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Self-sufficient itemsets have been proposed as an effective approach to summarizing the key associations
in data. However, their computation appears highly demanding, as assessing whether an itemset is self-
sufficient requires consideration of all pairwise partitions of the itemset into pairs of subsets as well as
consideration of all supersets. This article presents the first published algorithm for efficiently discovering
self-sufficient itemsets. This branch-and-bound algorithm deploys two powerful pruning mechanisms based
on upper bounds on itemset value and statistical significance level. It demonstrates that finding top-k
productive and nonredundant itemsets, with postprocessing to identify those that are not independently
productive, can efficiently identify small sets of key associations. We present extensive evaluation of the
strengths and limitations of the technique, including comparisons with alternative approaches to finding the
most interesting associations.
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1. INTRODUCTION

Association discovery [Agrawal et al. 1993] is one of the most researched topics in
data mining. However, the fielded applications appear to be relatively few. It has been
suggested that this is due to the susceptibility of conventional association discovery
techniques to finding large numbers of associations that are unlikely to be interesting
to the user [Webb 2010]. Even with measures such as requiring rules to be nonre-
dundant [Bastide et al. 2000; Zaki 2000], closed [Bastide et al. 2000; Zaki and Hsiao
2002], derivable [Calders and Goethals 2002], and productive [Webb 2007], extraordi-
narily large numbers of associations can be discovered. Webb [2011] has proposed six
principles for identifying associations that are unlikely to be of interest:

(1) A conjunction of terms is unlikely to be interesting if its frequency can be predicted
by assuming independence between any partition thereof.

(2) A conjunction of terms is unlikely to be interesting if a proper subset y of those
terms contains a term i such that i subsumes y \ i.
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15:2 G. I. Webb and J. Vreeken

(3) A conjunction of terms is unlikely to be interesting if its frequency can be predicted
by the frequency of its specializations.

(4) Appropriate statistical testing should be used to assess Principles 1 and 3.
(5) Measures of interest for a conjunction of terms should measure the smallest devi-

ation from independence between any two partitions of the conjunction.
(6) If a conjunction of terms is unlikely to be interesting, then any rule composed from

those terms is unlikely to be interesting.

This article presents efficient algorithms to discover positive associations using these
principles and conducts a case study to explore their credibility.

This association discovery task is particularly challenging, as the objective function
is very expensive to calculate, requiring assessment of every binary partition of an
itemset, and may be neither monotone nor antimonotone. The primary contributions
of this paper are

(1) a new bound on well-behaving measures of interest;
(2) a new variant of the OPUS search algorithm, which uses the new bound for the

specific task of discovering self-sufficient itemsets;
(3) detailed experimental investigation of the algorithm and the application of the

above bounds therein, including
—analysis of the types of measures for which the new bound is tight;
—analysis of the types of measure of interest for which bounds on a Fisher Exact

Test of independence are useful; and
—the first experimental comparison of self-sufficient itemsets with alternative ap-

proaches to finding succinct summaries of the most interesting associations.

The article is organized as follows. Section 2 describes and motivates the self-
sufficient itemset discovery problem. Section 3 defines the measures of interest that
we will use. Section 4 derives a new constraint on well-behaving measures of interest.
Section 5 presents OPUS Miner, an efficient algorithm that can find top-k item-
sets within the challenging constraints of self-sufficient itemset discovery. Section 6
presents a complexity analysis. Section 7 discusses related research. Section 8 evalu-
ates the efficiency of the algorithm on the FIMI datasets, including ablation studies
assessing key elements of the algorithm and analysis of the types of measure of in-
terest for which bounds on the values of the measure and bounds on a Fisher Exact
Test of independence are each useful. It also presents a case study to investigate the
credibility of the techniques and performance relative to key alternative approaches.
Section 9 discusses directions for future research and presents conclusions.

2. SELF-SUFFICIENT ITEMSETS

Given a domain of items I, an itemset x is a set of items x ⊆ I. A dataset D is a vector
of n records 〈D1 . . . Dn〉. Each record Di is an itemset. For transactional data, items
are atomic terms. For attribute-value data, there exists a set of m attributes A1 . . . Am,
each attribute Ai has a domain of values dom(Ai), each item is an attribute-value pair
denoted as Ai = v where v ∈ dom(Ai), and each record Di contains at most one item for
each attribute. The index for a record is called a transaction identifier (TID). The cover
of an itemset s is the set of TIDs for records that contain s,

cov(s, D) = {i : 1 ≤ i ≤ |D| ∧ s ⊆ Di}. (1)

In this and the following terms, the database D is not specified when it is apparent
from context.
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The support of an itemset s is the proportion of records in dataset D of which s is a
subset:

sup(s, D) = | cov(s, D)|/n. (2)

We use | · | to denote the cardinality of a set. We define the count as the number of
records of which s is a subset,

#(s, D) = | cov(s, D)|. (3)

For notational convenience, we use

#(s, t, D) = | cov(s ∪ t, D)| (4)

to represent the number of records covered by both s and t,

#(¬s, D) = n − #(s, D) (5)

to represent the number of records of which s is not a subset, and

#(¬s,¬t, D) = n − #(s, D) − #(t, D) + #(s, t, D) (6)

to represent the number of records that contain neither s nor t.
We use P(R ⊇ s) to represent the probability that a record drawn uniformly at random

from the distribution from which D is drawn will contain itemset s and P(R 
⊇ s) the
probability that it will not contain s.

Two or more items are positively associated in any meaningful sense of the term
only if they occur together more frequently than they would if they were statistically
independent of one another. Thus, for any itemset x to be identified as a positive
association, we might think that we should require

P(R ⊇ x) >
∏
i∈x

P(R ⊇ {i}). (7)

Webb [2010] argues that positive association between items in an itemset x is unlikely
to be interesting, even if x satisfies (7), unless x is self-sufficient. To be self-sufficient,
an itemset must be productive, nonredundant and independently productive.

2.1. Productivity

An itemset is only productive if all its partitions into two subsets of items are positively
correlated with each other. This prevents massive inflation of the number of itemsets
discovered due to the addition to each productive itemset x of items that are statistically
independent of the items in x and due to joining multiple itemsets irrespective of
whether they interact with one another. For example, if smoking is associated with
cancer then smoking and age-is-even will also be associated with cancer, unless age-
is-even actively reduces the probability of smoking or cancer. Further, being pregnant
is associated with edema, so {smoking, cancer, pregnant, edema} satisfies (7) as long as
smoking and cancer do not reduce the probability of pregnant and edema. Nonetheless,
these types of itemsets are unlikely to be interesting. Thus, we should require itemsets
be productive:

P(R ⊇ x) > max
y�x

(P(R ⊇ y)P(R ⊇ x \ y)). (8)

This is the itemset equivalent of the productivity constraint on association rules [Webb
2006].

As we cannot directly determine the probabilities from the sample, we need to per-
form a statistical test. We use the Fisher Exact Test. When using dataset D to test
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whether to accept that itemsets x and y are positively correlated, the p-value is

pF(x, y, D) =
ω∑

i=0

( #(x,D)
#(x,y,D)+i

)( #(¬x,D)
#(¬x,y,D)+i

)
( n

#(y,D)

) , (9)

where ω = min(#(x,¬y, D), #(¬x,¬y, D)).
To test for productivity, this test must be passed for every partition of itemset s,

pP(s, D) = max
x�s

(pF(x, s\x, D)). (10)

2.2. Redundancy

Redundancy provides another filter that can discard itemsets that are unlikely to be
interesting. An itemset x is redundant if and only if it contains a proper subset, y, that
contains an item, i, that subsumes y \ i,

∃i, y : i∈y ∧ y�x ∧ cov({i}) ⊇ cov(y \ i). (11)

For example, female subsumes pregnant, so any association between these two items
and any other item i, such as {female, pregnant, edema}, even though productive,
is unlikely to be interesting, as it is entailed by the subsumption relationship and
whatever association exists between the subsumed items and i (in this example
{pregnant, edema}). The itemsets {female, pregnant} and {pregnant, edema} are both
potentially interesting, but the productive itemset containing all three items is un-
likely to be. This is the itemset equivalent of the redundancy constraint for association
rules [Bastide et al. 2000; Zaki 2000].

Unfortunately, it is not possible to define a statistical hypothesis test for redundancy,
as it is not possible to use cov({i}) � cov(y \ i) in a null hypothesis.

2.3. Independent Productivity

An itemset is only independently productive with respect to a set of itemsets S if
it is nonredundant and productive and its productivity cannot be explained by the
productivity of its self-sufficient supersets in S. For example, suppose that the presence
of fuel, oxygen, and heat is necessary for fire to be present. In this case, every subset
of the first three items will be associated with fire. But the six itemsets containing
fire that are subsets of {fuel, oxygen, heat, fire}, such as {oxygen, fire} and {fuel, heat,
fire}, are unlikely to be interesting given {fuel, oxygen, heat, fire}. We want to present
the user with a single itemset as a summary of the key association rather than seven
itemsets.

If there is only one productive nonredundant superset s of an itemset x, this assess-
ment is relatively straightforward. We first find the set of items in s that are not in x,
y = s \ x. We then assess whether x is productive when assessed only on transactions
that do not include y. For example, to assess whether {oxygen, heat, fire} is indepen-
dently productive given {fuel, oxygen, heat, fire}, we assess whether it is productive in
the context of transactions that do not contain fuel.

