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Preface 
 

Traditionally, outlier mining and anomaly discovery focused on the automatic detection of highly 
deviating objects. It has been studied for several decades in statistics, machine learning, and data 
mining, and has led to a lot of insight as well as automated systems for the detection of outliers. 

However, for today's applications to be successful, mere identification of anomalies alone is not 
enough. With more and more applications using outlier analysis for data exploration and 
knowledge discovery, the demand for manual verification and understanding of outliers is steadily 
increasing. Examples include applications such as health surveillance, fraud analysis, or sensor 
monitoring, where one is particularly interested in why an object seems outlying. 

 Consider outlier analysis in the domain of health surveillance. An outlier might be a 
patient that shows high deviation in specific vital signals like “heart beat rate” and “skin 
humidity”. In case of health surveillance, only being detected as done by traditional 
algorithms is not sufficient: health professionals have to be able to verify the reasons for 
why this patient stands out in order to provide medical treatment accordingly. A key task 
in outlier analysis is to assist the expert in this verification. Hence, outlier mining 
algorithms should provide additional descriptive information. In particular, these outlier 
descriptions should highlight the specific deviation of an outlier in contrast to regular 
patients in easily understandable terms. 

Even though outlier detection has been studied for several decades, awareness for the need of 
outlier descriptions is only recent. Mining outlier descriptions is currently being studied in different 
forms in different fields, such as in contrast mining, pattern mining, data compression, graph outlier 
mining, subspace outlier mining, in addition to other fields including data visualization, image 
saliency detection, and astronomy. We see a large overlap in the techniques of these different fields 
and believe the developments in either setting can have a significant impact on the other.  

Our aim is to bring these and other communities together in one venue. With ODD, our objectives 
are to:  1) increase the general interest on this important topic in the broader research community; 
2) bring together experts from closely related areas (e.g., outlier detection and contrast mining) to 
shed light on how this emerging research direction can benefit from other well-established areas; 
3) provide a venue for active researchers to exchange ideas and explore important research issues 
in this area. Overall, the idea behind ODD is that outlier detection and description together will 
provide novel techniques that assist humans in manual outlier verification by easy-to-understand 
descriptions, and so will help to advance the state of the art and applicability of outlier mining. 

The main program of ODD’13 consists of six research papers, selected out of nine submissions, 
together covering various aspects of outlier detection and description. We sincerely thank the 
authors of the submissions as well as the attendees of the workshop. We wish to thank the 
members of our program committee for their help in selecting a set of high-quality papers. 
Furthermore, we are very grateful to Charu Aggarwal and Raymond Ng for giving keynote 
presentations about their recent work on outlier analysis. 

Leman Akoglu, Emmanuel Müller, Jilles Vreeken 
 July 2013  
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Abstract 
Personalized medicine has been hailed as one of the main directions for medical research in this 
century. In the first half of the talk, we give an overview on our personalized medicine projects that 
use gene expression, proteomics, DNA and clinical features. In the second half, we give two 
applications where outlier detection is valuable for the success of our work. The first one focuses 
on identifying mislabeled patients, and the second one deals with quality control of microarrays.  

Bio 
Dr. Raymond Ng is a professor in Computer Science at the University of British Columbia. His main 
research area for the past two decades is on data mining, with a specific focus on health informatics 
and text mining. He has published over 150 peer-reviewed publications on data clustering, outlier 
detection, OLAP processing, health informatics and text mining. He is the recipient of two best 
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one of the program co-chairs of the 2009 International conference on Data Engineering, and one of 
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chairs of the 2008 ACM SIGMOD conference. He was an editorial board member of the Very large 
Database Journal and the IEEE Transactions on Knowledge and Data Engineering until 2008.  

For the past decade, Dr. Ng has co-led several large scale genomic projects, funded by Genome 
Canada, Genome BC and NSERC. The total amount of funding of those projects well exceeded $40 
million Canadian dollars. He now holds the Chief Informatics Officer position of the PROOF Centre 
of Excellence, which focuses on biomarker development for end-stage organ failures. 
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ABSTRACT
Support Vector Machines (SVMs) have been one of the most
successful machine learning techniques for the past decade.
For anomaly detection, also a semi-supervised variant, the
one-class SVM, exists. Here, only normal data is required
for training before anomalies can be detected. In theory,
the one-class SVM could also be used in an unsupervised
anomaly detection setup, where no prior training is con-
ducted. Unfortunately, it turns out that a one-class SVM
is sensitive to outliers in the data. In this work, we apply
two modifications in order to make one-class SVMs more
suitable for unsupervised anomaly detection: Robust one-
class SVMs and eta one-class SVMs. The key idea of both
modifications is, that outliers should contribute less to the
decision boundary as normal instances. Experiments per-
formed on datasets from UCI machine learning repository
show that our modifications are very promising: Comparing
with other standard unsupervised anomaly detection algo-
rithms, the enhanced one-class SVMs are superior on two
out of four datasets. In particular, the proposed eta one-
class SVM has shown the most promising results.

Keywords
One-Class SVM, Outlier Detection, Outlier Score, Support
Vector Machines, Unsupervised Anomaly Detection

1. INTRODUCTION
Anomalies or outliers are instances in a dataset, which

deviate from the majority of the data. Anomaly detection
is the task of successfully identifying those records within a
given dataset. Applications that utilize anomaly detection
include intrusion detection [22], medical diagnosis [17], fraud
detection [29] and surveillance [3].

In the anomaly detection domain, three different learning
setups based on the availability of labels exist [7]: Similar to

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ODD’13, August 11th, 2013, Chicago, IL, USA.
Copyright 2013 ACM 978-1-4503-2335-2 ...$15.00.

standard classification tasks, a supervised learning approach
can be used to detect anomalies. In this case, a training
dataset containing normal and outlying instances, which is
used to learn a model. The learned model is then applied
on the test dataset in order to classify unlabeled records
into normal and anomalous records. The second learning
approach is semi-supervised, where the algorithm models
the normal records only. Records that do not comply with
this model are labeled as outliers in the testing phase. The
last learning setup is unsupervised. Here, the data does not
contain any labeling information and no separation into a
training and testing phase is given. Unsupervised learning
algorithms assume that only a small fraction of the data is
outlying and that the outliers exhibit a significantly different
behavior than the normal records.

In many practical application domains, the unsupervised
learning approach is particularly suited when no labeling in-
formation is available. Moreover, in some applications the
nature of the anomalous records is constantly changing, thus
obtaining a training dataset that accurately describe out-
liers is almost impossible. On the other hand, unsupervised
anomaly detection is the most difficult setup since there is
no decision boundary to learn and the decision is only based
on intrinsic information of the dataset.

Unsupervised anomaly detection algorithms can be cate-
gorized according to their basic underlying methodology [7].
The most popular and also often best performing category
for unsupervised learning are nearest-neighbor based meth-
ods. The strength of those algorithms stem from the fact
that they are inherently unsupervised and have an intuitive
criteria for detecting outliers. Their limitations include the
quadratic computational complexity and a possible incor-
rectness when handling high dimensional data.

Support Vector Machines are today a very popular ma-
chine learning technique that can be used in a variety of
applications. This includes for example handwritten digit
recognition, object recognition, speaker identification, text
categorization [6] and also anomaly detection. In those ap-
plications, SVMs perform at least as good as other methods
in terms of the generalization error [6]. SVMs take the ca-
pacity of the model into account, which is the flexibility of
the learned model to represent any training dataset with a
minimal error. This makes SVMs a Structure Risk Mini-
mization (SRM) procedure which is a stimulating alterna-
tive to the traditional Empirical Risk Minimization (ERM)
procedures.
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There are many factors that contributed to the high pop-
ularity of SVMs today. First of all, its theory is heavily
investigated and it comes with a convex optimization ob-
jective ensuring that the global optimum will be reached.
Moreover, its solution is sparse making it really efficient in
comparison to other kernel-based approaches [4]. Finally,
some kernels even allow SVMs to be considered as a dimen-
sionality reduction technique [32]. Thus it is argued that
it can be used to overcome the “curse of dimensionality”,
which make SVMs theoretically very attractive for the un-
supervised anomaly detection problem.

2. RELATED WORK
As already mentioned, the most popular category for un-

supervised anomaly detection are nearest-neighbor based al-
gorithms. Here, global methods, for example the k-nearest
neighbor [23, 2] and local methods exist. For the latter a
huge variety of algorithms have been developed, many based
on the Local Outlier Factor (LOF) [5]: the Connectivity-
Based Outlier Factor (COF) [27], the Local Outlier Proba-
bility (LoOP) [15], the Influenced Outlierness (INFLO) [14]
and the parameter-free Local Correlation Integral (LOCI) [21].
All basically assume that outliers lie in sparse neighborhoods
and are far away from their nearest-neighbors [7].

Clustering based algorithms cluster the data and measure
the distance from each instance to its nearest cluster center.
The basic assumption is that outliers are far away from the
normal clusters or appear in small clusters [7]. Algorithms
include the Cluster-based Outlier Factor (CBLOF) [12] and
the Local Density Cluster-based Outlier Factor (LDCOF) [1].
For the unsupervised anomaly detection problem, the nearest-
neighbor based algorithms tend to be more capable of accu-
rately identifying outliers [1]. On the other hand, clustering
based anomaly detection has theoretically a lower computa-
tional effort, such that it could be preferred in cases where
large datasets have to be processed.

Among these two often used categories, also others have
been investigated: Classification algorithms, statistical ap-
proaches, Artificial Neural Networks (ANNs) and Support
Vector Machine (SVMs) [7]. The majority of these cat-
egories require a labeled training set and hence they are
of little applicability in an unsupervised learning setting.
The Histogram-based Outlier Score (HBOS) is an unsuper-
vised statistical based approach that was suggested in [10].
It computes a histogram for each feature individually and
then the univariate results are combined in order to pro-
duce the final score. It is significantly faster than the other
unsupervised anomaly detection algorithms at the expense
of precision. Replicator Neural Networks (RNNs) [11] are
a semi-supervised neural network based approach. Here, an
artificial neural network is trained such that the output is a
replica of the input. The reconstruction error is then used as
an anomaly score. Another semi-supervised approach is the
one-class SVM [25], a special variant of a SVM that is used
for novelty detection. Details of which are covered in Sec-
tion 3. However, a one-class SVM could also be used in an
unsupervised setup. Then, training and testing is applied on
the same data. Unfortunately, the training on a dataset al-
ready containing anomalies does not result in a good model.
This is due to the fact that outliers can influence the decision
boundary of a one-class SVM significantly.

In a supervised anomaly detection setting, Mukkamala et
al. [20] showed that SVM based algorithms are superior com-

pared to ANN based algorithms for the intrusion detection
problem. SVMs had a shorter training time and produced
better accuracy. The authors stated that the main limita-
tion of SVMs is the fact that it is a binary classifier only.
This limits the breadth of information that can be obtained
about the type and degree of intrusions.

One class classification (OCC) is the task of learning to de-
scribe a target class in order to effectively identify its mem-
bers. Following Vapnik’s [31] intuition, most approaches
attempt to find a boundary around the dataset. The for-
mulation of one-class SVM proposed by Schölkopf et al [25]
finds the boundary in the form a hyperplane. This is the
formulation that we attempt to enhance. Support vector do-
main description (SVDD) proposed by Tax et al. [28] strives
to find the minimum enclosing hypersphere that best de-
scribes the data. Both of the above mentioned formulations
produce an equivalent solution in case of constant kernel
diagonal entries [25]. Quarter-sphere support vector ma-
chines [16] were designed to handle intrusion detection data
which have one-sided features centered around the origin.
It fixes the center of the quarter sphere at the origin yield-
ing a much simpler linear programming optimization objec-
tive. Liu and Zheng [18] proposed a SVM variant called
MEMEM that combines between the discriminative capa-
bilities of SVMs and the descriptive capabilities of one-class
SVMs. This makes it particularly suited for handling un-
balanced datasets. However it is a completely supervised
approach.

3. ONE-CLASS SVMs

3.1 Motivation
In contrast to traditional SVMs, one-class SVMs attempt

to learn a decision boundary that achieves the maximum
separation between the points and the origin [24]. Interest-
ingly this was the initial idea from which traditional super-
vised SVMs emerged. Its origin date back to the earliest
work of Vapnik et al. in 1963 [30]. The idea was hindered
by the inability to learn non-linear decision boundaries as
well as the inability to account for outliers. Both of these
problems were solved by the introduction of kernels and the
incorporation of soft margins. A one-class SVM uses an im-
plicit transformation function φ(·) defined by the kernel to
project the data into a higher dimensional space. The algo-
rithm then learns the decision boundary (a hyperplane) that
separates the majority of the data from the origin. Only a
small fraction of data points are allowed to lie on the other
side of the decision boundary: Those data points are con-
sidered as outliers.

The Gaussian kernel in particular guarantees the existence
of such a decision boundary [24]. By observing that all the
kernel entries are non-negative, it can be concluded that
all the data in the kernel space lies in the same quadrant.
This makes the Gaussian kernel well suited to deal with any
arbitrary dataset. Let the function g(·) be defined as follows:

g(x) = wTφ(x)− ρ (1)

where w is the vector perpendicular to the decision boundary
and ρ is the bias term. Then, Equation 2 shows the decision
function that one-class SVMs use in order to identify normal
points. The function returns a positive value for normal
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points, negative otherwise:

f(x) = sgn(g(x)). (2)

One-class SVMs are traditionally used in a semi-supervised
setting. The output of the algorithm is a binary label spec-
ifying whether the point is normal or not.

3.2 Objective
Equation 3 shows the primary objective of one-class SVMs:

minw,ξ,ρ
‖w‖2

2
− ρ+

1

νn

n∑
i=1

ξi

subject to: wTφ(xi) ≥ ρ− ξi, ξi ≥ 0,

(3)

where ξi is the slack variable for point i that allows it to lie
on the other side of the decision boundary, n is the size of
the training dataset and ν is the regularization parameter.

The deduction from the theoretical to the mathemati-
cal objective can be stated by the distance to the decision
boundary. The decision boundary is defined as:

g(x) = 0. (4)

In this context, the distance of any arbitrary data point to
the decision boundary can be computed as:

d(x) =
|g(x)|
‖w‖ . (5)

Thus, the distance that the algorithm attempts to maximize
can be obtained by plugging the origin into the equation
yielding ρ

‖w‖ . This can also be stated as the minimization

of ‖w‖
2

2
− ρ.

The second part of the primary objective is the minimiza-
tion of the slack variables ξi for all points. ν is the regu-
larization parameter and it represents an upper bound on
the fraction of outliers and a lower bound on the number of
support vectors. Varying ν controls the trade-off between ξ
and ρ.

To this end, the primary objective is transformed into a
dual objective, shown in Equation 6. The transformation
allows SVMs to utilize the kernel trick as well as to reduce
the number of variables to one vector. It basically yields a
Quadratic Programming (QP) optimization objective.

minα
αTQα

2

subject to: 0 ≤ αi ≤
1

νn
,

n∑
i=1

αi = 1,

(6)

where Q is the kernel matrix and α are the Lagrange multi-
pliers.

3.3 Outlier Score
A continuous outlier score reveals more information than a

simple binary label such as the output of Equation 2. Similar
to [1], our goal is to compute an anomaly score such that a
larger score corresponds to significantly outlying points.

In Equation 7, we propose a possible way to compute such
a score. Here, gmax is the maximum directed distance be-
tween the dataset points and the decision boundary. The
score is scaled by that distance such that the points that are
lying on the decision boundary would have an outlier score

of 1.0 similar to [5]. A score larger than 1.0 indicates that
the point is a potential outlier.

f(x) =
gmax − g(x)

gmax
(7)

3.4 Influence of Outliers

i
ξ

support
vectors

Figure 1: A 2 dimensional example of the decision
boundary in the kernel space learned by a one-class
SVM.

Figure 1 shows an example of a resulting decision bound-
ary in the presence of outliers in the dataset. The decision
boundary is shifted towards the outlying black points and
they are additionally the support vectors in this example.
Thus the outliers are the main contributors to the shape of
the decision boundary. Whilst the shifting of the decision
boundary might not have a great influence on the overall
rank of the points when using Equation 7, the shape of the
decision boundary will. To overcome this problem, in the fol-
lowing section two methods are proposed in order to make
the decision boundary less dependent on these outliers.

4. ENHANCING ONE-CLASS SVMs
In this section two approaches are proposed to tackle the

challenge that outliers do significantly contribute to the de-
cision boundary. Both approaches are inspired from work
done in order to make traditional supervised SVMs more
robust against noise in the training dataset. They have the
additional advantage of maintaining the sparsity of the SVM
solution.

4.1 Robust One-class SVMs

4.1.1 Motivation
The approach is based on Song et al. [26], where the au-

thors attempted to make the supervised SVM more robust
in case of existing outliers in the training data. The key
idea is the minimization of the of the Mean Square Error
(MSE) for tackling outliers using the center of class as an
averaged information. The conducted experiments showed
that the generalization performance improved and the num-
ber of support vector decreased compared to the traditional
SVM.
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The main modification of robust one-class SVMs is with
respect to the slack variables. As illustrated in Figure 1, a
non-zero slack variable ξi allows a point xi to lie on the other
side of the decision boundary. In the case of robust one-class
SVMs, the slack variables are proportional to the distance
to the centroid. This allows points that are distant from the
center to have a large slack variable. Since the slack variables
are fixed, they are dropped from the minimization objective.
On the one hand, this causes the decision boundary to be
shifted towards the normal points. On the other hand, it
loses part of the interpretability of the results as there is
no restriction on the number of points that can appear on
the other side of the decision boundary. Theoretically, all
the points can be labeled as outlying using Equation 2 and
consequentially, the majority could have a score greater than
1.0 when using Equation 7.

support 
vectors

center

Di

iλD

Figure 2: Modifying the slack variables for robust
one-class SVMs. Each slack variable is proportional
to the distance to the centroid. Dropping the min-
imization of the slack variables from the objective
function causes the decision boundary to be shifted
towards the normal points.

Figure 2 illustrates how the slack variables are modified.
Points that are further away from the center of the data
are allowed to have a larger slack variable. Then, the deci-
sion boundary is shifted towards the normal points and the
outliers are no longer support vectors.

4.1.2 Objective
The objective of the proposed robust one-class SVMs is

stated in Equation 8. Here, the slack variables are dropped
from the minimization objective. They only appear in the
constraints as D̂i, whereas λ is the regularization parameter.

min w,ρ
‖w‖2

2
− ρ

subject to wTφ(xi) ≥ ρ− λ ∗ D̂i
(8)

The slack variable Di is computed using Equation 9. It
represents the distance to the centroid in the kernel space.
Since the transformation function is implicitly defined by the
kernel (Q), Equation 9 can not directly be used. Thus, an
approximation that was introduced by Hu et al [13] is com-
puted instead. This approximation is summarized in Equa-
tion 10. Here, the expression 1

n

∑n
i=1 φ(xi)

1
n

∑n
i=1 φ(xi) is

a constant and hence it can be dropped. The normalized
distance D̂i appears in the optimization Objective 8.

Di = ‖φ(xi)−
1

n

n∑
i=1

φ(xi)‖2

D̂i =
Di

Dmax

(9)

Di = ‖φ(xi)−
1

n

n∑
i=1

φ(xi)‖2

= Q(xi, xi)−
2

n

n∑
j=1

Q(xi, xj)−
1

n

n∑
i=1

φ(xi)
1

n

n∑
i=1

φ(xi)

≈ Q(xi, xi)−
2

n

n∑
j=1

Q(xi, xj)

(10)
The dual objective of the robust one-class SVM can be

summarized as follows:

min α
αTQα

2
+ λDTα

subject to 0 ≤ α ≤ 1, eTα = 1

(11)

It can be seen that it is only a minor modification to the
dual objective of the one-class SVM objective in Equation 6
and hence it can be incorporated easily in the original solver.

4.2 Eta One-class SVMs

4.2.1 Motivation
In contrast to robust one-class SVMs, this approach uses

an explicit outlier suppression mechanism. The methodol-
ogy for supervised SVMs was first proposed by Xu et al. [33].
This suppression mechanism is achieved by introducing a
variable η, which represents an estimate that a point is nor-
mal. Thus an outlying point would ideally have η set to zero.
This variable controls the portion of the slack variables that
is going to contribute to the minimization objective.

support
vectors

η=0

Figure 3: The idea of the eta one-class SVM: Out-
liers have small values for η and do thus not con-
tribute to the decision boundary.

Figure 3 shows how the introduction of η affects the deci-
sion boundary. The outlying points would be assigned η = 0
thus they would not be considered whilst learning the deci-
sion boundary. Here, the decision boundary would be influ-
enced only by the normal points.
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4.2.2 Objective
Equation 12 shows the objective of the eta one-class SVM.

