Assume for the moment that based on C,
our method predicts that the frequency of the itemset agh is 0.19. Now, if we observe

129

6. Succinctly Summarizing Data with Informative Itemsets

in the data that fr(agh) = 0.18, then we can safely say that agh is redundant with
regard to what we already know, as it does not contribute a lot of novel information,
and the slight deviation from the expected value may even be coincidental. On the
other hand, if fr(agh) = 0.7, then the frequency of agh is surprising with respect to
C, and hence adding it to C would strongly increase the amount of information it
gives us about the data; in other words C ∪ {agh} provides a substantially improved
description of D.

Maximum Entropy Model

In our approach we make use of maximum entropy models. This is a class
of probabilistic models that are identified by the Maximum Entropy princi-
ple [Csiszár, 1975, Jaynes, 1982]. This principle states that the best probabilis-
tic model is the model that makes optimal use of the provided information,
and that is fully unbiased (i.e., fully random, or, maximally entropic) other-
wise. This property makes these models very suited for identifying informa-
tive patterns: by using maximum entropy models to measure the quality of
a set of patterns, we know that our measurement only relies on the informa-
tion we provide it, and that it will not be thrown off due to some spurious
structure in the data. These models have a number of theoretically appealing
properties, which we will discuss after a formal introduction.

Assume that we are given a collection of k itemsets and their correspond-
ing frequencies

〈C, Φ〉 = 〈{X1, . . . , Xk} , { f1, . . . , fk}〉 ,

where Xi ⊆ A and fi ∈ [0, 1], for i = 1, . . . , k. Note that we do not require
that the frequencies fi of the itemsets are equal to the frequencies fr(Xi) in
the data. If this does hold, we will call 〈C, Φ〉 consistent with D. For notational
convenience, we will often omit writing the frequencies Φ, and simply use
C = {X1, . . . , Xk}, especially when it is clear from the context what the corre-
sponding frequencies are. Now, we consider those distributions over T that
satisfy the constraints imposed by 〈C, Φ〉. That is, we consider the following
set of distributions

P〈C,Φ〉 = {p | p(Xi = 1) = fi, for i = 1, . . . , k} . (6.1)

In the case that P〈C,Φ〉 is empty, we call 〈C, Φ〉 inconsistent. Among these
distributions we are interested in only one, namely the unique distribution

130

6.3. Identifying the Best Summary

that maximizes the entropy

p∗〈C,Φ〉 = arg max
p∈P〈C,Φ〉

H(p) .

Again, for notational convenience we will often simply write p∗C , or even omit
〈C, Φ〉 altogether, whenever it is clear from the context.

The following famous theorem states that the maximum entropy model
has an exponential form. This form will help us to discover the model and
will be useful to compute the quality score of a model.

Theorem 6.1 (Theorem 3.1 in [Csiszár, 1975]). Given a collection of itemsets
and frequencies 〈C, Φ〉 = 〈{X1, . . . , Xk} , { f1, . . . , fk}〉, let P〈C,Φ〉 be the set of
distributions as defined in Eq. 6.1. If there is a distribution in P〈C,Φ〉 that has only
nonzero entries, then the maximum entropy distribution p∗〈C,Φ〉 can be written as

p∗〈C,Φ〉(A = t) = u0 ∏
X∈C

uSX(t)
X , (6.2)

where all uX ∈ R, and u0 is a normalization factor such that p∗〈C,Φ〉 is a proper
distribution.

Note that the normalization factor u0 can be thought of as corresponding
to the constraint that the empty itemset ∅ should have a frequency f∅ = 1.
Theorem 6.1 has the technical requirement that P needs to contain a distri-
bution with non-zero entries. The easiest way to achieve this is to apply a
Bayesian shift by redefining the frequencies f ′i = (1− ε) fi + ε2−|Xi | for some
small constant ε > 0.

Identifying the Best Model

Here we describe how we can quantify the goodness of a pattern collection.
A natural first choice is to directly measure the goodness of fit, using the

log-likelihood of the maximum entropy model, that is,

log p∗〈C,Φ〉(D) = log ∏
t∈D

p∗〈C,Φ〉(A = t) = ∑
t∈D

log p∗〈C,Φ〉(A = t) .

Note that if 〈C, Φ〉 is inconsistent, p∗ does not exist. In this case we define
the likelihood to be zero, and hence the log-likelihood to be −∞.

The following corollary shows that for exponential models we can easily
calculate the log-likelihood.

131

6. Succinctly Summarizing Data with Informative Itemsets

Corollary 6.2 (of Theorem 6.1). The log-likelihood of the maximum entropy dis-
tribution p∗〈C,Φ〉 for a set of itemsets and frequencies 〈C, Φ〉 is equal to

log p∗〈C,Φ〉(D) = |D|

log u0 + ∑
(Xi , fi)∈〈C,Φ〉

fi log uXi


= −|D|H

(
p∗〈C,Φ〉

)
.

Thus, to calculate the log-likelihood of a collection 〈C, Φ〉, it suffices to
compute the parameters uX and u0 of the corresponding distribution p∗〈C,Φ〉.

The following theorem states that if we are searching for high likelihood
collections, we can restrict ourselves to collections consistent with the data.

Theorem 6.3. For a fixed collection of itemsets C = {X1, . . . , Xk}, the likelihood
p∗〈C,Φ〉(D) is maximized if and only if 〈C, Φ〉 is consistent with D, i.e., fi = fr(Xi).

For our goal, maximum entropy models are theoretically superior over
any other model. Let us discuss why. LetD1 andD2 be two datasets such that
fr(X | D1) = fr(X | D2) for any X ∈ C. Let p∗1 and p∗2 be the corresponding
maximum entropy models, then, by definition, p∗1 = p∗2 . In other words, the
model depends only on the supports of the chosen itemsets. This is a natural
requirement, since we wish to measure the quality of the statistics in C and
nothing else. Similarly, Corollary 6.2 implies that p∗1(D2) = p∗1(D1). This is
also a natural property because otherwise, the score would be depending on
some statistic not included in C. Informally said, the scores are equal if we
cannot distinguish between D1 and D2 using the information C provides us.
The next theorem states that among all such models, the maximum entropy
model has the best likelihood, in other words, the maximum entropy model
uses the available information as efficiently as possible.

Theorem 6.4. Assume a collection of itemsets C = {X1, . . . , Xk} and let p∗C be
the maximum entropy model, computed from a given dataset D. Assume also an
alternative model r(A = t | f1, . . . , fk), where fi = fr(Xi | D), that is, a statistical
model parametrized by the frequencies of C. Assume that for any two datasets D1
and D2, where fr(X | D1) = fr(X | D2) for any X ∈ C, it holds that

1/|D1| log r(D1 | f1, . . . , fk) = 1/|D2| log r(D2 | f1, . . . , fk) .

Then p∗C(D) ≥ r(D) for any dataset D.

132

6.3. Identifying the Best Summary

Proof. There exists a sequence of finite datasets Dj such that fr
(
Xi | Dj

)
= fi

and qDj → p∗C . To see this, first note that the fi are rational numbers so
that the set of distributions PC is a polytope with faces defined by rational
equations. In other words, there is a sequence of distributions pj with only
rational entries reaching p∗. Since a distribution with rational entries can be
represented by a finite dataset, we can have a sequence Dj such that qDj = pj.

Now as j goes to infinity, we have

1
|D| log r(D) =

1∣∣Dj
∣∣ log r(Dj)

= ∑
t∈T

qDj(A = t) log r(A = t)→ ∑
t∈T

p∗C(A = t) log r(A = t) .

Since the left side does not depend on j we actually have a constant sequence.
Hence,

0 ≤ KL(p∗C ‖ r) = H(p∗C)− ∑
t∈T

p∗C(A = t) log r(A = t)

= 1/|D|(log p∗C(D)− log r(D)) ,

which proves the theorem.

Using only log-likelihood to evaluate a model, however, suffers from over-
fitting: larger collections of itemsets will always provide more information,
hence allow for better estimates, and therefore have a better log-likelihood.
Consequently, we need to prevent our method from overfitting. In order to
do so, we will explore the Bayesian Information Criterion (bic), and the Min-
imum Description Length (mdl) principle—both of which are well-known
and well-founded model selection techniques (see Section 2.3). We start by
discussing bic, which is the least strict, and least involved of the two.

The Bayesian Information Criterion (bic) measures the quality of a model
by taking both its log-likelihood, and the number of parameters of said model
into account. It favors models that fit the data well using few parameters; in
our case, the number of parameters of the model p∗ corresponds exactly to
the number of itemsets k. It has a strong theoretical support in Bayesian
model selection [Schwarz, 1978]. The bic score of a collection C is defined as

bic(〈C, Φ〉,D) = − log p∗〈C,Φ〉(D) + k/2 log |D| .

133

6. Succinctly Summarizing Data with Informative Itemsets

The better a model fits the data, the higher its likelihood. On the other
hand, the more parameters the model has—i.e., the more complex it is—the
higher its penalty. Therefore, it is possible that a model that fits the data
slightly worse, but contains few parameters, is favored by bic over a model
that fits the data better, but is also more complex. From Corollary 6.2 we
see that the first term of the bic score is equal to |D|H(p∗〈C,Φ〉). Hence, the
likelihood term grows faster than the penalty term with respect to the size
of D. As such, the more data (or evidence) we have available, the more
complicated the model is allowed to be in order to fit the data well.

Corollary 6.5 (of Theorem 6.3). For a fixed itemset collection C = {X1, . . . , Xk},
the bic score bic(〈C, Φ〉,D) is maximized if and only if 〈C, Φ〉 is consistent with
D, that is, fi = fr(Xi) for all i = 1, . . . , k.

Proof. Follows directly from Theorem 6.3 and the fact that the bic penalty
term, k/2 log |D|, does not depend on the frequencies fi.

While the bic score helps to avoid overfitting, it is somewhat simplistic.
That is, it only incorporates the number of itemsets to penalize a summary,
and not their complexity. As stated in the introduction, if possible, we would
typically rather be given some number of general patterns than the same
number of highly involved patterns. The mdl principle provides us with the
means to define a score that also takes into account the complexity of the
itemsets in C. Recall that according to the mdl principle, given a dataset
D and a set of models M for D, the best model M ∈ M is the one that
minimizes

L(M) + L(D | M)

in which

• L(M) is the length, in bits, of the description of the model M, and

• L(D | M) is the length, in bits, of the description of the data, encoded
with M.

To use mdl, we have to define what our set of modelsM is, how a model
M describes a database, and how all of this is encoded in bits. Intuitively,
we want to favor itemset collections that are small, i.e., collections which can
describe the data well, using few itemsets. At the same time, we also prefer
collections with small itemsets over collections with large ones.

134

6.3. Identifying the Best Summary

Definition 6.1. Given an itemset collection 〈C, Φ〉 = 〈{X1, . . . , Xk}, { f1, . . . , fk}〉,
let x = ∑k

i=1 |Xi|. We define the mdl score of 〈C, Φ〉 with respect to a dataset D as

mdl(〈C, Φ〉,D) = L(D | 〈C, Φ〉) + L(〈C, Φ〉) ,

where

L(D | 〈C, Φ〉) = − log p∗〈C,Φ〉(D) and L(〈C, Φ〉) = l1k + l2x + 1 ,

with
l1 = log |D|+ N log(1 + N−1) + 1 ≈ log |D|+ log e + 1

and
l2 = log N .

Whenever D is clear form the context, we simply write mdl(〈C, Φ〉).

The first term is simply the negative log-likelihood of the model, which
corresponds to the description length of the data given the maximum entropy
model induced by C. The second part is a penalty term, which corresponds
to the description length of the model. It is a linear function of k = |C| and
x = ∑i |Xi|, of which the coefficients depend on N and |D|. How it is de-
rived is explained further below. The smaller this score, the better the model.
Given two collections with an equal amount of itemsets, the one containing
fewer items is penalized less; conversely, if they have the same total num-
ber of items, the one that contains those items in fewer itemsets is favored.
Consequently, the best model is identified as the model that provides a good
balance between high likelihood and low complexity. Moreover, we automat-
ically avoid redundancy, since models with redundant itemsets are penalized
for being too complex, without sufficiently improving the likelihood.

With this quality score we evaluate collections of itemsets, rather than the
(maximum entropy) distributions we construct from them. The reason for
this is that we want to summarize the data with a succinct set of itemsets, not
model it with a distribution. A single distribution, after all, may be described
by many different collections of itemsets, simple or complex. Further, we
assume that the set of modelsM consists of collections of itemsets which are
represented as vectors, rather than as sets. This choice keeps the quality score
function computationally simple and intuitive, and is not disadvantageous:
if C contains duplicates, they simply increase the penalty term.

135

6. Succinctly Summarizing Data with Informative Itemsets

Additionally, we impose no restrictions on the consistency of 〈C, Φ〉, i.e.,
there are collections for which P〈C,Φ〉 is empty, and hence the maximum
entropy distribution does not exist. As mentioned above, in this case we
define the likelihood to be zero, and hence the description length is infinite.

We now describe the derivation of the penalty term, which equals

k log |D|+ x log N + (k + 1) + kN log(1 + N−1) .

To describe an itemset we encode a support using log |D| bits and the actual
items in the itemsets using log N bits each. This gives us the first two terms.
We use the third term to express whether there are more itemsets, one bit
after each itemset, and one extra bit to accommodate the case C = ∅. The
term kN log(1 + N−1) is a normalization factor, to ensure that the encoding
is optimal for the prior distribution over all pattern collections. That is, the
encoding corresponds to a distribution

prior(〈C, Φ〉) = 2−l1k−l2x−1 ,

which assigns high probability to simple summaries, and low probability
to complex ones. The following equation shows that the above encoding is
optimal with respect to this prior.

∑
〈C,Φ〉

prior(〈C, Φ〉) =
∞

∑
k=0

kN

∑
x=0

(
kN
x

)
|D|k2−l1k−l2x−1

=
∞

∑
k=0

2−k−12−kN log(1+N−1)2−k log |D||D|k
kN

∑
x=0

(
kN
x

)
N−x

=
∞

∑
k=0

2−k−12−kN log(1+N−1)(1 + N−1)kN

=
∞

∑
k=0

2−k−1 = 1

The corollary below shows that for identifying the mdl optimal model, it
suffices to only consider summaries that are consistent with the data.

Corollary 6.6 (of Theorem 6.3). For a fixed itemset collection C = {X1, . . . , Xk},
the mdl score mdl(〈C, Φ〉,D) is maximized if and only if 〈C, Φ〉 is consistent with
D, that is, fi = fr(Xi) for all i = 1, . . . , k.

136

6.3. Identifying the Best Summary

Proof. Follows directly from Theorem 6.3 and the fact that for a fixed C, the
frequencies fi are encoded with a constant length log |D|, and hence the
penalty term is always the same.

Therefore, in the remainder of this chapter we will assume that 〈C, Φ〉 is
always consistent with D, and hence we will omit Φ from notation.

Reducing Redundancy

Here we show that our score favors itemset collections with low redundancy,
and make a theoretical link with some popular lossless redundancy reduction
techniques from the pattern mining literature. Informally, we define redun-
dancy as anything that does not deviate (much) from our expectation, or in
other words is unsurprising given the information that we already have. The
results below hold for bic as well as for mdl, and hence we write s to denote
either one of these scores.

A baseline technique for ranking itemsets is to compare the observed fre-
quency against the expected value of some null hypothesis. The next theorem
shows that if the observed frequency of an itemset X agrees with the expected
value p∗(X = 1), then X is redundant.

Theorem 6.7. Let C be a collection of itemsets and let p∗ be the corresponding
maximum entropy model. Let X /∈ C be an itemset such that fr(X) = p∗(X = 1).
Then s(C ∪ {X} ,D) > s(C,D).

Proof. We will prove the theorem by showing that the likelihood terms for
both collections are equal. Define the collection C1 = C ∪ {X} and let P1 be
the corresponding set of distributions. Let p∗1 be the distribution maximizing
the entropy in P1. Note that since C ⊂ C1, we have P1 ⊆ P and hence
H
(

p∗1
)
≤ H(p∗). On the other hand, the assumption in the theorem implies

that p∗ ∈ P1 and so H(p∗) ≤ H
(

p∗1
)
. Thus, H(p∗) = H

(
p∗1
)

and since the
distribution maximizing the entropy is unique, we have p∗ = p∗1 . This shows
that the likelihood terms in s(C,D) and s(C1,D) are equal. The penalty term
of the latter is larger, which concludes the proof.