However, we cannot simply apply this constraint separately with respect to each
superset. Consider the possibility that rather than containing a single item for fuel,
the data instead contain items representing each of several types of fuel, such as wood
and gas. In this case, we might have supersets {wood, oxygen, heat, fire} and {gas,
oxygen, heat, fire}. The itemset {oxygen, heat, fire} will still be productive in the context
of transactions that do not include wood because of transactions that have alternative
forms of fuel. What we need to do is to test that it is productive in the context of
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transactions that do not contain any form of fuel, in this case either wood or gas:

P

⎛
⎜⎜⎜⎝R ⊇ x |

∧
z ∈ S
z � x

R 
⊇ z\x

⎞
⎟⎟⎟⎠ > max

y�x

⎛
⎜⎜⎜⎝P

⎛
⎜⎜⎜⎝R ⊇ y |

∧
z ∈ S
z � x

R 
⊇ z\x

⎞
⎟⎟⎟⎠ P

⎛
⎜⎜⎜⎝R ⊇ x\y |

∧
z ∈ S
z � x

R 
⊇ z\x

⎞
⎟⎟⎟⎠

⎞
⎟⎟⎟⎠ .

(12)
To create a statistical test for this, we define the exclusive domain of an itemset x

with respect to a set of itemsets S as

edom(x,S, D) = {1 . . . n} \
⋃
y ∈ S
y � x

cov(y \ x, D). (13)

This is the set of TIDs for records not covered by any of the sets of additional items
in any superset of x in S. For example, the exclusive domain of {oxygen, heat, fire}
with respect to {{wood, oxygen, heat, fire}, {gas, oxygen, heat, fire}} is the set of all
transactions that do not contain wood or gas.

We then apply the test for productivity with respect to this domain,

pI(s, D) = max
x�s

(pF(x, s\x, edom(s,S, D))). (14)

Without an independent productivity constraint, a system typically discovers for
every maximal interesting itemset large numbers of itemsets that are simply subsets
of that one key itemset of interest.

2.4. Statistical Testing

Webb [2007] argues that the large search spaces explored in association discovery
result in extreme risks of making false discoveries and that corrections for multiple
testing should be applied.

In the current work, we address this issue by using layered critical values [Webb
2008], whereby a critical value of

α|x| = min
1≤i≤|x|

(
α

2i−1
(|I|

i

)
)

(15)

is used to assess an itemset of size |x| for both the productivity and independent
productivity tests. Note that this function is monotonically decreasing with respect to
itemset size, which is required to allow pruning using the statistical test.

It is acknowledged that the use of statistical hypothesis testing, such as this, has an
inherent limitation that it requires the selection of a critical value, an arbitrary bound
on the risk that will be tolerated of accepting an association in error.

In the current work, we use the conventional critical value of 0.05.

2.5. Benefits of Self-Sufficient Itemsets

Self-sufficient itemsets have the attractive feature that it is straightforward to generate
a simple and readily understood explanation of why any itemset is rejected. This is
achieved by identifying which of the three constraints is violated and the itemset(s)
with respect to which it is violated. For example, “{male, poor-vision, prostate-
cancer, glasses} was rejected because it fails a test for independence with respect to
{male, prostate-cancer} and {poor-vision, glasses}.”

Associations are most commonly expressed as rules [Agrawal et al. 1993]. However,
Webb [2011] argues that for many purposes, itemsets provide a more useful formalism
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for presenting discovered associations, if for no other reason than to prevent multiple
expressions of a single association. If an itemset x is self-sufficient, every y ⊂ x will
be associated with x \ y. It is credible that any association rule x → y is unlikely to be
interesting unless x∪y is a self-sufficient itemset. If this is so, then the primary circum-
stance where association rules may be more useful than itemsets may be when there are
particular items of interest to the user. In this case, expressing rules that have conse-
quents restricted to those items allows statistics that express the relationship between
the other items and the items of interest to be easily highlighted [Novak et al. 2009].

3. QUANTIFYING INTERESTINGNESS

Many measures have been developed for quantifying association interestingness [Geng
and Hamilton 2006; Tew et al. 2014]. Almost all of these relate to rules rather than
itemsets. The majority assess the deviation of the support of a rule from the support
that would be expected if the antecedent and consequent were independent. We denote
such a measure by a function M : [0, 1], [0, 1], [0, 1] → R from the supports of the rule,
the antecedent, and the consequent to a real.

Webb [2011] suggests that itemset measures should be developed from a rule measure
by selecting the least extreme value that results from applying the measure to any rule
that can be created by partitioning the itemset x into an antecedent y and consequent
z = x \ y. We call such an interest measure a min partition measure (MPM). The MPM
MM(x) of an itemset x using base measure M is

MM(x) = min
y�x

(M(sup(x), sup(y), sup(x \ y))). (16)

In the current work, we use two such measures, leverage

δ(x) = min
y�x

(sup (x) − sup (y) × sup (x \ y)) (17)

and lift
γ (x) = min

y�x
(sup(x)/[sup (y) × sup (x \ y)]). (18)

4. A BOUND ON MPMS WITH WELL-BEHAVING MEASURES OF INTEREST

We present here a bound on MPMs that use well-behaving measures of interest
[Piatetsky-Shapiro 1991]. This bound will be useful in the algorithm that we develop
in the next section.

We use Hämäläinen’s [2010] reformulation of the axioms for well-behaving measures
of interest, M(sup(x), sup(y), sup(z)), with respect to an itemset x, and a partition y � x
and z = x \ y:

Axiom 1. M(sup(x), sup(y), sup(z)) is minimal, when sup(x) = sup(y) × sup(z);
Axiom 2. M(sup(x), sup(y), sup(z)) is monotonically increasing with sup(x), when

sup(y), sup(z), and n remain unchanged; and
Axiom 3. M(sup(x), sup(y), sup(z)) is monotonically decreasing with sup(y) (or

sup(z)), when sup(x) and sup(z) (or sup(y)) remain unchanged.

We use only one upper bound for MPMs with well-behaving measures of interest.
When exploring supersets of any itemset x, an upper bound on MM(x′), where x′ ⊇ x is
provided by

M
(

sup(x), sup(x), max
i∈x

(sup({i}))
)

. (19)

This follows because

(1) sup(x′) cannot have support greater than sup(x), and for any values of the other
arguments, M is maximized when the support of the first argument is maximized;
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(2) M is maximized when the supports of both y and z are minimized, neither of which
can have support lower than sup(x′), which the first clause sets to sup(x); and

(3) For every i ∈ x, there must be a partition of x′ into x′ \ i and {i}, and hence there
must be a partition of x′ whose support is no lower than maxi∈x (sup({i})). As M is
maximized when the third argument is minimized, this value sets a strong upper
bound on MM.

This bound is undefined for lift (γ ) when sup(x) = 0. In this context, we use the
trivially derived upper bound of 0.

5. THE OPUS MINER ALGORITHM

There is a strong case for the desirability of finding self-sufficient itemsets, but at first
consideration, search for them appears computationally intractable. The search space
of potential itemsets is 2|I|. For each itemset x considered, we must ensure that all
2|x|−1 − 1 partitions of i pass a statistical test. To determine the value of any itemset
x, we must find the maximum of a function with respect to all 2|x|−1 − 1 partitions
of i. It is clear that efficient search of this space will require very efficient pruning
mechanisms.

OPUS Miner is a new branch-and-bound algorithm for efficient discovery of self-
sufficient itemsets. For a user-specified k and interest measure, OPUS Miner finds the
top-k productive nonredundant itemsets with respect to the specified measure. It is
then straightforward to filter out those that are not independently productive with
respect to that set, resulting in a set of self-sufficient itemsets. It can be applied to any
well-behaving measure of interest [Piatetsky-Shapiro 1991].

OPUS Miner is based on the OPUS search algorithm [Webb 1995]. OPUS is a set enu-
meration algorithm [Rymon 1992] distinguished by a computationally efficient pruning
mechanism that ensures that whenever an item is pruned, it is removed from the entire
search space below the parent node.

OPUS Miner systematically traverses viable regions of the search space, maintaining
a collection of the top-k productive nonredundant itemsets in the search space explored.
When all of the viable regions have been explored, the top-k productive nonredundant
itemsets in the search space explored must be the top-k for the entire search space.

OPUS can use any of depth, best, or breadth-first search. OPUS Miner uses depth-
first search. This has the advantage that the number of open nodes at any one time
is minimized. This allows extensive data (most importantly the relevant TIDset) to be
maintained for every open node and ensures that only one such record will be stored
at any given time for each level of depth that is explored. It also promotes locality of
memory access, as most new nodes that are opened are minor variants of the most
recently explored node. It has the disadvantage that larger numbers of deep nodes are
explored than would be necessary if breadth-first search were employed. This presents
a significant computational burden due to the complexity of node evaluation increasing
exponentially as itemset size increases.