Outlying points would have η set to 0 and hence they would
not be contributing to the optimization objective. The dis-
advantage of introducing η is that the objective loses part
of its intuitive interpretation: Minimizing the slack variable
is equivalent to minimizing the number of outliers. A vari-
able β is introduced in order to cope with this challenge. It
controls the maximum number of points that are allowed to
be outlying:

min w,ρ min ηi∈{0,1}
‖w‖2

2
− ρ+

n∑
i=1

ηimax(0, ρ− wT ∗ φ(xi)),

subject to eT η ≥ βn.
(12)

The objective is composed of two parts: A convex quadratic
problem in w for a fixed η, and a linear problem in η for a
fixed w. However, the objective is not jointly convex. This
means that minimizing each part alternatively is not guar-
anteed to yield a global minimum. The above formulation
will be relaxed similar to what was proposed in the origi-
nal work [33] into a semi-definite problem. Then, it will be
relaxed into a iterative formulation due to the limited prac-
ticability of semi-definite programs. The iterative relaxation
is achieved using concave duality similar to what was used
by Zhou et al. [36].

Semi-Definite Programming Problem
The non-convex optimization objective of Equation 12 can
be relaxed by relaxing the constraints on η. For a fixed η,
introducing Lagrange multipliers would yield the following
dual objective:

min 0≤η≤1,M=η∗ηT max0≤α≤1
αTQ ·Mα

2
,

subject to eT ∗ η ≥ βn, αT η = 1, 0 ≤ α ≤ 1.

(13)

The formulation in Equation 13 is convex in both, η and
α. The final obstacle is the constraint on matrix M as it is
a non-convex quadratic constraint. The constraint can be
approximated to M � η ∗ ηT yielding a convex optimization
objective:

min 0≤η≤1 min M�η∗ηT max0≤α≤1
αTQ ·Mα

2
(14)

Objective 14 is equivalent to solving the following semidef-
inite programming (SDP) problem:

minη,δ,γ,σ,Mδ

subject to eT η ≥ βn, 0 ≤ η ≤ 1, γ ≥ 0, σ ≥ 0,

M � η ∗ ηT[
2∗(δ−eT ∗σ) (γ−σ)T

γ−σ Q·M

]
� 0[

1 ηT

γ−σ Q·M

]
= 0.

(15)

Iterative Relaxation
The SDP solution is expensive to compute and hence an al-
ternative approach was proposed by Zhou et al. [36]. It uses
a concave duality in order to relax Equation 12 into a multi-
stage iterative problem. A discussion of why the procedure

yields a good approximation is given by Zhang [35]. The re-
laxation yields an objective that has a convex and a concave
part, which makes the iterative approach a generalization of
a concave convex procedure (OCCC) [34] that is guaranteed
to converge.

Let the non-convex regularization in Equation 12 corre-
spond to g(h(w)), where h(w) = max(0, ρ − wTφ(x)) and
g(u) = infη∈{0,1}[η

Tu], using concave duality, the objective
can be reformulated into

min w,ρ,ηEvex + Ecave

Evex =
‖w‖2

2
− ρ+ ηTh(w), Ecave = g∗(η),

(16)

where g∗ is the concave dual of g.
Equation 16 can be solved by iteratively minimizing Evex

and Ecave. Initially η is set to a vector of ones. Then the
following steps are done until convergence:

1. For a fixed η, minimize Evex which corresponds to the
following dual objective:

minα
αTQ ·Nα

2
,

where N = η ∗ ηT ,

subject to αT η = 1, 0 ≤ α ≤ 1.

2. For fixed w and ρ, the minimum of Ecave is at:

ui = max(0, ρ− wTφ(xi)),

ηi = I(βn− s(i))

where s(i) is the order of function over u arranged in
ascending order and I is the indicator function.

5. EXPERIMENTS
In this section, all the proposed one-class SVM based al-

gorithms are compared against standard nearest-neighbor,
clustering and statistical based unsupervised anomaly de-
tection algorithms. The experiments were conducted us-
ing RapidMiner [19], where all of the algorithms are im-
plemented in the Anomaly Detection extension1. The SVM
based algorithms are all using the Gaussian kernel, the spread
of the kernel was tuned similar to what is proposed by Evan-
gelista et al. [8]. For the Gaussian Kernel, it is desirable to
attain diverse kernel entries as it is a measure of similar-
ity between data points. Evangelista et al. achieved that
by maximizing the ratio of the standard deviation of the
non-diagonal entries of the kernel matrix to its mean. The
maximization objective is solved using gradient ascent.

The area under the ROC curve (AUC) is used as a per-
formance measure, where the curve is created by varying
the outlier threshold. It basically measures the quality of
the ranking of outliers among normal records. The results
of the AUC of running the different algorithms are included
in Table 4. Figure 4 shows exemplary ROC curves of the
algorithms for two different datasets. In each subfigure, the
three SVM based algorithms are compared against the best
performing algorithm from each of the other categories.

Another important comparison is between the standard
semi-supervised one-class SVM and the proposed improve-
ments of this work: the robust one-class SVM and eta one-
class SVM. In addition to the performance measured by the
1Available at
http://code.google.com/p/rapidminer-anomalydetection/
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AUC, also the number of support vectors is an important
factor to consider as it directly affects the computation time
of the SVM based algorithms. The number of support vec-
tors are shown in Table 2. The average CPU execution time
of the algorithms over 10 runs is shown in Table 3.

5.1 Datasets
Datasets from the UCI machine learning repository [9]

are used for the evaluation of the anomaly detection algo-
rithms. Most of the datasets of UCI repository are tradi-
tionally dedicated for classification tasks. Hence they have
to be preprocessed in order to serve for the evaluation of un-
supervised anomaly detection algorithms. This is typically
performed by picking a meaningful outlying class and sam-
pling the outliers to a small fraction [1]. Table 1 summarizes
the characteristics of the preprocessed datasets.

The preprocessing was also performed using RapidMiner.
For ionosphere, shuttle and satellite, stratified sampling was
used to reduce the number of outliers (for reproducibility,
the pseudo random generator seed was set to 1992). The
preprocessing of the breast-cancer dataset was identical to
the one proposed in [15].

5.2 Results
The results of the shuttle dataset are shown in Figure 4(a).

Here, the eta one-class SVM is superior to all the other algo-
rithms. The statistical based algorithm Histogram outper-
forms the nearest-neighbor and clustering based algorithms.
It also outperforms the robust one-class SVM. Surprisingly,
the standard one-class SVM outperforms the robust one-
class SVM for the shuttle dataset. However, robust one-class
produces a much sparser solution with only 5 support vec-
tors dropping the CPU execution by two thirds. Figure 4(b)
illustrates the results of the satellite dataset. Here, the SVM
based algorithms performed worst among all existing cate-
gories. The performance of the algorithms is comparable
at the first portion of the dataset. Which means that they
perform equally well in predicting the top outliers.

Table 4 summarizes the results in terms of AUC for all
algorithms on all four datasets. It can be seen that all SVM
based algorithms perform generally well on all datasets. For
ionosphere and shuttle the eta one-class SVM is even supe-
rior. For the breast-cancer dataset, SVM based algorithms
score on average. For the satellite dataset, where also many
support vectors have been found, results are below the av-
erage.

Table 2: Number of support vectors of SVM based
algorithms

Algorithm ionosphere shuttle breast-cancer satellite

One-class 106 21374 144 2085
Robust One-class 116 5 90 385
Eta One-class 37 8 48 158

6. DISCUSSION AND CONCLUSION
The experiments showed that the proposed SVM based

algorithms are well suited for the unsupervised anomaly de-
tection problem. In two out of four datasets, SVM based
algorithms are even superior. They constantly outperform
all clustering based algorithms. In general, they perform at
least average on unsupervised anomaly detection problems.

For the satellite dataset, the performance of the SVM based
algorithms is slightly below the average. The main reason
why this is a challenging dataset for SVM based algorithms
is not known exactly, but we can observe that in this case
the number of support vectors is comparably high.

When comparing the SVM based algorithms with each
other, the eta one-class SVM seems to be the most promis-
ing one. On average, it produces a sparse solution and it
also performs best in terms of AUC. In general, the robust
one-class SVM produces a sparser solution than the stan-
dard one-class SVM, but in term of performance, there is
no significant improvement. In terms of time efficiency, for
larger datasets the enhanced algorithms are more efficient
due to the sparsity property.

When looking at computational effort, SVM based algo-
rithms have in general less than a quadratic time complexity
due to the sparsity property. However, the parameter tuning
for the Gaussian kernel similar to [8] pushes the complexity
back to quadratic time.

Additionally, we introduced a method for calculating an
outlier score based on the distance to the decision boundary.
In contrast to the binary label assigned by standard one-
class SVMs, it allows to rank the outliers, which is often
essential in an unsupervised anomaly detection setup. The
score also has a reference point, which means that scores in
the range of [0,1] can be considered to be normal.

In conclusion, SVM based algorithms have shown that
they can perform reasonably well for unsupervised anomaly
detection. Especially the eta one-class SVM is a suit-
able candidate for investigation when applying unsupervised
anomaly detection in practice.
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ABSTRACT
Research in anomaly detection suffers from a lack of realis-
tic and publicly-available problem sets. This paper discusses
what properties such problem sets should possess. It then
introduces a methodology for transforming existing classi-
fication data sets into ground-truthed benchmark data sets
for anomaly detection. The methodology produces data sets
that vary along three important dimensions: (a) point diffi-
culty, (b) relative frequency of anomalies, and (c) clustered-
ness. We apply our generated datasets to benchmark several
popular anomaly detection algorithms under a range of dif-
ferent conditions.

1. INTRODUCTION
Anomaly detection is an important task in many real-

world applications, such as identifying novel threats in com-
puter security [15, 23, 16, 21], finding interesting data points
in scientific data [26], and detecting broken sensors (and
other problems) in data sets [7]. Although a wide variety
of anomaly detection algorithms have been developed and
applied to these tasks [20, 11, 5, 31], a shortcoming of most
published work is that there is no standard methodology
for comparing anomaly detection methods. Instead, most
published work either addresses data sets from specific ap-
plications or else employs synthetic data. This leads to three
problems. First, with an application-specific data set, there
is no independent way to assess the difficulty of the anomaly
detection problem based on a standard set of properties of
the data. Second, an application-specific data set limits us
to the single data set from the application—there is no way
to generate new data sets (aside from sub-sampling) that
may differ in controlled ways. Third, with synthetic data
sets, there is no real-world validity to the anomalies, so it
is difficult to judge whether algorithms that work well on
such simulated data will actually work well in a real-world
setting.

In this paper, we attempt to address these shortcomings.
In particular, our main contribution is to present a method-
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ology for creating families of anomaly detection problems
from real-world data sets. We begin in Section 2 by dis-
cussing the properties that benchmark data sets should pos-
sess in order to support rigorous evaluations of anomaly
detection algorithms. Then in Section 3 we present the
methodology that we have developed to create data sets
with those properties. Section 4 describes an experiment
in which we apply the methodology to benchmark several
of the leading anomaly detection algorithms. Section 5 dis-
cusses the results of the experiment, and Section 6 presents
our conclusions and suggestions for future work.

2. REQUIREMENTS FOR ANOMALY DE-
TECTION BENCHMARKS

The most common goal of anomaly detection is to raise an
alarm when anomalous observations are encountered, such
as insider threats [17], cyber attacks [15, 23, 16, 21], machine
component failures [27, 28, 1], sensor failures [7], novel as-
tronomical phenomena [26], or the emergence of cancer cells
in normal tissue [22, 10]. In all of these cases, the underlying
goal is to detect observations that are semantically distinct
from normal observations. By this, we mean that the pro-
cess that is generating the anomalies is different from the
process that is generating the normal data points.

The importance of the underlying semantics suggests the
first three requirements for benchmark datasets.

Requirement 1: Normal data points should be drawn
from a real-world generating process. Generating data
sets from some assumed probability distribution (e.g., a mul-
tivariate Gaussian) risks not capturing any real-world pro-
cesses. Instead, as the field has learned from many years of
experience with benchmark problems, it is important that
the problems reflect the idiosyncrasies of real domains.

Requirement 2: The anomalous data points should
also be from a real-world process that is semanti-
cally distinct from the process generating the nor-
mal points. The anomalous points should not just be
points in the tails of the “normal” distribution. See, for ex-
ample, Glasser and Lindauer’s synthetic anomaly generator
[8].

Requirement 3: Many benchmark datasets are needed.
If we employ only a small number of data sets, we risk devel-
oping algorithms that only work on those problems. Hence,
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we need a large (and continually expanding) set of bench-
mark data sets to ensure generality and prevent overfitting.

Requirement 4: Benchmark datasets should be char-
acterized in terms of well defined and meaningful
problem dimensions that can be systematically var-
ied. An important goal for benchmarking is to gain in-
sight into the strengths and weaknesses of the various algo-
rithms. Ideally, we should identify those dimensions along
which anomaly detection problems might vary and then gen-
erate benchmark data sets that vary these dimensions in a
controlled fashion.

There is currently no established set of problem dimen-
sions for anomaly detection, and we expect this set to evolve
with experience. Here we propose four such dimensions: (a)
point difficulty, (b) relative frequency, (c) semantic varia-
tion, and (d) feature relevance/irrelevance. The remainder
of this section describes these in more detail.

Point difficulty measures the “distance” of an anomalous
data point from the normal data points. We propose a point
difficulty metric based on an oracle that knows the true gen-
erating processes underlying the “normal” and “anomalous”
points. Using this knowledge, we suppose that the oracle can
compute the probability P (y = normal|x) that a data point
x was generated by the “normal” distribution. The larger
this value is for an anomalous point x, the more difficult it
will be for an anomaly detection algorithm to discover that
x is anomalous. One aspect of applying anomaly detection
in adversarial settings (e.g., intrusion detection or insider
threat detection) is that the adversaries try to blend in to
the distribution of normal points.

Relative frequency is the fraction of the incoming data
points that are (true) anomalies. The behavior of anomaly
detection algorithms often changes with the relative fre-
quency. If anomalies are rare, then methods that pretend
that all training points are “normal” and fit a model to them
may do well. If anomalies are common, then methods that
attempt to fit a model of the anomalies may do well. In most
experiments in the literature, the anomalies have a relative
frequency between 0.01 and 0.1, but some go as high as 0.3
[14].

Semantic Variation is a measure of the degree to which the
anomalies are generated by more than one underlying pro-
cess. In this paper, we employ a measure of clusteredness as
a proxy for this. If the anomalies are tightly clustered, then
some anomaly detection algorithms will fail. For example,
methods based on measures of local probability density will
conclude that tightly clustered anomalies have high local
density and hence are not anomalous.

Feature Relevance/Irrelevance. In applications, many can-
didate features are often available. However, many anomaly
detection methods do not provide good feature selection
mechanisms. Benchmark data sets should systematically
vary the set of features to manipulate both the power of
the relevant features and the number of irrelevant or “noise”
features.

3. METHODOLOGY
We have developed a methodology that achieves most of

the requirements listed above. To achieve the first three re-
quirements, we develop 4,369 benchmark data sets by trans-
forming 19 data sets chosen from the UC Irvine reposi-
tory [2]. For each data set, we separate its data (e.g., the

classes of a classification problem) into two sets: “normal”
and “anomalous”. This ensures that these data points are
generated by distinct real-world processes rather than from
synthesized distributions. To develop a measure of point dif-
ficulty, we fit a kernel logistic regression classifier to all of the
available “normal” and “anomalous” data. This gives us an
approximation to the oracle estimate of P (y = normal|x).
We can then manipulate the point difficulty of a benchmark
data set by sampling the “anomalous” data points according
to their point difficulty. It is easy to manipulate the relative
frequency by varying the number of“anomalous”data points
to include. We vary the degree of semantic variation by se-
lecting data points that are either close together or far apart
according to a simple distance metric. Our current method-
ology does not vary the feature relevance/irrelevance. This
dimension is challenging to manipulate in a realistic manner,
and we will investigate it further in future work.

3.1 Selecting Data Sets
To ensure reproducibility of our experiments, we only worked

with data sets from the UCI data repository [2]. We selected
all data sets that match the following criteria:

• task : Classification (binary or multi-class) or Regres-
sion. No Time-Series.

• instances: At least 1000. No upper limit.

• features: No more than 200. No lower limit.

• values: Numeric only. Categorical features are ignored
if present. No missing values, except where easily ig-
nored.

To ensure objectivity, we applied this fixed set of criteria
rather than choosing data sets based on how well particular
anomaly detection algorithms performed or based on our
intuitions about which data sets might be better suited to
creating anomaly detection problems.

If necessary, each data set was sub-sampled to 10,000 in-
stances (while maintaining the class proportions for classifi-
cation problems). Each feature was normalized to have zero
mean and unit sample variance. We avoid time series be-
cause the majority of existing anomaly detection methods
are based on models intended for independent and identi-
cally distributed data rather than for structured data such
as time series data.

The 19 selected sets (grouped into natural categories) are
the following:

• binary classification: MAGIC Gamma Telescope, Mini-
BooNE Particle Identification, Skin Segmentation, Spam-
base

• multi-class classification: Steel Plates Faults, Gas Sen-
sor Array Drift, Image Segmentation, Landsat Satel-
lite, Letter Recognition, Optical Recognition of Hand-
written Digits, Page Blocks, Shuttle, Waveform, Yeast

• regression: Abalone, Communities and Crime, Con-
crete Compressive Strength, Wine, Year Prediction

3.2 Defining Normal versus Anomalous Data
Points

A central goal of our methodology is that the “normal”
and “anomalous” points should be produced by semantically
distinct processes. To achieve this, we did the following.
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For Irvine data sets that were already binary classification
problems, we choose one class as “normal” and the other as
“anomalous”. Note that there is some risk that the “anoma-
lous” points will have low semantic variation, since they all
belong to a single class.

For multi-class data sets, we partition the available classes
into two sets with the goal of maximizing the difficulty of
telling them apart. Our heuristic procedure begins by train-
ing a Random Forest [3] to solve the multi-class classification
problem. Then we calculate the amount of confusion be-
tween each class. For each data point xi, the Random Forest
computes an estimate of P (ŷi|xi), the predicted probability
that xi belongs to class ŷi. We construct a confusion ma-
trix C in which cell C[j, k] contains the sum of P (ŷi = k|xi)
for all xi whose true class yi = j. We then define a graph
in which each node is a class and each edge (between two
classes j and k) has a weight equal to C[j, k] +C[k, j]. This
is the (unnormalized) probability that a data point in class j
will be confused with a data point in class k. We then com-
pute the maximum weight spanning tree of this (complete)
graph to identify a graph of “most-confusable” relationships
between pairs of classes. We then two-color this tree so that
no adjacent nodes have the same color. The two colors define
the two sets of points. This approximately maximizes the
confusions between “normal” and “anomalous” data points
and also tends to make both the “normal” and “anomalous”
sets diverse, which increases semantic variation in both sets.

For regression data sets, we compute the median of the
regression response and partition the data into two classes
by thresholding on this value. To the extent that low versus
high values of the response correspond to different generative
processes, this will create a semantic distinction between the
“normal” and the “anomalous” data points. Points near the
median will exhibit less semantic distinction, and they will
also have high point difficulty.

3.3 Computing Point Difficulty
After reformulating all 19 Irvine tasks as binary classifica-

tion problems, we simulate an omniscient oracle by applying
Kernel Logistic Regression (KLR [12, 30, 13]) to fit a condi-
tional probability model P (y|x) to the data. Anomalies are
labeled with y = 0 and normal points as y = 1. We then
compute the logistic response for each candidate anomaly
data point. Observe that points that are easy to discern from
the “normal” class will have responses P (y = 1|x) tending
toward 0, while points that KLR confuses with the “normal”
class will have responses above 0.5. Hence, for anomalous
points, this response gives us a good measure of point diffi-
culty.

For purposes of generating data sets, we assign each“anoma-
lous” data point to one of four difficulty categories:

• easy : Difficulty score ∈ (0, 0.16)

• medium: Difficulty score ∈ [0.16, 0.3)

• hard : Difficulty score ∈ [0.3, 0.5)

• very hard : Difficulty score ∈ [0.5, 1)

Although we doubt that experiments derived from “very
hard”candidate anomalies will resemble any real application
domain, we decided to include them in our tests to see what
impact they have on the results.