Theorem 6.7 states that adding an itemset X to C improves the score only
if its observed frequency deviates from the expected value. The amount of
deviation required to lower the score, is determined by the penalty term.

137

6. Succinctly Summarizing Data with Informative Itemsets

This gives us a convenient advantage over methods that are based solely on
deviation, since they require a user-specified threshold.

Two useful corollaries follow from Theorem 6.7, which connect our ap-
proach to well-known techniques for removing redundancy from pattern set
collections—so-called condensed representations. (See also Section 2.1.) The
first corollary relates our approach to closed itemsets [Pasquier et al., 1999],
and generator itemsets (also known as free itemsets [Boulicaut et al., 2003]).
An itemset is closed if all of its supersets have a strictly lower support. An
itemset is a generator if all of its subsets have a strictly higher support.

Corollary 6.8 (of Theorem 6.7). Let C be a collection of itemsets. Assume that
X, Y ∈ C such that X ⊂ Y and fr(X) = fr(Y) 6= 0. Assume that Z /∈ C such that
X ⊂ Z ⊂ Y. Then s(C ∪ {Z} ,D) > s(C,D).

Proof. Let p ∈ P , as defined in Eq. 6.1. We have that p(X = 1) = fr(X) =
fr(Y) = p(Y = 1). Hence we must have p(Z = 1) = fr(Z). Since p∗ ∈ P , it
must hold that p∗(Z = 1) = fr(Z). The result follows from Theorem 6.7.

Corollary 6.8 implies that if the closure and a generator of an itemset Z
are already in the collection, then adding Z will worsen the score. The second
corollary provides a similar relation with non-derivable itemsets [Calders and
Goethals, 2007]. An itemset is called derivable if its support can be inferred
exactly given the supports of all of its proper subsets.

Corollary 6.9 (of Theorem 6.7). Let C be a collection of itemsets. Assume that
X /∈ C is a derivable itemset and all sub-itemsets of X are included in C. Then
s(C ∪ {X} ,D) > s(C,D).

Proof. The proof of this corollary is similar to the proof of Corollary 6.8.

An advantage of our method is that it can avoid redundancy in a very
general way. The closed and non-derivable itemsets are two types of lossless
representations, whereas our method additionally can give us lossy redun-
dancy removal. For example, in Corollary 6.8, fr(X) does not have to equal
fr(Y) exactly in order to reject Z from C. This allows us to prune redundancy
in a more aggressive way.

138

6.3. Identifying the Best Summary

Algorithm 6.1: IterativeScaling

input : an itemset collection C = {X1, . . . , Xk}; corresponding
frequencies fr(X1) , . . . , fr(Xk)

output: the parameters uX and u0 of the maximum entropy
distribution p∗C satisfying p∗C(Xi) = fr(Xi) for all i

1 initialize p
2 while p has not converged do
3 for each X in C do
4 compute p(X = 1)

5 uX ← uX
fr(X)

p(X=1)
1−p(X=1)

1−fr(X)

6 u0 ← u0
1−fr(X)

1−p(X=1)
7 end
8 end
9 return p

Efficiently Computing the Maximum Entropy Model

Computing the maximum entropy model comes down to finding the uX and
u0 parameters from Theorem 6.1. To achieve this, we use the well-known
Iterative Scaling procedure by Darroch and Ratcliff [1972], which is given
here as Algorithm 6.1. Simply put, it iteratively updates the parameters of an
exponential distribution, until it converges to the maximum entropy distribu-
tion p∗ which satisfies a given set of constraints—itemset frequencies in our
case. The distribution is initialized with the uniform distribution, which is
done by setting the uX parameters to 1, and u0 = 2−N to properly normalize
the distribution. Then, for each itemset X ∈ C, we adjust the corresponding
parameter uX to enforce p(X = 1) = fr(X) (line 5,6). This process is repeated
in a round robin fashion until p converges, and it can be shown (see Darroch
and Ratcliff [1972]) that p always converges to the maximum entropy distri-
bution p∗. Typically the number of iterations required for convergence is low
(usually <10 in our experiments).

Example 6.2. In our running example, with C = {abc, cd, def}, the maximum en-
tropy model has three parameters u1, u2, u3, and a normalization factor u0. Initially
we set u1 = u2 = u3 = 1 and u0 = 2−N = 2−8. Then we iteratively loop over
the itemsets and scale the parameters. For instance, for the first itemset abc with

139

6. Succinctly Summarizing Data with Informative Itemsets

frequency 0.5, we first compute its current estimate to be 2−3 = 0.125. Thus, we
update the first parameter u1 = 1 · (0.5/2−3) · ((1− 2−3)/0.5) = 7. The normal-
ization factor becomes u0 = 2−8 · 0.5/(1− 2−3) ≈ 2.2 · 10−3. Next, we do the same
for itemset cd, and so on. After a few iterations, the model parameters converge to
u1 = 28.5, u2 = 0.12, u3 = 85.4 and u0 = 3 · 10−4.

Straightforward as this procedure may seem, the greatest computational
bottleneck is the inference of the probability of an itemset, on line 4 of the
algorithm,

p(X = 1) = ∑
t∈T

SX (t)=1

p(A = t) . (6.3)

Since this sum ranges over all possible transactions supporting X, it is infea-
sible to calculate by brute force, even for a moderate number of items N. In
fact, it has been shown that querying the maximum entropy model is PP-hard
in general [Tatti, 2006a].

Therefore, in order to be able to query the model efficiently, we intro-
duce a partitioning scheme, which makes use of the observation that many
transactions have the same probability in the maximum entropy distribution.
Remark that an itemset collection C partitions T into blocks of transactions
which support the same set of itemsets. That is, two transactions t1 and t2
belong to the same block T if and only if SX(t1) = SX(t2) for all X in C.
Therefore, we know that p(A = t1) = p(A = t2) if p is of the form in Eq. 6.2.
This property allows us to define SX(T) = SX(t) for any t ∈ T and X ∈ C.
We denote the partition of T induced by C as TC . We can now compute the
probability of an itemset as

p(X = 1) = ∑
T∈TC

SX (T)=1

p(A ∈ T) .

The sum in Eq. 6.3 has been reduced to a sum over blocks of transactions,
and the inference problem has been moved from the transaction space T to
the block space TC . In our setting we will see that |TC | � |T |, which makes
inference a lot more feasible. In the worst case, this partition may contain
2|C| blocks, however, through the interplay of the itemsets, it can be as low as
|C|+ 1. As explained further on, we can exploit or even choose to limit the
structure of C, such that practical computation is guaranteed.

140

6.3. Identifying the Best Summary

Algorithm 6.2: ComputeBlockSizes

input : an itemset collection C = {X1, . . . , Xk}
output: the size e(T) for each transaction block T in TC

1 for T in TC do
2 I ← ⋃{X | X ∈ sets(T; C)}
3 c(T)← 2N−|I|

4 end
5 sort the blocks in TC
6 for Ti in TC do
7 e(Ti)← c(Ti)
8 for Tj in TC , with j < i do
9 if Ti ⊂ Tj then

10 e(Ti)← e(Ti)− e
(
Tj
)

11 end
12 end
13 end
14 return TC

All we must do now is obtain the block probabilities p(A ∈ T). Since all
transactions t in a block T have the same probability

p(A = t) = u0 ∏
X∈C

uSX(t)
X ,

it suffices to compute the number of transactions in T to get p(A ∈ T). So,
let us define e(T) to be the number of transactions in T, then

p(A ∈ T) = ∑
t∈T

p(A = t) = e(T) u0 ∏
X∈C

uSX(T)
X .

Algorithm 6.2 describes ComputeBlockSizes, a basic method to compute
the block sizes e(T). To this end, we introduce a partial order on TC . Let

sets(T; C) = {X ∈ C | SX(T) = 1}

be the itemsets of C that occur in the transactions of T. Note that every
block corresponds to a unique subset of C; conversely a subset of C either

141

6. Succinctly Summarizing Data with Informative Itemsets

corresponds to an empty block of transactions, or to a unique nonempty
transaction block. We can now define the partial order on TC as follows,

T1 ⊆ T2 if and only if sets(T1; C) ⊆ sets(T2; C) .

In order to compute the size e(T) of a block, we start from its cumulative size,

c(T) = ∑
T′⊇T

e
(
T′
)

,

which is the number of transactions that contain at least all the itemsets in
sets(T; C). For a given block T, let I =

⋃{X | X ∈ sets(T; C)}. That is, I are
the items that occur in all transactions of T. Then it holds that c(T) = 2N−|I|,
where N is the total number of items. To obtain the block sizes e(T) from
the cumulative sizes c(T), we use the Inclusion-Exclusion principle. To that
end, the blocks are topologically sorted such that if T2 ⊂ T1, then T1 occurs
before T2. The algorithm then reversely iterates over the blocks in a double
loop, subtracting block sizes, using the identity

e(T) = c(T)− ∑
T′)T

e
(
T′
)

.

Example 6.3. Assume again that we have a dataset with eight items (a to h), and
an itemset collection containing three itemsets C = {abc, cd, def} with frequencies
0.5, 0.4 and 0.8, respectively.

Table 6.1 shows the sizes of the transaction blocks. Note that while there are 256
transactions in T , there are only 7 blocks in TC , whose sizes and probabilities are to
be computed; the eighth combination ‘abc and def but not cd’ is clearly impossible.

Let us compute the sizes of the first three blocks. For the first block, I = abcdef
and therefore c(T) = 4, for the second block I = abcd, and for the third block
I = abc. Since the first block is maximal with respect to the order ⊆, its cumulative
size is simply its size, so e(T) = 4. For the second block, we subtract the first block,
and obtain e(T) = 16− 4 = 12. From the third block we subtract the first two
blocks, and we have e(T) = 32− 12− 4 = 16. Now, to compute, say, p(abc = 1),
we simply need the sizes of the blocks containing abc, and the model parameters,

p(abc = 1) = 4(u0u1u2u3) + 12(u0u1u2) + 16(u0u1) .

142

6.3. Identifying the Best Summary

Table 6.1: Transaction blocks for the running example above, with X1 = abc,
X2 = cd, and X3 = def .

X1 X2 X3 c(T) e(T) p(A = t)

1 1 1 4 4 u0u1u2u3
1 1 0 16 12 u0u1u2
1 0 0 32 16 u0u1
0 1 1 16 12 u0u2u3
0 1 0 64 36 u0u2
0 0 1 32 16 u0u3
0 0 0 256 160 u0

Since the algorithm performs a double loop over all transaction blocks, the
complexity of ComputeBlockSizes equals O(|TC |2). Note that topologically
sorting the blocks (line 5) takes O(|TC | log |TC |) ≤ O(|TC |k), however, we can
also simply ensure that the blocks are topologically sorted by construction.

Next, we show that we can substantially improve upon the Compute-
BlockSizes algorithm, by using a generalized version of the Quick Inclusion-
Exclusion (qie) algorithm, introduced by Calders and Goethals [2005]. The
new algorithm presented here, called QieBlockSizes, has a lower complexity
than ComputeBlockSizes. The idea behind Quick Inclusion-Exclusion is to
reuse intermediate results to reduce the number of subtractions. The stan-
dard qie algorithm computes the supports of all generalized itemsets based
on some given itemset of size k (recall that a generalized itemset is an itemset
containing both positive and negative items, e.g., ab means a and not b), using
the supports of all of its (positive) subsets. For instance, from the supports of
ab, a, b, and the empty set, we can infer the support of ab. qie therefore works
on an array of size 2k, which allows an implementation of the algorithm to
employ very efficient array indexing using integers, and makes it very easy
to locate subsets using bit operations on the indices—where a positive item
is represented by a 1 and a negative item by a 0.

In our setting, we want to find the sizes of transaction blocks which cor-
respond to subsets of C, starting from the cumulative sizes of said blocks. We
can represent each block T by a binary vector defined by the indicator func-
tions SX . However, an important difference with the qie algorithm is that not
every possible binary vector necessarily corresponds to a (nonempty) block

143

6. Succinctly Summarizing Data with Informative Itemsets

of transactions, i.e., it is possible that |TC | < 2k. Clearly, if |TC | � 2k, it
would be inefficient to use an array of size 2k. Therefore, we must take these
gaps into account. Before we can discuss the algorithm itself, we first need
to introduce the following definitions.

Definition 6.2. Given a collection of itemsets C = {X1, . . . , Xk} and an integer
j ∈ {0, . . . , k}, the j-prefix of C is defined as

Cj = {X1, . . . , Xj} .

For a subset G of C, we define the closure : 2C → 2C as

closure(G) = {Xi ∈ C | Xi ⊆
⋃

X∈G
X} .

The j-closure of G is defined as

closure(G, j) = G ∪ {Xi ∈ C | Xi /∈ Cj and Xi ⊆
⋃

X∈G
X}

= G ∪
(
closure(G) \ Cj

)
.

The following lemma states that there is a one-to-one mapping between
the closed subsets G of C, and the transaction blocks of TC .

Lemma 6.10. Let G be an itemset collection. Then G = closure(G) if and only if
there exists a block T in TC such that G = sets(T; C).

Proof. Assume that G = closure(G). Let U =
⋃

X∈G X and let t ∈ T be such
that ti = 1 if ai ∈ U, and ti = 0 otherwise. Let T ∈ TC be the block containing
t. If X ∈ G, then SX(t) = 1. On the other hand, if SX(t) = 1, then X ⊆ U and
consequently X ∈ closure(G) = G. Hence, G = sets(T; C).

Assume now that there is a T such that G = sets(T; C), let t ∈ T and
U =

⋃
X∈G X. It follows that SU(t) = 1. Let X ∈ closure(G), then X ⊆ U

and SX(t) = 1. Hence, X ∈ sets(T; C) = G. Since G ⊆ closure(G), the lemma
follows.

Using the above lemma, we can introduce the following function, which
maps subsets of C to their corresponding blocks.

144

6.3. Identifying the Best Summary

Algorithm 6.3: QieBlockSizes

input : an itemset collection C = {X1, . . . , Xk}
output: the size e(T) for each transaction block T in TC

1 for T in TC do
2 I ← ⋃{X | X ∈ sets(T; C)}
3 c(T)← 2N−|I|

4 end
5 for i = 1, . . . , k do
6 for each T in TC do
7 G ← sets(T; C)
8 if Xi /∈ G then
9 G ′ ← closure(G ∪ {Xi}, i− 1)

10 T′ ← block(G ′)
11 if T′ 6= ∅ then
12 e(T)← e(T)− e(T′)
13 end
14 end
15 end
16 end

Definition 6.3. For a subset G of a collection of itemsets C, we define

block(G) =
{

T ∈ TC s.t. sets(T; C) = G if closure(G) = G ,
∅ otherwise .

That is, if G is closed, the block function simply maps it to the corresponding block
in TC . If G is not closed, it is mapped to the empty transaction block. Note that
block(sets(T; C)) = T for all T ∈ TC .

QieBlockSizes is given as Algorithm 6.3. As before, we first compute
the cumulative probability of every block T in TC (line 3). Then, for each
itemset Xi (line 5), the algorithm subtracts from each block T for which
Xi /∈ G = sets(T; C), the current size of the block T′ corresponding to G ′ =
closure(G ∪ {Xi}, i− 1) if T′ exists in TC , i.e., the size of T′ = block(G ′).

Below we prove that QieBlockSizes correctly computes the sizes of all
blocks of transactions in TC . First, we state two lemmas, which are then used
in the proof of the subsequent theorem.

145

6. Succinctly Summarizing Data with Informative Itemsets

Lemma 6.11. Let G and H be itemset collections such that G ⊆ H ⊆ closure(G),
then closure(H) = closure(G).

Proof. Write F = closure(G) and let U =
⋃

X∈G X, V =
⋃

X∈H X, and W =⋃
X∈F X. By definition we have U ⊆ V which implies that closure(G) ⊆

closure(H). Also since V ⊆W, we have closure(H) ⊆ closure(F) = closure(G),
where the second equality follows from the idempotency of closure.

Lemma 6.12. Let G be an itemset collection and let Y /∈ G be an itemset. Assume
that there is a transaction t ∈ T such that SX(t) = 1 for every X ∈ G and
SY(t) = 0. Then Y /∈ closure(G).