There is a choice between recalculating the TIDset that an itemset covers every time
its support is required, or memoizing the support. This involves a trade-off between
space and computation. OPUS Miner memoizes these support values. An itemset’s
support is not memoized if it is determined that no superset can be a top-k productive
nonredundant itemset, either because the supersets must be redundant, cannot achieve
higher values of interest measure M than the current k best value, or cannot pass the
Fisher Exact Test. As ExpandItemset ensures that all subsets of an itemset must
be traversed before the node for the itemset is opened, Apriori [Agrawal et al. 1993]-
like pruning of supersets of unviable itemsets can be achieved by checking whether
any immediate subset of a candidate itemset has not been memoized.
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Algorithm 1 presents the top level of the algorithm, which simply establishes a queue
of items ordered in descending order on the upper bound on the value of any itemset that
can include the item and then calls the ExpandItemset search procedure (Algorithm 2)
once for each item. This sets topK where it appears (see algorithm as well) to the top-k
productive nonredundant itemsets. These are then scanned by checkIndepProductive
to identify any itemsets that are not independently productive.

The heart of the algorithm is the ExpandItemset search procedure. It takes as ar-
guments an itemset to be expanded (often called the head), the set of TIDs that the
itemset covers, and a queue of items available to expand the current itemset (often
called the tail).
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For each item in the queue, a new itemset, X ′, is formed. Line 5 calculates a lower
bound on any application of the Fisher Exact Test to a superset of X ′. We use a bound
established by Hämäläinen [2010]. No superset of X ′ may cover more TIDs than X ′.
For every superset of X ′, we will need to perform a test against every partitioning,
including {i}, X ′ \ i, where i is the highest support item in X ′. For such a partitioning,
the p-value can never be lower than that obtained if the other partition covers only the
TIDs covered by the full itemset and if the full itemset covers as many TIDs as possible
(which can be no more than the cover of the current itemset). Thus, we can obtain a
bound on the value for the Fisher test by applying it with the equivalent arguments to
those used to bound M.

Itemset X ′ and all of its supersets are abandoned if either this lower bound on p is
greater than α|X ′|, or if k itemsets have already been found and an upper bound on the
value of supersets of X ′ is not greater than the smallest value of one of those k itemsets
(line 6). Note that withholding the current item from the queue of items to be passed
to subsequent calls to ExpandItemset results in the additional OPUS pruning relative
to standard set enumeration search.

Next, a check is performed of whether counts have been memoized for all immediate
subsets of X ′ (Algorithm 4). If not, then it must have been determined that no superset
of that subset could be in the solution, and so X ′ need not be explored. While doing
this check, it is also possible to check whether any immediate subset of X ′ has the
same count as X ′, in which case all supersets of X ′ must be redundant and should be
blocked.

Next, checkPartitions (Algorithm 3) is called. This procedure iterates through all
partitionings, x, y, of X ′, by iterating x through all subsets of X ′ that exclude an
arbitrary fixed item, i, hence iterating y through each set of items that includes i. For
each partitioning, it assesses the Fisher Exact Test p-value and the value of X ′. The
maximum p-value and minimum value are recorded. The search terminates early if
the minimum value falls below the k best so far or the maximum p exceeds the current
critical value.
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Itemset X ′ is added to the top-k so far if and only if its value is higher than the k
highest so far and its p-value is no higher than α|X ′|. Only if the upper bound on the
p-value is no greater than the minimum critical value for itemsets larger than X ′ and
it is not determined that all supersets must be redundant is a recursive call made to
ExpandItemset and the item added to the queue for use at lower levels.

The process of detecting itemsets in topK that are not independently productive is
shown in Algorithm 5. The itemsets in topK are processed in ascending order on size so
as to ensure that only self-sufficient itemsets are used to constrain the self-sufficiency
of other itemsets.

The function for the Fisher Exact Test is shown in Algorithm 6. For efficiency, factorial
values are memoized so that each need be calculated once only.

6. COMPLEXITY

The worst-case time complexity of OPUS Miner with respect to the number of items is
�(2|I|), as in the worst case, it will not be able to do any effective pruning and will have
to explore all itemsets.
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If the space of itemsets that need to be explored does not change, then the only oper-
ations that are affected by an increase in the number of examples are the evaluations
of itemset support and of the Fisher Exact Test. Both of these scale linearly, and hence
complexity with respect to the number of examples is O(n). The amount of the search
space that is explored is affected primarily by the pruning mechanisms. The pruning
for redundancy and on optimistic value is not affected by the data quantity. However,
as data quantity increases, the Fisher test is able to pass itemsets with ever smaller
support, as the count will increase as the data quantity increases. As a result, the
amount of the search space explored will increase as data quantity increases due to
the Fisher test pruning fewer alternatives.

In practice, the time requirements depend critically on the efficiency of the pruning
mechanisms for a particular set of data, and vary greatly from dataset to dataset, as
demonstrated by the experiments that follow.

Due to its use of depth-first search, the number of nodes in the search space that are
open simultaneously is small, and the space requirement for the data they must store
is dominated by the space requirements of the memoized itemset counts. This is also
in the worst case �(2|I|) if no pruning occurs. In practice, the space requirements also
depend on the efficiency of the pruning mechanisms for a given dataset.

The effectiveness of the pruning mechanisms and the concomitant computational
requirements of the OPUS Miner algorithm in practice are investigated in Section 8.5.

7. RELATED RESEARCH

Association discovery has been intensely researched for more than two decades [Han
et al. 2007], and it is possible here to cover only a small amount of closely related
research.

7.1. Alternative Approaches to Finding Succinct Summaries

The bodies of research into information theoretic techniques for finding succinct sum-
maries of violations of the independence assumption in data [Siebes et al. 2006; Gallo
et al. 2007; Mampaey et al. 2011; Vreeken et al. 2011] and randomization [Hanhijärvi
et al. 2009] and statistical [Lijffijt et al. 2012] testing to incrementally build such a
summary address much the same issues as self-sufficient itemsets. As these techniques
aim to model the full joint distribution, they will tend to develop more succinct collec-
tions of itemsets than self-sufficient itemsets but will necessarily choose between one
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of many potential such collections without informing the user of the alternatives. In
contrast, self-sufficient itemsets seek to identify all key associations in data that are
likely to be of interest.

In Section 8, we investigate the relative performance of OPUS Miner and two exem-
plar information theoretic systems, which we describe in more detail here.

Observing that the overly large numbers of results of frequent pattern mining
algorithms are mostly due to massive redundancy, Vreeken et al. [2011] proposed—
instead of asking for all patterns that individually meet some conditions—to mine a
small set of patterns that together optimize a global criterion. As the target criterion,
Siebes et al. [2006] defined the best set of itemsets by the MDL principle [Rissanen
1978] as the set that provides the best lossless compression of the data. The heuristic
KRIMP algorithm typically discovers hundreds and up to a few thousand patterns. Its
results have been shown to be highly useful in a wide range of data mining tasks.

Instead of using an ad hoc encoding scheme, Mampaey et al. [2012] proposed to
model the full joint distribution of the data by means of a maximum entropy model
[Jaynes 1982]. Essentially, its goal is to find the set of itemsets that best predicts
the data. To this end, the MTV algorithm iteratively finds the itemset for which the
frequency in the data most strongly deviates from the prediction given the current
model, then adds this itemset to the model, updates its predictions, and so forth,
until MDL tells it to stop. Experiments show that it finds highly informative patterns.
Querying this maximum entropy model is NP-hard, and exponential in the number of
included itemsets, however, and MTV can hence only be used to mine relatively small
top-k summaries.

Maximum entropy approaches [Wang and Parthasarathy 2006; Tatti 2008; De Bie
2011] provide a powerful approach to filtering itemsets relative to their subsets. How-
ever, they do not have a counterpart to the independent-productivity constraint and do
not facilitate the same type of simple explanations that self-sufficiency can provide for
why any specific itemset is rejected. Moreover, in general, inferring maximum entropy
distributions is NP-hard, whereas querying such models is even PP-hard [Tatti 2008].

7.2. Nonderivable Itemsets

As discussed in more detail elsewhere [Webb 2010], nonderivable itemsets [Calders and
Goethals 2007], which provide a succinct summary of the full multinomial distribution
in the data, are very different in nature to self-sufficient itemsets. For example, pairs
of items that are statistically independent of one another may be nonderivable but will
never be self-sufficient. The practical impact of this is illustrated in the experiments
in which we mine associations in lottery results, presented later in Section 8.2.

A nonderivability constraint is similar in nature to the redundancy constraint in
self-sufficient itemsets. Both are constraints that reject an itemset I if its support can
be determined on the basis of knowledge about I ’s subsets. A nonderivability constraint
is more powerful than a redundancy constraint. It will reject all itemsets rejected by an
redundancy constraint and more. Based on personal experience, the type of inference
that underlies the redundancy constraint is readily applied by nonexpert association-
discovery users, and failure to apply such a constraint often leads to user frustration.
It is not clear to what extent this is true of the inferences that underlie a nonderivabil-
ity constraint. An interesting topic for future research would be to explore replacing
the redundancy constraint in self-sufficient itemset discovery by a nonderivability con-
straint, or perhaps some intermediate constraint.

7.3. Other Related Approaches

Hämäläinen [2010] has provided a deep analysis of the efficient use of a Fisher Exact
Test to find association rules where the antecedent and consequent are statistically
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associated with one another. The current work generalizes those techniques to the
context of itemsets.