3.4 Semantic Variation and Clusteredness
Given a set of candidate “anomalous” data points, we ap-

plied the following algorithms to generate sets (of desired
size) that are either widely dispersed or tightly clustered
(as measured by Euclidean distance). To generate K dis-
persed points, we apply a facility location algorithm [9] to
choose K points as the locations of the facilities. To gen-
erate K tightly clustered points, we choose a seed point at
random and then compute the K − 1 data points that are
closest to it in Euclidean distance. Note that when the point
difficulty is constrained, then only candidate points of the
specified difficulty are considered in this process. To quan-
tify the clusteredness of the selected points, we measure the
normalized clusteredness, which is defined as ratio of the
sample variance of the “nominal” points to the sample vari-
ance of K selected “anomalous” points. When clusteredness
is less than 1, the “anomalous” points exhibit greater seman-
tic variance than the “normal” points. When clusteredness
is greater than 1, the “anomalous” points are more tightly
packed than the “normal” points (on average).

For purposes of analysis, we grouped the clusteredness
scores into six qualitative levels: high scatter (0, 0.25), medium
scatter [0.25, 0.5), low scatter [0.5, 1), low clusteredness [1, 2),
medium clusteredness [2, 4), and high clusteredness [4,∞).

3.5 Generating Benchmark Data Sets
To generate a specific data set, we choose a level of diffi-

culty (easy, medium, hard, very hard), a relative frequency
(0.001, 0.005, 0.01, 0.05, and 0.1), and a semantic varia-
tion setting (low or high). Then we apply the corresponding
semantic variation procedure (with K set to achieve the de-
sired relative frequency) to the set of available points of the
desired difficulty level. For each combination of levels, we
attempted to create 40 replicate data sets. However, when
the number of candidate anomalous data points (at the de-
sired difficulty level) is small, we limit the number of data
sets to ensure that the replicates are sufficiently distinct.
Specifically, let N be the number of available points. We
create no more than bN/Kc replicates.

In total, from the 19 “mother” sets listed earlier, this
methodology produced 4,369 problem set replicates, all of
which we employed to test several statistical outlier detec-
tion algorithms.

4. ALGORITHMS
To simultaneously assess the effectiveness of our method-

ology and compare the performance of various statistical
anomaly detection algorithms, we conducted an experimen-
tal study using several well-known anomaly detection algo-
rithms. In this section, we describe each of those algorithms.
For algorithms that required parameter tuning, we employed
cross-validation (where possible) to find parameter values to
maximize an appropriate figure of merit (as described be-
low). In all cases, we made a good faith effort to maximize
the performance of all of the methods. Some parameter-
ization choices had to be made to ensure that the given
algorithm implementation would return real-valued results.

4.1 One-Class SVM (ocsvm)
The One-Class SVM algorithm (Scholkopf et al. [24])

shifts the data away from the origin and then searches for a
kernel-space decision boundary that separates fraction 1− δ
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of the data from the origin. We employ the implementa-
tion of Chang and Lin [6] available at http://www.csie.

ntu.edu.tw/~cjlin/libsvm/. For each benchmark, we em-
ploy a radial basis kernel and search parameter space until
approximately 5% (δ = 0.05) of the data lies outside the
decision boundary in cross-validation. We would have pre-
ferred to use smaller values for δ, but OCSVM would not
execute reliably for smaller values. The distance of a point
from the decision boundary determines the anomaly score
of that point.

4.2 Support Vector Data Description (svdd)
As proposed by Tax and Duin [25], Support Vector Data

Description finds the smallest hypersphere (in kernel space)
that encloses 1 − δ of the data. We employed the libsvm

implementation available at http://www.csie.ntu.edu.tw/
~cjlin/libsvmtools/ with a Gaussian radial basis function
kernel. We search for parameters such that approximately
1% (δ = 0.01) of the data lie outside the decision surface in
cross validation. The distance of a point from the decision
surface determines the anomaly score of that point.

4.3 Local Outlier Factor (lof)
The well-known Local Outlier Factor algorithm (Breunig,

et al. [4]) computes the outlier score of a point x by comput-
ing its average distance to its k nearest neighbors. It normal-
izes this distance by computing the average distance of each
of those neighbors to their k nearest neighbors. So, roughly
speaking, a point is declared to be anomalous if it is signif-
icantly farther from its neighbors than they are from each
other. We employed the R package rlof available at http:

//cran.open-source-solution.org/web/packages/Rlof/.
We chose k to be 3% of the data set. This was the smallest

value for which LOF would reliably run on all data sets.

4.4 Isolation Forest (if) and Split-selection Cri-
terion Isolation Forest (scif)

The Isolation Forest algorithm (Liu, et al. [18]) creates
a forest of random axis-parallel projection trees. It derives
a score based on the observation that points that become
isolated closer to the root of a tree are easier to separate
from the rest of the data and therefore are more likely to
be anomalous. This method has a known weakness when
the anomalous points are tightly clustered. To address this
weakness, Liu, et al. [19] developed the Sparse-selection
Criterion Isolation Forest. SCiForest subsamples the data
points and features when growing each tree. An implementa-
tion was obtained from http://sourceforge.net/projects/

iforest/.
Isolation Forest is parameter-free. For SCiForest, we chose

the number of data points to subsample to be 0.66 of avail-
able data points and the number of features to consider to
be 0.66 of the available features.

4.5 Ensemble Gaussian Mixture Model (egmm)
A classic approach to anomaly detection is to fit a prob-

abilistic model to the available data to estimate the density
P (x) of each data point x. Data points of low density are de-
clared to be anomalies. One approach to density estimation
is to fit a Gaussian mixture model (GMM) using the EM al-
gorithm. However, a single GMM is not very robust, and it
requires specifying the number of Gaussians k. To improve
robustness, we generate a diverse set of models by varying

the number of clusters k, the EM initializations, and train-
ing on 15 bootstrap replicates of the data [29]. We choose a
set of possible values for k, {6, 7, 8, 9, 10}, and try all values
in this set. The average out-of-bag log likelihood for each
value of k is computed, and values of k whose average is less
than 85% of the best observed value are discarded. Finally,
each data point x is ranked according to the average log
likelihood assigned by the remaining GMMs (equivalent to
the geometric mean of the fitted probability densities).

5. SUMMARY OF RESULTS
To assess performance, we employed the AUC (area under

the ROC curve). Table 1 provides an overall summary of the
algorithms. It shows the number of data sets in which each
algorithm appeared in the top 3 algorithms when ranked
by AUC (averaged over all settings of difficulty, relative fre-
quency, and clusteredness). We see that Isolation Forest
(IF) is the top performer, followed by EGMM and SCIF.

Table 1: # Times in Top 3
egmm if lof ocsvm scif svdd

14 17 6 5 13 2

To quantify the impact of each of the design properties
(relative frequency, point difficulty, and clusteredness) as
well as the relative effect of each algorithm and “mother”
data set, we performed an ordinary linear regression to model
the logit(AUC) of each replicate data set as a linear function
of each of these factors. The logit transform (log[AUC/(1−
AUC)]) transforms the AUC (which can be viewed as a prob-
ability) onto the real-valued log-odds scale. We employed
the following R formula:

logit(AUC) ∼ set + algo + diff + rfreq + cluster (1)

where, set is the dataset (abalone, shuttle, etc.), algo is the
algorithm, diff is the point difficulty level, rfreq is the relative
frequency of anomalies in the benchmark, and cluster is the
clusteredness of the anomaly class. The diff, rfreq, and clus-
ter values were binned into qualitative factors as described
above. Despite the simplicity of this model, inspection of
the residuals showed that it gives a reasonable fit.

We found all factors included in the regression to be signif-
icant (p � 0.001, t-test). Figure 1 shows that as the point
difficulty increases, the performance degrades for all algo-
rithms. Error bars in this and all subsequent figures show
± one standard error for the estimates from the regression.
Figure 2 shows that anomalies are harder to detect as they
become more frequent. And Figure 3 shows that they be-
come harder to detect as they become more clustered. These
results all confirm that the benchmark data sets achieve our
design goals.

Figure 4 shows the performance on all datasets relative
to abalone. Anomalies were hardest to detect for yearp and
easiest for wave. Finally, Figure 5 shows the contribution of
each algorithm to the logit(AUC) relative to EGMM. This
suggests that EGMM and Isolation Forest are giving very
similar performance, while the other algorithms are substan-
tially worse.

We also fit a version of Equation (1) with pairwise in-
teraction terms between algorithm, point difficulty, relative
frequency, and clusteredness. Very few of these interactions

19



Figure 1: Change in Logit(AUC) with Difficulty

Figure 2: Change in Logit(AUC) with Rel. Freq.

Figure 3: Change in Logit(AUC) with Clusteredness

Figure 4: Performance on Datasets

Figure 5: Change in Logit(AUC) with Algorithm

were statistically significant, which confirms that our simple
model gives a good characterization of the benchmarks.

6. CONCLUSIONS
We have described a methodology for creating anomaly

detection benchmarks and techniques for controlling three
important properties of those benchmarks (point difficulty,
relative frequency and clusteredness). Experimental tests
based on thousands of replicate data sets demonstrate that
these three properties strongly influence the behavior of sev-
eral leading anomaly detection algorithms.

7. FUTURE WORK
We consider these results a work in progress and intend

to develop this study further. Our plan is to include more
algorithms and metrics and to provide additional statisti-
cal analysis of the results. This will include more rigorous
statistical justification for our findings, an empirical com-
parison of algorithms, and an exploration of which settings
cause shifts in the relative performance of the algorithms.

An important goal for future work is to validate the pre-
dictive value of our benchmarks against real anomaly detec-
tion problems. In particular, if we measure the point dif-
ficulty, relative frequency, and clusteredness of a real prob-
lem, does the most similar benchmark problem predict which
anomaly detection algorithms will work best on the real
problem? Another important goal is to develop a method
for controlling the proportion of relevant (versus irrelevant)
features. This would help the research community develop
better methods for feature selection in anomaly detection
algorithms.
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We focus on detecting anomalous events in transportation
systems. In transportation systems, other than normal road
situation, anomalous events happen once in a while such
as traffic accidents, ambulance car passing, harsh weather
conditions, etc. Identifying the anomalous traffic events is
essential because the events can lead to critical conditions
where immediate investigation and recovery may be neces-
sary. We propose an anomaly detection method for trans-
portation systems where we create a police report automat-
ically after detecting anomalies. Unlike the traditional po-
lice report, in this case, some quantitative analysis shall be
done as well to provide experts with an advanced, precise
and professional description of the anomalous event. For in-
stance, we can provide the moment, the location as well as
how severe the accident occurs in the upstream and down-
stream routes. We present an anomaly detection approach
based on view association given multiple feature views on
the transportation data if the views are more or less inde-
pendent from each other. For each single view, anomalies
are detected based on a manifold learning and hierarchical
clustering procedures and anomalies from different views are
associated and detected as anomalies with high confidence.
We study two well-known ITS datasets which include the
data from Mobile Century project and the PeMS dataset,
and we evaluate the proposed method by comparing the
automatically generated report and real report from police
during the related period.

I.5.2 [Pattern Recognition]: Design Methodology—Pat-
tern analysis; H.4.2 [Information Systems Applications]:
Types of Systems—Decision support (e.g., MIS)

Algorithms

Anomaly Detection, Intelligent Transportation System (ITS),
Association, Trajectory, Manifold learning.

We have entered an era where sensor devices are mas-
sively utilized to monitor the environment around us. Sen-
sors can communicate between each other and can commu-
nicate with backend systems as well. Based on that, we can
distributively collect data from regional sensor readings to
profile regional patterns for further follow-up examinations.
In transportation monitoring, not too long ago people in
USA call 911 to report accidents in traffic when accidents
occur. As time goes by, deployed sensors on roadside are now
commonly used for traffic information collection. Given the
traffic information, we can understand traffic status so that
traffic police and drivers like us can take appropriate actions
afterwards, so called the Intelligent Transportation System
(ITS). In recent applications, smartphone devices have also
been included as part of the monitoring system.

Since roads are covered by the sensor-based information
system, many technologies have been applied. Examples
include incident detection systems [13] where detection of
incident can significantly reduce the number of unnecessary
highway patrols; automatic plate number recognition [3] for
the purpose of surveillance and traveling time estimation;
traffic signal control system [14] to help us for traffic flow
optimization1. Many of the above technology can also be
combined together as an integrated system to built a more
complex ITS. In metropolitan area, such ITS becomes nec-
essary in all respects. In this work, we focus on incident
detection based on an anomaly detection approach.

Given the data collected on an ITS, the purpose of this
study is to detect anomalies within the traffic which may be
due to incidents, and to estimate the influence of anomalous
events in nearby incident area such as upstream and down-
stream routes of the incident location. That is, we intent
to produce a report automatically that is similar to a po-
lice report which includes all necessary information about
an incidents or an anomalous event; furthermore, we would
like to add additional quantitative information to extend the
police report. For instance, a police report may record in-
formation merely about an accident including the accident
location, when the accident happened, and what kind of ac-
cident such as traffic collision with unknown reason, hit and

1Zhang et al. [22] reported that almost 40% of the popula-
tion spends at least one hour on the road each day in USA.
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run, traffic collision with injuries, and so on. However, the
accident might affect the nearby area, as illustrated in Fig-
ure 1. As depicted in the illustration, traffic in upstream
routes is likely to be more severely congested than that in
the downstream routes. This kind of information, even it is
useful for drivers and police, is usually not included in the
police or ITS report.

Accident

Upstream

Station

Downstream

Station

Figure 1: Illustration of traffic accident, and the
status near the upstream and downstream routes.

We propose an anomaly detection method that can de-
tect traffic anomalies by feature view association. Given
a multi-viewed dataset, we assume that the information of
different views are collected separately and there exists no
contextual anomalies across different views2 and the anoma-
lies can be found within each single view. Based on a few
anomaly detection results from different views, and to asso-
ciate anomalies detected from those views, we can confirm
the anomalies with high confidence.

The evaluation is done mainly on the Mobile Century
dataset which is a well-known ITS dataset for traffic analy-
sis. Moreover, to apply the proposed method to a relatively
large-scale dataset, and to further study the spatial and tem-
poral relationship between data, we also test the proposed
method on the PeMS data, another well-known ITS dataset.
Details of the two datasets are shown in Section 3.1.

The benefit of the proposed anomaly detector can be sum-
marized as follows:

1. Different from most of the one-class anomaly detection
methods, the proposed method needs very few param-
eters or threshold tuning to decide how likely to be
considered as normal patterns.

2. In principle, the proposed method needs no “clean”
data for the training of normal patterns. In general,
the search of clean data can be difficult, or as arbitrary
as suggested by subjective domain experts.

3. The computation of the proposed method is efficient
in the sense that the computation on each single fea-
ture view can be done separately. Therefore, we can
easily extend the algorithm to a parallel version when
multiple-process or parallel computation is available.

We expect that the proposed method can be applied to appli-
cations other than the traffic incident detection. We should
also expect that the proposed method can be extended to
solve the anomaly detection task on large-scale datasets.

Before we go on to introduce the proposed method, we
discuss some previous works on anomaly detection and traf-
fic analysis in Section 2; after that, we present the datasets
that we use in this work in Section 3.1, and in Section 3.2,
we describe the proposed method. The experiment result is

2There may exist contextual anomalies within a single fea-
ture view though.

shown in Section 4 and in Section 5, we conclude our pre-
sentation.

2. RELATED WORK
Many studies have focused on traffic analysis and one

major approach is to detect anomalous events from traf-
fic patterns. For example, given taxi trajectories recorded
from GPS, Chawla et al. [4] proposed a framework to infer
the main reason why some anomalies appear in road traffic
data. In their framework, they modeled the road structures
as a directed graph then employed PCA algorithm to detect
anomalies. Chen et al. [5] proposed iBOAT that can detect
anomalous trajectories “on-the-fly”. They extracted useful
information from the behaviors of urban road users, and an-
alyzed adverse or possibly malicious events such as a driver
taking a questionable route.

In many anomaly detection schemes, an effective data rep-
resentation can reveal the difference between normal and
anomalous patterns. Thajchayapong et al. [20] monitored
traffic anomalies using microscopic traffic variables such as
relative speed and inter-vehicle spacing. By using Gaussian
process to model the microscopic traffic variables, they can
grab temporary changes in the traffic pattern and detect
anomalies.

Several techniques have been proposed to detect anoma-
lies in video surveillance. Fu et al. [8] proposed using a
hierarchical clustering framework to classify vehicle motion
trajectories in real traffic video. They showed that their pro-
posed method performs better than the conventional fuzzy
K-means clustering. Piciarelli et al. [15] clustered the trajec-
tories in an online fashion, and modeled the trajectory data
in a tree-like structure where some probability information
is also included. Jiang et al. [10] proposed video event de-
tection based on unsupervised clustering of object trajecto-
ries, which are modeled by Hidden Markov Model [16]. This
study employ a dynamic hierarchical process for trajecto-
ries clustering to prevent model overfitting together with a
2-depth greedy search for efficient clustering.

Similar to our approach, Agovic et al. [1] investigated
an anomalous cargo using a manifold embedding method
for feature representation. Although, they focused on both
linear and nonlinear methods, the paper results show that
nonlinear methods outperform the linear methods. Also
related to our research, Kind et al. [12] proposed feature-
based anomaly detection that constructs histograms of dif-
ferent traffic features. In a survey paper for the outdoor
surveillance task, Zhang et al. [23] compared six different
similarity measures that are used for trajectory clustering.
They showed that the hybrid PCA [11] and Euclidean dis-
tance combined method outperforms other methods; and
PCA method is very sensitive to its parameters. Ringberg
et al. [17] studied the sensitivity of PCA for the anomaly
detection. They pointed several challenges in their work
such as evaluating how sensitive the false positive rate to
small differences of the dimensionality in normal space, and
to the level of aggregation in traffic measurement. Danilo et
al. [21] studied the estimation of cellular network to build
road traffic system. Hence, based on the explorative analy-
sis of real-time signaling data the result showed whether the
traffic is normal or abnormal.

To speak of methodology, the proposed method is also
inspired by the well-known co-training algorithm developed
by Blum and Mitchell [2] for semi-supervised learning. The
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co-training algorithm splits data attributes into several sub-
sets, given the assumption that the attribute subsets are
conditionally independent with the known label information.
Each subset plays a view and is sufficient to learn a clas-
sifier; therefore, it can use the prediction from one view to
help other views to learn the label information of unlabeled
data. The multi-view approach proposed in this work is sim-
ilar to the co-training method in the sense that we also use
information from different views to decide anomalies.

In this section, we explain the proposed anomaly detection
method in detail. In order to build intuition on the method,
we describe the datasets that are used in this study before
the method and then we can illustrate ideas through con-
crete examples.

We evaluate the proposed method through two datasets:
the first dataset is the one from Mobile Century project [9],
a traffic dataset that was collected on February 8, 2008 along
a 10-mile stretch of I-880 highway near Union City, Califor-
nia, USA, for over eight hours (10:00 AM - 18:00 PM). In
this work, we focus on two parts of the dataset, the GPS in-
dividual trajectories and the loop detector PeMS data. The
second dataset is the PeMS dataset from California Depart-
ment of Transportation (Caltrans) website3. The Caltrans
website has been keeping records starting from 1993. In
order to differentiate between PeMS data from Mobile Cen-
tury project and PeMS data from California DOT, we call
the first PeMS Century PeMS and and the latter PeMS data
Caltrans PeMS.

Figure 2: Plot of individual trajectories produced by
GPS; the red square indicates the space and time
information of an accident. In the Caltrans PeMS

website, the accident report recorded the accident
for only one station (postmile 26.641); however, as
shown in this plot, the accident propagates and gives
effect to the upstream and (a little to) the down-
stream stations.

Figure 2 shows the GPS data that indicates where and
when the accident happened. The Century PeMS data were
recorded for every 30 seconds while GPS data were recorded
for every 3 seconds. The GPS data contains information
about latitude and longitude. We shall use the information
to associate with the location information of PeMS stations.
Moreover, we just sample the trajectories that start from
10:00 AM and end at 11:45 AM as our data in this study.

3http://pems.dot.ca.gov/

The data provided by the Caltrans PeMS website are ag-
gregated for every 5 minutes. In the Caltrans PeMS ex-
periment, we select data close to postmile 26.641 (station
400165), starting from 10:00 AM until 18:00 PM.

The ground truth was obtained from Caltrans PeMS web-
site which records incidents on several California freeways in-
cluding accidents, traffic hazards, congestions, traffic break-
downs, and so on. On the Mobile Century data for the
first experiment, we have an accident reported on postmile
26.641, occurred from 10:34 AM, February 8, 2008, with
a duration of 34 minutes. In the second experiment, the
Caltrans PeMS reported an accident on the same postmile
(26.641), which occurred at 1:00 PM, December 14, 2007,
with a duration of 38 minutes.