Proof. SY(t) = 0 implies that there is ai ∈ Y such that ti = 0. Note that ai /∈ X
for any X ∈ G, otherwise SX(t) = 0. This implies that Y *

⋃
X∈G X which

proves the lemma.

With the lemmas above, we can now prove the main theorem.

Theorem 6.13. Given a collection of itemsets C = {X1, . . . , Xk}, let TC be the
corresponding partition with respect to C. The algorithm QieBlockSizes correctly
computes the block sizes e(T) for all T ∈ TC .

Proof. Let us denote e0(T) = c(T) for the initialized value, and let ei(T) be
the value of e(T) after the execution of the i-th iteration of QieBlockSizes for
i = 1, . . . , k.

Let us write

Si(G) = {t ∈ T | SX(t) = 1 for X ∈ G and SX(t) = 0 for X ∈ Ci \ G} .

The following properties hold for Si:

1. Si(G) ⊆ Si−1(G) for any G and i > 0.

2. If Xi /∈ G, then Si−1(G) = Si(G) ∪ Si−1(G ∪ {Xi}),
and Si−1(G ∪ {Xi}) ∩ Si(G) = ∅.

3. Si(G) = Si(closure(G, i)) for any G.

4. If Xi ∈ G, then Si(G) = Si−1(G).

146

6.3. Identifying the Best Summary

Note that
∣∣∣Sk(sets(T; C))

∣∣∣ = e(T), hence to prove the theorem we will

show by induction that ei(T) =
∣∣Si(sets(T; C))

∣∣ for i = 0, . . . , k and for T ∈ TC .
For i = 0 the statement clearly holds. Let i > 0 and make an induction

assumption that ei−1(T) =
∣∣Si−1(sets(T; C))

∣∣. If Xi ∈ G, then by definition
ei(T) = ei−1(T). Property 4 now implies that Si(G) = Si−1(G), proving the
induction step.

Otherwise, assume that Xi /∈ G, let us define F = G ∪ {Xi} and let
G ′ = closure(F , i− 1) and H = closure(G ′). Since it holds that F ⊆ G ′ ⊆
closure(F), Lemma 6.11 implies that H = closure(F).

Assume that T′ = block(G ′) = ∅. Then we have ei(T) = ei−1(T), hence we
need to show that Si(G) = Si−1(G). Assume otherwise. We will now show
that G ′ = H and apply Lemma 6.10 to conclude that block(G ′) 6= ∅, which
contradicts our assumption.

First note that if there would exist an X ∈ H \ G ′, then X ∈ Ci−1, since

H \ G ′ = H \ (F ∪ (closure(F) \ Ci−1))

= H \ (F ∪ (H \ Ci−1))

⊆ H \ (H \ Ci−1)

⊆ Ci−1 .

Since Si(G) ⊆ Si−1(G), we can choose by our assumption t ∈ Si−1(G) \
Si(G). Since t ∈ Si−1(G), we have SX(t) = 1 for every X ∈ G. Also SXi (t) = 1,
otherwise t ∈ Si(G). Lemma 6.12 now implies that for every X ∈ Ci−1 \ F , it
holds that X /∈ closure(F) = H. This proves that H = G ′, and Lemma 6.10
now provides the needed contradiction. Consequently, Si−1(G) = Si(G).

Assume now that T′ = block(G ′) 6= ∅, i.e., there exists a T′ ∈ TC such that
G ′ = sets(T′, C). The induction assumption now guarantees that ei−1(G ′) =∣∣Si−1(G ′)

∣∣.
We have ∣∣∣Si(G)

∣∣∣ = ∣∣∣Si−1(G)
∣∣∣− ∣∣∣Si−1(F)

∣∣∣ Property 2

=
∣∣∣Si−1(G)

∣∣∣− ∣∣∣Si−1(G ′)
∣∣∣ Property 3

= ei−1(G)− ei−1(G ′) , induction assumption

which proves the theorem.

147

6. Succinctly Summarizing Data with Informative Itemsets

Example 6.4. Let us apply QieBlockSizes to our running example. Recall that
C = {abc, cd, def} (see Table 6.1). For brevity, we restrict ourselves to the first three
blocks. In step 1, the first three blocks remain unaffected, since they all contain X1.
In step 2, only the third block does not contain X2; we subtract the second block from
it. In step 3, we subtract the first block from the second block. From the third block
we do not have to subtract anything, since the 3-closure of the corresponding block
does not appear in TC . We have thus calculated the sizes of the first three blocks using
two subtractions, rather than three, as was previously required in Example 6.3.

Finally, we can significantly optimize the algorithm as follows. Assume
that we can divide C into two disjoint groups C1 and C2, such that if X1 ∈ C1
and X2 ∈ C2, then X1 ∩ X2 = ∅. Let B =

⋃ C1 be the set of items occur-
ring in C1. Theorem 6.1 implies that p∗(A) = p∗(B)p∗(A \ B). In other
words, the maximum entropy distribution can be factorized into two indepen-
dent distributions, namely p∗(B) and p∗(A \ B), more importantly, the factor
p∗(B) depends only on C1. Consequently, if we wish to compute the prob-
ability p∗(X = 1) such that X ∈ B, we can ignore all variables outside B
and all itemsets outside C1. The number of computations to be performed by
QieBlockSizes can now be greatly reduced, since in the case of disjointness
|TC | =

∣∣TC1

∣∣× ∣∣TC2

∣∣, and we can simply compute the block sizes for TC1 and
TC2 separately. Naturally, this decomposition can also be applied when there
are more than two disjoint groups of itemsets.

Moreover, in order to guarantee that we can apply the above separation, we
could reduce the solution space slightly by imposing a limit on the number of
items (or itemsets) per group, such that the number of blocks for each group
remains small. Alternatively, we could first partition the items of the dataset
into smaller, approximately independent groups, and subsequently apply
the algorithm for each group separately. To do this, the attribute clustering
method of Chapter 4, which identifies the optimal partitioning using mdl,
would be a logical choice.

Querying the Model

We have seen how we can efficiently query the probability of an itemset
X ∈ C when given an exponential distribution pC based on C. In order to
compute the probability of an arbitrary itemset Y that is not a member of
C, we do the following. We first set C ′ = C ∪ {Y} and compute the block

148

6.3. Identifying the Best Summary

probabilities e(T′) for all T′ in TC ′ by calling QieBlockSizes. Then, we can
simply use the parameters of pC to compute pC(Y = 1) as follows,

pC(Y = 1) = ∑
T∈TC′

SY (T)=1

e(T) ∏
X∈C

uSX(T)
X .

Thus, to obtain the probability of an itemset, it suffices to compute the block
probabilities in TC ′ , for which we know that |TC ′ | ≤ 2|TC |.

Computational Complexity

Let us analyze the complexity of the IterativeScaling algorithm. To this
end, we define nb(C) = |TC | as the number of blocks in TC . The computa-
tional complexity of QieBlockSizes is

O (k · nb(C) log nb(C)) ,

for a given collection C, with |C| = k. The logarithmic factor comes from look-
ing for the block T′ on line 11. Note that nb(C) ≤ 2k, and hence log nb(C) ≤ k.
Assume now that we can split C into L disjoint parts C = C1 ∪ · · · ∪ CL, such
that if X ∈ Ci and Y ∈ Cj then X ∩ Y = ∅. As mentioned in Section 6.3, we
can now simply compute L independent distributions at a lower total cost.

Denoting Bi =
⋃

X∈Ci
X, it holds that nb(Ci) ≤ min

(
2|Ci |, 2|Bi |

)
. If Ci can-

not be split any further, this usually means that either |Ci| is small, or the
itemsets in Ci overlap a lot and nb(Ci) � 2|Ci |. The total execution time of
IterativeScaling is

O

(
K

L

∑
i=1
|Ci|nb(Ci) log nb(Ci)

)
,

where K is the number of iterations, which is usually low. The complexity of
estimating the frequency of an itemset requires running QieBlockSizes once
and, hence is equal to

O

(
L

∑
i=1
|Ci|nb(Ci) log nb(Ci)

)
.

149

6. Succinctly Summarizing Data with Informative Itemsets

Including Background Knowledge into the Model

Typically, when analyzing data we have some basic background knowledge
about it. For instance, we may already know the individual frequencies of
the items, i.e., the column margins. These margins supply some basic informa-
tion about the data, for instance whether tomatoes are sold often or not in a
supermarket database. These individual frequencies are intuitive and easy to
calculate, yet already provide information on whether some combinations of
items are more or less likely to occur frequently. For this reason, many exist-
ing techniques use the independence model as a basis to discover interesting
patterns, e.g., [Brin et al., 1997, Aggarwal and Yu, 1998]. Another form of
background information that is often used are row margins, that is, the prob-
abilities that a transaction contains a certain number of items, e.g., [Gionis
et al., 2007, Hanhijärvi et al., 2009, Kontonasios and De Bie, 2010, Tatti and
Mampaey, 2010]—see also Chapter 5. If we know that most transactions are
rather small, large itemsets are more likely to have a low frequency.

Clearly, when we analyze data we want to incorporate this background
knowledge, since otherwise we would simply rediscover it. If we do include
it in our analysis, we discover itemsets that are interesting with respect to
what we already know. Therefore, we extend the bic and mdl quality scores
of Definition 6.1 to incorporate background knowledge, say, B. Although in
this section we focus on row and column margins as forms of background
knowledge, many other patterns or count statistics that can be expressed
as linear constraints on transactions could be used, for instance, a set of
association rules and their confidence. Therefore, we intentionally omit the
explicit specification of B.

Definition 6.4. Given a dataset D and some background knowledge B, we define
the bic score of a collection of itemsets C = {X1, . . . , Xk} with respect to B as

bic(C,D;B) = − log p∗B,C(D) + k/2 log |D| ,

similarly, we define the mdl score of C with respect to B as

mdl(C,D;B) = − log p∗B,C(D) + l1k + l2x + 1 ,

where p∗B,C is the maximum entropy distribution satisfying the background knowl-
edge B and p∗B,C(X = 1) = fr(X) for all X ∈ C, and l1 and l2 are the same as in
Definition 6.1.

150

6.3. Identifying the Best Summary

Note that while the background knowledge is included in the log-likeli-
hood term of s(C,D;B) (where s denotes either bic or mdl), it is not included
in the penalty term. We choose not to do so because we will assume that our
background knowledge is consistent with the data and invariable. We could
alternatively define

s(C,D,B) = s(C,D;B) + L(B) ,

where L(B) is some term which penalizes B, however, since this term would
be equal for all C, it might as well be omitted.

In this section, we show how to include row and column margins as
background knowledge into our algorithm without, however, blowing up
its computational complexity. If we were, for instance, to naively add all
singleton itemsets I and their frequencies to an itemset collection C, the
number of transaction blocks in the corresponding partition would become
|TC∪I | = |T | = 2N, by which we would be back at square one. Therefore, we
consider row and column margins separately from C in our computations.

First, let us consider using only column margins, viz., item frequencies.
With these, we will build an independence model, while with C we again
partition the transactions T as above. Then we simply combine the two to
obtain the maximum entropy distribution. As before, the maximum entropy
model has an exponential form:

p∗C ′(A = t) = u0 ∏
X∈C

uSX(t)
X ∏

i∈I
vSi(t)

i .

The second part of the product defines an independence distribution

v(A = t) = v0 ∏
i

vSi(t)
i ,

where v0 is a normalization factor. It is not difficult to see that v(ai = 1) =
vi/(1 + vi), for all for ai ∈ A. It should be noted that while p∗(ai = 1) =
fr(ai), in general it does not necessarily hold that v(ai = 1) = fr(ai). Now we
can write

p∗C ′(A ∈ T) = v(A ∈ T)
u0

v0
∏
X∈C

uSX(T)
X .

Thus, we simply need to compute v(A ∈ T) for each block T, which is
computed very similarly to e(T), using QieBlockSizes. Note that e(A = t)

151

6. Succinctly Summarizing Data with Informative Itemsets

is in fact nothing more than a uniform distribution over T , multiplied by 2N.
To compute v(A ∈ T), we simply initiate the algorithm with the cumulative
sizes of the blocks with respect to v, which are equal to

c(A ∈ T) = v0 ∏
i∈I

vi ,

where I =
⋃

sets(T; C). Hence, we can include the item frequencies at a
negligible additional cost. To update the vi parameters, we must also query
the probability of a single item. We can achieve this by simply adding the
corresponding singleton to C, the same way as we would query any itemset.

Next, we also include row margins in the background information. Let us
define the indicator functions Sj(t) : T → {0, 1} for j ∈ {0, . . . , N} such that
Sj(t) = 1 if and only if the number of ones in t, denoted as |t|, is equal to j.
Further, for any distribution p on A, let us write p(|A| = j) to indicate the
probability that a transaction contains j items. Again, the maximum entropy
distribution has an exponential form,

p∗B,C(A = t) = u0 ∏
X∈C

uSX(t)
X ∏

i∈I
vSi(t)

i

N

∏
j=0

wSj(t)
j .

The row and column margins define a distribution

w(A = t) = v0 ∏
i∈I

vSi(t)
i

N

∏
j=0

wSj(t)
j ,

where v0 is a normalization factor. Now, the probabilities p∗(A ∈ T) are
computed using the probabilities

p∗(A ∈ T, |A| = j) = w(A ∈ T, |A| = j)
u0

v0
∏
X∈C

uSX(T)
X

= wjv(A ∈ T, |A| = j)
u0

v0
∏
X∈C

uSX(T)
X

for j = 0, . . . , N, and we marginalize over j to obtain

p∗(A ∈ T) =
N

∑
j=0

p∗(A ∈ T, |A| = j)

=
u0

v0
∏
X∈C

uSX(T)
X

N

∑
j=0

wjv(A ∈ T, |A| = j) .

152

6.4. Problem Statements

Just as before, we compute the probabilities v(A ∈ T, |A| = j) using the
QieBlockSizes algorithm. Let I =

⋃{X | X ∈ sets(C; T)}, then the corre-
sponding cumulative probability becomes

c(A ∈ T, |A| = j) = v0 ∏
i∈I

vi · v(|A| = j | I = 1) .

Computing the probabilities v(|A| = j), and similarly v(|A| = j | I = 1),
can be done from scratch in O(N2) time and O(N) space, using the following
recurrence relation,

v(|Ai| = j) = v(ai) · v(|Ai−1| = j− 1) + (1− v(ai)) · v(|Ai−1| = j) ,

where Ai = {a1, . . . , ai}. Starting from A0 = ∅, the ComputeSizeProbabil-
ities algorithm adds each item ai until we have computed all probabilities
v(|AN | = j) where AN = A; see Algorithm 6.4. The time complexity can be
reduced to O(N), by applying the updates that IterativeScaling performs
on v(ai), to the probabilities v(|A| = j) as well, this is done by Update-
SizeProbabilities in Algorithm 6.5. The algorithm first removes the item,
and then re-adds it with the updates probability. (Note that Algorithms 6.4
and 6.5 are repeated here from Chapter 5 for convenience, further details
can be found there.) Computing item frequencies is done by adding single-
tons to C. To compute the row margin probabilities p∗(|A| = j), we simply
marginalize over TC ,

p∗(|A| = j) = ∑
T∈TC

p∗(A ∈ T, |A| = j) .

Hence, including the row margins increases the time and space complexity
of model computation and inference by a factor of N.

6.4 Problem Statements

In this section we identify four different problems that we intend to solve
using the theory introduced above. We assume some given set B that repre-
sents our background knowledge, e.g., the individual item frequencies, some
arbitrary collection of itemsets, or simply the empty set. We start simple,
with a size constraint k and a collection F of potentially interesting itemsets
to choose from, for instance, frequent itemsets, closed itemsets, itemsets of a
certain size, etc.