A number of OPUS and related branch-and-bound algorithms have been developed
for rule discovery [Webb 1995; Bayardo et al. 2000; Webb 2000; Webb and Zhang
2005; Hämäläinen 2012]. These differ quite substantially from OPUS Miner, most
significantly because none of them supports measures of interest based on the minimal
degree of deviation of the observed frequency of an itemset from that expected under
independence between any binary partition, and none supports statistical testing of
a null hypothesis that the subsets in at least one partition of the itemset are not
positively correlated. So, for example, if there is a strong association between pregnant
and edema and the strength of that association is strengthened only infinitesimally
by adding factor X, then all of these previous approaches will assess {pregnant, X}
→ edema as more interesting than {pregnant} → edema and {edema, X} → pregnant as
more interesting than {edema} → pregnant. In contrast, OPUS Miner will only assess
the degree of interest of {edema, X, pregnant} with respect to the amount of the increase
in the strength of association that arises from adding X and requires further that the
increase be statistically significant.

Another point of difference is that OPUS Miner finds itemsets rather than rules,
thereby avoiding the extraordinary amount of duplication in representations of each
single core underlying association that is often evidenced in rule discovery.

Our approaches consider only positive associations. For many applications, it will
also be useful to find negative associations [Wu et al. 2004]. The six principles for
identifying associations that are unlikely to be of interest outlined in the Introduction
apply equally to positive and negative associations but have been applied here only to
positive associations. For attribute-value data with binary attributes, negative asso-
ciations are found by the current framework, as a negative association involving one
value of a binary association is equivalent to a positive association involving the other
value. For other cases, negative associations can be found by augmenting the data with
items corresponding to the negations of all nonbinary values. It is likely, however, that
it is possible to develop much more computationally efficient approaches than this, and
these remain an interesting direction for future research.

Previous research [Fu et al. 2000] has called the k itemsets with highest support
the k “most interesting itemsets.” We argue that high-support itemsets are often not
interesting, merely representing pairs of items that are each individually frequent and
hence co-occur frequently despite having low, if any, association.

Our approaches are designed for application in the absence of information about a
user’s background knowledge and beliefs. Approaches that take account of background
knowledge provide an important and closely related field of research [Jaroszewicz et al.
2009; Tatti and Mampaey 2010; De Bie 2011].

8. EXPERIMENTS

Here we empirically evaluate OPUS Miner and investigate the quality and usefulness
of self-sufficient itemsets. We start our evaluation by analyzing the associations dis-
covered from synthetic data with known ground truth. We then use two case studies to
qualitatively evaluate our results and compare them to five alternative itemset mining
techniques. Finally, we investigate the algorithm’s computational efficiency.

8.1. Synthetic Data

First, we consider the performance of OPUS Miner on synthetic data, as we can then
compare the results to the ground truth. We evaluate on three datasets, respectively
generated by the independence model, an itemset-based model, and a Bayes net.
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Table I. Results on Synthetic Transaction Data

Results Breakdown
# Rows # Results # Exact # Intersects # Subsets # Union Subsets # Unrelated
1,000 117 4 1 112 — —
10,000 186 7 0 109 70 —
100,000 750 9 1 62 678 —
1,000,000 972 11 0 27 934 —

8.1.1. Independence Model. In this first experiment, we consider datasets of 1,000 up to
1,000,000 rows over 100 items, for which the frequencies were drawn uniform randomly
between [0.05, 0.25].

For each of these datasets, OPUS Miner correctly finds no itemset to be productive.

8.1.2. Itemsets. Next, we generate synthetic data in which we plant itemsets.
First, we generate G, a set of 15 itemsets. For each g ∈ G, we choose the cardinality

from [3, 7], support from [0.01, 0.20], and the items from [1, 50]—all uniformly at ran-
dom. We generate the data over an alphabet of 100 items, of respectively, 1,000, 10,000,
100,000, and 1,000,000 transactions, and plant itemsets at random with probability
proportional to their support. As a final step, we add noise by flipping the values of a
random 2% of items. This may alter the empirical supports of the embedded itemsets.
All items in [51, 100] are statistically independent of all other items.

We run OPUS Miner on each of these datasets. For all but the largest, we could
find all self-sufficient itemsets by setting k to a large number. Due to the large mem-
ory requirements of memoizing itemsets during the search, this was not possible for
1,000,000 transactions, and for this dataset we present results with respect to the
top-10,000-leverage (δ) nonredundant productive itemsets, of which only 972 are self-
sufficient.

We analyze the results using a protocol based on that of Zimmermann [2013]. We
use the following properties. An itemset x is an exact match if and only if

x ∈ G. (20)

An itemset x is an intersection if and only if

x /∈ G ∧ ∃y∈G∃z∈G, y 
= z ∧ x � y ∧ x � z. (21)

An itemset x is a subset if and only if

x /∈ G ∧ ∃y∈G, x � y ∧ ¬∃z∈G, y 
= z ∧ x � z. (22)

An itemset x is a union subset if and only if

x /∈ G ∧ [¬∃y∈G, x � y] ∧ x ⊆
⋃
z∈G:

|z∩x|>1

z. (23)

In Equation (23), we include the condition |z ∩ x| > 1, requiring an overlap of at least
two items between x and each z, as we want to consider the union of itemsets in G for
which x describes at least part of the association.

An itemset x is unrelated to G if and only if it is none of an exact match, an intersec-
tion, a subset, or a union subset.

We give counts of the number of itemsets that fall into each of these mutually
exclusive classes in Table I. Only modest numbers of self-sufficient itemsets are found,
and importantly, none are spurious: all can be related directly to the itemsets planted in
the data. Further, as the quantity of data increases, so too does the number of planted
itemsets that are recovered exactly—and, importantly, found at the top of the ranking.
The planted itemsets that are not recovered exactly are all of such high cardinality
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that a lot of data is required to pass the very strict test on productivity with its strong
correction for multiple testing. For each of these itemsets, we do find direct subsets.

Many of the planted itemsets overlap. In this case, for every partition of the union
of the planted itemsets, the observed frequency will exceed the frequency predicted
under an assumption of independence. In consequence, the union will be assessed as
productive. Where the union is small enough to be found, it will render its subsets not
independently productive. Where it is too large, instead many of its subsets will be
found.

8.1.3. Bayes Nets. As third and final evaluation on synthetic data, we consider data
generated from a Bayes net. This is a more difficult setup than shown previously, as
a Bayes net can encode negative correlations: item B may have higher probability
for being generated when item A is absent. Self-sufficient itemsets model positive
correlations only, and hence it is interesting to see how informative these are with
regard to the generating model.

We first generate a Bayes net over 100 items, drawing 250 edges at random, while
keeping the maximum number of parents at 5. For each item, per conditioning, we
draw the probability uniformly at random from [0.05, 0.5]. We then use the Bayes net to
generate datasets of respectively 1,000, 10,000, 100,000, and 1,000,000 rows. We apply
OPUS Miner to mine up to the top-100 nonredundant and productive itemsets—for the
smallest dataset only 30 itemsets are nonredundant and independently productive.

Our main analysis is to see whether the discovered itemsets correctly identify part of
the Bayes net structure. As the results are highly similar between the four datasets, we
only consider those for the 1,000,000 row database. Out of the top-100 nonredundant
and productive itemsets, 91 are also independently productive.

First, we observe that each of these self-sufficient itemsets match a single connected
component of the Bayes net. That is, no discovered itemset was generated by indepen-
dent components. More in depth, we find that all itemsets indeed identify local positive
associations. Most of these are in the form of chains. That is, for an itemset {A, B, C},
we see the Bayes net to be connected as A → B → C, where each of the dependencies
are positive correlations. For 21 of the 91 itemsets, there are no intermediate influences
factors—that is, items B and C have no other incoming edges.

For 69 discovered self-sufficient itemsets, the intermediate nodes do have additional
incoming edges. Investigating the corresponding probability tables reveals that these
itemsets identify the strongest positive correlations within the local part of the Bayes
net. For example, say that item B is additionally positively correlated with item D.
When we find that itemset {A, B, C} is self-sufficient, we see that the association A → B
is much stronger than either D → B or A∧ D → B.

Finally, we find one itemset for which we find intermediate negative correlations.
That is, for a reported self-sufficient itemset {A, B, C}, we may find that A correlates
negatively with parents of B (and/or C). That is, A → (¬X,¬Y ), with ¬X → B and
¬Y → C. Essentially, self-sufficient itemsets are able to correctly identify positive
correlations arising from a chain of negative correlations.

8.1.4. Summary. Overall, the evaluation on synthetic data shows that no spurious pat-
terns are returned. The results on the itemset data show that the top self-sufficient
itemsets all represent itemsets embedded in the data. The remaining itemsets repre-
sent partial recovery of more subtle patterns. By the nature of the strong statistical
tests that we employ, to detect (true) associations between many items requires in the
order of tens of thousands or more rows. The experiments on the Bayes net gener-
ated data show that self-sufficient itemsets are very well suited for identifying positive
associations, even if these are generated through a chain of negative associations.
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8.2. Lottery Case Study

Next, we assess the practical usefulness of OPUS Miner through two case studies. In
this first case study, we compare the results of OPUS Miner to those of three standard
itemset mining techniques: frequent itemsets [Agrawal et al. 1993], closed itemsets
[Pasquier et al. 1999b], and nonderivable itemsets [Calders and Goethals 2007], as
well as to two modern pattern set mining techniques, KRIMP [Vreeken et al. 2011] and
MTV [Mampaey et al. 2012]. Although many pattern set mining methods have been
proposed, these two in particular have been shown to provide small and nonredundant
sets of high-quality itemsets [Mampaey et al. 2012; Kontonasios and De Bie 2010; Tatti
and Vreeken 2012].