In this subsection, we explain the proposed anomaly de-
tection method in full details. As shown in Figure 3, the
main purpose of our work is to create a report for traffic
incidents given different views (features) of data. The pro-
posed method consists of four steps. The first step is to
extract useful features from the data. Second, we utilize
a manifold embedding method called Isomap [19] for data
representation. After that, in the third step, we cluster the
projected points using a hierarchical clustering method [18].
We detect anomalies based on the hierarchical clustering re-
sult and that is done for each single feature view. Overall,
we may have anomalies that are detected based on several
individual views. In the end, the last step is to automati-
cally create a report based on the different views’ hierarchi-
cal clustering and anomaly detection result obtained from
the previous step. To produce the final report, we associate
anomalies that are detected from different views and make
the final call of anomalies if they belong to the anomalous
group in many different views. By detecting anomalies from
different views, we believe that we can have high confidence
on making the final decision which may include dispatching
a police patrol to the accident location for further investiga-
tion and accident recovery.

In this study we use three views for anomaly detection
to create incident report in Mobile Century data. The first
view is based on the flow information and the second view
is based on the speed information, which are obtained from
Century PeMS and GPS data respectively. The third view is
based on the duration information, derived from GPS data.
We use two views for anomaly detection in Caltrans PeMS
data. The first view is flow and the second view is speed.
Feature extraction on each view is defined as follows:

• Flow. The flow data are obtained by temporal sen-
sors. We use an appropriate time window size w to
extract the features. Let Q = {x1, . . . , xT } to be a
T -length time series of flow, we discuss many derived
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Figure 3: The proposed anomaly detection method. The final report is created based on the anomalies
detected from different views, such as sensor readings of different locations, different types of sensors, different
measurements, etc.

features as follows.

Q =
N⋃
i=1

qi

qi : {xi
1, x

i
2, . . . , x

i
k+1, . . . , x

i
|qi|

} = {xj , xj+1, . . . }

for some j, data in i-th window

|qi| : the number of data in qi

N : the number of windows

w : size of each window,
T

w
= N .

Moreover, we define mean of qi as:

m
i
flow =

∑
xj∈qi

xj

|qi|
, (1)

also, standard deviation of qi as:

s
i
flow =

√√√√√ 1

|qi| − 1

|qi|∑
xj∈qi

(xj −mi
flow)

2 , (2)

and skewness of qi as:

g
i
flow =

∑|qi|
xj∈qi

(xj −mi
flow)

3

(|qi| − 1)si3
. (3)

On the other hand, we also compute the difference
between the (j-1)-th and the j-th flow values for each
window qi. We define Li

flow as:

L
i
flow = (�i1, . . . , �

i
|qi|−1) (4)

where �ik = xi
k+1 −xi

k, k = 1, . . . , |qi| − 1. The features
extracted from Li

flow is mean mi
�flow, standard devi-

ation si�flow and skewness gi�flow. Note that the |qi|
will be the same for each window.

• Speed. The speed data are obtained from spatio-
temporal sensors. First we associate the locations of
GPS data with the PeMS station locations. After
that, we collect another set of features that are re-
lated to speed information. We collect a speed time
series V = (v1, . . . , vK) with length K. From the data
associated with each station, we extract six features:

V =

M⋃
i=1

pi

pi : set of speed data in station i

|pi| : number of data in station i

M : number of stations

Table 1: Summary of feature extraction
View Data Source Feature

Flow Century PeMS

1. mean of flow
2. std. of flow
3. skewness of flow
4. mean of �flow
5. std. of �flow
6. skewness of of �flow

Speed
Century GPS
(trajectory)

1. mean of speed
2. std. of speed
3. skewness of speed
4. mean of �speed
5. std. of �speed
6. skewness of of �speed

Duration
Century GPS
(trajectory)

1. mean of duration
2. std. of duration
3. skewness of duration
4. total duration

Flow Caltrans PeMS similar to Century PeMS

Speed Caltrans PeMS similar to Century GPS

the mean of pi as m
i
speed, the standard deviation of pi

as sispeed and the skewness of pi as gispeed. Similar to
the flow view we also compute mean, standard devia-
tion and skewness of �speed between the (i-1)-th and
the i-th speed data. Note that data size for each Sta-
tion can be different, unlike the case when we collect
flow features where we have identical number of data
in each window.

• Duration. In our study we compute duration be-
tween the (i-1)-th data and the i-th data for each sta-
tion that has been passed by vehicle with GPS-enabled
smartphones. The way to extract the feature is similar
to the speed view, but we only extract four features:
mean, standard deviation, skewness and total duration
to pass a station.

Table 1 gives a summary of the complete feature set. Since
we have the data from different features, we normalize them
into the range of [0, 1].

Given the features computed in previous subsubsection,
first, we compute Euclidean distances between each pair
of data points. After that, we utilize a manifold learning
method called Isomap for data representation. The Isomap
method consists of three steps:

• Construct a neighborhood graph based on k -nearest
neighbor (kNN ) information.

• Create the shortest path between each pair of data
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points. This can be done by, for instance, Dijkstra’s
shortest path algorithm.

• Apply Multidimensional Scaling (MDS) [6] to find low-
dimensional embeddings for data points.

In our study data representation plays an important role.
We assume that the space, so-called the intrinsic space is
better than the original space to show the relationship be-
tween data points. Some detection techniques are indeed
more effective if worked on low-dimensional intrinsic space [7].
Moreover, a low-dimensional representation is often desir-
able for experts to visualize data relationship. To speak of
the efficiency issue, working on low-dimensional space usu-
ally has low computing complexity.

Given the projected data in low-dimensional space, we
use hierarchical clustering method to cluster the projected
data into groups and split the data into two clusters. In our
opinion, the normal and anomalous patterns should show
difference on the clustering result and therefore be separated
into different clusters; hopefully, one for the normal cluster
and the other for the anomalous cluster. In real life, the
number of anomalous events is usually much smaller than
the number of normal events. Hence, to further improve the
clustering result we can apply the so-called 90-10 rule. This
rule means the normal group should include at least 90% of
the whole data points and the anomalous group may include
only at most 10% of the whole set. We can confirm the
clustering result by the rule to guarantee it is a detection
of anomalous behavior rather than a classification of data
points into two or more types. Figure 4(b), 5(b) and 6(b)
illustrate how clustering has been done and they also show
the anomalous events have fewer points compared to the
normal points.

The data will be labeled based on the result of data clus-
tering, for each single view. Afterward, associating the re-
sults from two or more views by computing their intersec-
tion, will generate final result automatically. That means if
all views detect some anomalies occurred in the same loca-
tion and at the same time, it will be considered as the fi-
nal predicted anomalies. The final anomaly report contains
information about time and location when and where the
anomalies happened; also some influence of the anomalies
will be included as well.

We divide the experiments into two parts. First, we use
the Mobile Century data to evaluate the proposed method.
We utilize four combined views to detect an anomalous event
that happened on Feb. 8, 2008, and the combined views in-
clude: (flow, speed), (speed, duration), (flow, duration),
and (flow, speed, duration). Second, we study the per-
formance of the proposed method on the Caltrans PeMS
dataset. In this study we discuss the performance of the
proposed method on detecting an accident that happened
on Dec. 14, 2007 and we use the only applicable views,
namely flow and speed views for the detection. In addi-
tion, we show some preliminary online learning result that
use previous days to train a model and then test on a later
day when the accident happened.

In this series of experiments we set the number of neigh-
bors to be five for kNN which is used in Isomap to build
the neighborhood graph, and we set the window size as five
minutes and 30 minutes for the Mobile Century data and
the Caltrans PeMS data respectively. In data clustering
we use Euclidean distance to compute pairwise distance be-
tween points, and use the shortest distance as the distance
between clusters to create a cluster tree. Table 2 shows a
summary of our experimental settings.

In this section we show the evaluation result given the
Mobile Century data. We show how we detect anomalies
given different view combinations. Some low-dimensional
data representation shows that the normal and anomalous
patterns are well separated from each other and the proposed
method is effective for the detection. Table 2 shows the
PeMS stations of interest, where the traffic near the stations
may be affected by the accident. Note that the dataset is a
one-day dataset.

Table 3 shows all the anomaly detection results from each
of the following views: (a) flow from Century PeMS, (b)
speed from Century GPS, and (c) duration from Century
GPS, on six stations. The results indicate that the anoma-
lous events can be detected based on each single view, just
may not be perfect, still, we can observe how an accident
affects the traffic along the road. As shown previously in
Figures 1 and 2 that both of the upstream and downstream
traffic can be affected by accidents if there is any. In Fig-
ure 2, the red square indicates the propagation of traffic
flow from the accident. The y-axis indicates that the traffic
close to the nearby postmiles or locations may also become
affected. We can observe this kind of information in our
detection results; however, this information is usually not
recorded in the police patrol report which we consider as
ground truth in this study. We can further improve the
results if more than one view are considered simultaneously.

Table 4 shows view association results4 based on differ-
ent combined views: (a) flow and speed, (b) flow and dura-
tion,(c) speed and duration, and (d) flow, speed and dura-
tion all together. Overall, the result of anomaly detection
by associating flow and speed views gives the best result
if compared to that of all other combinations. On station
400165 where the accident happened, the result from flow
and speed view association reports that the anomalous event
starts from 10:35 AM and ends at 10:50 AM, which is very
close to the ground truth where it indicates an accident from
10:34 AM to 11:08 AM. In addition, the table shows that the
results from all view associations share high correlation to
each other.

We also observe that the anomalous and normal patterns
are indeed different if represented in low-dimensional space.
In Figures 4, 5, and 6 the results are from flow, speed and du-
ration view respectively. The figures show that the anoma-
lous patterns are well separated from the normal ones. The
labeling information is just used for visualization and not

4Note that the results produced by the GPS data and PeMS
may have different resolutions. Hence, we have to round
the data into five minute-based one before computing their
association.
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Table 2: Summary of experimental settings: kIso = 5 for kNN in Isomap, and the intrinsic dimensionality is
set to 2. Data are collected for each 5 or 30 mins to compute the mean, standard deviation, etc., on each
station, for Mobile Century data or Caltrans data respectively.

Dataset View Data Interval Station ID (Postmile)

Exp. 1

Century PeMS flow 5 mins, 1 station
400488 (24.007)
401561 (24.477)

Century GPS speed 1 station
400611 (24.917)
400284 (25.767)

Century GPS duration 1 station
400041 (26.027)
400165 (26.641)

Exp. 2 Caltrans PeMS flow, speed 30 mins, 1 station 400165 (26.641)

Table 3: The reports produced from different single views, namely flow, speed and duration.
400488 (24.007) 401561(24.477) 400611(24.917) 400284(25.767) 400041(26.027) 400165(26.641)

2/8/2008 10:50 2/8/2008 10:00 2/8/2008 10:00 2/8/2008 10:30 2/8/2008 10:25 2/8/2008 10:25
2/8/2008 10:55 2/8/2008 10:45 2/8/2008 10:40 2/8/2008 10:35 2/8/2008 10:30 2/8/2008 10:30
2/8/2008 11:00 2/8/2008 10:50 2/8/2008 10:45 2/8/2008 10:40 2/8/2008 10:35 2/8/2008 10:35

2/8/2008 10:55 2/8/2008 10:50 2/8/2008 10:45 2/8/2008 10:40 2/8/2008 10:40
2/8/2008 11:00 2/8/2008 10:55 2/8/2008 10:50 2/8/2008 10:45 2/8/2008 10:45

2/8/2008 11:00 2/8/2008 10:55 2/8/2008 10:50 2/8/2008 10:50
2/8/2008 10:55

(a) The report produced by flow view (Century PeMS stations)

400488 (24.007) 401561(24.477) 400611(24.917) 400284(25.767) 400041(26.027) 400165(26.641)

2/8/2008 10:45 2/8/2008 10:40 2/8/2008 10:37 2/8/2008 10:43 2/8/2008 10:43 2/8/2008 10:38
2/8/2008 10:47 2/8/2008 10:41 2/8/2008 10:41 2/8/2008 10:46 2/8/2008 10:51 2/8/2008 10:39
2/8/2008 10:49 2/8/2008 10:42 2/8/2008 10:43 2/8/2008 10:48 2/8/2008 10:54 2/8/2008 10:44
2/8/2008 10:50 2/8/2008 10:46 2/8/2008 10:44 2/8/2008 10:53 2/8/2008 10:56 2/8/2008 10:44
2/8/2008 10:51 2/8/2008 10:49 2/8/2008 10:45 2/8/2008 10:55 2/8/2008 10:58 2/8/2008 10:50

2/8/2008 10:51 2/8/2008 10:49 2/8/2008 10:56 2/8/2008 10:59 2/8/2008 10:55
2/8/2008 10:53 2/8/2008 10:58 2/8/2008 10:58 2/8/2008 11:06 2/8/2008 11:00

2/8/2008 11:01
2/8/2008 11:07

(b) The report produced by speed view (GPS data)

400488 (24.007) 401561(24.477) 400611(24.917) 400284(25.767) 400041(26.027) 400165(26.641)

2/8/2008 10:45 2/8/2008 10:39 2/8/2008 10:37 2/8/2008 10:29 2/8/2008 10:38 2/8/2008 10:50
2/8/2008 10:47 2/8/2008 10:40 2/8/2008 10:40 2/8/2008 10:30 2/8/2008 10:43 2/8/2008 10:55
2/8/2008 10:50 2/8/2008 10:41 2/8/2008 10:41 2/8/2008 10:33 2/8/2008 10:45

2/8/2008 10:42 2/8/2008 10:43 2/8/2008 10:35 2/8/2008 10:47
2/8/2008 10:44 2/8/2008 10:44 2/8/2008 10:40 2/8/2008 10:51
2/8/2008 10:46 2/8/2008 10:45 2/8/2008 10:43
2/8/2008 10:48 2/8/2008 10:48 2/8/2008 10:46
2/8/2008 10:50 2/8/2008 10:51 2/8/2008 10:50
2/8/2008 10:55 2/8/2008 10:58 2/8/2008 10:55

(c) The report produced by duration view (GPS data)

(a) Flow view (PeMS) (b) Dendrogram of flow view

Figure 4: Flow view results from PeMS Station
400165 where the accident happened (a) the Isomap
data plot of flow view (b) dendrogram of hierarchi-
cal clustering of flow view.

used in our experiments. The anomaly detection is based
on the hierarchical clustering result shown on the right-hand
side of Figures 4-6. To speak of the detection on spatial do-

(a) Speed view (GPS) (b) Dendrogram speed view

Figure 5: Speed view results from GPS phones (a)
the Isomap data plots of speed view (b) dendrogram
of hierarchical clustering of speed view.

main, Figure 7 shows that the flow view detection result
from different PeMS stations which were affected by acci-
dent. We adopt the 90-10 rule which was discussed in Sub-
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Table 4: The reports produced by all combinations of view association.
400488 (24.007) 401561(24.477) 400611(24.917) 400284(25.767) 400041(26.027) 400165(26.641)

2/8/2008 10:50 2/8/2008 10:45 2/8/2008 10:40 2/8/2008 10:40 2/8/2008 10:40 2/8/2008 10:35
2/8/2008 10:55 2/8/2008 10:50 2/8/2008 10:45 2/8/2008 10:45 2/8/2008 10:45 2/8/2008 10:40

2/8/2008 10:55 2/8/2008 10:50 2/8/2008 10:50 2/8/2008 10:50 2/8/2008 10:45
2/8/2008 10:55 2/8/2008 10:55 2/8/2008 10:50

(a) The report produced by associating the flow and speed view

400488 (24.007) 401561(24.477) 400611(24.917) 400284(25.767) 400041(26.027) 400165(26.641)

2/8/2008 10:50 2/8/2008 10:45 2/8/2008 10:45 2/8/2008 10:30 2/8/2008 10:35 2/8/2008 10:50
2/8/2008 10:50 2/8/2008 10:50 2/8/2008 10:35 2/8/2008 10:40
2/8/2008 10:55 2/8/2008 10:55 2/8/2008 10:40 2/8/2008 10:45

2/8/2008 10:45
2/8/2008 10:50
2/8/2008 10:55

(b) Final report produced by associating the flow and duration view

400488 (24.007) 401561(24.477) 400611(24.917) 400284(25.767) 400041(26.027) 400165(26.641)

2/8/2008 10:45 2/8/2008 10:40 2/8/2008 10:37 2/8/2008 10:43 2/8/2008 10:43 2/8/2008 10:50
2/8/2008 10:47 2/8/2008 10:41 2/8/2008 10:41 2/8/2008 10:46 2/8/2008 10:51 2/8/2008 10:55
2/8/2008 10:50 2/8/2008 10:42 2/8/2008 10:43 2/8/2008 10:55

2/8/2008 10:46 2/8/2008 10:45
2/8/2008 10:50 2/8/2008 10:58

(c) Final report produced by associating speed and duration view

400488 (24.007) 401561(24.477) 400611(24.917) 400284(25.767) 400041(26.027) 400165(26.641)

2/8/2008 10:50 2/8/2008 10:45 2/8/2008 10:40 2/8/2008 10:45 2/8/2008 10:45 2/8/2008 10:50
2/8/2008 10:50 2/8/2008 10:45 2/8/2008 10:50
2/8/2008 10:55 2/8/2008 10:50 2/8/2008 10:55

2/8/2008 10:55
(d) Final report produced by associating all views: flow, speed and duration view

(a) Station 400488 (b) Station 401561 (c) Station 400611 (d) Station 400284 (e) Station 400041

Figure 7: The Isomap data plot for each of interested PeMS stations. The blue circle indicates normal pattern
and the red cross indicates the anomalous pattern. For each station, we can observe that the anomalous points
are well separated from the normal points.

(a) Duration view (GPS) (b) Dendrogram of duration view

Figure 6: Duration view results from GPS phones
(a) the Isomap data plots of duration view (b) den-
drogram of hierarchical clustering of duration view.

subsection 3.2.3 to confirm the anomalies in all our detection
procedures.

In the second series of experiments, we evaluate the pro-
posed anomaly detection scheme using the Caltrans PeMS
data. As a preliminary study, we only focus on the data
that are collected near the postmile 26.641. The proposed
method detects an anomalous event at 1:00 PM, which co-
incides with the ground truth. Figure 8 shows the Isomap
data plots for flow and speed views. Both views show that
there is an unusual pattern on the left which is the acci-
dent happened at 1:00 PM of December 14, 2007. The view
association confirms the finding from these two views.

Given the Caltrans PeMS data, a multiple-day dataset,
we can test how the proposed method is used for online
anomaly detection: detecting anomalous events on a later
day given the training of previous days. We would like to
answer the following questions: i) Given a location and a
specific moment, can we detect anomalies in that moment
using previous days’ data for training? ii) Following the pre-
vious question, will the result be influenced if some weekend
days are added in the training?
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(a) Speed view (b) Flow view

Figure 8: The anomaly detection results for Dec. 14,
2007. Both views can detect the anomaly correctly
which is the accident happened at 1:00 PM. The
anomalous pattern is clearly separated from other
normal patterns.

Table 5: Anomaly detection results using the speed

data on previous days.
Weekdays One-day weekend Two-day weekend

12/14/2007 13:00 12/9/2007 13:00 12/8/2007 13:00
12/9/2007 13:00

In order to answer the above questions, we design the
experiments as follows: choosing the previous days’ data
for training, but (i) including only the data at the same
time with the moment that we want to detect; ii) including
only the data contains no accident; iii) using the previous
10 days’ data; iv) detecting by hourly basis instead of daily
basis. These previous days’ data is used to judge if the data
from this moment is considered as an anomaly or not. We
use only the speed information in this part of study.

Table 5 shows anomaly detection using previous days’
data. If we include only the weekdays for training, then
we can correctly capture the anomalous event; on the other
hand, if we include the weekdays’ as well as the weekend’s
data for training, the detection result is no longer correct.
The weekend’s data are detected as anomalies in this case.
We have more than one kind of “anomalies”and the anomaly
detection procedure may detect either one of the anomalies.
The data plot results are in Figure 9. Figure 9 (a) shows
the detection result given only weekdays for training. Ap-
parently, the anomaly is correctly detected in this case. Fig-
ure 9(b) and (c) show how the result is influenced by the
weekend’s data. The weekend’s data (red square) are de-
tected as anomalies in this case, while the real anomaly (red
cross) is the one on the left.

(a) weekdays (b) one-day weekend (c) two-day weekend

Figure 9: The Isomap plot results: (a) using only
weekdays’ data for training, (b) using weekdays’ and
Sunday’s data for training, and (c) using weekdays’
and the whole weekend’s data for training.

All experiments were performed on regular Pentium-5 ma-
chine. All computation regarding to one view was done less
than five seconds on average.