153

6. Succinctly Summarizing Data with Informative Itemsets

Algorithm 6.4: ComputeSizeProbabilities

input : an independence distribution v over A, with item probabilities
v(ai) for i = 1, . . . , N

output: the probabilities gj = v(|A| = j) for j = 0, . . . , N
1 g0 ← 1
2 for j = 1, . . . , N do
3 gj ← 0
4 end
5 for i = 1, . . . , N do
6 for j = i, . . . , 1 do
7 gj ← v(ai) · gj−1 + (1− v(ai)) · gj
8 end
9 g0 ← (1− v(ai)) · g0

10 end
11 return g

Algorithm 6.5: UpdateSizeProbabilities

input : the probabilities gj = v(|A| = j) for an independence
distribution v; an updated probability x for item ai

output: the updated probabilities gj = v(|A| = j) for j = 0, . . . , N
1 g0 ← g0/(1− v(ai))
2 for j = 1, . . . , N do
3 gj ←

(
gj − v(ai)gj−1

)
/(1− v(ai))

4 end
5 update v such that v(ai) = x
6 for j = N, . . . , 1 do
7 gj ← v(ai) · gj−1 + (1− v(ai)) · gj
8 end
9 g0 ← (1− v(ai)) · g0

10 return g

154

6.4. Problem Statements

Problem 6.1 (Most Informative k-Subset). Given a dataset D, a set B that rep-
resents our background knowledge, an integer k, and a collection of potentially in-
teresting itemsets F , find the subset C ⊆ F with |C| ≤ k such that s(C,D;B) is
minimized.

Note that if we choose k = 1, this problem reduces to ‘Find the Most
Interesting Itemset in F ’, which means simply scoring C = {X} with respect
to B for each set X ∈ F , and selecting the best one. Further, these scores
provide a ranking of the itemsets X ∈ F with regard to our background
knowledge B.

Now, if we do not want to select a k ourselves, we can rely on either bic

or mdl to identify the best-fitting, least-redundant model.

Problem 6.2 (Most Informative Subset). Given a dataset D, a set B that repre-
sents our background knowledge, and a collection of potentially interesting itemsets
F , find the subset C ⊆ F such that s(C,D;B) is minimized.

When we do not want to constrain the itemset collection F , we can simply
use all itemsets. Problem 6.1 then generalizes to the following.

Problem 6.3 (k Most Informative Itemsets). Given a dataset D, an integer k, and
a set B that represents our background knowledge, find the collection of itemsets C,
with |C| ≤ k, such that s(C,D;B) is minimized.

Similarly, and most generally, we can simply consider finding the best
collection of itemsets altogether.

Problem 6.4 (Most Informative Itemsets). Given a dataset D and a set B that
represents our background knowledge, find the collection of itemsets C such that
s(C,D;B) is minimized.

Note that these problem statements do not require F to be explicitly avail-
able beforehand (let alone the complete set of itemsets), i.e., it does not have
to be mined or materialized in advance (the details of this are described at
the end of Section 6.5).

In the next section, we discuss how we can mine those collections of item-
sets to solve the above problems.

155

6. Succinctly Summarizing Data with Informative Itemsets

6.5 Mining Informative Succinct Summaries

In Section 6.3 we described how to compute the maximum entropy model
and its bic or mdl quality score given a set of itemsets. Finding the optimal
collection as stated in Section 6.4, however, is clearly infeasible. The size of
the search space is

k

∑
j=0

(
|F |

j

)
≤ 2|F | .

If we do not restrict the candidate itemsets, then the total number of all (non-
singleton) itemsets is |F | = 2N − N− 1. Moreover, our quality scores are not
monotonically increasing or decreasing, which prevents us from straightfor-
wardly exploring the search space.

Therefore, we resort to using a heuristic, greedy approach. Starting with
a set of background knowledge—for instance the column margins—we in-
crementally construct our summary by iteratively adding the itemset that
reduces the score function the most. The algorithm stops either when k in-
teresting itemsets are found, or when the score no longer decreases. The
pseudo-code of the mtv algorithm, which mines Maximally informaTiVe
itemset summaries, is given in Algorithm 6.6.

Due to its incremental nature, we note that we can apply an optimiza-
tion to the algorithm. When we call IterativeScaling on line 5, rather than
computing p∗ from scratch, we can initialize the algorithm with the parame-
ters of the previous p∗ (line 1 of Algorithm 6.1), instead of with the uniform
distribution. In doing so, the IterativeScaling procedure converges faster.
Further, we can also reuse part of the computations from QieBlockSizes.

A Heuristic for Scoring Itemsets

Finding the most informative itemset to add to the current collection is prac-
tically infeasible, since it involves solving the maximum entropy model for
each and every candidate. This remains infeasible even if we restrict the
search space (for example, using only frequent itemsets). Therefore, instead
of selecting the candidate that optimizes the bic or mdl score directly, we se-
lect the candidate that maximizes a heuristic which expresses the divergence
between its frequency and its estimate. To derive and motivate this heuristic
we first present the following theorem.

156

6.5. Mining Informative Succinct Summaries

Algorithm 6.6: mtv

input : a binary dataset D; background knowledge B; an integer k ≤ ∞
output: an itemset collection C minimizing s(C,D;B)

1 I ← items in D
2 while s(C,D;B) decreases and|C| < k do
3 X ← FindMostInformativeItemset(∅, I , ∅)
4 C ← C ∪ {X}
5 p∗B,C ← IterativeScaling(C)
6 compute s(C,D;B)
7 end
8 return C

Theorem 6.14. Given an itemset collection C, a dataset D, and a collection of can-
didate itemsets F . Let s denote either bic or mdl. It holds that

arg min
X∈F

s(C ∪ {X}) = arg max
X∈F

KL
(

p∗C∪{X} ‖ p∗C
)
− r(X)

= arg min
X∈F

KL
(

qD ‖ p∗C∪{X}
)
+ r(X)

where

r(X) =

{
0 if s = bic

|X| log N/|D| if s = mdl

Proof. Let us write C ′ = C ∪ {X}. Corollary 6.2 states that − log p∗C ′(D) =
|D|H

(
p∗C ′
)

. In addition, we can show with a straightforward calculation that

KL(p∗C ′ ‖ p∗C) = H(p∗C)− H(p∗C ′) .

For bic the difference in the penalty terms of s(C) and s(C ′) is equal to
1/2 log |D|, which is identical for all itemsets X, and hence may be eliminated
from the arg max. For mdl, the difference in penalty terms can similarly be
reduced to |X| log N. The second equality follows similarly.

Thus, we search for the itemset X for which the new distribution diverges
maximally from the previous one, or equivalently, brings us as close to the
empirical distribution as possible—taking into account the penalty term for

157

6. Succinctly Summarizing Data with Informative Itemsets

mdl. Note that for bic, since r(X) = 0, the algorithm simply tries to maxi-
mize the likelihood of the model, and the penalty term functions as a stop-
ping criterion; the algorithm terminates when the increase in likelihood (i.e.,
decrease of the negative log-likelihood) is not sufficient to counter the in-
crease of the penalty. When we use mdl, on the other hand, r(X) represents
part of the penalty term, and hence this guides the algorithm in its search.

The heuristic we employ uses an approximation of the KL divergence, and
is in fact a simpler KL divergence itself. In the expression

KL(p∗C ′ ‖ p∗C) = ∑
t∈T

p∗C ′(A = t) log
p∗C ′(A = t)
p∗C(A = t)

(6.4)

we merge the terms containing X in one term, and the terms not containing
X into another term. To differentiate between these two divergences, let us
write the function kl : [0, 1]× [0, 1]→ R+ as follows,

kl(x, y) = x log
x
y
+ (1− x) log

1− x
1− y

,

then we approximate Eq. 6.4 by kl(fr(X) , p∗C(X = 1)). We will write the latter
simply as kl(X) when fr and p∗ are clear from the context. To compute this
heuristic, we only need the frequency of X, and its estimate according to the
current p∗ distribution. This gives us a measure of the divergence between
fr(X) and p∗C(X = 1), i.e., its surprisingness given the current model.

The following theorem shows the relation between KL and kl.

Theorem 6.15. For an itemset collection C and an itemset X, it holds that

0 ≤ kl(X) ≤ KL
(

p∗C∪{X} ‖ p∗C
)

.

Moreover, kl(X) = 0 if and only if KL
(

p∗C∪{X} ‖ p∗C
)

= 0, i.e., when fr(X) =

p∗C(X = 1).

Proof. Both inequalities follow directly from the log-sum inequality, which
states that for any nonnegative numbers ai, bi, with a = ∑i ai and b = ∑i bi, it
holds that

∑
i

ai log
ai
bi
≥ a log

a
b

.

158

6.5. Mining Informative Succinct Summaries

For the equality to zero, we have kl(fr(X) , p∗C(X = 1)) = 0 if and only if
fr(X) = p∗C(X = 1). In this case it holds that p∗C ′ = p∗C which is true if and
only if KL

(
p∗C ′ ‖ p∗C

)
= 0.

Using Theorem 6.14, the heuristic we employ is defined as

h(X) = kl(fr(X) , p∗C(X = 1))− r(X)

and we will make use of the following assumption:

arg min
X∈F

s(C ∪ {X}) = arg max
X∈F

h(X) .

Note that h has an elegant interpretation: it is equal to the Kullback-
Leibler divergence after exactly one step in the IterativeScaling algorithm
(when initializing p∗ with the parameters from the previous model, as dis-
cussed above). Since the KL divergence increases monotonically during the
Iterative Scaling procedure, if the total divergence is large, then we expect to
already see this in the first step of the procedure.

Searching for the Most Informative Itemset

To find the itemset maximizing h(X), we take a depth-first branch-and-bound
approach. We exploit the fact that kl is a convex function, and employ the
bound introduced by Nijssen et al. [2009] to prune large parts of the search
space as follows. Say that for a candidate itemset X in the search space, its
maximal possible extension in the branch below it is X ∪ Y (denoted XY),
then for any itemset W such that X ⊆W ⊆ XY, it holds that

h(W) = kl(W)− r(W) ≤ max
{

kl
(
fr(X), p∗(XY)

)
, kl
(
fr(XY), p∗(X)

)}
− r(X) .

If this upper bound is lower than the best value of the heuristic seen so far,
we know that no (local) extension W of X can ever become the best itemset
with respect to the heuristic, and therefore we can safely prune the branch of
the search space below X. The FindMostInformativeItemset algorithm is
given in Algorithm 6.7.

An advantage of this approach is that we do not need to collect the fre-
quencies of all candidate itemsets beforehand. Instead, we just compute them
on the fly as we need them (line 1). For instance, if we wish to pick itemsets

159

6. Succinctly Summarizing Data with Informative Itemsets

Algorithm 6.7: FindMostInformativeItemset

input : an itemset X; remaining items Y; the currently best set Z
output: the itemset between X and XY maximizing h, or Z

1 compute fr(X) and p∗(X)
2 if h(X) = kl(fr(X) , p∗(X))− r(X) > h(Z) then
3 Z ← X
4 end
5 compute fr(XY) and p∗(XY)
6 b← max{kl(fr(X) , p∗(XY)), kl(fr(XY) , p∗(X))} − r(X)
7 if b > h(Z) then
8 for y ∈ Y do
9 Y ← Y \ {y}

10 Z ← FindMostInformativeItemset(X ∪ {y}, Y, Z)
11 end
12 end
13 return Z

from a collection F of frequent itemsets for some minimum support thresh-
old, we can integrate the support counting with the depth-first traversal of
the algorithm, rather than first mining and storing F in its entirety. Since for
real datasets and non-trivial support thresholds billions of frequent itemsets
are easily discovered, this indubitably makes our approach more practical.

6.6 Experiments

In this section we experimentally evaluate our method and empirically vali-
date the quality of the returned summaries.

Setup

The mtv algorithm was implemented in C++, and the source code is provided
for research purposes.1 All experiments were executed on a 2.67GHz (six-
core) Intel Xeon machine with 12GB of memory, running Linux. All reported
timings are of the single-threaded implementation of our algorithm.

1http://www.adrem.ua.ac.be/implementations

160

6.6. Experiments

We evaluate our method on three synthetic datasets, as well as on eleven
real datasets. Their basic characteristics are given in Table 6.2.

The Independent data has independent items with random frequencies be-
tween 0.2 and 0.8. In the Markov dataset each item is a noisy copy of the
previous one, with a random copy probability between 0.5 and 0.8. The Mo-
saic dataset is generated by randomly planting five itemsets of size 5 with
random frequencies between 0.2 and 0.5 in a database with 1% noise.

The Abstracts dataset contains the abstracts of all accepted papers at the
ICDM conference up to 2007, where all words have been stemmed and stop
words have been removed [Kontonasios and De Bie, 2010].

The Accidents [Geurts et al., 2003], Kosarak, Mushroom, and Retail [Brijs
et al., 1999] datasets were downloaded from the FIMI dataset repository
[Goethals and Zaki, 2003].

The datasets Chess (kr–k) and Plants were obtained from the UCI ML
Repository [Frank and Asuncion, 2010], the former was converted into binary
form by creating an item for each attribute-value pair. The latter contains a
list of plants, and the U.S. and Canadian states where they occur.

The DNA Amplification data contains information on DNA copy number
amplifications [Myllykangas et al., 2006]. Such copies activate oncogenes
and are hallmarks of nearly all advanced tumors. Amplified genes represent
attractive targets for therapy, diagnostics and prognostics. In this dataset
items are genes, and transactions correspond to patients.

The Lotto dataset was obtained from the website of the Belgian National
Lottery, and contains the results of all lottery draws between May 1983 and
May 2011.2 Each draw consist of seven numbers (six plus one bonus ball) out
of a total of forty-two.

The Mammals data consists of presence records of European mammals
within geographical areas of 50×50 km2 [Mitchell-Jones et al., 1999].3

The MCADD dataset was obtained from the Antwerp University Hospi-
tal. Medium-Chain Acyl-coenzyme A Dehydrogenase Deficiency (MCADD)
[Baumgartner et al., 2005, Van den Bulcke et al., 2011] is a deficiency new-
born babies are screened for during a Guthrie test on a heel prick blood
sample. The instances are represented by a set of 21 features: twelve dif-
ferent acylcarnitine concentrations measured by tandem mass spectrometry

2http://www.nationaleloterij.be
3The full version of the Mammals dataset is available for research purposes from the Societas

Europaea Mammalogica at http://www.european-mammals.org.

161

6. Succinctly Summarizing Data with Informative Itemsets

Table 6.2: The synthetic and real datasets used in the experiments. Shown
for each dataset are the number of items |A|, the number of transactions |D|,
the minimum support threshold for the set of candidate frequent itemsets F
and its size.

Data Properties Candidate Collection

Dataset |A| |D| minsup |F |
Independent 50 100 000 5 000 1 055 921
Markov 50 100 000 5 000 377 011
Mosaic 50 100 000 5 000 101 463

Abstracts 3 933 859 10 75 061
Accidents 468 340 183 50 000 2 881 487
Chess (kr–k) 58 28 056 5 114 148
DNA Amplification 391 4 590 5 4.57·1012

Kosarak 41 270 990 002 1 000 711 424
Lotto 42 2 386 1 139 127
Mammals 121 2 183 200 93 808 244
MCADD 198 31 924 50 1 317 234
Mushroom 119 8 124 100 66 076 586
Plants 70 34 781 2 000 913 440
Retail 16 470 88 162 10 189 400

(TMS), together with four of their calculated ratios and five other biochemical
parameters, each of which was discretized using k-means clustering with a
maximum of ten clusters per feature.

Our method is parameter-free. That is, given enough time, it can select the
best set of itemsets from the complete space of possible itemsets. However,
although quite efficient, in practice it may not always be desirable or feasible
to consider all itemsets, for instance, for dense or large datasets, for which
we might want to explicitly exclude low-frequency itemsets from our search.
General speaking, choosing a larger candidate space, yields a larger search
space, and hence potentially better models. In our experiments we there-
fore consider collections of frequent itemsets F mined at support thresholds
as low as feasible. The actual thresholds and corresponding size of F are
depicted in Table 6.2. Note that the minimum support threshold is used to

162

6.6. Experiments

limit the size of F , and is strictly speaking not a parameter of the algorithm
itself. To ensure efficient computation, we impose a maximum of 10 items per
group, as described at the end of Section 6.3. Further, we terminate the algo-
rithm if the runtime exceeds two hours. For the sparse datasets with many
transactions (the synthetic ones, Accidents, Kosarak, and Retail), we mine and
store the supports of the itemsets, rather than computing them on the fly.
Caching the supports is faster in these cases, since for large datasets support
counting is relatively expensive. The runtimes reported below include this
additional step.