In this first case study, we consider—mostly as a sanity check—mining the results
of the 2,482 draws of the Belgian National Lottery between 1983 and late 2011.1
Each record consists of the ids of seven draws without replacement from 42 balls.
Assuming that the lottery is fair, no true patterns will exist. When we mine this data
for frequent patterns, however, very many patterns are returned. That is, when we
mine frequent itemsets [Agrawal et al. 1993], closed itemsets [Pasquier et al. 1999b],
or nonderivable itemsets [Calders and Goethals 2007] with minimal support of 1%, we
discover 902 itemsets, whereas for a minimum count of 2, respectively 33,382, 29,828,
and 33,338 ‘patterns’ are found. This aptly illustrates the problem of using frequent
pattern mining for finding associations.

KRIMP, on the other hand, for a minimum count of 1, only selects 232 patterns. Each
of these occur relatively frequently in the data, respectfully around 80 and 15 times for
the selected itemsets of 2 and 3 items, and as such, these itemsets may be considered
interesting. However, after statistical correction for the number of patterns considered,
none of these frequencies deviate significantly from the independence model, and hence
by our definition, these patterns do not identify interesting associations. That KRIMP

returns these patterns indicates that its prior is too weak—its encoding scheme does
not exploit all available information optimally.

In contrast, assuming that the lottery is fair, both MTV and OPUS Miner discover
the correct result. OPUS Miner finds no itemsets to be self-sufficient. Even with a
minimum count of 1, MTV finds no frequent patterns to be significant.

8.3. NIPS Case Study

Assessing the relative usefulness of alternative collections of associations is difficult, as
this can only be assessed by experts in a field, and can only really be assessed relative
to an application for which the associations are to be employed. To circumvent these
problems, here we use one of the few datasets for which many of this article’s readers
will be relative experts and hence able to assess the meaningfulness of the resulting
associations. The docword.nips dataset comprises 1,500 records, each containing the
set of stemmed words found in an NIPS conference paper out of a total vocabulary of
12,375 distinct stemmed words.

8.3.1. Self-Sufficient Itemsets. In this first part of the case study, we systematically in-
vestigate each of the aspects of self-sufficiency and the value of itemsets relative to
rules.

By setting k to a large value (we used 100,000), we are able to discover all self-
sufficient itemsets for this dataset. Doing so takes 7 CPU hours and 15 minutes on a
single processor on a Sun Fire X4600 server.

There are 43,210 nonredundant productive itemsets. Of these, 25,618 are indepen-
dently productive relative to the rest and hence are self-sufficient. Table II presents

1www.nationaleloterij.be.
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Table II. Top 25 Self-Sufficient Itemsets with Respect to Leverage (δ)

kaufmann, morgan The publisher Morgan Kaufmann.
cambridge, mit MIT and its address.
san, morgan, mateo Morgan Kaufmann’s address is San Mateo. However, “Kaufmann” is fre-

quently misspelled and as a result {san, morgan, mateo} is independently
productive relative to {san, kaufmann, morgan, mateo}, which appears at
rank 10.

mit, press The publisher MIT Press.
grant, supported Part of a frequent acknowledgement.
springer, verlag The publisher Springer-Verlag.
bottom, top Two related words.
conference, international A frequent word pair that is independently productive relative to its self- suf-

ficient supersets {conference, international, proceeding} (rank 37) and
{artificial, conference, international} (rank 1,241).

conference, proceeding Two related words.
san,kaufmann,morgan,mateo The publisher and its address.
node, nodes Two related words.
algo, rithm The prefix and suffix of a frequent hyphenation.
negative, positive Two related words.
pages, editor Two related words. With a count of 231, this pair is independently pro-

ductive relative to its self-sufficient supersets {pages, editor, advances}
(count 150, rank 836) and {pages, volume, editor} (count 103, rank 1,402).

feature, features Two related words.
class, classes Two related words.
artificial, intelligence Two related words.
thesis, phd Two related words.
estimate, estimated Two related words.
san, mateo, advances The address of the publisher Morgan Kaufmann and a name that appears in

the title of several of its publications. Interestingly, {kaufmann, morgan, ad-
vances} is not independently productive relative to a number of its supersets
that relate to individual books such as {san, kaufmann, morgan, touretzky,
advances} (rank 159).

probability, probabilities Two related words.
role, play Two related words.
cambridge, mit, press The publisher MIT Press and its address.
high, low Two related words.
ieee, tran These words appear in the titles of many conference proceedings.

Table III. Top 25 Itemsets with Repect to Leverage (δ) with Those That Are Not Self-Sufficient Italicized

kaufmann,morgan conference,international morgan,advances

technical,report hidden,trained top,bottom

mit,cambridge learn,learned kaufmann,mateo
mateo,morgan hidden,training distribution,probability

san,mateo,morgan trained,training conference,proceeding

grant,supported san,mateo kaufmann,mateo,morgan
springer,verlag descent,gradient san,kaufmann,mateo,morgan

san,morgan image,images

san,kaufmann,mateo mit,press

the top 25 self-sufficient itemsets with respect to leverage, together with commentary
on why they are selected and their meaning.

We next illustrate the difference between simply finding itemsets with the high-
est leverage and finding self-sufficient itemsets with the highest leverage. Table III
presents the top 25 itemsets with respect to leverage. Those that are not self-sufficient
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Table IV. Top 25 Rules with Repect to Leverage (δ)

kaufmann → morgan

morgan → kaufmann

abstract, morgan → kaufmann

abstract, kaufmann → morgan

references, morgan → kaufmann

references, kaufmann → morgan

abstract, references, morgan → kaufmann

abstract, references, kaufmann → morgan

system, morgan → kaufmann

system, kaufmann → morgan

neural, kaufmann → morgan

neural, morgan → kaufmann

abstract, system, kaufmann → morgan

abstract, system, morgan → kaufmann

abstract, neural, kaufmann → morgan

abstract, neural, morgan → kaufmann

result, kaufmann → morgan

result, morgan → kaufmann

references, system, morgan → kaufmann

neural, references, kaufmann → morgan

neural, references, morgan → kaufmann

abstract, references, system, morgan → kaufmann

abstract, references, system, kaufmann → morgan

abstract, result, kaufmann → morgan

abstract, neural, references, kaufmann → morgan

are set in italics. As can be seen, these are all subsets of {san, kaufmann, mateo,
morgan}, relating to the publisher Morgan Kaufmann and their address, San Mateo.
Both the full itemset {san, kaufmann, mateo, morgan} and its two subsets {kaufmann,
morgan} and {san, morgan, mateo} are self-sufficient, the former subset because the
name sometimes appears without the address and the latter because Kaufmann is
frequently misspelled. This is a positive result for self-sufficient itemsets, which in this
case cleanly identify appropriate itemsets as being unlikely to be interesting.

We next contrast finding itemsets to finding rules. Table IV presents the 25 rules
with highest leverage. The top two rules provide alternative representations of the
top itemset, {kaufmann, morgan}. The remaining rules are all formed by adding high-
support words to the antecedent of one or the other of these rules.

We believe that the contrast between Tables II and IV illustrates nicely some of the
advantages of itemsets as a representation for associations, relative to rules. It also
illustrates the importance of assessing the value of associations based on all partitions
into two subsets, as advocated by Principles 1 and 6. For example, consider abstract,
morgan → kaufmann. The word abstract appears in 97% of all documents. It is almost
independent of either morgan or kaufmann, as indicated by the leverage of kaufmann,
morgan → abstract being just 0.0065. It has support of 0.281 (count 421), confidence
of 0.814, and leverage of 0.1807. The rule morgan → kaufmann has support of 0.283
(count 424), confidence of 0.812, and leverage of 0.1817. The increase in confidence
is a result of there being one less document containing abstract among those that
contain both morgan and kaufmann than one would expect if its presence had no effect
on the association between the two. This does not seem like compelling evidence for
considering it to be the third most interesting association in the data. It is hard to see
why anyone would consider it a more interesting association than the second of the
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Table V. Top 25 Self-Sufficient Itemsets with Respect to Lift (γ)

duane,leapfrog americana,periplaneta alessandro,sperduti

crippa,ghiselli chorale,harmonization iiiiiiii,iiiiiiiiiii

artery,coronary kerszberg,linster nuno,vasconcelos

brasher,krug mizumori,postsubiculum implantable,pickard

zag,zig ekman,hager lpnn,petek

petek,schmidbauer chorale,harmonet deerwester,dumais

harmonet,harmonization fodor,pylyshyn jeremy,bonet

ornstein,uhlenbeck nakashima,satoshi

taube,postsubiculum iceg,implantable

Table VI. Top 25 Itemsets with Respect to Lift (γ)

debris,rectal eptesicus,ferragamo aisb,strawman

multiset,zly apobayesian,sasb sasb,sbsb

mm32k,mm vector eptesicus,glint pm1,zly

inducer,sdti mtb,stb g4f3,neurochess

labeller,volcano apobayesian,sbsb flee,forbus

inducer,tdsi muesli,nlist contextualized,forbus

sdti,tdsi e13b,i1000 multiset,pm1

contextualized,flee ferragamo,glint

gopal,sdh semenov,unlearning

self-sufficient itemsets, {technical, report}. By ignoring all but one of the partitions
of an itemset when assessing interestingness, rule-based techniques inflate the appar-
ent value of many minor variants of a single core association.