We would like to discuss several issues related to the pro-
posed method and the focused problem. Some possible fu-
ture extensions to this work will also be mentioned.

• In this work, to obtain the final anomaly detection re-
sult we simply intersect two or more views for view
association. We can however to have a more robust
view association procedure. First, we need to have cri-
teria to judge which view is trustworthy, such as in this
case, we can assume the flow and the speed views more
trustworthy than the duration view because the flow
and the speed views are provided by the sensors di-
rectly and the duration view is a derived feature based
on several sensor readings. Second, we can consider
different types of view association. For instance, we
can consider adjust the portion of anomalies in each
view so that the intersection is maximized. It is one of
our future research topics.

• We studied both of the duration view and the speed
view. It seems that they may share some correlation
between each other, hence not appropriate to be used
simultaneously to detect anomalies. The duration fea-
ture is defined as dividing the distance of consecutive
stations by the speed. In this case study, the distance of
consecutive stations may not remain constant (ranged
from a half to one mile); therefore, the duration and
speed may not refer to the same concept.

• We use Isomap mainly for data representation and vi-
sualization. To perform data clustering, we can either
use hierarchical clustering method or perform regular
data clustering such as K-means in the dimensionality-
reduced (intrinsic) space. The difference between them
is that the hierarchical clustering gives relatively sta-
ble result, compared to, e.g., the one from K-means if
applied to the intrinsic space.

• In our study, we apply the 90-10 principle to con-
firm whether or not a group of data are considered
as anomalies. In this work, all the results satisfy this
principle. However, we should consider some adjust-
ment once the principle is not fitted to the clustering
result. We can try the following options:

– Still stick with the 90-10 principle, but we move
the points from the major group or the minor
group or vice versa for the points closest to the
group boundaries until 90-10 rule is satisfied.

– Let the hierarchical clustering result or the clus-
tering result in the intrinsic space (based on Isomap)
decides the result itself.

– Apply another flexible principle such as cutting
data into two portions p and 1 − p where p is
between 0 and 1.

We proposed a method to detect anomalies in ITS data for
traffic analysis. Different from previous anomaly detection
approaches, we mainly focused on automatically generating
an anomaly report, in this case, the incident report that shall
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be helpful for drivers and police to act accordingly for the
incident. In this report, the incident location, the moment of
incident, and more importantly how the incident affects the
traffic, for how long are all included based on our detection
result. Therefore the police patrol can decide the signifi-
cance of the incident and make appropriate judgment about
whether or not they should go to the incident location for
investigation and recovery and which incident they should
take care first if more than one incident occurs at similar mo-
ments. Regarding to the methodology, we detect anomalies
based on a view association approach given the multi-view
information where each single view is used to detect anoma-
lies, and the results from different views are combined for
the final detection result. The method has many benefits if
compared to previous anomaly detectors: 1) it needs little
parameter tuning; 2) it needs no clean data training as the
initial step; 3) it can work efficiently such as the algorithm
can easily implemented in a parallel fashion. We evaluated
the proposed method onMobile Century and PeMS datasets.
The evaluation shows the proposed method is effective at
detecting incidents from the data. Even though we focused
only on anomaly detection in ITS data in this work, it would
not be surprising if the proposed method is easily general-
ized to other types of applications where anomaly detection
is necessary. Investigating the above possibility is one of our
future research plans.
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ABSTRACT
On-line social networks have become a massive communication
and information channel for users world-wide. In particular, the
microblogging platform Twitter, is characterized by short-text mes-
sage exchanges at extremely high rates. In this type of scenario, the
detection of emerging topics in text streams becomes an important
research area, essential for identifying relevant new conversation
topics, such as breaking news and trends. Although emerging topic
detection in text is a well established research area, its application
to large volumes of streaming text data is quite novel. Making scal-
ability, efficiency and rapidness, the key aspects for any emerging
topic detection algorithm in this type of environment.

Our research addresses the aforementioned problem by focus-
ing on detecting significant and unusual bursts in keyword arrival
rates or bursty keywords. We propose a scalable and fast on-line
method that uses normalized individual frequency signals per term
and a windowing variation technique. This method reports key-
word bursts which can be composed of single or multiple terms,
ranked according to their importance. The average complexity of
our method is O(n logn), where n is the number of messages in
the time window. This complexity allows our approach to be scal-
able for large streaming datasets. If bursts are only detected and
not ranked, the algorithm remains with lineal complexity O(n),
making it the fastest in comparison to the current state-of-the-art.
We validate our approach by comparing our performance to similar
systems using the TREC Tweet 2011 Challenge tweets, obtaining
91% of matches with LDA, an off-line gold standard used in sim-
ilar evaluations. In addition, we study Twitter messages related to
the SuperBowl football events in 2011 and 2013.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information Search and Re-
trieval—Retrieval models, Information filtering

Keywords
Twitter, Text Mining, Bursty Keyword Detection
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1. INTRODUCTION
Social media microblogging platforms, such as Twitter1, are char-

acterized by extremely high exchange rates. This quality, as well as
its network structure, makes Twitter ideal for fast dissemination of
information, such as breaking news. Furthermore, Twitter is identi-
fied as the first media source in which important news is posted [10]
and national disasters (e.g. earthquakes, diseases outbreaks) are re-
ported [6].

Each message that is posted on Twitter is called a tweet, and mes-
sages are at most 140-characters long. In addition, Twitter users
connect to each other using a follower/followee directed graph struc-
ture. Users can support and propagate messages by using a re-tweet
feature which boosts the original message by reposting it to the
user’s followers.

Given that Twitter has been adopted as a preferred source for in-
stant news, real-time detection of emerging events and topics has
become one of the priorities in on-line social network analysis. Re-
search on emerging topic detection in text is now focused on the
analysis of streaming data and on-line identification [1]. In par-
ticular, the analysis of microblog text is quite challenging, mostly
because of the large volume and high arrival rate of new data. In
this scenario an important part of the analysis must be performed
in real-time (or close to real-time), requiring efficient and scalable
algorithms.

This problem has generated increasing interest from the private
and academic communities. New models are constantly being de-
veloped to better understand human behavior based on social media
data in interdisciplinary work fields such as sociology, political sci-
ence, economy and business markets [3, 26].

We target the problem of emerging topic detection in short-text
streams by proposing an algorithm for on-line Bursty Keyword De-
tection (BD) (definitions in Figure 1). This in general is considered
to be a first important step in the identification of emerging topics
in this context. Our approach uses windows slicing and window
relevance variation rate analysis on keywords.

We validate our methodology on the TREC Tweet 2011 dataset,
using it to simulate streaming data. Our experiments indicate that
this concept works better at detecting keyword bursts in text streams
than other more complex state-of-the-art solutions based on queue
theory [8, 14, 24]. Also we analyze tweets from the SuperBowl
football events in 2011 and 2013 as case studies. We perform a
detailed discussion on the behavior of noise in bursty keyword sig-
nals which is constituted mostly by stopwords. We compare our
solution to LDA [2] as a ground truth, similarly to prior work [24].
Using LDA in a one-keyword per topic mode, we achieved more

1http://www.twitter.com
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than 91% topic matches. This is a great improvement over similar
approaches. Moreover, our implementation is efficient, achieving a
complexity of O(n logn) in the average case, where n is the num-
ber of messages in the current window.

In detail, the contributions of our work are three-fold:
1. We introduce a scalable and efficient keyword burst detec-

tion algorithm for microblog text streams, based on window
slicing and relevance window variations.

2. We present a technique for eliminating non-informative and
irrelevant words from microblog text streams.

3. We present a detailed proof-of-concept system and validate
it on a public dataset.

Definition 1: A keyword is an informative word used in an infor-
mation retrieval system to indicate the content of a document.
Definition 2: A bursty keyword is defined as a word or set of words
that suddenly appear in a text stream at an unusually high rate [14].
Definition 3: A topic [noun] is a discussion or conversation sub-
ject. In other words, it is a set of keywords with semantic associa-
tion.
Definition 4: An event is a topic which in general, corresponds to
a real-world occurrence. It is usually associated with a geographic
location and a time.
Definition 5: The concept of relevance used in this work means:
the representation of a term in a window. In other words "the prob-
ability of occurrence of a term in a Window".

Figure 1: Definitions used in the paper (Oxford Dictionary)

This paper is organized as follows. Section 2 presents an overview
of relevant literature for this work. Section 3 presents a complete
description of our proposal, divided in two parts: the burst detection
algorithm and our proof-of-concept system. Section 4 summarizes
our experimental validation and results on the SuperBowl 2011 and
SuperBowl 2013 events. Section 5 delivers our conclusions and
discuss future work.

2. RELATED WORK
Our work involves research in the areas of event detection and

trend analysis for microblog text streams. In particular our goal is
to identify current popular candidate events listed by most popular
bursty terms in the data stream. In relation to this topic, several ap-
plications exist for detecting events like natural disasters and health
alerts. For example, epidemics [11], wildfires [23], hurricanes and
floods [20], earthquakes and tornados [7, 17].

Events have been modeled and analyzed over time using key-
word graphs [18], link-based topic models [13], and infinite state
automatons [8]. Leskovec et al. [12] perform analyses of memes
for news stories over blogs and news data, and on Twitter data
in [25]. Swan et al. [21, 22] deal with constructing overview time-
lines of a set of news stories.

On-line bursty keyword detection is considered as the basis for
on-line emerging topic detection [14]. For topic detection in an off-
line fashion, algorithms such as Latent Dirichlet Allocation (LDA)
[2] or Phrase Graph Generation Method [19] can be used. Statis-
tical methods and data distribution tests can also be used to detect
bursty keywords [8].

Mathioudakis and Koudas introduce Twitter Monitor [14], a sys-
tem that performs detection of topic trends (emerging topics) in
the Twitter stream. Trends are identified based on individual key-
word bursts and are detected in two steps. This system identifies
bursts of keywords by computing the occurrence of individual key-
words in tweets. The system groups keyword trends based on their

co-occurrences. To detect bursts of keywords, they introduce the
algorithm QueueBurst with the following characteristics: (1) one-
step analysis per keyword, (2) real-time analysis (based on the
tweet stream), (3) adjustable against “false” explosions, and (4)
adjustable against spam. In order to group sets of related bursty
keywords, the authors introduce an algorithm named GroupBurst,
which evaluates co-occurrences in recent tweets. Our current work
focuses on keyword detection up to three term keywords, for which
we compare to QueueBurst in Section 4. Twitter Monitor requires
an intensive pre-processing step for determining its optimal param-
eter settings for each keyword and also for global variables. These
parameter settings must be computed with a historical dataset.

A different approach is presented by Weng et al. [24], with their
system EDCoW (Event Detection with Clustering of Wavelet-based
Signals). EDCoW builds individual word signals by applying wavelet
analysis to word frequencies. It filters away trivial words by look-
ing at their corresponding signal auto-correlations. The remaining
words are clustered to form events with a modularity-based graph
partitioning technique. The wavelet transform is applied to a signal
(time-series) created using the TF-IDF index [5]. Their approach
was implemented in a proof-of-concept system, which they used to
analyze online discussions about the Singapore General Election of
2011.

Another relevant study is that of Naaman et al. [15]. In this work
the authors make two contributions for interpreting emerging tem-
poral trends. First, they develop a taxonomy of trends found in data,
based on a large Twitter message dataset. Secondly, they identify
important features by which trends can be categorized, as well as
the key features for each category. The dataset used by Naaman
et al. consists of over 48 million messages posted on Twitter be-
tween September 2009 and March 2010 by 855,000 unique New
York users. For each tweet in this dataset, they recorded its textual
content, the associated timestamp and the user ID.

3. BURST DETECTION MODEL
We propose a methodology based on time-window analysis. We

compute keyword frequencies, normalize by relevance and com-
pare them in adjacent time windows. This comparison consists
of analyzing variations in term arrival rates and their respective
variation percentages per window. A similar notion (Discrete Sec-
ond Derivative) has been used in the context of detection of bursts
in academic citations [4]. We define Relevance Rates (RR) as the
probability of occurrence of a non-stopword term in a window. We
use RR to generalize burst detection making them independent of
the arrival rate. Even though the public Twitter API only provides
a stream which is said to be less than 10% of the actual tweets
posted on Twitter, we believe our method can be easily adapted for
the complete data stream using a MapReduce schema [see Section
4.2.3]. Arrival rates vary periodically (in a non-bursty way) dur-
ing the day; depending on the hour, time zone, user region, global
events and language (shown in Figure 4).

Bursty keywords are ranked according to their relevance varia-
tion rate. Our method avoids the use of statistical distribution anal-
ysis methods for keyword frequencies; The main reason is that this
approach, commonly used in state-of-the-art approaches, increases
the complexity of the process. We show that a simple relevance
variation concept is sufficient for our purposes if we use good stop-
word filter and noise minimization analysis [see section 4.1.1].

To study the efficiency of our algorithm, which we name Win-
dow Variation Keyword Burst Detection, we implement a proof-
of-concept system. The processes involved in this system are five.
These modules are independent of each other and they have been
structured for processing in threads. These modules are: Stream
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Listener, Tweets Filterer, Tweets Packing, Window Processing and
Keyword Ranker. This architecture allows us to process all the
input data with linear complexity, making it scalable for on-line
processing.

3.1 Data Pre-Processing
In this stage, data is pre-processed extracting keywords from

each message, so that later on, our burst detection algorithm an-
alyzes them (see Figure 2 and 3). This stage is composed of the
following three modules: (1) Stream Listener, (2) Tweet Filter and
(3) Tweet Packing.
1) Stream Listener Module: This module receives streaming data
in the form of Twitter messages, which can come directly form
the Twitter API or some other source2 . Messages are received in
JSON format3. This data is parsed and encapsulated. After the en-
capsulation of each message it is en-queued in memory for the next
module in the pipeline. It should be noted that message encapsula-
tion is prone to delays caused by the Internet bandwidth connection
and Twitter’s information delivery rate, which can cause data loss.
2) Tweet Filter Module: This module discards messages which
are not written in languages accepted by our system. We perform
language classification using a Naive Bayes classifier. This module
also standardizes tweets according to the following rules:

• Treatment of special characters and separation marks: Re-
placing special characters and removal of accents, apostro-
phes, etc.

• Standardization of data: Upper and lower case conversion
and replacement of special characters.

After normalization and language detection, the tweet is enqueued
into queue Q1 for posterior analysis.

3) Tweet Packing Module: Filtered and standardized tweets in
queue Q1, are grouped into a common set determined by creation
timestamp, shown in Figure 2. This set of tweets, which we refer
to as Bag of Tweets, represent an individual time-window. It is im-
portant to note that the arrival of tweets maintains a chronological
order. In the case that an old or delayed tweet appears, it is in-
cluded in the current window. Each of these windows is sent to the
following stage for processing.

3.2 Bursty Keyword Detection
This process involves two modules. The second module must

wait for the first module to finish processing a window in order to
process an entire window at a time (serial mode). The algorithm
shown in Figure 3 describes this process, where the second module
starts in line 24.
1) Window Processing Module: Each keyword, composed of a
single or adjacent word n-grams, is mapped into a hash table data
structure. This structure manages keywords in addition to the in-
formation of its two adjacent windows and their rates. We consider
as n-grams the n ordered correlative words.

The hash table allows access to keyword information in constant
time for most cases O(1), and in the worst case with complexity of
O(n) when collisions occur. This process is detailed in the algo-
rithm described in Figure 3. This data structure controls the com-
plexity of the algorithm with optimal insertions and search O(1).
2) Keyword Ranker Module: Bursty keywords are included im-
plicitly into the hash table. Therefore, we extract bursty keywords
by discarding those that do not classify as having a positive rele-
vance variation. We discard non-bursty keywords using the criteria

2http://twitter4j.org/
3https://dev.twitter.com/docs/tweet-entities

Require: Global Queue Q1 of previously filtered tweets, and Global
Queue Q2 of keyword bags. window_time is the earliest timestamp
of the tweets in the same Bag.
Consider window_size as the time length of the window.

1: initT ime⇐ null
2: while t′ ⇐ get_tweet_from_queue(Q1) do
3: if initT ime = null then
4: initT ime⇐ timestamp(t′)
5: endT ime⇐ initT ime+ window_size
6: TBag ⇐ φ
7: Set initT ime to window_time in TBag
8: end if
9: if timestamp(t′) < endT ime then

10: t′′ ⇐ filter_stopwords(t′)
11: TBag ⇐ TBag

⋃
keywords(t′′)

⋃
word_nGrams(t′′)

12: else
13: put(TBag) in Q2

14: Create new TBag
15: TBag ⇐ φ
16: Set endT ime to window_time in TBag
17: initT ime⇐ endT ime
18: endT ime⇐ initT ime+ window_size
19: end if
20: end while

Figure 2: Packer Thread

Require: Global QueueQ2 of keyword bags, and a Global hash tableHT
mapping < Keyword,< window1, window2, rates >>

1: while TBag ⇐ get_bag_from_queue(Q2) do
2: TotalWords⇐ size(TBag)
3: for all word ∈ TBag do
4: if word /∈ mapped_keywords(HT ) then
5: window_time⇐ window_time(TBag)
6: freq ⇐ 0
7: window ⇐< window_time, freq > {create a new win-

dow}
8: put_in_hashtable_as_window1(word, window)
9: else

10: window ⇐ get_from_hashtable(word,HT )
11: w_time⇐ window_time(window)
12: b_time⇐ window_time(TBag)
13: if w_time 6= b_time then
14: window2 ⇐ window1 for word in HT
15: window_time⇐ window_time(TBag)
16: freq ⇐ 0
17: window ⇐< window_time, freq > {create a new

window}
18: put_in_hashtable_as_window1(word, window)
19: end if
20: Add 1 to freq in window1 for word mapped in HT
21: end if
22: end for
23: set_relevance_for_each_keyword_with(TotalWords)
24: WordRank ⇐ φ
25: for all mword ∈ mapped_keywords(HT ) do
26: window1 ⇐ get_window1(mword,HT )
27: window2 ⇐ get_window2(mword,HT )
28: relevance1 ⇐ get_relevance(window1)
29: relevance2 ⇐ get_relevance(window2)
30: if (relevance1 − relenvance2) > 0 then
31: WordRank ⇐WordRank

⋃
mword

32: end if
33: end for
34: WordRank′ ⇐ quickSort(WordRank)
35: display WordRank′

36: end while

Figure 3: Processor Thread
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Table 1: Tweet language classification results
Language % Freq.
English 34.4 4,287,605
Romanic (Neo-Lat) 20.9 2,599,849
German 2.5 305,228
Others 42.2 5,253,562
TOTAL 100.0 12,446,244

described below, this prevents the size of the hash table from grow-
ing out of control:

1. It is the first occurrence of the keyword. We must wait until
the next window to check it again.

2. We observe a negative variation in frequency rates between
adjacent windows.

3. Low arrival rate: Many words do not appear frequently. We
discard these words if the average arrival rate is lower than
1.0 (keywords per time-window).

The remaining keywords are sorted in descending order accord-
ing to their Relevance Variation Rate. Keywords with the highest
variation rate or burstiness are ranked in the top positions.

4. EVALUATION
In this section we explain empirical parameter settings for our

system and perform a validation by comparing it against state-of-
the-art methods. For evaluation and comparison purposes we adapt
the evaluation used in [24] with LDA as a gold standard. LDA is
used to process data off-line and generate topics listed by its most
likely keyword.

4.1 Dataset Description
The datasets used in this experiment are the TREC Tweet 2011

Challenge dataset from the National Institute of Standards and Tech-
nology (NIST4): In addition, we use tweets related to the Super-
Bowl 2013 football event obtained using Twitter API on February
3rd. As part of the TREC 2011 microblog track, Twitter provided
identifiers for approximately 16 million tweets, sampled from its
full data-stream between January 23rd and February 8th, 2011. The
corpus is designed to be a reusable and representative sample of
the Twitter stream. The TREC Tweet 2011 messages are obtained
using a crawler, fed with tweet IDs provided by NIST for down-
loading messages directly from Twitter. As expected, not all mes-
sages were obtained in the downloading process, mostly because
of: the tweet having been removed, transmission or server errors,
or changes made in the access permissions by the owner of the
message. Therefore, we only obtained 12, 446, 244 tweets.

The origin of these messages is random regarding their geo-
graphic location, and their languages. To identify the language of
each message, we use the java library LangDetect5 which claims
93% accuracy in the detection of 59 languages in short messages6.
Using this classifier we obtain the classification shown in Table 1.

In this work we only use English, Neo-Lat7 and German lan-
guages. These correspond to 57.8% of the dataset with a total of
7, 192, 682 messages. The main reasons for selecting these lan-
guages are:

4http://trec.nist.gov/data/tweets/
5http://code.google.com/p/language-detection
6http://shuyo.wordpress.com/2011/11/28/language-detection-
supported-17-language-profiles-for-short-messages/
7Romanic and Romance Languages: Spanish, French, Italian, Por-
tuguese.