In all experiments, we set the background information B to contain the
column margins, that is, we start from the independence model. For Chess
(kr–k) and Mushroom, we also perform experiments which include the column
margins, since their original form is categorical, and hence we know that each
transaction has a fixed size. For the Lotto data we additionally use only the
row margins, which implicitly assumes all numbers to be equiprobable, and
uses the fact that each draw consists of seven numbers.

A First Look at the Results

In Tables 6.3 and 6.4 we give the scores and sizes of the discovered sum-
maries, the time required to compute them, and for comparison we include
the score of the background model, using bic and mdl respectively as the
quality score. For most of the datasets we consider, the algorithm identi-
fies the optimum quite rapidly, i.e., within minutes. For these datasets, the
number of discovered itemsets, k, is indicated in boldface. For three of the
datasets, i.e., the dense MCADD dataset, and the large Kosarak and Retail
datasets, the algorithm did not find the optimum within two hours.

For both bic and mdl, we note that the number of itemsets in the sum-
maries is very small, and hence manual inspection of the results by an expert
is highly feasible. We see that for most datasets the scores (and thus relatedly
the negative log-likelihood) decreases a lot, implying that the summaries we
find are of high quality. Moreover, for highly structured datasets such as
DNA Amplification, Kosarak, and Plants, this improvement is very large, and
only a handful of itemsets is required to describe their main structure.

Comparing the two tables, we see that the number of itemsets selected by
bic compared to mdl tends to be the same or a bit higher, indicating that bic

is more permissive in adding itemsets—an expected result. If we (crudely)

163

6. Succinctly Summarizing Data with Informative Itemsets

Table 6.3: The bic scores of the discovered models, with respect to the back-
ground information B. Shown are the number of itemsets k, the wall clock
time, the score of C, and the score of the empty collection. (Lower scores are
better.) Values for k identified as optimal by bic are given in boldface.

Dataset k time bic(C,D;B) bic(∅,D;B)
Independent 7 2m 14s 4 494 219 4 494 242
Markov 62 15m 44s 4 518 101 4 999 963
Mosaic 16 6m 06s 807 603 2 167 861

Abstracts 220 27m 21s 233 483 237 771
Accidents 74 18m 35s 24 592 869 25 979 244
Chess (kr–k) 67 83m 32s 766 235 786 651
DNA Amplification 204 4m 31s 79 164 183 121
Kosarak 261 120m 36s 66 385 663 70 250 533
Lotto 29 0m 31s 64 970 65 099
Mammals 76 25m 23s 99 733 119 461
MCADD 80 121m 02s 2 709 240 2 840 837
Mushroom 80 28m 11s 358 369 441 130
Plants 94 66m 56s 732 145 1 271 950
Retail 62 121m 46s 8 352 161 8 437 118

interpret the raw bic and mdl scores as negative log-likelihoods, we see that
bic achieves lower, and hence better, scores. This follows naturally from the
larger collections of itemsets that bic selects; the larger the collection, the
more information it provides, and hence the higher the likelihood.

Summary Evaluation

Here we inspect the discovered data summaries in closer detail.
For the Independent dataset we see that using mdl the returned summary

is empty, i.e., no itemset can improve on the description length of the back-
ground model, which is the independence model. In general, mdl does not
aim to find any underlying ‘true’ model, but simply the model that it consid-
ers best, given the available data. In this case, however, we see that the dis-
covered model correctly corresponds to the process by which we generated
the data. Using bic, on the other hand, the algorithm discovers 7 itemsets.

164

6.6. Experiments

Table 6.4: The mdl scores of the discovered models, with respect to the back-
ground information B. Shown are the number of itemsets k, the wall clock
time, the description length of C, and the description length of the empty
collection. (Lower scores are better). Values for k identified as optimal by
mdl are given in boldface.

Dataset k time mdl(C,D;B) mdl(∅,D;B)
Independent 0 1m 57s 4 494 243 4 494 243
Markov 62 16m 16s 4 519 723 4 999 964
Mosaic 15 7m 23s 808 831 2 167 861

Abstracts 29 1m 26s 236 522 237 772
Accidents 75 19m 35s 24 488 943 25 979 245
Chess (kr–k) 54 76m 20s 767 756 786 652
DNA Amplification 120 1m 06s 96 967 183 122
Kosarak 262 120m 53s 66 394 995 70 250 534
Lotto 0 0m 01s 65 100 65 100
Mammals 53 2m 17s 102 127 119 461
MCADD 82 123m 34s 2 700 924 2 840 838
Mushroom 74 22m 00s 361 891 441 131
Plants 91 63m 09s 734 558 1 271 951
Retail 57 122m 44s 8 357 129 8 437 119

These itemsets have observed frequencies in the data that are slightly higher
or lower than their predicted frequencies under the independence assump-
tion. Among the 7 itemsets, the highest absolute difference between those
two frequencies is lower than 0.3%. While these itemsets are each significant
by themselves, after correcting their p-values to account for Type I error (see
further), we find that none of them are statistically significant.

For the Markov data, we see that all itemsets in the discovered summary
are very small (about half of them of size 2, the rest mostly of size 3 or 4),
and they all consist of consecutive items. Since the items in this dataset form
a Markov chain, this is very much in accordance with the underlying gen-
erating model. In this case, the summaries for bic and mdl are identical.
Knowing that the data is generated by a Markov chain, we can compute the
mdl score of the ‘best’ model. Given that B contains the singleton frequen-
cies, the model that fully captures the Markov chain contains all 49 itemsets

165

6. Succinctly Summarizing Data with Informative Itemsets

0 2 4 6 8 10 12 14

D
es

cr
ip

tio
n

le
ng

th
 (b

its
)

Summary size k

8.0 10 5

1.0 106

1.2 106

1.4 106

1.6 106

1.8 106

2.0 106

2.2 106

16

Figure 6.1: Description length of the Mosaic dataset as a function of the sum-
mary size k. The first five discovered itemsets correspond to the process
which generated the dataset. The minimum mdl score is attained at k = 15.

of size two containing consecutive items. The description length for this
model is 4 511 624, which is close to what the mtv algorithm discovers.

The third synthetic dataset, Mosaic, contains 5 itemsets embedded in a
1%-noisy database. The five first itemsets returned, both by bic and mdl, are
exactly those itemsets. These sets are responsible for the better part of the de-
crease of the score, as can be seen in Figure 6.1, which depicts the description
length as a function of the summary size. After these first five highly infor-
mative itemsets, a further ten additional itemsets are discovered that help ex-
plain the overlap between the itemsets—which cannot be inferred otherwise,
because we construct a probabilistic model using itemset frequencies—and
while these further itemsets do help in decreasing the score, their effect is
much less strong than for the first sets. After discovering fifteen itemsets, the
next best itemset does not decrease the log likelihood sufficiently to warrant
the mdl model complexity penalty, and the algorithm terminates.

For the Lotto dataset, we see that using mdl, our algorithm fails to dis-
cover any informative itemsets.4 Using bic, we find a summary of 29 itemsets,
which are all combinations of 3 numbers, having been drawn between one
and three times in the past twenty-odd years. While for each itemset individ-

4This is a desired result, assuming of course that the lottery is fair.

166

6.6. Experiments

ually this is significantly lower than the expected absolute support (which is
about 11), when we adjust for Type I error, they are no longer statistically sig-
nificant. This gives evidence that in our setup, and with these data sizes, bic

may not be strict enough. We additionally ran experiments using only row
margins as background knowledge, i.e., using the fact that every transaction
contains exactly seven items, the numbers of each lottery draw. Then, ac-
cording to the maximum entropy background distribution, this implies that
every number has exactly the same probability of being picked in a particular
draw—namely 1/6. If our algorithm should find that a ball is drawn signif-
icantly more or less often, then it would be included in the model. Further,
if there were any meaningful correlation between some of the numbers (pos-
itive or negative), these numbers would be included in a reported itemset.
Using mdl, our algorithm again finds no itemsets of interest. Using bic, we
find 7 itemsets (after two hours), which are all combinations of five or six
numbers, with an absolute support between 2 and 4, which is higher than
expected. After applying the Bonferroni adjustment, none of these itemsets
turn out to be significant.

In the case of the DNA Amplification data, our algorithm finds that the data
can be described using 120 itemsets. As this dataset is banded, it contains a
lot of structure [Garriga et al., 2008]. Our method correctly discovers these
bands, i.e., blocks of consecutive items corresponding to related genes, which
lie on the same chromosomes. The first few dozen sets are large, and describe
the general structure of the data. Then, as we continue, we start to encounter
smaller itemsets, which describe more detailed nuances in the correlations
between the genes. Figure 6.2 depicts a detail of the DNA dataset, together
with a few of the itemsets from the discovered summary.

For the Chess (kr–k) and Mushroom datasets, we also ran experiments in-
cluding the row margins, since we know that these datasets originated from
categorical data, and hence their margins are fixed. As noted in Section 6.3,
this increases the runtime of the algorithm by a factor N. For both bic and
mdl, the algorithm therefore took longer to execute, and was terminated af-
ter two hours for both datasets. The summary size in all cases was equal to
six. Comparing the discovered summaries revealed that some (but not all) of
the itemsets in them also occurred in the summaries that did not use the row
margins as background knowledge, which leads us to conclude that the use
of row margins as background information for these datasets, does not have
a substantial effect on the discovered summaries, at least not for the top-six.

167

6. Succinctly Summarizing Data with Informative Itemsets

Ite
m

s
(o

nc
og

en
es

)

Transactions (patients) Itemsets

Figure 6.2: Detail of the DNA Amplification dataset (left), along with six of the
discovered itemsets (right).

The items in the Mammals data are European mammals, and the trans-
actions correspond to their occurrences in geographical areas of 50×50 km2.
The discovered itemsets represent sets of mammals that are known to co-
exist in certain regions. For instance, one such set contains the Eurasian elk
(moose), the mountain hare, the Eurasian lynx, and the brown bear, which
are all animals living in colder, northern territories. Going back to the trans-
actions of the data, we can also look at the areas where these itemsets occur.
Figure 6.3 depicts the geographical areas for a few of the discovered sets.
Some clear regions can be recognized, e.g., Scandinavia (for the aforemen-
tioned itemset), Central Europe, the Iberian peninsula, or Eastern Europe.

The Plants dataset is similar to the Mammals data, except than now the
plants form transactions, and the items represent the U.S. and Canadian
states where they occur. The discovered itemsets, then, are states that ex-
hibit similar vegetation. Naturally, these are bordering states. For instance,
some of the first discovered itemsets are {ct, il, in, ma, md, nj, ny, oh, pa, va}
(North-Eastern states), {al, ar, ga, ky, la, mo, ms, nc, sc, tn} (South-Eastern
states), and {co, id, mt, or, ut, wa, wy} (North-Western states).

Finally, for the MCADD data, we find about 80 itemsets after running the
algorithm for two hours. The attributes in this dataset are measured fatty acid
concentrations, ratios between these, and some further biochemical parame-
ters, which have all been discretized. The items therefore are attribute-value

168

6.6. Experiments

Figure 6.3: For the Mammals datasets, for four of the itemsets discovered
by our method, we depict the transactions (i.e., locations) that support that
itemset. A transaction supports the itemset if all of the mammals identified
by the set have been recorded in the data to occur in that area.

169

6. Succinctly Summarizing Data with Informative Itemsets

pairs. In the discovered summary, we see that the selected itemsets mostly
consist of items corresponding to a few known key attributes. Furthermore,
we can identify strongly correlated attributes by regarding those combina-
tions of attributes within the itemsets selected in the summary. As an exam-
ple, one of the first itemsets in the summary corresponds to particular values
for attributes {MCADD, C8, C8

C2 , C8
C10 , C8

C12}, respectively the class label, an acid,
and some of its calculated ratios. This acid and its ratios, and the identified
values, are commonly used diagnostic criteria for screening MCADD, and
were also discovered in previous in-depth studies [Baumgartner et al., 2005,
Van den Bulcke et al., 2011].

Comparison with Other Methods

In Table 6.5, we give the top-10 itemsets in the Abstracts dataset, as discov-
ered by our algorithm (using mdl), the method by Kontonasios and De Bie
[2010], the compression-based Krimp algorithm [Vreeken et al., 2011], and
Tiling [Geerts et al., 2004]. We see that our algorithm discovers recognizable
data mining topics such as support vector machines, naive bayes, and frequent
itemset mining. Further, there is little overlap between the itemsets, and there
is no variations-on-the-same-theme type of redundancy present.

The results of the Information-Theoretic Noisy Tiles algorithm by Kon-
tonasios and De Bie [2010], based on the Information Ratio of tiles, are differ-
ent from ours, but seem to be more or less similar in quality for this dataset.

The Krimp algorithm does not provide its resulting itemsets in an order,
so in order to compare between the different methods, following its mdl

approach, we selected the top-10 itemsets from the code table that have the
highest usage, and hence, the shortest associated code. From a compression
point of view, the items in these sets co-occur often, and thus result in small
codes for the itemsets. Arguably, this does not necessarily make them the
most interesting, however, and we observe that some rather general terms
such as state [of the] art or consider problem are ranked highly.

Finally, for Tiling we provide the top-10 tiles of at least two items. Without
this size restriction, only singletons are returned, which, although objectively
covering the largest area individually, are not very informative. Still, the
largest discovered tiles are of size two, and contain quite some redundancy,
for instance, the top-10 contains only 13 (out of 20) distinct items.

170

6.6. Experiments
Ta

bl
e

6.
5:

T
he

to
p-

10
it

em
se

ts
of

th
e

A
bs

tr
ac

ts
da

ta
se

t
as

di
sc

ov
er

ed
by

th
e

m
t

v
al

go
ri

th
m

(t
op

le
ft

),
th

e
m

et
ho

d
of

K
on

to
na

si
os

an
d

D
e

Bi
e

[2
01

0]
(t

op
ri

gh
t)

,
K

r
i
m

p
[V

re
ek

en
et

al
.,

20
11

]
(b

ot
to

m
le

ft
),

an
d

Ti
lin

g
[G

ee
rt

s
et

al
.,

20
04

]
(b

ot
to

m
ri

gh
t)

.

m
t

v
In

fo
rm

at
io

n-
Th

eo
re

ti
c

N
oi

sy
Ti

le
s

su
pp

or
t

ve
ct

or
m

ac
hi

n
sv

m
su

pp
or

t
ve

ct
or

m
ac

hi
n

as
so

ci
ru

le
m

in
e

ef
fic

id
is

co
v

fr
eq

ue
nt

pa
tt

er
n

m
in

e
al

go
ri

th
m

ne
ar

es
t

ne
ig

hb
or

as
so

ci
ru

le
m

in
e

al
go

ri
th

m
da

ta
ba

se
fr

eq
ue

nt
it

em
se

t
m

in
e

tr
ai

n
le

ar
n

cl
as

si
fi

pe
rf

or
m

se
t

na
iv

ba
y

fr
eq

ue
nt

it
em

se
t

lin
ea

r
di

sc
ri

m
in

an
al

ys
il

da
m

in
e

hi
gh

di
m

en
si

on
al

cl
us

te
r

cl
us

te
r

hi
gh

di
m

en
si

on
sy

nt
he

ti
c

re
al

st
at

e
ar

t
ti

m
e

se
ri

fr
eq

ue
nt

pa
tt

er
n

m
in

e
al

go
ri

th
m

de
ci

s
tr

ee
cl

as
si

fi
sy

nt
he

t
re

al
pr

ob
le

m
pr

op
os

ap
pr

oa
ch

ex
pe

ri
m

en
t

re
su

lt

K
r

i
m

p
Ti

lin
g

al
go

ri
th

m
ex

pe
ri

m
en

t
re

su
lt

se
t

al
go

ri
th

m
m

in
e

de
m

on
st

r
sp

ac
e

al
go

ri
th

m
ba

se
la

rg
da

ta
ba

s
re

su
lt

se
t

co
ns

id
pr

ob
le

m
ap

pr
oa

ch
pr

ob
le

m
kn

ow
le

dg
di

sc
ov

er
i

pr
op

os
m

et
ho

d
ex

pe
ri

m
en

t
de

m
on

st
r

ex
pe

ri
m

en
t

re
su

lt
ru

le
m

in
e

as
so

ci
da

ta
ba

s
al

go
ri

th
m

pe
rf

or
m

al
go

ri
th

m
ba

se
ap

pr
oa

ch
cl

us
te

r
m

od
el

ba
se

st
at

e
ar

t
se

t
m

et
ho

d
gl

ob
al

lo
ca

l
al

go
ri

th
m

ge
ne

r

171

6. Succinctly Summarizing Data with Informative Itemsets

Significant Itemsets

Next, we investigate the significance of the itemsets that are included in the
summaries we discover, as well as the significance of the itemsets in F that
were not included. To properly compute the p-values of the itemsets, we
employ holdout evaluation, as described by Webb [2007]. That is, we equally
split each dataset into an exploratory (training) set De and a holdout (test) set
Dh, apply our algorithm to the exploratory data, and evaluate the itemsets
on the holdout set. Since De contains less data than D, the discovered models
tend to contain fewer itemsets (i.e., as there is less data to fit the model on,
bic and mdl both allow for less complex models).