The manner in which conventional association rules can be dominated by trivial
variants of a small number of key associations is further illustrated by the fact that
the highest leverage (0.1468) rule that does not contain either morgan or kaufmann
is abstract, input, training → trained. This does not appear in the top 25 because
712 rules each containing morgan and/or kaufmann have higher leverage. This rule,
while not a trivial variant of the association between morgan and kaufmann, is instead
a trivial variant of the association between training and trained, as abstract and input
are both very frequent items, neither of which is strongly associated with either training
or trained.

We next consider how applying self-sufficient itemsets with different preference func-
tions allows them to be used for different analytic objectives. Table V lists the 25 top
self-sufficient itemsets on lift (γ ). These turn out to be all pairs of words that each
appear in only four to six papers and both appear in exactly or almost exactly the same
papers. The requirement that the words appear in at least four papers arises from this
being the minimum number of examples required for an itemset to become statistically
significant in the context of OPUS Miner’s very strict correction for multiple compar-
isons. They provide an interesting contrast to the self-sufficient itemsets in the top 25
itemsets on leverage (Table III), illustrating how different measures of interest can
highlight qualitatively different forms of association within data. These associations
include authors who publish together (e.g., petek and schmidbauer), authors and the
topics in which they specialize (e.g., taube and postsubiculum), the two words in a hy-
phenated surname (crippa and ghiselli), an author’s first name and surname ( jeremy
and bonet), and words that relate to one another (e.g., artery and coronary).

By way of contrast, Table VI lists the 25 top itemsets on lift without a self-sufficiency
constraint. These turn out to be all pairs of words that each appear in only one
paper and both appear in the same paper. Some of these are clearly meaningful
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Table VII. Top 25 Frequent (Closed) Itemsets

abstract,references abstract,references,system function,result

references,result abstract,references,set references,system

abstract,references,result abstract,neural,result neural,result

abstract,system abstract,number abstract,introduction

abstract,function,references abstract,result result,system

neural,references abstract,function result,set

abstract,neural,references abstract,neural abstract,network

references,set function,references

abstract,function,result abstract,set

Table VIII. Closure of {duane, leapfrog}

abstract, according, algorithm, approach, approximation, bayesian, carlo, case, cases,
computation, computer, defined, department, discarded, distribution, duane, dynamic,
dynamical, energy, equation, error, estimate, exp, form, found, framework, function,
gaussian, general, gradient, hamiltonian, hidden, hybrid, input, integral, iteration,
keeping, kinetic, large, leapfrog, learning, letter, level, linear, log, low, mackay,
marginal, mean, method, metropolis, model, momentum, monte, neal, network, neural, noise,
non, number, obtained, output, parameter, performance, phase, physic, point, posterior,
prediction, prior, probability, problem, references, rejection, required, result, run,
sample, sampling, science, set, simulating, simulation, small, space, squared, step,
system, task, term, test, training, uniformly, unit, university, values, vol, weight, zero

({apobayesian, sbsb}, {mm32k, mm_vector}, {e13b, i1000}, {inducer, sdti}, {se-
menov, unlearning}, {inducer, tdsi}, {sdti, tdsi}, {sasb, sbsb}, {eptesicus,
ferragamo}, {apobayesian, sasb}, {mtb, stb}). However, at least as many appear
to be merely chance co-occurrences ({debris, rectal}, {multiset, zly}, {muesli,
nlist}, {ferragamo, glint}, {labeller, volcano}, {aisb, strawman}, {contextual-
ized, flee}, {pm1, zly}, {gopal, sdh}, {g4f3, neurochess}, {flee, forbus}, {con-
textualized, forbus}, {eptesicus, glint}, {multiset, pm1}). While some of the
pairs that appear only once do appear to have meaning as associations, there is a clear
qualitative difference in the associations that pass the statistical test for productivity
and hence are deemed self-sufficient.

Next, we contrast the self-sufficient itemsets approach to classical frequent itemset
mining. Table VII presents the 25 most frequent itemsets. All these turn out to be
closed. As can be seen, these itemsets are simply collections of words that all appear
in most NIPS papers. We believe that this illustrates the widely perceived low relative
value of support as a measure of interest [Han et al. 2007].

It might be thought that self-sufficient itemsets are similar to closed itemsets
[Pasquier et al. 1999a]. In fact, to the contrary, the redundancy constraint requires
that the itemsets be no more than one item larger than a generator. To illustrate the
difference, consider the first self-sufficient itemset in Table V, {duane, leapfrog}.
This itemset comprises the names of an author and of the algorithm that he developed.
These names each appear in only four NIPS papers, those being in both cases the
same four papers. The closure of this itemset, listed in Table VIII, is the set of all 99
words that appear in all four papers that contain those two words.

The two longest self-sufficient itemsets are {error, hidden, input, output,
trained, training, unit} (δ = 0.0397, p = 5.85E−32) and {error, hidden, input,
layer, output, trained, training} (δ = 0.0380, p = 2.08E−30), each containing
seven items. Their union, {error, hidden, input, layer, output, trained, train-
ing, unit} (δ = 0.0328, p = 9.2E−26) is not accepted as productive due to the very
strict adjusted critical value α8 = 2.87E−32. Otherwise, it would have rendered both
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the seven itemsets not independently productive. This illustrates a limitation of the
algorithm with respect to its capacity to find very long itemsets.

8.4. Comparison with Minimum Description Length Approaches

The major alternative approach to finding key associations in high-dimensional data is
provided by the information theoretic minimum description length (MDL) techniques
[Siebes et al. 2006; Gallo et al. 2007; Mampaey et al. 2011; Vreeken et al. 2011]. Here
we seek to assess how the key associations identified by OPUS Miner compare to those
identified by exemplar MDL approaches KRIMP and MTV.

We ran KRIMP with a minimum support of 20%, and it selected 1,369 itemsets out
of the 207,419,059 frequent itemsets. Of these 1,369 itemsets, 41 are self-sufficient,
38 are subsets of self-sufficient itemsets where only one item is missing, and 76 are
supersets of self-sufficient itemsets where we find only one item extra.

We show the top 25 itemsets, ordered by the area of the data that they cover in the
KRIMP encoding process, in Table IX. KRIMP’s top 25 includes seven self-sufficient item-
sets such as {computer, department, science, university} and {cambridge, mit,
press}. It also includes four nonredundant and productive but not independently pro-
ductive itemsets. An example is {kaufmann, morgan, san}. OPUS Miner assesses this
as not independently productive relative to self-sufficient itemsets {san, kaufmann,
morgan, mateo}, {san, kaufmann, morgan, touretzky, mateo}, {san, kaufmann, mor-
gan, touretzky, advances}, {san, processing, kaufmann, morgan, advances}, {san,
kaufmann, moody, morgan, advances}, {san, kaufmann, morgan, publisher}, and
{san, lippmann, kaufmann, morgan}. As discussed in Section 8.3.1, OPUS Miner’s top
25 includes instead {kaufmann, morgan} (the publisher’s name), {san, morgan, mateo}
(included because the name Kaufmann is often misspelled) and {san, kaufmann, mor-
gan, mateo} (the name and address).

In the KRIMP results, we also find a number of very long itemsets (here at ranks 1, 8,
13, 15, and 24) that seem to group frequently occurring words together without neces-
sarily identifying a clear concept. We also see that relatively many itemsets combine
a key concept with one or more less strongly related items, such as {pattern, recog-
nition, simple} and {dimensional, mean, order, space}, for which we respectively
find that {pattern, recognition} and {dimensional, space} are the key nonredundant
productive itemsets.

Another interesting contrast is provided by {com, tion}. These are a common prefix
and a common suffix for hyphenated words. It is plausible that these are associated
because documents that use hyphenation are relatively likely to have each of these
word parts. With p = 1.57E−6, this itemset fails OPUS Miner’s strict significance test.
By contrast, OPUS Miner’s top 25 includes the directly related prefix-suffix pair {algo,
rithm}, δ = 0.1042, the support of which is too low (12%) to be considered by KRIMP.

On a positive note, KRIMP can detect complex concepts in much smaller amounts of
data than OPUS Miner’s strict statistical testing for productivity requires. For example,
{algorithm, approach, error, learning, method, problem} (δ = 0.036) is the type
of collection of associated items that OPUS Miner seeks. If this itemset had not been
excluded by OPUS Miner’s very strong statistical testing, it would probably render
many of its subsets not independently productive.

Next, we mine the top 25 itemsets with MTV using a minimum support of 20%. As
running time is exponential in the number of selected overlapping itemsets,we impose
a max group length of five overlapping sets. We give the results in Table X.