Table 2: Average word count per message
Language Words per Msg
English 7
Romanic (Neo-Lat) 12
German 10

• The use of the space character as a word delimiter.
• Same writing structure order (left to right and top to bottom).
• Same set of character symbols for writing.

In table 2 we show the average number of words per message
in each language. Twitter’s 140-character limit for messages is an
advantage for the filtering and tokenizing steps which take place in
lineal complexity O(wn) using single words, and O(w2n) adding
adjacent word n-grams. The variable n corresponds to the number
of tweets to be processed and w the average number of words per
message. Since w is a constant upper-bound, we conclude that the
complexity of the algorithm described in Figure 2 remains lineal
O(n).

4.1.1 Stopword analysis
We consider stopwords as words used to connect objects, actions

and subjects. Stopwords are omitted in our experiments (see Fig-
ure 2, line 10) and discarded since they do not add semantic value
or represent events.

The Window Variation Keyword Burst Detection (BD) technique
computes keyword arrival frequency in time-windows using a pre-
defined window length that remains constant during the entire pro-
cess. The use of the absolute frequency value is the most intuitive
approach, but it does not work correctly because the arrival rate is
not constant during the day. This is explained in correlation with
sleep hours, work hours, days of the week or season of the year in
which the tweet is posted (many of these changes can show period-
icity in time). Other factors can affect tweet arrival rate behavior,
with an important one being language and geographical location
of the user at that moment. As shown in Figure 4, frequency sig-
nals decrease between 2:00 and 9:00 GMT hours, especially dur-
ing sleeping hours. The signal slowly increases between 9:00 and
17:00 GMT hours, when people are at work. After that, the sig-
nal remains stable until 2:00 GMT the next day. Therefore, we opt
for using Relevance Variation rates for window comparison, which
creates independence between values and the hour of the day.

In Figure 4 we show frequency signals according to the arrival
rate of each language. We observe that country time zone can affect
the behavior of certain keywords. Portuguese tweets are clearly
shifted some hours in comparison to other languages. We believe
that this happens because a large number of tweets in this language
originate in Brazil. Again, this effect is mitigated by the use of
relative rates (or percentages) instead of absolute values.

A common technique to filter or discard stopwords is the use of
predetermined list of stopwords per languages. In social media, es-
pecially in Twitter, the behavior of stopwords is dynamic. This oc-
curs because the message limit of 140-characters forces the user to
reduce or transform their message to utilize less space. Therefore,
stopwords in Twitter messages vary from those of standard docu-
ment lists. To identify stopwords for our experiment in this type
of environment (microblogging), we download standard stopword
lists8 and map them onto a frequency histogram of our keyword

8Stopwords List: http://snowball.tartarus.org/
algorithms/
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dataset (made up of the complete vocabulary found in our collec-
tion of tweets). We observe that most stopwords are concentrated
in the area of the histogram which contains words with a high ar-
rival rate. Therefore, we mark as candidate stopwords all keywords
with more than 18, 000 frequency occurrence in our keyword data
set. Nevertheless, by inspecting our stopword candidate list we
see that it still contains some relevant keywords which we do not
wish to mark as stopwords (false negatives). These cases occur be-
cause some relevant keywords have high occurrence rates during
certain time periods. In order to avoid these cases, we compute the
Relative Standard Deviation (RSD) rate9 and use it to describe fre-
quency signal stability of keywords. Intuitively, stopword signals
should be noisier (i.e., have a higher standard_deviation) than
the signal of regular keywords because they do not represent an or-
ganized phenomena. Figure 6 shows that stopwords are twice as
noisy as regular words, therefore we consider this as a parameter
for stopword identification. Also, we measure RSD using different
window sizes (shown in Figure 6) in order to identify the optimal
window size for which stopwords and keywords are less affected by
noise.

Using the previously described methodology, we obtain a final
list of stopwords that contains 18, 631 words. With this, we remove
90% of total word arrivals, making the process significantly faster.
It also reduces the volume of words for the final hash table in
algorithm in Figure 3, therefore requiring less memory. Stopwords
can be updated by performing off-line batch analysis which does
not affect on-line performance.

4.1.2 Determining optimal window size
The stability of the signal (minimization of RSD) helped us de-

termine the optimal window size for our algorithm. This is a crucial
parameter that determines the performance of our solution.

• If the window size is too small, the occurrence of empty win-
dows for a term increases (frequency equal to 0), making the
noise rate increase and frequency rate tend to zero.

• On the other hand, if the window size is too large, the stabil-
ity of the signal becomes constant and bursty keyword detec-
tion is delayed.

Therefore, it seems reasonable to place optimal window size
somewhere between 17 minutes and 2 hours. In practice, we se-
lect windows of 20 minutes for actual tweet arrival rate for fast
detection of bursts. This choice is practical because it divides a
24-hour day exactly, making the analysis easier to understand and
to compare windows from different days. It is important to remark
that this decision of 20 minutes is for the actual Twitter API arrival
rate of tweets that represent less than 10% of the total system. We
expect to reduce the time of the window size if the arrival rate is
higher. The effect of using higher size on windows would not de-
tect bursts because the signal will tend to the average value. Using
20 minutes as window size, we minimize the time of bursts detec-
tion keeping the noise level in the signal to a minimum.

4.2 Comparison to other methods
TwitterMonitor (TM) [14] is one of the earliest works in the field

of detecting emerging topics on Twitter. Its core algorithm named
QueueBurst uses five parameters and concepts of Queue Theory
M/M/1. We used the recommended parameter settings from the
technical paper provided directly to us by the authors, setting the
tolerances ε0 and ε1 to 10−2, and the ratio r to 2. The arrival
rates (λ0) per each keyword were calculated using the first week
of tweets of the TREC Tweet 2011 dataset to set each keyword.
9Relative Standard Deviation (RSD):
Standard_Deviation/Average
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both signals keeping the window size as short as possible.

Weng et al. [24] developed EDCoW (Event Detection with Clus-
tering of Wavelet-based Signals), a system that uses queueing tech-
nique for bursty keyword detection [8] and wavelet techniques to
detect trends in Twitter.

As mentioned earlier, LDA (with the Gibbs Sampling technique
for parameter estimation [16]) is a reasonable gold standard for our
evaluation. This follows the approach used in the EDCoW arti-
cle [24] to compare TM and EDCoW with our proposal. Given that
with EDCoW there are no details available for the implementation,
we can only perform a similar experiment and compare results to
TM and our method.

Next, we analyze the complexity of TM, LDA and BD. We can-
not analyze the complexity of EDCoW. It should be noted that LDA
is an off-line method, therefore it competes with an advantage in re-
lation to on-line methods TM, BD (and EDCoW) given that it has
a complete view of the information, as opposed to the limited data
that on-line methods use.

• TM is O(wni), where n is the number of tweets to be pro-
cessed, w is the average number of words per message and i
is the iterations for generating the exponential aleatory vari-
ables for the M/M/1 queue. The parameter i cannot be deter-
mined exactly because of randomness, leaving the complex-
ity of the algorithm in O(ni). This algorithm analyzes each
tweet in one pass, but this property creates delays because it
cannot be parallelized.

• LDA is a statistical method that determines k topics that rep-
resent a document, where k is the number of the top events
in that document. Assume we have N documents and a vo-
cabulary of size V . The complexity of mean-field variational
inference for LDA is O(NKV ). In this scenario, we as-
sume a document to be the concatenation of all of the tweets
in a same time-window (as in [24]). It should be noted that
LDA does not constitute a perfect gold standard for burst de-
tection in streaming data, but constitutes an approximation.
Some topics might not be bursty and some bursts do not cor-
respond to topics.

• For our Window Variation Keyword Burst Detection (BD) a
threshold T can be included in order to truncate the number
of bursty keywords returned. This, and an optimal selection
algorithm [9], reduce complexity of the ranking algorithm to
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Table 3: Examples of bursty keywords detected in the TREC Tweet 2011 dataset for February 6th, 2011
Window Time Top 10 Keywords Tweet Examples
17:20 GMT liverpool, torres, justinbieber,

meireles, chelsea, super,
greenandyellow, blackandyel-
low, commercials, bowl

• berapa" chelsea liverpool?
• A little over 6 hours until Super Bowl starts! Do you have everything you

need?
• #BrandBowl - Mullen Leverages @Twitter, @Radian6 to Rank the Best

Super Bowl Ads http://cot.ag/hkL6H2 #sb45
• if torres is worth £50m I must be worth about a tenner . Nice one @Leed-

sLadAdam

20:40 GMT corinthians, palmeiras, pra,
julio, agora, jogo, chupa, gol,
cesar, vai

• @ferpetucco palmeiras perdeu pro Corinthians ? O_O
• 2T 37m. GOOOOOOOOOOOOOOOOLLLLLLLLLLLLLL E DO

CORINTHIANS!!!!
• GOOOOOOOOOOOL DO CORINTHIANS! Aleshow faz o dele!

Palmeiras 0 x 1 Corinthians. #vccomenta

23:20 GMT christina, superbowl, anthem,
national, aguilera, sing, super,
bowl, lea, singing

• National anthem over-under is 1:54. I think Christina Aguilera s hitting
the over.

• The Superbowl seems to be 90% entertainment, and 10% of the actual
game. #bbcsuperbowl

• superbowl lea michele cantandoooo :)
• Que elegante se ve Christina, yo pense que iba a salir en minifalda con

tanga :P......:O

O(Tn). Because T is constant it remains lineal O(n). This
technique does not require parameters to be reset at run time.
Otherwise, if we decide not to use a threshold, the complete
ranking would take O(n log(n)).

We compare our BD algorithm to the topics returned by LDA
on a one-keyword-per-topic basis. We do this to determine the per-
centage of topic matches on the TREC Tweet 2011 dataset. We also
compared Twitter Monitor with LDA using the same dataset and as-
sumptions, and discuss results obtained similarly in EDCoW [24].

4.2.1 Results and discussion
The comparison of BD and TM against LDA is performed win-

dow by window. We compare the number of keywords that over-
lap between each time-window and their respective match percent-
ages (see Figure 7). Our system BD displays 91% coincidences
with LDA. Comparing TM with LDA, there is only a 3% keyword
match. We also looked at the overlap between bursty keywords
reported by BD and TM, obtaining only a 14% match.

We believe that the low percentage of the coincidences between
LDA and TM corresponds to the sensitivity of TM’s empirical pa-
rameter settings. Also, TM keeps reporting the same keywords in
time because they have not yet been dropped in the following win-
dows (while they do not satisfy the hypothesis H0 of the TM algo-
rithm).

In addition, the results reported by Weng et al. [24] for their
system EDCoW are of a 22% match with LDA in the best case.

Therefore, in our experimental evaluation we observed that our
algorithm (BD) outperformed TM and EDCoW with 91% coinci-
dences with LDA versus 3% and 22% of the other methods re-
spectively. Figure 7 shows the percentage of coincidences against
LDA on the TREC Tweet 2011 Dataset. These percentages were
estimated for each 20-minute time-window in the dataset. The
horizontal-axis considers the beginning of the first window on Jan-
uary 23rd 00:00 hours and that of the last window on February 8th
23:40 hours.

It should be noted that we acknowledge that LDA is not a per-
fect gold standard for burstiness detection. Nevertheless, we be-
lieve that it constitutes a reasonable approximation. In particular,
LDA detects topics and not all topics text are bursty. For example,
if a topic is constant through the entire dataset, then it is not bursty
(i.e. fan conversations of celebrities such as Justin Bieber). Also,
not all bursts constitute topics, for example random hashtags which
interconnect otherwise unrelated messages (i.e. the popular hash-
tag #fail is put at the end many messages which depict failed
situations).

In addition, we study an interesting event on February 6th, 2011,
due to the Super Bowl XLV. We observe that keywords related to
this event rapidly reach the top positions in the word rank list (see
Table 3). Interestingly, before the Super Bowl started, a soccer
match between Corinthians and Palmeiras was played in Brazil,
which is also shown in the top keywords. Also, keywords related to
Chelsea and Liverpool soccer match displayed burstiness too. On
February 3rd, 2013, the SuperBowl XLVII event occurs as well,
and specific keywords related to the event appear highly ranked
(Black-out, 49ers, Ravens, among others).

Table 3 and 4 show the top-10 keywords of a specific time-
window, and a random sample of tweets from this time period con-
taining some of these keywords. Note that the tweets do not in-
clude all of the keywords which are listed in the first column. In
this example some tweets and keywords contain noise, but this is
normal when important events occur (e.g massive sport matches,
concerts, and other public events).We list keywords ranked accord-
ing to highest burstiness.

4.2.2 Experiment Repeatability
We used a public dataset, openly available libraries and an easy

to acquire computer to make the experiment repeatable. In this ex-
periment we used a Home Personal Computer (PC) with Core2Quad
Q6600 2.4Ghz Intel Processor with 4 cores, 8 GB in RAM using
Linux Ubuntu x64 11.10 version as Operative System. The pro-

37



0%	  

10%	  

20%	  

30%	  

40%	  

50%	  

60%	  

70%	  

80%	  

90%	  

100%	  

20
11
01
23
_0
02
00
0	  

20
11
01
23
_0
82
00
0	  

20
11
01
24
_0
44
00
0	  

20
11
01
25
_0
10
00
0	  

20
11
01
25
_0
90
00
0	  

20
11
01
26
_0
52
00
0	  

20
11
01
27
_0
14
00
0	  

20
11
01
27
_0
94
00
0	  

20
11
01
28
_0
60
00
0	  

20
11
01
29
_0
22
00
0	  

20
11
01
29
_1
02
00
0	  

20
11
01
30
_0
64
00
0	  

20
11
01
31
_0
30
00
0	  

20
11
01
31
_1
10
00
0	  

20
11
02
01
_0
72
00
0	  

20
11
02
02
_0
34
00
0	  

20
11
02
02
_1
14
00
0	  

20
11
02
03
_0
80
00
0	  

20
11
02
04
_0
42
00
0	  

20
11
02
05
_0
04
00
0	  

20
11
02
05
_0
84
00
0	  

20
11
02
06
_0
50
00
0	  

20
11
02
07
_0
12
00
0	  

20
11
02
07
_0
92
00
0	  

20
11
02
08
_0
54
00
0	  

Pe
rc
en

ta
ge
	  o
f	  k

ey
w
or
d	  

m
at
ch
es
	  b
et
w
ee
n	  
al
go
rit
hm

s	  

Window	  Cmestamp	  (20-‐minute	  size	  windows)	  

BD/LDA	  

BD/TM	  

TM/LDA	  

Figure 7: Comparison of the Window Variation Keyword Burst Detection algorithm with TwitterMonitor and LDA

Table 4: Examples of bursty keywords detected for the SuperBowl 2013 event, February 3rd and 4th, 2013
Window Time Top 10 Keywords Tweet Examples

Feb 3rd 21:20 GMT ravens, beyonce,
49ers,#superbowlsunday,
@mrbbutterfield, forward,
hours, #superbowlxlvii, xlvii,
halftime

• @ArianaGrande: @glitteryariana: @ArianaGrande 49ers or ravens?
Beyonce lol made my day.

• RT @NiallOfficial: Who do I follow in superbowl tonight american fans?
49ers or ravens? I don t know much about american football

• 49ers: 27 Ravens: 24 Goes into quadruple OT. Monday declared national
holiday.

Feb 3rd 23:40 GMT ravens, touchdown, commer-
cial, #thekiss, kaepernick,
commercials, boldin, godaddy,
tackles, @godaddy

• RT @lifestylist: #TheKiss? The Worst! @GoDaddy #NotBuyingIt. Wish
they d spend that money on customer service instead of wasting it on a

• RT @PiperJones: That GoDaddy commercial was just . . . ew.

Feb 4th 01:40 GMT lights, power, outage, super-
dome, 49ers, ravens, turned off,
stadium, luz, #lightsout

• RT @YourAnonNews: NFL can control everything except power in
Superdome. What an embarrassment. 7 mins and counting.

• RT @ShamelessProbs: The lights went out because we don t need foot-
ball after Beyonce.

• RT @billmarchi13: @TheShieldWWE turned off the lights and are mak-
ing their way to take out #Flacco! @WWE #Superbowl

gramming language used to implement the algorithms was mainly
Java. For implementing algorithm LDA we used the OpenSource
GibbsLDA C++. The Dataset can be obtained upon request and
must be acquired via NIST and downloaded using a crawler or an
API on Twitter. We also will provide on request, code implementa-
tion of our algorithm for research purposes.

4.2.3 Scalability
After the process of a window by the Keyword Ranker Module,

the entire system can be conceptually represented as a Node for a
MapReduce Schema, using a specific term as a Key from merge
data between other nodes in parallel processing. When we use var-
ious instances of the system as nodes, each one would have their
own HashTable, and it is necessary to merge the sorted results of
each one efficiently adding the frequencies of each repeated terms
from all nodes, The computational cost of this procedure would
take O(n log(n)) using a variation of the merge step in MergeSort
or much better a parallel variation of it. Once the hash tables data
is merged, the method must recalculate the additional rates (arrival
rate, relevance and variations). Thus, we will obtain a global re-
sult.

5. CONCLUSION
We have introduced a novel approach for on-line bursty keyword

detection on the text streams. Our approach requires only the set-
ting of the window_size parameter. It is efficient in the use of re-
sources with a complexity of O(n logn) which makes the method
scalable. This makes our approach easy to use and promising for
on-line processing in comparison to other state-of-the-art methods.
Experimental results indicate that our algorithm can scale to high
tweet arrival rates while still producing high-quality results. Over-
all, our system produces an extraordinary keyword overlap against
LDA, using very limited resources and memory.

In addition, we have presented an in-depth analysis of the behav-
ior of stopwords on the Twitter stream and how to identify them.
We also explain and justify the values for the parameters for our
algorithm.

Future work is directed at identifying topics for fast and efficient
detection of semantically coherent trends on Twitter.
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ABSTRACT 
This paper discusses the key role of explanations for applications 
that discover and detect significant complex rare events. These 
events are distinguished not necessarily by outliers (i.e., unusual 
or rare data values), but rather by their inexplicability in terms of 
appropriate real-world behaviors. Outlier detection techniques are 
typically part of such applications and may provide useful starting 
points; however, they are far from sufficient for identifying events 
of interest and discriminating them from similar but uninteresting 
events to a degree necessary for operational utility. Other 
techniques that distinguish anomalies from outliers, and then 
enable anomalies to be classified as relevant or not to the 
particular detection problem are also necessary. We argue that 
explanations are the key to the effectiveness of such complex rare 
event detection applications, and illustrate this point with 
examples from several real applications. 

Categories and Subject Descriptors 
H.2.8 [Database Applicaitons]: Database applications – data 
mining; I.5.2 [Pattern Recognition]: Design Methodlogy – 
classifier design and evaluation, feature evaluation and selection. 

General Terms 
Security 

Keywords 
Complex Event Detection, Anomaly Detection, Outlier Detection, 
Explanation 

1. INTRODUCTION 
In many real applications, the problem to be solved is the 
discovery and detection of complex rare events. Examples of such 
applications include detection of money laundering [9], detection 
of insider trading [2], and detection of insider threats [5], [10]. 
These applications typically combine two functions: (1) 
discovery, which means the identification of previously 
unrecognized event types, and (2) detection, which means the 
identification of instances of event types. Complex rare events are 
characterized by contextual combinations of specific actions, 
often by multiple agents. They typically occur very infrequently. 
These events manifest in multiple databases, many of which may 
or may not be initially – or even eventually – observable or 
available. Such events may result from multiple agents executing 

many different types of activities simultaneously, all of which are 
interleaved in the observed data. Often the observed data are 
insufficient to distinguish between legitimate actions and actions 
of interest; additional data are required to make this determination 
by explaining the observed patterns of activity in the available 
data.  