The significance of an itemset X is evaluated as follows. We compute
its estimated probability p∗(X = 1) (using either B or B and C, consistent
with De). This is the null hypothesis. Then, we calculate the two-tailed p-
value given the observed frequency in the holdout data, fr(X). Let us denote
d = |Dh| = |D|/2, f = d · fr(X), and p = p∗(X = 1). The p-value of X
expresses the probability of observing an empirical frequency qDh(X) at least
as extreme (i.e., improbable) as the observed frequency fr(X), with respect to
the model, according to a binomial distribution parametrized by d and p

B(d; p)(f) =
(

d
f

)
p f (1− p)(d− f) .

Assuming fr(X) ≥ p∗(X = 1), we calculate the two-tailed p-value of X as

p-value = Prob(qDh(X) ≥ f | p) + Prob(qDh(X) ≤ f ′ | p)

=
d

∑
i= f

(
d
i

)
pi(1− p)d−i +

f ′

∑
i=0

(
d
i

)
pi(1− p)d−i

where
f ′ = max{ f ′ ∈ [0, dp) | B(d; p)(f ′) ≤ B(d; p)(f)} .

The p-value for the case fr(X) < p∗(X = 1) is defined similarly.
It is expected that the itemsets that our algorithm discovers are signif-

icant with respect to the background model. Simply put, if the frequency
of an itemset is close to its expected value, it will have a high p-value, and
thus it will not be significant. Moreover, it will also have a low heuristic
value h(X), and hence it will not greatly improve the model. The follow-
ing demonstrates this connection between kl (and hence h), and the p-value.

172

6.6. Experiments

Using Stirling’s approximation, we can write the logarithm of the binomial
probability B(d; p)(f) as follows.

log
(

d
f

)
p f (1− p)d− f ≈ d log d− f log f − (d− f) log(d− f)

+ f log p + (d− f) log(1− p)

= − f log
f

dp
− (d− f) log

d− f
d(1− p)

= −d · kl(X)

Therefore, when we maximize the heuristic h, we also indirectly minimize
the p-value. Note, however, that in our algorithm we do not employ a signif-
icance level; we simply let bic or mdl decide when to stop adding itemsets.
Further, we also take the complexity of the itemsets into account.

In Table 6.6 we show the number of significant selected and unselected
itemsets. Since we are testing multiple hypotheses, we apply the well-known
Bonferroni adjustment to avoid Type I error, i.e., to avoid falsely rejecting
a true hypothesis [Shaffer, 1995]. That is, if we were to test, say, 100 true
hypotheses at significance level 0.05, then by chance we expect to falsely
reject five of them. Therefore, at significance level α, each p-value is compared
against the adjusted threshold α/n where n is the number of tests performed.

The first column of Table 6.6 shows the number of itemsets in C that are
significant with respect to the background knowledge B. In general, we see
that all itemsets are significant. However, for the Accidents dataset, e.g., we
find two itemsets that are not significant with respect to B. Nevertheless,
they are not redundant in this case; upon inspection, it turns out that these
itemsets (say, X1 and X2) are subsets of another itemset (say, Y) in C that was
significant. After adding Y to the model, the estimates of X1 and X2 change,
causing them to become significant with respect to the intermediate model.
A similar observation is made for the Chess (kr–k) and Mushroom datasets. In
the second column, we therefore also show the number of itemsets Xi+1 ∈ C
that are significant with respect to the previous model Ci. In this case we
see that indeed all itemsets are significant, from which we conclude that all
itemsets really contribute to the summary, and are not redundant.

Next, we compute the p-values of the itemsets in the candidate set F that
were not included in C. Since for all datasets the candidate set F is very
large, we uniformly sample 1 000 itemsets from F \ C, and compute their p-

173

6. Succinctly Summarizing Data with Informative Itemsets

values with respect to p∗B,C . We see that for seven of the datasets, there are few
significant itemsets, which means that C captures the data quite well. For two
datasets, a few hundred are significant, but still many are not. For the five
remaining datasets, however, we see that almost all itemsets are significant.
However, this does not necessarily mean that the discovered models are poor.
That is, apart from considering the deviation of an itemset’s frequency, we
also consider its complexity and the complexity of a model as a whole. This
means that even if the observed frequency of an itemset is surprising to some
degree, it may be too complex to include it; upon inspection, we indeed find
that among the sampled itemsets, there tend to be many large ones.

Table 6.6: The number of significant itemsets in the discovered summary C,
with respect to the background model B and each intermediate model Ci,
and the number of significant itemsets among 1 000 itemsets sampled from
F \ C, denoted by S . The significance level used is 0.05, and the p-values
were corrected using the Bonferroni adjustment.

X ∈ C X ∈ S

Dataset # signif.
w.r.t. B

signif.
w.r.t. Ci

|C| # signif.
w.r.t. C |S|

Independent 0 0 0 0 1 000
Markov 64 64 64 6 1 000
Mosaic 14 14 14 0 1 000

Abstracts 12 12 12 14 1 000
Accidents 69 71 71 883 1 000
Chess (kr–k) 42 42 43 37 1 000
DNA Amplification 87 87 87 990 1 000
Kosarak 268 268 268 993 1 000
Lotto 0 0 0 0 1 000
Mammals 39 39 39 986 1 000
MCADD 61 61 61 89 1 000
Mushroom 59 63 63 139 1 000
Plants 87 87 87 998 1 000
Retail 65 65 65 302 1 000

174

6.7. Discussion

6.7 Discussion

The approach introduced in this chapter meets several intuitive expectations
one might have about summarization, such as succinctness, providing a char-
acteristic description of the data, and having little redundancy. The experi-
ments show that quantitatively we can achieve good bic or mdl scores with
only a handful of itemsets, and that these results are highly qualitative and
meaningful; moreover, we can discover them in a relatively short amount of
time. In practice, we see that the results using mdl are slightly better than
those for bic; the former tends to be a bit more conservative, in the sense that
it does not discover spurious itemsets. Furthermore, using our mdl score,
we have more control over the complexity of the summary, since it takes into
account not only the summary’s size but also the sizes of the itemsets in it.

In this chapter we consider data mining as an iterative process. By start-
ing off with what we already know—our background knowledge—we can
identify those patterns that are the most surprising. Simply finding the item-
set that is most surprising, is a problem that Hanhijärvi et al. [2009] describe
as ‘tell me something I don’t know’. When we repeat this process, in the end
we will have identified a group of itemsets that ‘tell me all there is to know’
about the data. Clearly, this group strongly overfits the data. This is where
the mdl principle provides a solution, as it automatically identifies the most
informative group. Hence, we can paraphrase our approach as ‘tell me what
I need to know’. As such, by our information theoretic approach it can be
seen as an instantiation of the general iterative framework recently proposed
by De Bie [2011a].

The view that we take here on succinctness and non-redundancy is fairly
strict. Arguably, there are settings conceivable where limited redundancy
(at the cost of brevity) can give some robustness to a technique, or provide
alternative insights by restating facts differently. However, this is not the
intention of our approach, and we furthermore argue that our method can
perfectly be complemented by techniques such as redescription mining [Zaki
and Ramakrishnan, 2005].

Data mining is not only an iterative process, but also an interactive one.
The mtv algorithm simply returns a set of patterns to the user, with respect
to his or her background knowledge. However, in practice we might want to
dynamically guide the exploration and summarization process. That is, we
may want to add or remove certain itemsets, next let the algorithm add some

175

6. Succinctly Summarizing Data with Informative Itemsets

more itemsets, etc. Our algorithm can easily be embedded into an interactive
environment. Deleting an itemset from a summary is quite straightforward;
we just collapse the transaction partition, and re-run the iterative scaling
algorithm to discover the parameters of the simplified model.

There are still some further improvements possible for our method. For
instance, one problem setting in which our method is applicable, is that of
finding the best specialization of a given itemset X. That is, to identify the
superset Y of X that provides the best score s(C ∪ {Y}). This setup allows
experts to interactively discover interesting itemsets.

The experiments showed that we discover high-quality summaries, and
that we can efficiently compute the maximum entropy model for a given
collection of itemsets in practice—even though this is a NP-hard problem in
general. In specific cases, however, there is room for further optimization. For
computational reasons, we split up the distribution into smaller groups, by
restricting the number of items per group. Exactly modeling a long Markov
chain, for instance, is then not possible, as only parts up to n items will be
modeled. While our model can easily describe a complete Markov chain,
computing it may prove to be difficult in practice. It would be interesting
to see then, how modeling techniques such as decomposition, e.g., using
junction trees [Cowell et al., 1999], could be combined with our methods.

We see several further possibilities for improving upon our current, un-
optimized, implementation. For example, massive parallelization can be ap-
plied to the search for the most informative itemset. This requires computing
itemset probabilities with respect to a single model, for many candidates,
which can easily be done in parallel. This can also benefit pruning in this
phase, since we can use the maximum heuristic value over all processes. An-
other option is to simplify the computation of the row margin distribution,
which adds a factor N to the algorithm’s runtime. Rather than computing the
probability that a transaction contains a certain number of items, we could
group these probabilities into a coarser granularity, to reduce this factor.

6.8 Conclusions

We introduced a well-founded method for iteratively mining non-redundant
collections of itemsets that form high-quality summaries of transaction data.
By employing the Maximum Entropy principle, we obtain unbiased proba-
bilistic models of the data, through which we can identify the most informa-

176

6.8. Conclusions

tive itemsets, and subsequently iteratively build succinct summaries of the
data by updating our model accordingly. As such, unlike static interesting-
ness models, our approach does not return patterns that are redundant with
regard to what we have learned, or already knew as background knowledge,
and hence the result is kept succinct and maximally informative.

To this end, we presented the mtv algorithm for mining informative sum-
maries, which can either mine the top-k most informative itemsets, or by em-
ploying the Bayesian Information Criterion (bic) or the Minimum Description
Length (mdl) principle we can automatically identify that set of itemsets that
together provide the best summarization of the data. Hence, informally said,
our parameter-free method ‘tells you what you need to know’ about the data.

Although in the general case modeling by Maximum Entropy is NP-hard,
we showed that in our case we can do so efficiently, using Quick Inclusion-
Exclusion. Furthermore, mtv is a one-phase algorithm; rather than picking
itemsets from a pre-materialized user-provided candidate set, it calculates
on-the-fly the supports for only those itemsets that stand a chance of being
included in the summary.

Experiments show that we discover succinct summaries, which correctly
identify important patterns in the data. The resulting models attain high
log-likelihoods using few itemsets, are easy to interpret, contain significant
itemsets with low p-values, and for a wide range of datasets are shown to
give highly intuitive results.

177

Chapter 7

Conclusions

This dissertation explored how we can summarize data using local
patterns, to get an overview of and gain insight into a given dataset.
While existing techniques can efficiently mine interesting patterns,

they often return far too many of them for a user to handle. The reason
for this lies in the fact that such techniques usually consider the interesting-
ness of patterns on an individual basis. This results in redundancy, since they
do not take into account how these patterns relate to each other as a whole.

We focussed on three important notions a data mining method should ad-
here to in order for it to be categorized as a proper summarization method:
informativeness, conciseness, and interpretability. To this end, we relied
heavily on information theory to characterize the interestingness of (sets of)
patterns, as well as to incorporate the data miner’s background knowledge.
By employing patterns such as itemsets and attribute sets to describe the data,
we ensured that the end result remains intuitive and interpretable. Finally,
to guarantee the conciseness of a summary, we made use of information-
theoretic techniques to reduce redundancy, as well as model selection tech-
niques to keep the results succinct and manageable.

The main contributions of this thesis can be summarized as follows.

• In Chapter 3 we proposed an information-theoretic approach to mine
dependence rules between attribute sets. Based on some theoretical
properties, we were able to reduce redundancy in the set of results, and
effectively reduce the size of the output by several orders of magnitude.

179

7. Conclusions

• In Chapter 4 we provided a simple technique to create a high-level
overview of a dataset. This was achieved by clustering the attributes
into correlated groups. For each group, a small distribution describes
the corresponding part of the data. As such, an attribute clustering can
be used as a simple yet effective approximation of the data.

• In Chapter 5 we studied the usage of intuitive statistics such as row and
column margins, lazarus counts, and transaction bounds, to construct
a background model for ranking itemsets. This background model
is based on the Maximum Entropy principle, and we presented algo-
rithms to construct and query it in polynomial time.

• In Chapter 6 we introduced a novel algorithm to mine a collection of
itemsets as a global model for binary data. The proposed algorithm
models the data using a Maximum Entropy distribution which is built
based on the constraints imposed by a collection of itemsets. To dis-
cover the best collection of itemsets, we employed the Bayesian Infor-
mation Criterion and the Minimum Description Length principle.

While the results obtained in this dissertation are encouraging, this is not
the end of the road. The very nature of exploratory data mining offers numer-
ous possible directions for future research. For one, we focussed on summa-
rizing binary and categorical data. The extension of the proposed techniques
to other data types such as ordinal or numeric data, or data of a different
structure, such as graphs or time series, is evident. Also the possibility of
using other patterns besides itemsets or attribute sets to construct data sum-
maries, is worth investigating. Further, while we did not concentrate on it in
detail in this dissertation, interactivity is an important aspect of exploratory
data mining that should be taken into consideration, and which requires
the development of dynamic algorithms that can anticipate and deal with a
user’s changing interests. Finally, the application of summaries beyond de-
scriptive data mining, for instance, applying attribute clustering (Chapter 4)
or the mtv algorithm (Chapter 6) for classification, may yield interesting new
data mining techniques.

180

Nederlandse Samenvatting

Dankzij de technologische vooruitgang is het sinds enkele decen-
nia mogelijk om goedkoop enorme hoeveelheden data van diverse
soorten te vergaren en op te slaan; bijvoorbeeld, wetenschappelijke

observaties, commerciële bestanden, medische data, overheidsdatabanken,
multimedia, etc. Het verzamelen van zulke data is essentiëel om inzicht te
krijgen in een probleem, om een bepaald fenomeen te bestuderen, of om
weloverwogen beslissingen te kunnen nemen. Het is tevens een integraal on-
derdeel van de wetenschappelijke methode. Tegenwoordig hebben we echter
zulke grote hoeveelheden data tot onze beschikking, dat het extraheren van
informatie hieruit een niet-triviale taak geworden is. De analyse van zulke
data met de hand is praktisch niet doenbaar. Deze situatie geeft aanleiding
tot de noodzaak voor computationele technieken die nuttige, zinvolle infor-
matie uit databases extraheren, om ze goed te benutten.

‘Knowledge discovery from data’ (KDD) heeft zich als gevolg hiervan in
een snel tempo ontwikkeld tot een belangrijk onderzoeksgebied. Vooral het
deelgebied data mining, een essentiëel onderdeel in het knowledge discovery
proces, heeft veel momentum gekregen. Data mining, dat zich bevindt in de
doorsnede van de statistiek, artificiële intelligentie, en database onderzoek,
wordt door Hand et al. [2001] als volgt gedefinieerd.

Data mining is de analyse van (vaak grote) observationele data-
sets om onverwachte verbanden te vinden en om de data samen
te vatten op nieuwe manieren die zowel begrijpelijk als nuttig zijn
voor de eigenaar van data.