Overall, we see that MTV identifies meaningful concepts, with very little redundancy
in between, although the very frequent word “abstract” appears only very weakly
related in three of the discovered itemsets and the equally frequent “references” only
very weakly related in another. We find 8 out of the 25 to be self-sufficient, and a
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Table IX. Top 25 KRIMP Itemsets, with Respect to Covered Area
Itemsets that are not self-sufficient are italicized. Asterisks denote the itemsets that are nonredundant and
productive but not independently productive.

abstract, function, input, introduction,
network, neural, number, output,
references, result, set, system, weight

Includes the 10 most frequent words (abstract, references, re-
sult, function, neural, system, set, network, introduction, num-
ber) together with the very frequent (count 743) productive but
not independently productive itemset {input,output,weight}.
Many subsets of {input, network, neural, output, weight}
are self-sufficient, but with p = 6.8E−18, it fails to pass the
adjusted α = 1.3E−21 for itemsets of size 5.

algorithm, approach, error, learning,
method, problem

Despite relatively high leverage (0.0360), OPUS Miner’s strict
statistical testing excludes it (p = 8.3E−012, adjusted α for
size 6 itemsets 6.3E−24). The closest self-sufficient itemset is
{algorithm, approach, learning, method}.

advances, data, information, model,
processing

δ = 0.0116.

hidden, layer, trained, training * Although nonredundant and productive, this itemset is
not independently productive due to four itemsets with
support lower than the minimum at which KRIMP was
run, among which are {hidden, layer, trained, training,
propagation} (14%) and {hidden, layer, trained, training,
train} (13%).

computer,department,science,university
cambridge,mit,press
high, low, single δ = 0.0309. p = 2.3E−8 > α = 4.0E−14 for itemsets of size 3.

Subset {high, low} is self-sufficient.
abstract, conclusion, function, input,

introduction, network, neural, number,
output, references, result, set, system

Very similar to the top-ranked itemset, this itemset also
mostly consists of very frequent words; in comparison, weight
is missing and conclusion is added.

pattern, recognition, simple Not productive. The subset {pattern, recognition} is produc-
tive, but not independently productive, due to, among others,
{object, pattern, recognition}.

equation, parameter, zero δ = 0.0254.
dimensional, mean, order, space δ = 0.0126.
distribution, probability, statistical * This itemset is not independently productive due to 15 self-

sufficient supersets, including {distribution, estimation,
statistical, probability}.

abstract, case, defined, function,
introduction, network, neural, number,
references, result, set, system

As with the itemsets at rank 1 and 8, this itemset is a collection
of frequent words.

kaufmann, morgan, san * Not independently productive due to the self-sufficient super-
set {morgan, kaufmann, san, mateo}.

abstract, function, input, introduction,
network, neural, number, order,
references, result, set, system

See rank 1, 8, and 13.

discussion, thank
control, current
experiment, experimental
architecture, net, unit * Not independently productive due to {architecture, net,

unit, weight} and {architecture, net, input, unit}.
com, tion δ = 0.0280. Common hyphenation prefix and suffix. By con-

trast, OPUS Miner’s top 25 includes {algo, rithm}, δ =
0.1042, with support (12%) below KRIMP’S minimum.

grant, supported
feature, features
factor, real δ = 0.0223.
abstract, error, function, input, network,

neural, number, output, references, result,
set, system, weight

See rank 1, 8, 13, and 15.

field, local δ = 0.0360. p = 7.0E−9 > α = 3.3E−10 for size 2 itemsets.
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Table X. Top 25 Itemsets According to MTV
Itemsets that are not self-sufficient are italicized. Asterisks denote the itemsets that are nonredundant and
productive but not independently productive.

abstract, error, hidden, input, network,
neural, output, trained, training, unit

δ = 0.0060. OPUS Miner finds several subsets of this itemset,
but it fails the strict statistical tests for productivity, as do the
next six itemsets.

abstract, neural, system, processing,
kaufmann, morgan, advances

δ = 0.0040.

hidden, input, layer, learning, network,
neural, problem, set, training, weight

δ = 0.0154.

abstract, data, number, performance,
result, set, test, trained, training

δ = 0.0064.

references, system, mit, press, processing,
cambridge

δ = 0.0102.

distribution, function, parameter,
probability, statistical

δ = 0.0097.

san, mateo * Not independently productive relative to {morgan, kaufmann,
san, mateo}.

descent, function, gradient δ = 0.0137. Extensions of nonredundant productive item-
set {gradient, descent} that are preferred by OPUS Miner
include {gradient, descent, error, training} (δ = 0.0393),
{gradient, descent, minimize} (δ = 0.0385), and {gradient,
descent, training, weight} (δ = 0.0384).

technical, report, university
computer, department, science,

university
algorithm, approach, function,

parameter, point, vector, method
δ = 0.0112. OPUS Miner finds subsets of this itemset, such
as {algorithm, approach, vector, method} (lev. 0.0507). At
0.0270, the leverage of adding point to this itemset is too low
to pass OPUS Miner’s strict statistical tests. The leverage of
adding the very frequent word function to it is even lower
(0.0112).

grant, supported
learn, learned, information {learn, learned} is self-sufficient (lev. 0.1094), but addition of

the frequent word information decreases leverage to 0.0161.
conference, proceeding
algorithm, optimal, method,

approximation
distribution, function, parameter, mean,

gaussian
Leverage 0.0112. OPUS Miner finds {distribution, parame-
ter, mean} (lev. 0.0471).

positive, negative
consider, define, defined * This itemset is not independently productive relative

to {consider, define, defined, finite} (count 152) and
{consider, define, defined, definition} (count 150).

case, consider, general, paper, note δ = 0.0214.
information, feature, features δ = 0.0123. OPUS Miner finds {feature, features} (lev.

0.0937), and eight of its supersets, such as {feature, features,
image, images} (lev. 0.0471), but the addition of the frequent
(count 1200) word information results in low leverage.

ieee, tran
high, large, single, low δ = 0.0199. OPUS Miner finds {high, low} (lev. 0.0871), but

adding either of the frequent words large (count 1,090) and
single (count 1,038) greatly lowers leverage.

pattern, recognition, task δ = 0.0405. This itemset fails OPUS Miner’s strict statistical
test for productivity, p = 7.96E−12, adjusted α for size 3 item-
sets 3.96E−14.

classification, recognition * While this itemset is nonredundant and productive, it is not
independently productive with respect to 23 of its supersets,
including {classification,pattern,recognition,training}.

rate,rates
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further 3 to be nonredundant and productive but not independently productive. For
example, although {consider, define, defined} is nonredundant and productive,
OPUS Miner finds that it is not independently productive relative to {consider,
define, defined, finite}.

From these one-to-one comparisons, we find that all three methods identify key
concepts in the data. KRIMP and MTV detect more long itemsets, but we also see that
they tend to more easily include less strongly related items. For this data, KRIMP and
MTV require strong minimum support constraints, whereas OPUS Miner finds itemsets
with support as low as 0.003.

By modeling the data by the MaxEnt principle, MTV employs a prior that considers
all available information optimally. Moreover, its search strategy is to iteratively find
the optimal, in terms of likelihood, addition to the current model. We see here that this
approach can provide particularly clean results. However, as querying this MaxEnt
model requires exponential time in k, the size of the model, MTV is hence only applicable
for mining relatively high-level summaries of data. As OPUS Miner does not model the
full joint distribution, but instead considers local marginal distributions with respect
to subsets and supersets, it can mine equally clean, yet much larger top-k self-sufficient
itemsets. Where the key interactions in the data cannot be described in just 20 or so
itemsets, OPUS Miner can provide much more detail.

Even though it was proposed first, KRIMP can be regarded as a faster, more greedy,
version of MTV. Instead of using an optimal MaxEnt model, it encodes the data
heuristically, thus avoiding the exponential runtime in the size of the model. As such,
like OPUS Miner, KRIMP can provide much more detail about the data. However,
although the KRIMP results include comprehensible and informative itemsets, we
do find relatively many variants of each returned itemset, often mixing different
concepts into very long itemsets—and, we see that many of the itemsets KRIMP returns
have low leverage. An example of such an itemset is {abstract, function, input,
introduction, network, neural, number, output, references, result, set,
system, weight} (leverage−0.0001). This behavior seems to follow from its heuristics.
In particular, when calculating likelihoods, it assumes independence between the
itemsets in the model while there is strict dependence (nonoverlap, large itemsets
first) in its encoding scheme. As a result, KRIMP may underestimate the likelihood of
the data under the model—essentially, for larger code tables, its prior becomes more
and more uninformative—and so itemsets providing only small additions in likelihood
may still be accepted into the model. As OPUS Miner does not aim to model the full
joint distribution, it does not face this problem.

As a final comment in this comparison, we note that the choice between top-k mining
(as OPUS Miner does), or (k-)pattern set mining (as KRIMP and MTV perform) is subtle,
and there is no general best solution. If one is after the best description of the data in
k nonredundant terms, the latter approach makes the most sense. However, one has to
appreciate that choices in the search process may affect which itemsets are reported in
the final model. If one is not so much interested in a model of the data, but rather wants
to obtain a more general overview of the top-most associations, self-sufficient itemsets
are a natural choice. We leave it to the individual reader to judge for this case study
the qualitative differences between the itemsets found by each of KRIMP and MTV that
are accepted as self-sufficient by OPUS Miner and those that are not (set in italics in
Tables IX and X), and between those that are selected as the top 25 by each approach
(Tables II, IX, and X).