2. KEY IDEA 
 The key idea of this paper is that detection and discovery of 
complex rare events involves three related but distinct levels of 
abstraction, and that explanations are the essential mechanism to 
transform between these levels, because events of interest are 
characterized not by their rarity but rather by their inexplicability.1 

 
Figure 1: Explanations Enable Transformations Between 

Outliers, Anomalies and Events of Interest 
Such explanations may be provided both implicitly and explicity 
by the underlying data, models and features incorporated in the 
system design and by what is presented to a human analyst, 
respectively. 
 Explanation provides the ability to infer underlying intent and 
allows the segmenting of intermingled actions to identify those 
related to a particular event of interest.  This can be as simple as a 
large number of instances of a condition-action pair, i.e., an 
anomaly consisting of a set of outliers that would be unlikely to 
have occurred without intent – from which one can infer the 
existence of the intent to commit the action when the specified 
condition occurs. An example of such an anomaly would be 
repeated personal trading by a stockbroker “ahead” (i.e., in the 
time period preceding) trades for a customer. The stockbroker 
would be using his foreknowledge of the customer trade and its 
likely impact on the price of the security to obtain a profit for 
himself. A more complex anomaly might be a partial match to a 
set of observations that would result from execution of a plan to 
engage in some improper activity. We refer to the behaviors 
characteristic of such plans as “scenarios” and the corresponding 
set of observations as “patterns.” [8] An example of such a 
scenario might be an authorized user of a computer system who 
searches for valuable corporate information in areas distinct from 
                                                                 
1 This idea is related to the concept of “interestingness” in the data 

mining literature. A specific set of data is “interesting” in these 
applications because of the real world behavior suggested by its 
explanation. 
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his current job responsibilities, downloads such information to 
removeable media, and then takes an extended vacation. 
 Three levels of abstraction that we propose and have found 
useful in various applications we have designed and implemented 
are: (1) outliers, (2) anomalies, and (3) events of interest, as 
depicted in figure 1. We define outliers as unusual (combinations 
of) data points that are statistically rare but may or may not result 
from the same generative processes as other data points; 
anomalies as data points that have resulted from a distinct 
generative process2 that may or may not appear in the data as 
outliers; and events of interest as anomalies that are caused by 
some type of behavior in the real world that is of concern for the 
application. It is important to note that outliers are always defined 
with respect to some baseline population and the distribution of 
values of some (set of) features of entities comprising said 
population in the database; anomalies are defined with respect to a 
generative process that results in the observed data; and events of 
interest are defined by the external needs of an application (e.g., a 
rule or regulation that may be violated, or a phenomenon of 
concern for some other reason, such as a combination of 
symptoms requiring treatment). 
 For example, in an application to detect insider trading, an 
outlier might be an unusually large trade, for a particular trader in 
the context of his or her trading history, in a particular security, on 
behalf of a particular owner, by a trader compared to other traders 
during the same timer period, etc. In a public health surveillance 
application, outliers might be a significant increase in emergency 
room admissions or in a particular complaint or symptom. In an 
insider threat detection application, an outlier might be an 
unusually large number of file transfers to removeable media. 
 In the insider trading domain, a corresponding anomaly would 
be a large trade that precedes a material news event and results in 
a significant profit. It is considered an anomaly because it is 
generated by a trader reacting to prohibited insider information, 
not to normal market information. Such an event might be benign 
– it could simply be a coincidence – or it might be improper, 
depending on the explanation. An explanation of an improperly 
caused anomaly could be the connections or communications 
between the beneficial owner of the profitable trade and a source 
of the inside information. (A legitimate explanation might be one 
in which the beneficial owner had recently acquired a large sum of 
cash and was conducting numerous trades, of which the one in 
question happened to coincide with an opportunity to make a 
large immediate profit.) A repeated pattern of such trades would 
also be an anomaly, providing an analyst with the ability to infer 
the existence of the unobserved communication of inside 
information to the trader, such unobserved communication 
serving as the explanation of the anomaly. 

3. EXPLANATIONS 
We consider several types of explanations and show examples of 
how they transform from outliers to anomalies to events of 
interest. We group explanations into two categories, depending on 
whether they aid in the transformation from outliers to anomalies 
or from anomalies to events of interest. 

3.1 Explaining Outliers 
Because outliers are defined statistically, in terms of where a 
particular (set of) data points appear on a distribution of values of 
particular features on a specified population, the explanations of 

                                                                 
2 This concise description in terms of generative processes was 

suggested by Andrew Emmott of Oregon State University. 

such outliers must depict where the data ponts lie on these 
distributions with respect to the population. This is not sufficient, 
however, for several reasons. First, many users are not trained in 
statistics and will not appreciate an explanation in terms of p-
values, t-tests, and the like. Second, and at least as important, the 
selection of both the underlying population – and of the definition 
of the entities of interest – typically involves many implicit and 
explicit assumptions and choices regarding comparison baselines 
that affect the recognition of outliers. Third, an explanation of the 
statistical significance and location of an outlier does not tell a 
user how likely such an outlier is to suggest the existence of the 
event of interest. Finally, there is the multiple comparison 
problem – which, while correctable with appropriate statistical 
methods, can still mislead users of a detection system. We 
illustrate the second and third of these points with examples, as 
the first and fourth require no further explanation.  
3.1.1 Comparison Baselines  
Consider an application that aims to detect significant events in 
financial time-series data. Such an application might look for 
trades that are unusual. This can mean many things. Even if we 
specify the features of interest (e.g., total dollar amount of a trade, 
frequency of trading, time of day, etc.) – which is not the subject 
of this paragraph or this paper – we have many other choices. For 
any aggregate feature, we compare its value over some time 
period to its value over preceding time periods. For any entity – 
individual or aggregate – we want to compare the feature values to 
those of other similar entities, for some definition of “similar.” To 
analyze an individual trade, we may want to compare it to other 
trades by the same person in the same security, in similar 
securities, or in other securities. We may want to compare time-
based features such as average trading amount per day or week 
 We have identified three time periods that must be specified for 
any comparison: (1) the temporal-extent over which a feature is 
computed for a particular entity; (2) the look-back period over 
which the same feature is computed in order to establish the 
distribution of values of that feature; and (3) the granularity of the 
computations during the look-back period. For example, consider 
again a financial time series application that uses the price-
volatility of a security as a feature. We might look for unusual 
volatility numbers based on hours or days; we might compute the 
distribution of historical volatility by looking back over one, 
three, or six months; and we might use the daily or weekly prices 
as the basis of this computation. 
 Similarly, we need to specify the population of entities against 
which a comparison occurs. We might, for example, compare an 
individual to his or her 
own behavior, to 
people in his or her 
community (i.e., 
people to whom he or 
she is connected 
according to some 
type of network 
structure), or to peers 
(i.e., people with 
similar job 
descriptions and 
functions). 
 Once we have made 
the above choices, we 
then have to decide 
whether to compare 

Table 1: Outlier Detection Data 
Structure 

ResultScore  ResultMetadata  
runID (KEY) runID 
flowID (KEY) flowID 
alfoID (KEY) algoID 
dataTypeID (KEY) dataTypeID (KEY) 
nodeID entityXtent (KEY) 
rawScore [optional] featureID [optional] 
normScore EntityTemp 
rankedScore popXtent 
Rank popSubXtent 
endDate popTemp 
analystScore scoreMean 
hasAnalystScore scoreStdev 
analystUpdateDate scoreCount 
 parameters 
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absolute values or normalized values. (We may explore a number 
of possibilities as we design a detection system, to determine 
which features are the most useful.) If we choose normalized 
values, we have to determine the basis of normalization. For 
example, do we normalize the number of communication events 
of an individual by the number of other individuals with which he 
has communicated? Do we normalize based on where someone’s 
feature value lies on a distribution based on his/her community 
and/or peers? Should we normalize based on absolute numbers, 
units of standard deviation for a particular feature, or percentiles? 
 However the above choices are made, they need to be 
communicated explicitly to a human 
analyst as part of the explanation of an 
outlier. If multiple versions of such 
choices are made, then outliers need to be 
explained in the context of all of these for 
a full understanding. 
3.1.2 How Unusual is an 
Outlier?  
An outlier must be explained not only in 
terms of its likelihood but also in terms 
an analyst can understand. Analysts are 
familiar with their underlying data, so an 
explanation in these terms has proven 
effective. It is useful to provide simple 
visualizations that show where outliers lie 
according to the distribution of all values 
of features comprising the outlier. 
Obviously, such visualizations are limited 
to two – and occasionally with advanced 
techniques three – dimensions on a 
screen, but additional dimensions can be 
illustrated using color, pattern, iconology, 
etc. The key idea is that enabling an 
analyst to see an outlier in the context of 
the distribution of values of all the 
relevant features enables the analyst to 
determine if the outlier is significant. 
Showing an analyst the number of 
instances in the data with similar feature 
values and their resulting interpretation is 
a useful technique for explaining such 

outliers. 
 Figure 2, taken from 
reference [7] contains 
an example of such a 
visualization. This 
visualization of an 
association rule, which 
consists of multiple 
conditions on both the 
left and right hand 
sides, states each 
condition using pre-
stored natural languge 
text augmented with 
specific variable 
values (in the blue 
boxes in the figure). 
The bar graphs 
appearing below the 
blue boxes depict the 

number of trades or quotes for which the rule holds or does not, 
above and below the horizontal axis, respectively, and shows all 
values of the variable associated with the particular condition 
across the horizontal axis. The arrow is labeled with the number 
of instances in the database on the left hand side for which the 
right hand side does and does not hold. Additional context is 
provided by the ability to click on the arrow and bring up a table 
of the raw data summarized in the rule. This visualization enables 
analysts to understand the context of any prediction made by the 
rule and evaluate whether the outlier is truly anomalous. 
 While visualizations are useful for explaining outliers to human 

 

Figure 2: Association Rule Display 

Figure 3: Money Flow Visualization 
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analysts, an automated system requires that detected outliers be 
stored and available for further analysis. Reference [5] describes a 
data structure that captures the results of outlier detection, as 
depicted in table 1. For each run, we allow outlier detection 
algorithms to compute a raw score, an ordered ranking of all 
entities, a normalized score, and percentile (ranked) scores. The 
raw scores may be on different scales and difficult to combine 
across algorithms. Normalized scores and ranks enable us to 
compare scores across algorithms. Distributional information such 
as mean and standard deviation allows us to determine degrees of 
anomaly. 

3.2 Explaining Anomalies 
Anomaly explanation differs from outlier explanation by referring 
to models of processes that may have given rise to the observed 
data. These models may be based on scenarios derived from 
domain knowledge or on abstract features of the domain. For 
example, in the systems described in references [3] and [5], 
scenarios of behavior are defined and translated to patterns of 
actions that would be matched in the observed data. The 
occurrence of matches to these patterns strongly suggests that the 
behavior modeled by the scenario has occurred. Such scenario-
based models may involve multiple interacting agents performing 
distinct types of actions in a particular temporal sequence or with 
particular durations. 
 Other generative models may refer less directly to specific 
actions in a domain, and capture instead relevant abstractions. For 
the money laundering detection application discussed in reference 
[9], the most relevant domain concepts involved money flows 
between people, businesses and accounts. The visualization 
depicted in figure 3 was useful to explain a particular anomaly to 
analysts. In this picture, green “house” shaped icons refer to 
addresses, yellow circles to people, beige cut-off rectangles to 
accounts, and red rectangles to businesses. This diagram depicts 
in the center, three people at three different addresses who share 
an account which is used by three businesses, which share one 

other account, and so on. The diagram 
was used to explain this money-
laundering case not only to the analysts 
management chain, but ultimately to a 
grand jury. While other aspects of the 
case, such as the timing and amounts of 
money flows between the people, 
accounts, and businesses, is not depicted 
in the diagram, combined with the 
accompanying text and briefing, it 
captured enough information to 
convince appropriate authorities to 
proceed. An interesting phenomena that 
we discovered when developing this 
visualization is that the explanation that 
helped an analyst understand the data 
turned out to be the same visualization 
that enabled him to explain it to his 
management chain and to external 
organizations responsible for further 
prosectution of the suspected violation. 
 In the case of the stock market 
example discussed in reference [3], [7], 
and [8], the most relevant domain 
abstractions had to do with temporal 
sequences of quotes and trades by 
different market participants. Figure 4 is 

an actual screen shot of a visualization that captures these 
abstractions. The x-axis shows the time and the y-axis the price of 
a particular security. Trades are depicted by dots; quotes by the 
market maker of interest by the blue band; and the “inside quote” 
– i.e., the best available bid and ask prices, by the green band. 
 Other relevant abstractions may be captured as well. Reference 
[1] uses typical graph structures found to be characteristics in 
many domains to indentify situations where such structures appear 
anomalous. Distributional comparisons, such Benford’s law 
(which captures the empirical distribution of the “first digit” in 
many real sources of data), may also serve as the basis for 
explaining anomalies. 
 Finally, a source of explanations for observed anomalies may 
be additional data types. In the example of insider trading cited 
earlier, we described two situations which could result in 
significant, profitable trading in advance of material news. The 
same event could have resulted from either of two generative 
processes: (1) the trader had inside information, or (2) the trader 
had money to invest or losses to cover and bought or sold the 
stock without knowledge of the insider information. Additional 
data is required to infer which is the true explanation: call logs, 
lists of company officers with inside access, names of friends and 
family, other trading patterns of the trader in questions, etc. In the 
example of the insider who copies proprietary data, we noted that 
the files copied were not related to his normal work area. This is 
an inference which must be made in order to increase our 
confidence that the event is anomalous and of interest, not just 
unusual. We can make it either by looking at his other activities in 
the recent past, or through reference to additional, supplementary 
data, such as project assignments. 

4. ANOMALY DETECTION LANGUAGE 
Specifying the functional flow of outlier and anomaly detectors 
required for a real application, and capturing the multiplicity of 
choices for baselines and extents, was facilitated by the 
development and use of a visual anomaly detection lanauge. [4] 

Figure 4: Trade and Quote Visualization 
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Traditional data flow diagrams cannot express these designs 
concisely, so we developed a visual anomaly detection language 
that enables the expression of such combinations of methods, 
data, baselines, and detection extents. While developed for insider 
threat detection, the language itself is domain-independent and 
may be applied to other domains. The language specifies the 
extent of the entities to be detected (e.g., individual users or 
groups of users) combined with the temporal extent of potential 
anomalies. Inputs to these expressions are transactional records of 
user activity, and outputs are scores on these user-temporal 
extents.  
The syntax of the language is shown in Figure 5; required 
arguments are in <angle brackets> and optional arguments in 
[square brackets]. Records are passed along horizontal lines from 
left to right. Component types are specified by symbols. Entity 
and temporal extents are super- and sub-scripts, respectively, of 
component type. 
 Components may be statistical (denoted by the symbol S) or 
temporal (T); the latter indicating detectors specialized for 
anomalies in temporal patterns. 
Group detectors (G) discover 
communities of entities, which 
can be used as baseline 
populations. Classifiers (C) place 
input records into classes, which 
may also be used as baseline 
populations, or for filtering or 
partitioning records in general. 
The classes may be hard, 
meaning that each record is put 
into exactly one class, or mixed, 
in which case a record may be a 
member of more than one class, 
possibly to varying degrees. 
Classifiers might be implemented 
using a machine-learning method 
or may be a simple filter based on 
a lookup on a record. Similarly, 
aggregators (A) group records 
with some shared characteristic 
and summarize their values, e.g., 
roll-up emails from the same 
sender to a single record having 
the count of emails as a new 
feature; aggregators derive new 
features from existing ones in this 

way. Another way to transform features is with a normalizer (N), 
e.g., rescale real-valued features to the unit interval. Finally, if 
given a baseline, records are classified and normalized with 
respect to that baseline. 
 When sets of records are joined and contain different values for 
the same feature, and and or (/\, \/) can combine those values, 
e.g., implement with a t-norm and t-conorm to combine unit-
interval values. Evidence combiners (E) also combine values but 
are more general than /\ and \/. And, when no combinations are 
necessary, union  and intersection ( ) perform the expected 
operations on input records.  
If a baseline is provided, a baseline type specifies how the 
baseline is used by the component and is indicated by a symbol 
inside a small circle to the left of the component to which the 
baseline input connects. With a cross-sectional baseline (C), entity 
extents are compared to others within the same temporal extent. In 
contrast, with a longitudinal baseline (L) each entity will be 
handled individually, and different temporal extents for that entity 
are compared to one another. A simultaneous baseline (S) 
combines the first two and compares each input extent to all 
baseline extents. If a baseline or input time period is not specified, 
this means that the two cover all available time periods. 
Whenever a component may output more than one output class of 
records, e.g., a binary classifier has (+) and (−) output classes, 
they should be placed to the right of the component inside circles 
connected to output lines, unless only one class of output is 
needed and that class is clear from context, in which case the 
output class can be omitted. 
Weights are scalars in the unit interval used to transform features 
– usually scores – and are drawn as the letter w inside a rectangle. 
The type of weighting should be put in a description above the 
rectangle. Finally, the output of the system is drawn as the letter 
“O” inside a circle.  
 Figure 6 uses the anomaly detection language to specify a 
system for targeting an Intellectual Property (IP) Thief Ambitious 

 
Figure 6: IP Thief – Ambitious Leader Scenario Diagram 

 
Figure 5: Anomaly Detection Language Syntax 
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Leader scenario in the insider threat detection domain, in which 
we find a leader of a group of insiders who each steal a few files 
to be inconspicuous. To counter their strategy, we combine the 
file activity from the neighbors surrounding each user – known as 
an egonet – in the IM communication graph, making the leader 
more anomalous. 
We start by filtering user-days to those with sufficient file activity 

, then join those records with the IM user-neighbor 
adjacency list and sum up the features for each “neighbor” 

. We next add that total for each user to the user’s own 

features and convert the feature totals into ratios 1 that 
can be compared across egonets of different sizes, e.g. number of 
unique files to number of all files.  
To limit the baseline population to users fitting the profile of a 
leader, we keep the users  with a high fraction of file 
accesses  fitting the manager role according to file 
extension  and use this set as a simultaneous baseline 

to score  each user-day.  

As an additional indicator, we count 2  phrases seen in 
IMs between users that fit the scenario  and finally 

combine  with the anomaly scores. 
 

5. COMPLEX EVENT DETECTION 
SYSTEMS WITH EXPLANATIONS 
Real complex event detection systems are multi-layered, 
consisting of a series of classifiers, each of which is more 
accurate, primarily because of the availability of additional data to 
explain outliers or anomalies detected at an earlier stage, and 
which are biased towards minimizing false negatives at the early 
stages and minimizing false positives at the later stages [6]. At 
present, explanations must be provided by humans, sometimes at 
great cost in terms of investigating false positives or collecting 
additional data, and requiring significant human analyst 
involvement and judgement. Adding automated explanation 
capabilities will enable systems to more accurately distinguish 
events of interest from other anomalies and enable human analysts 
to focus their efforts on follow-up investigations and actions for 
those situations most demanding and worthy of their attention. 
 Our vision for applications that can be effective at detecting 
significant complex rare events involves the development of 
automated explanation techiques to reduce false positive ratios by 
enabling the transformation of outliers to anomalies and then to 
events of interest. Techniques that appear promising for such 
automated explanations might include plan generation, providing 
the ability to generate plans to accomplish a high-level goal 
specified in domain terms and translate such plans into an 
appropriate set of features and baselines that may be present in the 
data, as well as techniques that could infer potential plans as 
possible explanations of observed data. Development of 

ontologies of anomaly types in terms of domain characteristics 
will be another necessary development to enable this vision. 
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ABSTRACT
The identification of outliers is an intrinsic component of
knowledge discovery. However, most outlier detection tech-
niques operate in the observational space, which is often
associated with information redundancy and noise. Also,
due to the usually high dimensionality of the observational
space, the anomalies detected are di�cult to comprehend.
In this paper we claim that algorithms for discovery of out-
liers in a latent space will not only lead to more accurate
results but potentially provide a natural medium to explain
and describe outliers. Specifically, we propose combining
Non-Negative Matrix Factorization (NMF) with subspace
analysis to discover and interpret outliers. We report on
preliminary work towards such an approach.

1. INTRODUCTION
It is well known that new scientific discoveries or“paradigm

shifts”are often triggered by the need to explain outliers [11].
The availability of large and ever increasing data sets, across
a wide spectrum of domains, provides an opportunity to ac-
tively identify outliers with the hope of making new discov-
eries.

The obvious dilemma in outlier detection is whether the
discovered outliers are an artifact of the measurement de-
vice or indicative of something more fundamental. Thus the
need is not only to design algorithms to identify complex
outliers but also provide a framework where they can be
described and explained. Sometimes it is easy to explain
outliers. For example, we applied the recently introduced k-
means-- algorithm [4] on the 2012 season NBA player data
set1. k-means-- extends the standard kmeans algorithm to
simultaneously identify clusters and outliers. The result of
the Top-5 outliers are shown in Table 1 and matches with
the top players in the NBA“All Star” team. An NBA star is
an outlier and given the highly competitive nature of NBA,
an outlier is most likely a star. Or in other words there are

1www.basketball-reference.com
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no bad players in the NBA but some players are very good!
However, in many other applications it is not at all clear
how to proceed to explain outliers. This can be termed as
the “Low Precision Problem (LPP )” of outlier detection.