Een aantal belangrijke (zij het vage) termen komen voor in deze definitie.
De term verbanden is zeer breed, en kan verwijzen naar eender welke vorm

183

Nederlandse Samenvatting

van regelmaat of structuur in de data, variërend van lokale patronen tot clas-
sificatiemodellen of clusteringen. Het sleutelwoord onverwachte is cruciaal,
aangezien het doel van data mining het ontdekken van relaties is, die inte-
ressant, verrassend, of tot nog toe onbekend zijn. Hierbij wordt er inherent
van uitgegaan dat de data miner een aantal verwachtingen heeft over de data,
al dan niet in expliciete vorm. Elke afwijking van deze verwachting wordt
interessant geacht. Als de data volledig aan de verwachtingen van de gebrui-
ker zou voldoen, is deze immers vrij saai. We kunnen deze verwachting zien
als de achtergrondkennis van de gebruiker.

Het samenvatten van data betekent de kenmerken ervan te presenteren aan
de data miner, op een beknopte manier, zodat deze samenvatting een klein
maar informatief stuk informatie vormt. Idealiter bevat een samenvatting
enkel de gegevens die de gebruiker nodig heeft, niets meer en niets minder.
De resultaten van bestaande data mining technieken zijn vaak echter zeer
complex en gedetailleerd, of bevatten redundante informatie. Bij frequent
itemset mining, bijvoorbeeld, kan de gebruiker overspoeld worden met tal-
loze patronen. Ten slotte moet het resultaat van een data mining methode
begrijpelijk zijn, wat betekent dat het intuïtief moet zijn voor een analist om te
begrijpen wat het resultaat betekent, zodat hij of zij vervolgens in staat is om
de opgedane kennis goed te kunnen benutten.

Data mining technieken kunnen grofweg worden onderverdeeld in twee
categorieën: lokale en globale. Globale technieken streven ernaar een model
van de data in haar geheel te construeren. Dergelijke modellen vatten de data
meestal niet perfect, maar trachten in plaats daarvan de algemene tendensen
ervan weer te geven, om ze te beschrijven of te begrijpen, of om voorspel-
lingen te kunnen doen. Voorbeelden hiervan zijn clustering, classificatie en
regressie, grafisch modellen, of het fitten van de parameters van een Gaussi-
aanse distributie. Lokale technieken beschrijven bepaalde aspecten van de
data die op een of andere manier interessant kunnen zijn. Dergelijke lokale
structuren (bijvoorbeeld frequent itemsets), beschrijven slechts een deel van
de data, in plaats van ze in haar geheel te modelleren. Een voordeel is dat
ze vaak gemakkelijk te interpreteren zijn, en niet moeilijk om de ontdekken.
In de praktijk is het echter bijna onmogelijk om alle interessante patronen in
een dataset te beschouwen, om de eenvoudige reden dat er wellicht veel te
veel zijn om te verwerken. Het is algemeen bekend dat local pattern mining
in de praktijk ofwel vergezeld dient te worden van een pruning, ranking, of
filtering stap, die de resultaten drastisch inkort zonder aan informativiteit in

184

te boeten; of men moet direct sets van patronen als een geheel minen, door te
beschouwen hoe ze zich tot elkaar verhouden. Het onderscheid tussen lokale
en globale data mining technieken is echter niet altijd even scherp.

Het doel en onderwerp van dit proefschrift is te onderzoeken hoe lokale
patronen gebruikt kunnen worden om data samen te vatten. Daartoe zetten
we een aantal belangrijke concepten voorop waaraan zulke samenvattingen
moeten voldoen.

• Informativiteit Het spreekt voor zich dat een samenvatting zinvolle
en nuttige informatie aan een gebruiker moet communiceren; een sa-
menvatting moet belangrijke structuren die in de data aanwezig zijn
weergeven. Informatie theorie speelt daarom een belangrijke rol in dit
proefschrift om interessantheid te meten. Verder richten we ons ook op
het in beschouwing nemen van de achtergrondkennis van de data mi-
ner, want wat interessant is voor de ene persoon is dat niet noodzakelijk
voor de andere.

• Beknoptheid Een samenvatting moet uiteraard beknopt zijn zodat
een gebruiker ze kan overzien en gebruiken. Deze beknoptheid kan
simpelweg verwijzen naar de grootte van de samenvatting, maar kan
ook verwijzen naar de complexiteit ervan.

• Interpreteerbaarheid Een beknopte black box methode die nauw-
keurig een gegeven dataset beschrijft, laat ons niet toe om de data ook
beter te begrijpen. Daarom nemen we ook interpreteerbaarheid op als
een vereiste. Lokale patronen zijn in het algemeen eenvoudig te be-
grijpen. In dit proefschrift worden twee soorten patronen beschouwd:
itemsets en attribute sets, en dit voor binaire en categorische data.

Een samenvatting kan gezien worden als een model van de data, hoewel
deze niet noodzakelijk query-baar is, of gepresenteerd is in een mathema-
tische vorm. De samenvattingen in dit proefschrift moeten worden gecate-
goriseerd als exploratory data mining, onze bedoeling is immers onze kennis
van een gegeven dataset waar we weinig over weten uit te breiden. Dit is
een inherent onnauwkeurig probleem met geen duidelijk omschreven doel
of één enkele correcte oplossing. Het doel van dit proefschrift is daarom niet
het ontwikkelen van een allesomvattende samenvattingsmethode. In plaats
daarvan beschouwen we verschillende methoden, omdat we in de praktijk

185

Nederlandse Samenvatting

kunnen worden geconfronteerd met verschillende soorten data en toepassin-
gen. Het gebruik van verschillende manieren om naar data te kijken, met
verschillende patronen, criteria, etc, kan meer inzicht geven dan het gebruik
van een enkele techniek.

Bijdragen van het Proefschrift

Dit proefschrift bestaat uit zeven hoofdstukken. Hoofdstukken 3 tot 6 be-
vatten de voornaamste bijdragen, en zijn gebaseerd op eerder gepubliceerd
werk. De bijdragen kunnen als volgt samengevat worden.
Hoofdstuk 3 presenteert een methode voor het ontdekken van dependency

rules tussen sets van attributen, met behulp van informatie-theoretische
measures. We onderzoeken technieken om redundantie in de resultaten
te verminderen, en presenteren een efficiënt algoritme om deze regels te
ontdekken.

Hoofdstuk 4 geeft een techniek om een high-level overzicht van een dataset
te creëren, door attributen in gecorreleerd groepen te clusteren. Voor
elke attribute cluster geeft een kleine distributie een beschrijving van
het desbetreffende deel van de data. Deze groeperingen kunnen ver-
volgens worden gebruikt als een benaderend model voor de data. Voor
het vinden van goede attribute clusterings gebruiken we het Minimum
Description Length principe.

Hoofdstuk 5 bestudeert het gebruik van intuïtieve statistieken om een achter-
grondmodel te bouwen om itemsets te rangschikken. Deze statistieken
zijn rij- en kolommarges, lazarus counts, en transactiegrenzen. Op basis
van deze statistieken presenteren we een maximum entropy model, dat
efficiënt geconstrueerd en bevraagd kan worden in polynomiale tijd, en
waartegen itemsets gerangschikt worden.

Hoofdstuk 6 introduceert een algoritme dat een verzameling van itemsets
zoekt als een globaal model voor data. Het voorgestelde algoritme mo-
delleert de data met behulp van een maximum entropy distributie die
geconstrueerd wordt op basis van een collectie itemsets. Technieken uit
Hoofdstuk 4 om efficiënte berekening te garanderen, en uit Hoofdstuk 5
om achtergrondkennis te beschouwen, zijn opgenomen in het algoritme.
Om de beste verzameling van itemsets die een bepaalde dataset samen-
vat te ontdekken, maken we gebruik van het Bayesian Information Cri-
terion en het Minimum Description Length principe.

186

Bibliography

C. C. Aggarwal and P. S. Yu. A new framework for itemset generation. In Pro-
ceedings of the 17th ACM SIGACT-SIGMOD-SIGART Symposium on Principles
of Database Systems (PODS), pages 18–24. ACM Press, 1998.

R. Agrawal and R. Srikant. Fast algorithms for mining association rules.
In Proceedings of the 20th International Conference on Very Large Data Bases
(VLDB), Santiago de Chile, Chile, pages 487–499, 1994.

R. Agrawal, T. Imielinski, and A. N. Swami. Mining association rules between
sets of items in large databases. ACM SIGMOD Record, 22(2):207–216, 1993.

W. H. Au, K. C. C. Chan, A. K. C. Wong, and Y. Wang. Attribute clustering for
grouping, selection, and classification of gene expression data. IEEE/ACM
Transactions on Computational Biology and Bioinformatics, 2(2):83–101, 2005.

J. L. Balcázar. Minimum-size bases of association rules. In Proceedings of
the European Conference on Machine Learning and Principles and Practice of
Knowledge Discovery in Databases (ECML PKDD), Antwerp, Belgium, volume
5211 of Lecture Notes in Computer Science, pages 86–101. Springer, 2008.

C. Baumgartner, C. Böhm, and D. Baumgartner. Modelling of classification
rules on metabolic patterns including machine learning and expert knowl-
edge. Biomedical Informatics, 38(2):89–98, 2005.

R. J. Bayardo. Efficiently mining long patterns from databases. In Proceed-
ings of the ACM International Conference on Management of Data (SIGMOD),
Seattle, WA, pages 85–93. ACM New York, NY, USA, 1998.

189

Bibliography

R. J. Bayardo, B. Goethals, and M. J. Zaki. Fimi ’04. In Proceedings of the IEEE
ICDM Workshop on Frequent Itemset Mining Implementations, Brighton, UK,
volume 126, 2004.

J.-F. Boulicaut, A. Bykowski, and C. Rigotti. Free-sets: a condensed represen-
tation of boolean data for the approximation of frequency queries. Data
Mining and Knowledge Discovery, 7(1):5–22, 2003.

T. Brijs, G. Swinnen, K. Vanhoof, and G. Wets. Using association rules for
product assortment decisions: A case study. In Proceedings of the 5th ACM
International Conference on Knowledge Discovery and Data Mining (SIGKDD),
San Diego, CA, pages 254–260, 1999.

S. Brin, R. Motwani, and C. Silverstein. Beyond market baskets: Generalizing
association rules to correlations. In J. Peckham, editor, Proceedings of the
ACM International Conference on Management of Data (SIGMOD), Tucson, AZ,
pages 265–276. ACM Press, 1997.

B. Bringmann and A. Zimmermann. The chosen few: On identifying valu-
able patterns. In Proceedings of the 7th IEEE International Conference on Data
Mining (ICDM), Omaha, NE, pages 63–72. IEEE, 2007.

B. Bringmann and A. Zimmermann. One in a million: picking the right
patterns. Knowledge and Information Systems (KAIS), 18(1):61–81, 2009.

T. Calders and B. Goethals. Quick inclusion-exclusion. In Proceedings of the 4th
International Workshop on Knowledge Discovery in Inductive Databases (KDID),
Porto, Portugal, volume 3933, pages 86–103. Springer, 2005.

T. Calders and B. Goethals. Non-derivable itemset mining. Data Mining and
Knowledge Discovery, 14(1):171–206, 2007.

D. Chakrabarti, S. Papadimitriou, D. S. Modha, and C. Faloutsos. Fully auto-
matic cross-associations. In Proceedings of the 10th ACM International Confer-
ence on Knowledge Discovery and Data Mining (SIGKDD), Seattle, WA, pages
79–88. ACM, 2004.

V. Chandola and V. Kumar. Summarization – compressing data into an infor-
mative representation. In Proceedings of the 5th IEEE International Conference
on Data Mining (ICDM), Houston, TX, pages 98–105. IEEE, 2005.

190

Bibliography

F. Coenen. The LUCS-KDD discretised/normalised ARM and CARM
data library. http://www.csc.liv.ac.uk/~frans/KDD/Software/LUCS-
KDD-DN/DataSets/dataSets.html, 2003.

T. M. Cover and J. A. Thomas. Elements of Information Theory. Wiley-
Interscience New York, 2006.

R. G. Cowell, A. P. Dawid, S. L. Lauritzen, and D. J. Spiegelhalter. Probabilistic
Networks and Expert Systems. Statistics for Engineering and Information
Science. Springer-Verlag, 1999.

I. Csiszár. I-divergence geometry of probability distributions and minimiza-
tion problems. The Annals of Probability, 3(1):146–158, 1975.

M. M. Dalkilic and E. L. Robertson. Information dependencies. In Proceed-
ings of the 19th ACM SIGMOD-SIGACT-SIGART Symposium on Principles of
Database Systems (PODS), pages 245–253, 2000.

J. Darroch and D. Ratcliff. Generalized iterative scaling for log-linear models.
The Annals of Mathematical Statistics, 43(5):1470–1480, 1972.

G. Das, H. Mannila, and P. Ronkainen. Similarity of attributes by external
probes. In Proceedings of the 3rd ACM International Conference on Knowledge
Discovery and Data Mining (KDD), Newport Beach, CA, pages 23–29. ACM,
1997.

B. A. Davey and H. A. Priestley. Introduction to Lattices and Order. Cambridge
University Press, 1990.

T. De Bie. An information theoretic framework for data mining. In Proceedings
of the 17th ACM International Conference on Knowledge Discovery and Data
Mining (SIGKDD), San Diego, CA. ACM, 2011a.

T. De Bie. Maximum entropy models and subjective interestingness: an ap-
plication to tiles in binary databases. Data Mining and Knowledge Discovery,
pages 1–40, 2011b.

I. S. Dhillon, S. Mallela, and R. Kumar. A divisive information theoretic fea-
ture clustering algorithm for text classification. Journal of Machine Learning
Research, 3:1265–1287, 2003.

191

Bibliography

A. Frank and A. Asuncion. UCI machine learning repository.
http://archive.ics.uci.edu/ml/, 2010.

A. Gallo, N. Cristianini, and T. De Bie. MINI: Mining informative non-
redundant itemsets. In Proceedings of the European Conference on Machine
Learning and Principles and Practice of Knowledge Discovery in Databases
(ECML PKDD), Warsaw, Poland, pages 438–445. Springer, 2007.

G. C. Garriga, E. Junttila, and H. Mannila. Banded structure in binary ma-
trices. In Proceedings of the 14th ACM International Conference on Knowledge
Discovery and Data Mining (SIGKDD), Las Vegas, NV, pages 292–300. ACM
New York, NY, USA, 2008.

F. Geerts, B. Goethals, and T. Mielikäinen. Tiling databases. In Proceedings of
Discovery Science, pages 278–289, 2004.

L. Geng and H. J. Hamilton. Interestingness measures for data mining: A
survey. ACM Computing Surveys (CSUR), 38(3):9, 2006.

K. Geurts, G. Wets, T. Brijs, and K. Vanhoof. Profiling high frequency ac-
cident locations using association rules. In Proceedings of the 82nd Annual
Transportation Research Board, Washington DC. (USA), page 18pp, 2003.

A. Gionis, H. Mannila, T. Mielikäinen, and P. Tsaparas. Assessing data mining
results via swap randomization. ACM Transactions on Knowledge Discovery
from Data, 1(3), 2007.

B. Goethals. Survey on frequent pattern mining.
http://www.adrem.ua.ac.be/bibrem/pubs/fpm_survey.pdf, 2003.

B. Goethals and M. Zaki. Frequent itemset mining implementations reposi-
tory. http://fimi.ua.ac.be/, 2003.

K. Gouda and M. J. Zaki. Efficiently mining maximal frequent itemsets. In
Proceedings of the 1st IEEE International Conference on Data Mining (ICDM),
San Jose, CA, pages 163–170, 2001.

P. D. Grünwald. Minimum description length tutorial. In P. D. Grünwald and
I. J. Myung, editors, Advances in Minimum Description Length. MIT Press,
2005.

192

Bibliography

P. D. Grünwald. The Minimum Description Length Principle. MIT Press, 2007.

J. Han, J. Pei, and Y. Yin. Mining frequent patterns without candidate gener-
ation. ACM SIGMOD Record, 29(2):1–12, 2000.

J. Han, H. Cheng, D. Xin, and X. Yan. Frequent pattern mining: Current
status and future directions. Data Mining and Knowledge Discovery, 15(1):
55–86, 2007.

D. J. Hand, H. Mannila, and P. Smyth. Principles of data mining. MIT press,
2001.

S. Hanhijärvi, M. Ojala, N. Vuokko, K. Puolamäki, N. Tatti, and H. Mannila.
Tell me something I don’t know: randomization strategies for iterative data
mining. In Proceedings of the 15th ACM International Conference on Knowledge
Discovery and Data Mining (SIGKDD), Paris, France, pages 379–388, 2009.