8.5. Efficiency

Next, we seek to assess the computational efficiency of OPUS Miner, including how
it scales with increasing k and increasing data quantity, and the contribution to
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Table XI. Datasets

Dataset Transactions Items

accidents 340,183 468
chess 3,196 75
connect 67,557 129
kosarak 990,002 41,270
mushroom 8,124 119
pumsb 49,046 2,113

Dataset Transactions Items

pumsb star 49,046 2,088
retail 88,162 16,470
T10I4D100K 100,000 870
T40I10D100K 100,000 940
webdocs 1,692,082 5,267,656

Table XII. Time in Seconds for Top 50 Itemset Discovery

Dataset Lev Lift
accidents 122.46 0.03
chess 0.71 0.02
connect 12.77 0.04
kosarak 4.26 0.46

Dataset Lev Lift
mushroom 0.27 0.01
pumsb 3.00 0.06
pumsb star 3.01 0.04
retail 0.73 5.78

Dataset Lev Lift
T10I4D100K 2.50 0.09
T40I10D100K 18.46 1.33
webdocs 117.57 1.88

computational efficiency of its key mechanisms. To this end, we ran it on each of
the datasets from the FIMI Repository [Goethals 2012], described in Table XI. The
accidents data is due to Geurts et al. [2003] and the retail data to Brijs et al. [1999].
All results are averages over five runs. These experiments were performed on a virtual
dual single-core CPU 8Gb RAM Linux machine running on a Dell PowerEdge 1950 with
dual quad-core Intel Xeon E5410 processors running at 2,333Mhz with 32Gb of RAM.

Running times for individual runs that registered less than the minimum register-
able time of 1 tick (1/100 of a second) were rounded up to 1 tick. The base value for
k was set to 50, as this was the largest round number for which the ablation studies
could be completed within the memory constraints of the experimental machine.

Table XII presents the average time for discovering the top 50 itemsets for each
dataset. As can be seen, these times range from just 1/100 of a second for the mushroom
data searching on lift to a little over 2 minutes for the accidents data searching on
leverage. The time of less than 2 minutes for webdocs demonstrates that OPUS Miner
can scale very effectively to datasets that contain both millions of transactions and
millions of items.

A surprise result is that search by lift is always faster than search by leverage, and
often many orders of magnitude so. The reasons for this are revealed in an ablation
study in which we disable each of the pruning mechanisms, one using the bound on the
value of an itemset and the other on the Fisher p-value.

Figure 1 presents the relative average time (the average time divided by the average
time taken for standard search) for the ablation studies, plotted on a log scale. For
each dataset, the leftmost bar represents the time taken for search by leverage when
the bound on value is disabled divided by the time taken with all pruning enabled.
The next bar represents the respective ratio for lift. The final two bars represent the
respective ratios for when the bound on Fisher p-value is disabled. As can be seen,
pruning on value often has high impact for search by leverage but has little impact on
search by lift. Indeed, on two datasets, the average times actually decrease slightly, but
we believe that this is an artifact of the inherent inaccuracy of the timing mechanism
for extremely short time intervals. In contrast to the results for pruning using upper
limits on value, pruning on Fisher p-value has little impact on search by leverage but
large impact on search by lift.

We believe that the reason the effect of the pruning mechanisms is reversed for
leverage and lift is because the upper bound on value is tight for leverage but not so
tight for lift and that high leverage itemsets will usually pass a Fisher Exact Test but
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Fig. 1. Relative times without each pruning mechanism.

high lift itemsets often will not. For lift, the upper bound on value is not affected by the
support of the current itemset and varies only with the support of the individual items
in the itemset. Hence, it has little effect. In contrast, the tight upper bound for leverage
allows very effective pruning of the search space. On the other hand, the individual
items with the highest potential lift have very low support, and the upper bound on
Fisher p-value can efficiently remove these from the search space, greatly reducing
compute time. The resulting search by lift is extremely fast, because the items being
considered first have low support (typically count of 3 or higher), and hence the set
intersection operations and Fisher Exact Test computations are both very efficient.

Figure 2 shows the relative average time as k is increased for leverage. There is a
16-fold increase in k from the base level of 50 to the highest level of 800. As can be
seen, for four of the datasets (accidents, chess, pumsb, and pumsb_star), the increase
in computation is superlinear relative to the increase in k; for another three (connect,
mushroom, and retail), the increase is approximately linear (16-fold); and for the re-
maining four, it is sublinear. We believe that this behavior depends on the distribution
of top values in the search space. As the difference between the 50th and 800th value
increases, the relative amount of computation required to find the additional itemsets
will also increase.

Figure 3 presents the equivalent results for lift, but with the relative average time
plotted on a log scale. In the context of search by lift, the increases are much greater.
This is because lower values for lift will be associated with higher support items and
itemsets, and hence the computation for both set intersection and the Fisher Exact
Test increases greatly, as does the size of the itemsets that must be investigated.

Figure 4 shows how OPUS Miner scales as data quantity increases. For each of the
three types of synthetic data examined in Section 8.1, CPU time in seconds is plotted
as data quantity increases. These experiments were conducted on a heterogeneous grid
system, and hence the times should be treated as indicative only as different runs may
have been executed on slightly different hardware under different operating conditions.
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Fig. 2. Relative times as k increases, leverage (δ).

Fig. 3. Relative times as k increases, lift.
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Fig. 4. Scalability with respect to data size. The figure is plotted on a log scale as the dataset sizes grow at
a polynomial rate.

These plots do reveal that the time grows at a polynomial rate. It is superlinear because,
as discussed in Section 6, greater data size allows itemsets with lower support to pass
the statistical tests, and thus the number of itemsets that must be explored grows as
the data quantity grows.

In summary, with k up to 100, OPUS Miner can find self-sufficient itemsets in no
more than a few minutes, even for a dataset containing more than a million records and
more than five million items. Of the two pruning mechanisms, pruning on optimistic
value is more effective when searching by leverage, whereas pruning on statistical
significance is more effective when searching by lift. Finding the top-k itemsets by lift
is more efficient than finding the top-k itemsets by leverage. OPUS Miner’s scalability
as k increases varies greatly from dataset to dataset. In the best case, compute time
scales sublinearly with k. In the worst case, a 16-fold increase in k results in more than
a 1,000-fold increase in compute time. OPUS Miner scales at a polynomial rate with
respect to data quantity, as greater numbers of examples allow more subtle patterns
to pass its strict statistical testing regime, thus increasing the size of the search space
that must be explored.

9. CONCLUSIONS

We have presented an algorithm for discovering top-k productive and nonredundant
itemsets, with postprocessing to identify those that are not independently productive.
This algorithm can be used with any well-behaving measure of interest. It is highly ef-
ficient for two measures, lift and leverage, despite both requiring very computationally
intensive evaluation of all binary partitions of an itemset.

We also present a new upper bound on well-behaving measures of interest. We have
shown how this bound and Hämäläinen’s [2010] lower bound on the p-value of a Fisher
Exact Test can both be used to greatly prune the search space. Pruning on the value
of the measure of interest is more effective than pruning on the Fisher p-value for
measures like leverage for which itemsets with high values are likely to pass the Fisher
test. Pruning on the Fisher p-value is more effective than pruning on the measure of
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interest for measures like lift, for which itemsets with high values are likely to fail the
Fisher test.

It would be valuable to push the constraints on independent productivity into the
core search process in order to support search for top-k self-sufficient itemsets. On
the face of it, this appears infeasible, as it implies that for every potential itemset,
all immediate supersets should be assessed for self-sufficiency. More investigation is
warranted as to whether it is possible to prune this massive search space down to a
feasible computational task.

There is potential for speed-up and reducing memory use by varying some of OPUS
Miner’s design choices. Either best-first or a mix of depth and breadth-first search
might provide advantages relative to OPUS Miner’s depth-first strategy. Other al-
ternatives worth exploring include more sophisticated strategies for selecting which
itemset counts to memoize. However, the greatest potential for improving performance
probably lies in the development of further bounds on itemset value and Fisher p-value
and pruning mechanisms that utilize them.

OPUS Miner uses a very strict set of statistical tests with a strong correction for the
multiple comparisons problem. This makes it very conservative in deciding whether
to accept an itemset as productive. It is possible that if this could be relaxed, more
large itemsets would be found that would allow more of the smaller itemsets to be
suppressed as not independently productive.

It is clear from our case studies that the statistical approach of OPUS Miner and
the information theoretic alternatives each have relative strengths and weaknesses.
OPUS Miner is more conservative, which is an advantage in some contexts and a
disadvantage in others. It would be useful to investigate these relative strengths and
weaknesses in more detail and to consider where there are any opportunities for each
approach to borrow key elements from the other.

The source code for the system can be downloaded from http://sourceforge.net/
projects/opusminer. We believe that this software serves as a practical demonstra-
tion of the feasibility of using self-sufficient itemsets to find succinct summaries of the
key associations in data.
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