Table 1: Given the highly competitive nature of the
NBA, not only are stars outliers, but outliers are
stars! All the top five outliers are well known leading
players of NBA.

Outlier Rank Player Name All Star Team (Y/N)
1 Kevin Durant Y
2 Kobe Bryant Y
3 LeBron James Y
4 Kevin Love N
5 Russell Westbrook Y

Problem 1. The Low Precision Problem (LPP ) in out-
lier detection is that

P (genuine outlier|predicted outlier) ⇡ low

LPP occurs because it is hard to disambiguate genuine out-
liers from errors occurring in the measurement device.

2. THE MULTIPLE SUBSPACE VIEW
A starting point towards addressing LPP and explaining

and sifting genuine outliers from measurement errors is to
view data from multiple perspectives [12]. In the context
where data entities are described by a vector of features,
examining an entity in all possible feature subspaces can
potentially lead to isolating genuine outliers. This is espe-
cially true in high dimensional settings. For example assume
that each entity is described by a feature vector of size m.
Furthermore, assume that the probability of each feature
being recorded incorrectly is p and is independent of other
features. Then if m is large, the probability that at least one
feature value has been recorded incorrectly is 1 � (1 � p)m

and this can be close to 1 when m is large. Thus having
at least one feature value which is corrupted due to mea-
surement error is high. However if we can view the data in
multiple subspaces then a genuine outliers will consistently
stand out.

A limitation of the multiple subspace approach is that
there are exponentially many subspaces leading to intractable
algorithms. However the problem can be ameliorated if we
notice that in real data sets, the intrinsic dimensionality of
the data is much lower than the ambient dimensionality as
we now explain.
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3. HIGH-DIMENSIONAL ANOMALIES
It is now part of the data mining folklore that in real data

sets, the “degrees of freedom” which actually generate the
data is small, albeit unknown. This can be illustrated using
examples from computer vision. For example, consider a
subset of the Yale Face data shown in Figure 1. Each image
is very high-dimensional (64 ⇥ 64 = 4, 096), however the
set of images together live on a three dimensional manifold
where the degree of freedom are governed by the rotation of
the camera and the lighting. The bottom right hand image
(transpose of the top left image) is an outlier as it lives
outside the manifold [5].

Thus given a high-dimensional space, if we can project
data into a lower-dimension space which preserves the in-
trinsic structure of the data, then not only can we identify
outliers e�ciently but potentially explain the discovered out-
liers. An example of manifold-preserving projection are the
family of random projections which preserve pairwise dis-
tances with high probability [5]. However, while random
projections can lead to improvements in e�ciency, by their
very nature they make it nearly impossible to interpret the
outliers. Thus we need a set of projections to which we can
also ascribe some meaning. We next describe matrix fac-
torization methods which are projections of data into lower
dimensional space where each dimension aggregates a group
of correlated features.

Figure 1: An example to explain the di↵erence be-
tween intrinsic and ambient dimension. Samples
from the 698-image Yale face data. Each 64 x 64
is a point in a 4,096 dimensional space. However
the set of images live in a three dimension set. The
bottom right image is added as the transpose of the
top left image and is an outlier.

4. MATRIX FACTORIZATION
As we have noted, the challenge in outlier detection is the

di�culty to separate true outliers from those data points
that are caused because of measurement errors. We have
also noted that in high-dimensional space most of the fea-
tures tend to be correlated. Thus if a data point is a true
outlier that fact should be visible in several features. Thus
if we take a subspace approach then a genuine outlier will
show up as an outlier in more subspaces than an accidental
outlier. The challenge in pursuing a subspace approach is
that the space of subspaces is exponential in the number of
features and thus intractable to explore for most practical
problems.

One way to address the intractability is to reduce the
dimensionality of the original space. This can be carried

1
X

X

2

3

Figure 2: The figure shows the impact of projections
of outliers in a lower dimensional space. Data points
1 and 2 remain outliers after projection, while data
point 3 is mixed with normal after the projection [8].

out using matrix factorization approaches. Factorization
is a principled approach of simultaneously aggregating cor-
related features into a reduced number of “meta-features”
which in turn can be imbued with semantics related to the
application domain. While Singular Value Decomposition
(SVD) and Principal Component Analysis (PCA) have been
around for a long time, the recent surge in new methods like
Non-Negative Matrix Factorization (NMF) and Bayesian fac-
torization have enhanced the reach of these methods [13].
The key advantage of NMF, say over SVD, is the enhanced
interpretation that these methods a↵ord. For example, if
X is non-negative document-word matrix or data from a
micro-array experiment and X = UV is a non-negative fac-
torization (i.e., both U and V are also non-negative) then
the factors can be ascribed a meaning as shown in Table 2.

4.1 The impact of Projections
Outliers can potentially be impacted in di↵erent ways de-

pending upon the nature of outliers. For example, consider
the projection shown in Figure 2. The projection shown will
have no impact on data point 1, will force data point 3 into
a cluster and data point 2 will continue to remain an outlier
even though it is far away from the projection plane. Now,
which one of these points are genuine outliers is potentially
application dependent. However, if we take a subspace per-
spective, then data point 1 is more likely a genuine outlier.
This is because it preserves the correlation between its com-
ponents but each component is far removed from the main
cluster.
4.2 Sensitivity to Outliers

While techniques like NMF provide a promising way to ad-
dress the combinatorial explosion problem associated with
multiple subspace viewing, like SVD, they are highly sen-
sitive to outliers. Thus if our aim is to find outliers, then
our method of discovering outliers should not in turn be af-
fected by them. For example, it is well known that both
mean and the variance-covariance matrix are extremely sen-
sitive to the presence of even one extreme value and their use
for outlier detection will often mask the discovery of genuine
outliers. Thus we first have to modify NMF to make them
more robust against outliers. Thus we define the following
problem:
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Table 2: Non-Negative Factorization provides enhanced interpretation of the meta-features. In text process-
ing, the meta-features can be interpreted as topics, while in micro-array analysis, the meta-features are group
of correlated genes.

X U V
Document-Word Document-Topic Topic-Word

Exp-Gene (Exp,Functional Group) (Functional Group, Gene)

Problem 2. [NMF(k,`)] Given a non-negative matrix X 2
Rm⇥n

+ , fixed integers k and `, find matrices U 2 Rm⇥k
+ ,

V 2 Rk⇥n
+ and a subset L ⇢ N, |L| = `, which minimizes

kX�`�UV�`kF , where X�` is a submatrix consisting of all
columns except those from the set L.

To solve the NMF (k,` ) problem we present the R-NMF
algorithm shown in Algorithm 1. The algorithm belong to
the class of alternating minimization methods and is very
similar to the standard NMF algorithm except for a few
caveats. We begin by initializing U in Line 1. In Line 4, we
solve for V which minimizes the Frobenius norm of kX �
U

i�1
V kF . In Line 5, we compute the residual between X

and the current estimate of the product U

i�1
V . In Line 6,

we rank the residuals based on the norm of their column
values, and L is the index vector of the ranking. We then
generate new matrices X�` and V�` by removing the first `
values of the set X and V in Line 7 and 8. In Line 9, we
estimate U by minimizing the Frobenius norm of X�` and
UV

i
�`. We iterate until the convergence criterion is met.
We also propose algorithm O-NMF which is simply using

classical NMF algorithm to identify anomaly. The anomalies
are calculated by taking ` data points which correspond to
the top ` residual of the final matrices X and UV that is
calculated identical to Line 5 of Algorithm 1.

The R-NMF algorithm is an analogous extension of the
recently proposed proposed k-means-- algorithm [4]. We
should note that another extension for NMF to find out-
liers has been proposed by Xiong et. al. [14] introduced
the method of Direct Robust Matrix Factorization (DMRF).
The DMRF method first assumes the existence of a small
outlier set S and then infers the low-rank factorization UV

by removing S from the data set. It then updates S by using
the inferred factorization. In the experiment section we will
compare R-NMF with DNMF.

Algorithm 1 [R-NMF Algorithm]

Input: A matrix X of size m⇥ n, m number of features, n
number of samples
k the size of the latent space

Output: An m⇥ k matrix U and k ⇥ n matrix V
R ⇡ UV

1: U

0  random m⇥ k matrix
2: i 1
3: while (no convergence achieved) do
4: V

i = argminV kX � U

i�1
V kF

5: R = X � U

i�1
V

i \\R is a residual matrix
6: Let L = {1, 2, . . . , n} be a new ordering of the columns

of R such
kR(:, 1)k � kR(:, 2)k . . . � kR(:, n)k

7: X�`  X(:, L \ L(1 : `))
8: V�`  V (:, L \ L(1 : `))
9: U

i = argminU kX�` � UV

i
�`k

10: i i+ 1

The R-NMF algorithm forms the kernel of the subspace
algorithm, SR-NMF shown in Algorithm 2 which combines
subspace enumeration with R-NMF. Note we only take sub-
space of the “meta-features.” The intuition is that genuine
outliers will emerge as outliers in the latent subspaces.

Here we design algorithm that incorporate both the con-
cept of multi subspace view and matrix factorization. As we
mentioned before the shortage in [12] is that due to the high
dimensionality nature in most of the data set, one simply
can not brute force and traversal each and every subspaces.
We solve this problem by investigate the problem in a latent
space where data are confined in a much small dimensional-
ity.

Algorithm 2 [SR-NMF]

Input: A matrix X of size m ⇥ n, m number of features,
n number of samples, k the size of the latent space, `
number of outliers

Output: A vector R represent the ranking of anomalies
with a score in descending order

1: Using R � NMF algorithm we get U and V such that
X ⇡ UV

(U, V ) = R�NMF (k,` )
2: j  0;RANKS  empty matrix;
3: STEP1 generate ranks for each subspace
4: for i = 1! k do
5: generate all set of combinations AS from (k choose i)
6: for each S 2AS do
7: Residual = X � U(:, S)V (S, :)
8: RNorm = columnNorm(Residual)
9: [�, RANK] = sort(RNorm, ‘descend’)
10: RANKS = [RANKS;RANK]
11: j ++
12: STEP2 merge ranks into one rank
13: R vector of size n;
14: for i = 1! j do
15: for p = 1! n do
16: R(RANKS(i, p)) = R(RANKS(i, p)) + i

17: sort R in descending order
[�, R] = sort(R, ‘descend’) (Note: Matlab Notation)

5. EXPERIMENTS AND RESULTS
In this section we evalute both R-NMF and SR-NMF on

several data sets. Our ultimate objective is to verify if SR-
NMF can be used to address the LPP problem. All our
experiments were carried out on a PC with following config-
urations. Intel(R) Core(TM) i5-2400 CPU @3.1GHz 4GB
RAM running on 64-bit Microsoft Windows 7 Enterprise
Edition.

5.1 Data Sets
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We used three data sets from di↵erent application domains
which we now describe.

NBA 2012
The NBA 2012 data set consists of nearly two hundred
players with each player characterized by twenty features.
Example of features include number of points scored, re-
bounds etc. The data set is freely available from basketball-
reference.com.

Spam Email
‘Spambase’ is a spam email data set [6] consisting of 4,601
emails out of which 1,813 (39%) are spam. The spam e-
mails came from their postmaster and individuals who had
filed spam and non-spam e-mails from work and personal
e-mails. Most of the features (48 out of 57) are frequency of
key words.

Research Abstracts
We took around one thousand computer science paper ti-
tles from DBLP and also a thousand physics research pa-
per abstracts. We created two data sets. In the first we
kept the thousand CS titles and merged them with one hun-
dred physics abstracts. For the second data set, we kept the
thousand physics abstracts and merged them with a random
subset of one hundred computer science titles. We call the
former CSet and the latter PSet.

5.2 Results
We report results on robustness, convergence, runtime and

accuracy on the three aforementioned data sets.

Results:Robustness of R-NMF
Here we report on results about the sensitivity of the R-
NMF against the classical NMF algorithm used for outlier
detection, the O-NMF. We applied both R-NMF and O-
NMF algorithm on the NBA 2012 data set but modified one
entry in the matrix as a multiple of the mean value. This
is shown on the x-axis of Figure 3. For each di↵erent value
on the x-axis we computed the U matrix and computed the
di↵erence in the norm of the new U matrix and the original
U matrix. The U matrix is the base matrix and stores the
meta-features in terms of the original features.

Figure 3 shows that R-NMF is more robust against pertur-
bations while the U matrix using O-NMF increases without
bound. This clearly demonstrates that the traditional NMF
algorithm should not be used for any serious applications as
it is extremely sensitive to data perturbations.

Results:Convergence Analysis
Here we investigate the convergence properties of the R-
NMF algorithms. From Algorithm 1 we know that for each
iteration R-NMF will reconstruct U with a given number
of outliers excluded. However, each iteration the algorithm
may exclude di↵erent data points as outliers, this could po-
tentially make the algorithm unstable. Thus, it is necessary
to study whether this new algorithm will converge properly.

We conduct the experiments as follows. We use the Spam-
base data set, and set the number of outliers for R-NMF as
the number of spam emails. We vary k and present the
results for k=9,12,15, and 18.
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Figure 3: R-NMF is substantially more robust
against the presence of outliers in the data compared
to standard O-NMF.
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Figure 4: R-NMF converges with all given settings
of k. As the dimension of the subspace (k) increases,
residual of R-NMF algorithm goes down.

As can be seen from Figure 4, the first thing one can
notice is that with bigger k, the residual of the algorithm
goes down. This is because with bigger k, the decomposed
matrices UV can better reconstruct the original X. Most
importantly, the algorithm converge at all given settings of
k within 20 repetitions.

Results:Runtime
We present the run time results of R-NMF algorithm for the
Spambase data sets in Figure 5 respectively. As expected,
we observe that the run time of R-NMF decreases as the
number of outliers is increased. This trend follows the in-
tuition of R-NMF algorithm that the construction of base
matrix U is based on the data X without the anomalous
points (Algorithm 1 line 5-8).

Results:Precision and Recall
We compute precision and recall on the Spambase, PSet and
the CSet data sets. The outliers are considered as positives.
The experiments are conducted as follows. We vary the two
variables: k and `, We compared the two proposed algo-
rithms: R-NMF and SR-NMF against the Direct Robust
Matrix Factorization (DMRF) approach proposed by [14].
The results for di↵erent values of k and di↵erent sizes of the
outliers specified are show from Table 3-8. At the moment it
is hard to draw conclusions from the results. Futher work is
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Figure 5: Average Run time R-NMF on Spambase data set: (Left) k = 1, (Middle) k = 2, (Right) k = 3. As
the number of outliers increases, the run time for R-NMF decreases. The values here are the average values
for all iterations.

Table 3: Precision on CSet: DRMF, SR-NMF and R-NMF.

k
Portion of data as outliers

35% 40% 45%
DRMF SR-NMF R-NMF DRMF SR-NMF R-NMF DRMF SR-NMF R-NMF

6 0.10 0.13 0.13 0.10 0.12 0.12 0.09 0.11 0.11
9 0.09 0.12 0.14 0.10 0.12 0.12 0.09 0.11 0.11
12 0.10 0.12 0.12 0.09 0.12 0.13 0.09 0.11 0.11

Table 4: Recall on CSet: DRMF, SR-NMF and R-NMF

k
Portion of data as outliers

35% 40% 45%
DRMF SR-NMF R-NMF DRMF SR-NMF R-NMF DRMF SR-NMF R-NMF

6 0.39 0.49 0.50 0.45 0.51 0.54 0.47 0.56 0.55
9 0.36 0.47 0.52 0.45 0.52 0.54 0.46 0.56 0.56
12 0.39 0.48 0.47 0.40 0.53 0.55 0.45 0.56 0.52

Table 5: Precision on PSet: DRMF, SR-NMF and R-NMF.

k
Portion of data as outliers

35% 40% 45%
DRMF SR-NMF R-NMF DRMF SR-NMF R-NMF DRMF SR-NMF R-NMF

6 0.13 0.15 0.15 0.16 0.15 0.16 0.15 0.15 0.14
9 0.16 0.16 0.18 0.16 0.16 0.16 0.15 0.15 0.15
12 0.17 0.16 0.18 0.16 0.16 0.16 0.15 0.15 0.15

Table 6: Recall on PSet: DRMF, SR-NMF and R-NMF.

k
Portion of data as outliers

35% 40% 45%
DRMF SR-NMF R-NMF DRMF SR-NMF R-NMF DRMF SR-NMF R-NMF

6 0.49 0.56 0.58 0.72 0.66 0.70 0.72 0.72 0.70
9 0.60 0.60 0.69 0.70 0.69 0.70 0.72 0.73 0.72
12 0.65 0.60 0.69 0.70 0.72 0.70 0.72 0.72 0.73

Table 7: Precision on Spambase: DRMF, SR-NMF and R-NMF. Best values are highlighted.

k
Portion of data as outliers

7% 10% 13%
DRMF SR-NMF R-NMF DRMF SR-NMF R-NMF DRMF SR-NMF R-NMF

6 0.27 0.30 0.29 0.32 0.26 0.29 0.37 0.32 0.36
9 0.26 0.26 0.30 0.28 0.31 0.28 0.31 0.35 0.35
12 0.25 0.32 0.30 0.30 0.33 0.29 0.30 0.32 0.36

required to analyse the results and determine the root cause
of the outliers.

6. SUMMARY AND CONCLUSION
Outlier Detection is a core task in data mining. In fact

as the size and complexity of data sets increases the need
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Table 8: Recall on Spambase: DRMF, SR-NMF and R-NMF. Best values are highlighted.

k
Portion of data as outliers

7% 10% 13%
DRMF SR-NMF R-NMF DRMF SR-NMF R-NMF DRMF SR-NMF R-NMF

6 0.05 0.06 0.05 0.08 0.07 0.07 0.12 0.10 0.12
9 0.05 0.05 0.06 0.07 0.08 0.07 0.10 0.12 0.12
12 0.04 0.06 0.05 0.08 0.08 0.07 0.10 0.10 0.12

to identify meaningful and genuine outliers will only grow.
Almost all major applications ranging from health analytic
to network data management to bio-informatics require ana-
lytical tools which can identify and explain genuine outliers.

The core challenge in outlier detection is to distinguish
between genuine and noise outliers. The former are indica-
tive of a new, previously unknown process while the latter is
often a result of error in the measurement device. The di�-
culty to distinguish between genuine and noise outliers leads
to the Low Precision Problem (LPP ). Our claim is that
LPP is the fundamental problem in outlier detection and
algorithmic approaches to solve LPP are urgently needed.

One approach to distinguish between genuine and noise
outliers is to take a multiple subspace viewpoint. A genuine
outlier will stand out in multiple subspaces while a noise
outlier will be separated from the core data in much fewer
subspaces. However the problem in subspace exploration is
that current methods are unlikely to scale to high dimen-
sions.

Matrix factorization methods provide a balanced compro-
mise between full subspace exploration in the feature space
versus exploration in the meta-feature or latent space. The
advantage of working in the latent space is that many of
the features are aggregated into a correlated meta-feature.
Often these features in the latent space can be imbued with
a semantic meaning relevant to the problem domain. For
example, in the case of text mining, the features correspond
to words while meta-features correspond to topics.

The challenge with matrix factorization methods is that
they are highly sensitive to outliers. This can be a serious
problem whenever there is a mismatch between the data and
the proposed model. One way to ameliorate the problem is
to use an alternate minimization approach to estimate both
the matrix decomposition and the outlier set. This is the
basis of the NMF(k,`) problem and the R-NMF algorithm.
Preliminary results show that R-NMF is substantially more
robust compared to a standard NMF approach in the pres-
ence of data noise. This opens up a promising avenue for
further exploration and address the LPP .

7. RELATED WORK
The task of extracting genuine and meaningful outliers

has been extensively investigated in Data Mining, Machine
Learning, Database Management and Statistics [3, 1]. Much
of the focus, so far, has been on designing algorithms for
outlier detection. However the trend moving forward seems
to be on detection and interpretation.

While the definition of what constitutes an outlier is ap-
plication dependent, there are two methods which gained
fairly wide traction. These are distance-based outlier tech-
niques which are useful for discovering global outliers and
density-based approaches for local outliers [9, 2].

Recently there has been a growing interest in applying

matrix factorization in many di↵erent areas, e.g. [7],[10]. To
the best of our knowledge, probably the most closest work
to ours is by Xiong et al. [14]. Xiong et al. have proposed a
method called Direct Robust Matrix Factorization (DRMF)
which is based on matrix factorization. DRMF is concep-
tually based on Singular Value Decomposition (SVD) and
error thresholding.

The main algorithm proposed in this paper extends the
work on k-means-- proposed in et al. [4] which unifies clus-
tering and outlier detection. Furthermore we have taken
inspiration from a body of work on multiple subspace out-
lier detection to distinguish between genuine and accidental
outliers [12].
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