H. Heikinheimo, E. Hinkkanen, H. Mannila, T. Mielikäinen, and J. K. Seppä-
nen. Finding low-entropy sets and trees from binary data. In Proceedings
of the 13th ACM International Conference on Knowledge Discovery and Data
Mining (SIGKDD), San Jose, CA, pages 350–359. ACM, 2007.

H. Heikinheimo, J. Vreeken, A. Siebes, and H. Mannila. Low-entropy set
selection. In Proceedings of the 9th SIAM International Conference on Data
Mining (SDM), Sparks, NV, pages 569–579. SIAM, 2009.

Y. Huhtala, J. Karkkainen, P. Porkka, and H. Toivonen. Tane: An efficient
algorithm for discovering functional and approximate dependencies. The
Computer Journal, 42(2):100–111, 1999a.

Y. Huhtala, J. Karkkainen, P. Porkka, and H. Toivonen. Tane homepage.
http://www.cs.helsinki.fi/research/fdk/datamining/tane/, 1999b.

S. Jaroszewicz and T. Scheffer. Fast discovery of unexpected patterns in data,
relative to a bayesian network. In Proceedings of the 11th ACM International
Conference on Knowledge Discovery and Data Mining (SIGKDD), Chicago, IL,
pages 118–127, New York, NY, USA, 2005. ACM.

S. Jaroszewicz and D. A. Simovici. Pruning redundant association rules using
maximum entropy principle. In Proceedings of the 6th Pacific-Asia Conference
on Knowledge Discovery and Data Mining (PAKDD), Taipei, Taiwan, pages 135–
147, 2002.

193

Bibliography

S. Jaroszewicz and D. A. Simovici. Interestingness of frequent itemsets us-
ing bayesian networks as background knowledge. In Proceedings of the
10th ACM International Conference on Knowledge Discovery and Data Mining
(SIGKDD), Seattle, WA, pages 178–186, New York, NY, USA, 2004. ACM.

E. T. Jaynes. On the rationale of maximum-entropy methods. Proceedings of
the IEEE, 70(9):939–952, 1982.

S. Kirkpatrick. Optimization by simulated annealing: Quantitative studies.
Statistical Physics, 34(5):975–986, 1984.

J. Kivinen and H. Mannila. Approximate inference of functional dependen-
cies from relations. Theoretical Computer Science, 149(1):129–149, 1995.

A. J. Knobbe and E. K. Y. Ho. Maximally informative k-itemsets and their
efficient discovery. In Proceedings of the 12th ACM International Conference
on Knowledge Discovery and Data Mining (SIGKDD), Philadelphia, PA, pages
237–244. ACM, 2006a.

A. J. Knobbe and E. K. Y. Ho. Pattern teams. In Proceedings of the 10th Euro-
pean Conference on Principles and Practice of Knowledge Discovery in Databases
(PKDD), Berlin, Germany, volume 4213, pages 577–584. Springer, 2006b.

R. Kohavi, C. Brodley, B. Frasca, L. Mason, and Z. Zheng. KDD-Cup 2000
organizers’ report: Peeling the onion. ACM SIGKDD Explorations, 2(2):
86–98, 2000. http://www.ecn.purdue.edu/KDDCUP.

K.-N. Kontonasios and T. De Bie. An information-theoretic approach to find-
ing noisy tiles in binary databases. In Proceedings of the 10th SIAM Inter-
national Conference on Data Mining (SDM), Columbus, OH, pages 153–164.
SIAM, 2010.

M. Li and P. Vitányi. An Introduction to Kolmogorov Complexity and its Applica-
tions. Springer-Verlag, 1993.

M. Mampaey. Mining non-redundant information-theoretic dependencies be-
tween itemsets. In Proceedings of the 12th International Conference on Data
Warehousing and Knowledge Discovery (DaWaK), Bilbao, Spain, volume 6263
of LNCS, pages 130–141. Springer, 2010.

194

Bibliography

M. Mampaey and J. Vreeken. Summarising data by clustering items. In
Proceedings of the European Conference on Machine Learning and Principles and
Practice of Knowledge Discovery in Databases (ECML PKDD), Barcelona, Spain,
pages 321–336. Springer-Verlag, 2010.

M. Mampaey, N. Tatti, and J. Vreeken. Tell me what I need to know: Suc-
cinctly summarizing data with itemsets. In Proceedings of the 17th ACM
International Conference on Knowledge Discovery and Data Mining (SIGKDD),
San Diego, CA, pages 573–581. ACM, 2011.

H. Mannila and E. Terzi. Nestedness and segmented nestedness. In Pro-
ceedings of the 13th ACM International Conference on Knowledge Discovery and
Data Mining (SIGKDD), San Jose, CA, pages 480–489. ACM, 2007.

H. Mannila, H. Toivonen, and A. I. Verkamo. Efficient algorithms for discov-
ering association rules. In KDD-94: AAAI workshop on Knowledge Discovery
in Databases, pages 181–192, 1994.

R. Meo. Theory of dependence values. ACM Transactions on Database Systems
(TODS), 25(3):380–406, 2000.

A. J. Mitchell-Jones, G. Amori, W. Bogdanowicz, B. Krystufek, P. J. H. Reijn-
ders, F. Spitzenberger, M. Stubbe, J. B. M. Thissen, V. Vohralik, and J. Zima.
The Atlas of European Mammals. Academic Press, 1999.

S. Myllykangas, J. Himberg, T. Böhling, B. Nagy, J. Hollmén, and S. Knuutila.
Dna copy number amplification profiling of human neoplasms. Oncogene,
25(55):7324–7332, 2006.

S. Nijssen, T. Guns, and L. De Raedt. Correlated itemset mining in ROC
space: a constraint programming approach. In Proceedings of the 15th ACM
International Conference on Knowledge Discovery and Data Mining (SIGKDD),
Paris, France, pages 647–656. Springer, 2009.

N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal. Discovering frequent closed
itemsets for association rules. In Proceedings of the 7th International Confer-
ence on Database Theory (ICDT), Jerusalem, Israel, pages 398–416. Springer,
1999.

R. Pensa, C. Robardet, and J.-F. Boulicaut. A bi-clustering framework for cat-
egorical data. In Proceedings of the 9th European Conference on Principles and

195

Bibliography

Practice of Knowledge Discovery in Databases (PKDD), Porto, Portugal, pages
643–650. Springer-Verlag, 2005.

G. Rasch. Probabilistic Models for Some Intelligence and Attainment Tests. Dan-
marks paedagogiske Institut, 1960.

J. Rissanen. Modeling by shortest data description. Automatica, 14(1):465–471,
1978.

J. Rissanen. Information and complexity in statistical modeling. Springer Verlag,
2007.

G. Schwarz. Estimating the dimension of a model. The Annals of Statistics, 6
(2):461–464, 1978.

J. P. Shaffer. Multiple hypothesis testing. The Annual Review of Psychology, 46
(1):561–584, 1995.

C. E. Shannon. A mathematical theory of communication. Bell System Techni-
cal Journal, 27:379–423, 1948.

A. Siebes and R. Kersten. A structure function for transaction data. In Proceed-
ings of the 11th SIAM International Conference on Data Mining (SDM), Mesa,
AZ. SIAM, 2011.

A. Siebes, J. Vreeken, and M. van Leeuwen. Item sets that compress. In
Proceedings of the 6th SIAM International Conference on Data Mining (SDM),
Bethesda, MD, pages 393–404. SIAM, 2006.

R. Srikant and R. Agrawal. Mining quantitative association rules in large
relational tables. ACM SIGMOD Record, 25(2):1–12, 1996.

P. N. Tan, V. Kumar, and J. Srivastava. Selecting the right interestingness
measure for association patterns. In Proceedings of the 8th ACM International
Conference on Knowledge Discovery and Data Mining (SIGKDD), Edmonton,
Alberta, pages 32–41. ACM New York, NY, USA, 2002.

P. N. Tan, V. Kumar, and J. Srivastava. Selecting the right objective measure
for association analysis. Information Systems, 29(4):293–313, 2004.

N. Tatti. Computational complexity of queries based on itemsets. Information
Processing Letters, 98(5):183–187, 2006a.

196

Bibliography

N. Tatti. Safe projections of binary data sets. Acta Informatica, 42(8–9):617–638,
2006b.

N. Tatti. Maximum entropy based significance of itemsets. Knowledge and
Information Systems (KAIS), 17(1):57–77, 2008.

N. Tatti. Probably the best itemsets. In Proceedings of the 16th ACM Interna-
tional Conference on Knowledge Discovery and Data Mining (SIGKDD), Wash-
ington, DC, pages 293–302. ACM, 2010.

N. Tatti and H. Heikinheimo. Decomposable families of itemsets. In Proceed-
ings of the European Conference on Machine Learning and Principles and Practice
of Knowledge Discovery in Databases (ECML PKDD), Antwerp, Belgium, pages
472–487, 2008.

N. Tatti and M. Mampaey. Using background knowledge to rank itemsets.
Data Mining and Knowledge Discovery, 21(2):293–309, 2010.

N. Tatti and J. Vreeken. Finding good itemsets by packing data. In Proceedings
of the 8th IEEE International Conference on Data Mining (ICDM), Pisa, Italy,
2008.

T. Uno, M. Kiyomi, and H. Arimura. LCM ver. 2: Efficient mining algorithms
for frequent/closed/maximal itemsets. In Proceedings of the IEEE ICDM
Workshop on Frequent Itemset Mining Implementations (FIMI), Brighton, UK,
2004.

T. Van den Bulcke, P. Vanden Broucke, V. Van Hoof, K. Wouters, S. Van-
den Broucke, G. Smits, E. Smits, S. Proesmans, T. Van Genechten, and
F. Eyskens. Data mining methods for classification of Medium-Chain Acyl-
CoA dehydrogenase deficiency (MCADD) using non-derivatized tandem
MS neonatal screening data. Biomedical Informatics, 44(2):319–325, 2011.

N. K. Vereshchagin and P. M. B. Vitanyi. Kolmogorov’s structure functions
and model selection. IEEE Transactions on Information Theory, 50(12):3265–
3290, 2004.

J. Vreeken, M. van Leeuwen, and A. Siebes. Preserving privacy through data
generation. In Proceedings of the 7th IEEE International Conference on Data
Mining (ICDM), Omaha, NE, pages 685–690. IEEE, 2007.

197

Bibliography

J. Vreeken, M. van Leeuwen, and A. Siebes. Krimp: Mining itemsets that
compress. Data Mining and Knowledge Discovery, 23(1):169–214, 2011.

C. S. Wallace. Statistical and inductive inference by minimum message length.
Springer-Verlag, 2005.

C. Wang and S. Parthasarathy. Summarizing itemset patterns using prob-
abilistic models. In Proceedings of the 12th ACM International Conference on
Knowledge Discovery and Data Mining (SIGKDD), Philadelphia, PA, pages 730–
735, 2006.

J. Wang and G. Karypis. SUMMARY: Efficiently summarizing transactions
for clustering. In Proceedings of the 4th IEEE International Conference on Data
Mining (ICDM), Brighton, UK, pages 241–248. IEEE, 2004.

G. I. Webb. Discovering significant patterns. Machine Learning, 68(1):1–33,
2007.

G. I. Webb. Self-sufficient itemsets: An approach to screening potentially in-
teresting associations between items. ACM Transactions on Knowledge Dis-
covery from Data, 4(1), 2010.

T. Wu, Y. Chen, and J. Han. Association mining in large databases: A re-
examination of its measures. In Proceedings of the European Conference on Ma-
chine Learning and Principles and Practice of Knowledge Discovery in Databases
(ECML PKDD), Warsaw, Poland, pages 621–628, 2007.

X. Yan, H. Cheng, J. Han, and D. Xin. Summarizing itemset patterns: A
profile-based approach. In Proceedings of the 11th ACM International Confer-
ence on Knowledge Discovery and Data Mining (SIGKDD), Chicago, IL, pages
314–323. ACM, 2005.

M. J. Zaki. Generating non-redundant association rules. In Proceedings of the
6th ACM International Conference on Knowledge Discovery and Data Mining
(SIGKDD), Boston, MA, pages 34–43, 2000.

M. J. Zaki and K. Gouda. Fast vertical mining using diffsets. In Proceedings of
the 9th ACM International Conference on Knowledge Discovery and Data Mining
(SIGKDD), Washington, DC, pages 326–335. ACM, 2003.

198

Bibliography

M. J. Zaki and N. Ramakrishnan. Reasoning about sets using redescription
mining. In Proceedings of the 11th ACM International Conference on Knowledge
Discovery and Data Mining (SIGKDD), Chicago, IL, pages 364–373. ACM,
2005.

M. J. Zaki, S. Parthasarathy, M. Ogihara, and W. Li. New algorithms for fast
discovery of association rules. In Proceedings of the 13th ACM International
Conference on Knowledge Discovery and Data Mining (SIGKDD), San Jose, CA,
volume 20, 1997.

199

Index

µ-Miner, 31

Apriori, 12
association rule, 9
attribute cluster, 47
attribute set

closed, 26
generator, 26
non-derivable, 27

AttributeClustering, 59
AttributeSetMine, 32

background knowledge, 2, 98, 150
Bayesian Information Criterion, see

bic

beam search, 65
Bell number, 48
bic, 18, 114, 133

canonical description, 54
cluster similarity, 53
code table, 48
column margins, 98, 151
ComputeBlockSizes, 141
ComputeBoundsProb, 112
ComputeLazarusProb, 110
ComputeRowMarginProb, 107

ComputeSizeProbabilities, 154
confidence, 9
cover, 8

data mining, 1
dependence, 24
DependenceRuleMine, 34

Eclat, 14
empirical distribution, 8
entropy, 16, 24
EntropyQie, 33

FindMostInformativeItemset, 160
frequency, 9
frequent itemset mining, 7

inclusion-exclusion, 15, 33, 142
quick, 33, 143

information theory, 15
itemset, 8

closed, 14, 26, 138
free, 14, 138
generalized, 9
generator, 14, 138
non-derivable, 14, 27, 138

iterative scaling, 103, 139
IterativeScaling, 139

201

Index

IterScale, 104

KDD, 1
Kolmogorov complexity, 18
Kraft’s inequality, 19
Kullback-Leibler divergence, 16, 157

lattice, 11
lazarus count, 99

Maximum Entropy, 100, 130
mdl, 18, 46, 134

refined, 18, 54
two-part, 18

Minimum Description Length, see
mdl

Minimum Message Length, 18
model selection, 17
monotonicity, 11, 24
mtv, 157
mutual information, 17, 24, 53

Occam’s razor, 17
optimal code, 16

pattern mining, 7
pattern set, 15, 129
prequential coding, 55

QieBlockSizes, 145

redundancy, 13, 28, 137
row margins, 98, 105, 152

simulated annealing, 66
support, 8

tid list, 13
transaction, 8
transaction bounds, 99, 109

universal code, 55
UpdateRowMarginProb, 108
UpdateSizeProbabilities, 154

202

	Acknowledgements
	Summary
	List of Publications
	Contents
	Introduction
	Thesis Outline

	Preliminaries
	Pattern Mining
	Information Theory
	Model Selection

	Mining Non-redundant Information-TheoreticDependencies between Attribute Sets
	Introduction
	Related Work
	Strong Dependence Rules
	Rule Redundancy
	Problem Statement
	The -Miner Algorithm
	Experiments
	Conclusions

	Summarizing Categorical Data by Clustering Attributes
	Introduction
	Summarizing Data by Clustering Attributes
	Mining Attribute Clusterings
	Alternative Approaches
	Related Work
	Experiments
	Discussion
	Conclusions

	Using Background Knowledge to Rank Itemsets
	Introduction
	Statistics as Background Knowledge
	Maximum Entropy Model
	Solving the Maximum Entropy Model
	Computing Statistics
	Estimating Itemset Frequencies
	Experiments
	Related Work
	Conclusions

	Succinctly Summarizing Data with Informative Itemsets
	Introduction
	Related Work
	Identifying the Best Summary
	Problem Statements
	Mining Informative Succinct Summaries
	Experiments
	Discussion
	Conclusions

	Conclusions
	Nederlandse Samenvatting
	Bibliography
	Index

