
Hidden Hazards: Finding Missing Nodes in Large Graph Epidemics

Shashidhar Sundareisan◦ Jilles Vreeken• B. Aditya Prakash◦

Abstract
Given a noisy or sampled snapshot of an infection in a large
graph, can we automatically and reliably recover the truly
infected yet somehow missed nodes? And, what about the
seeds, the nodes from which the infection started to spread?
These are important questions in diverse contexts, ranging
from epidemiology to social media.

In this paper, we address the problem of simultaneously
recovering the missing infections and the source nodes of
the epidemic given noisy data. We formulate the problem
by the Minimum Description Length principle, and propose
NetFill, an efficient algorithm that automatically and
highly accurately identifies the number and identities of both
missing nodes and the infection seed nodes.

Experimental evaluation on synthetic and real datasets,
including using data from information cascades over 96
million blog posts and news articles, shows that our method
outperforms other baselines, scales near-linearly, and is
highly effective in recovering missing nodes and sources.

1 Introduction

Epidemics in graphs are common. That is, many graph
databases store in one way or another how information
virally propagates through a graph. Natural examples
include real-world viral infections (such as the flu)
that propagate on population contact networks. In
these epidemics, institutions like the Centers for Disease
Control (CDC) try to find those who are truly infected
as well as to discover the sources of the infection.

Another example is the spread of ‘memes’ in social
media; popular phrases or links that are posted on
Facebook, or re-tweeted on Twitter; with ‘infected’
followers doing the same. It is important to understand,
from both the social sciences and marketing points of
view, how such epidemics behave, what their starting
points were, which nodes helped to spread it and so on.

In reality, snapshots and graphs are very noisy.
There are many reasons why data may be missing
in a cascade. In epidemiology for example, surveil-
lance data on who is infected is limited and noisy [21]
– the well-known ‘surveillance-pyramid’ demonstrates
that detected infections are often only a fraction of the
actual infections [17]. In Facebook, most users keep
their activity and profiles private, while in Twitter only
a percentage sample of Tweets are accessible by the pub-

◦Department of Computer Science, Virginia Tech. Email:

{shashi,badityap}@cs.vt.edu.
•Max-Planck Institute for Informatics and Saarland Univer-

sity. Email: jilles@mpi-inf.mpg.de

(a) NetSleuth [18] (b) NetFill

Figure 1: Recovering missing nodes: (a) the state of
the art does not recover missing nodes, correct number
of sources (red diamonds), nor their locations. (b) Our
method finds the correct number of sources and recovers
the missing nodes with high precision (green).

lic API. In general, as externals we seldom have access
to complete cascades and even when we do, we typically
analyze only small samples because of the extreme ve-
locity of social media data. In practice we hence have
to make do with noisy and incomplete snapshots.

In this paper, we study the problem of recovering
the missing infections as well as the source nodes
(so-called ‘culprits’) of an epidemic. Finding culprits
given noise-free snapshots of noise-free graphs is already
highly complex problem [18, 22]. At the same time,
in spite of its importance, missing data in context
of cascades has virtually received no attention. In
this paper we show that both these problems can be
efficiently solved simultaneously. Figure 1 demonstrates
how our method, NetFill, recovers missing data, as
well as identifies culprits with high precision.

More in particular, we consider finding culprits
under the Susceptible-Infected (SI) model, and we allow
the given snapshot to include false positives and false
negatives; nodes erroneously reported as respectively
infected and healthy. Our goal is to efficiently identify
the input errors – who were truly infected by the virus,
but not reported as such in the snapshot – as well as
reliably find the starting points of the epidemic.

The paper is structured as usual. After related work
and preliminaries, we give the problem formulation in
§ 4, formally propose and empirically evaluate NetFill
in § 5 and § 6, and finally we round up with discussion
and conclusions in § 7 and § 8.

2 Related Work

Although diffusion processes have been widely studied,
the problem of ‘reverse engineering’ an epidemic so far
only received little attention. Shah and Zaman [22]
formalized the notion of rumor-centrality for identifying
the single source node of an epidemic under the SI
model, and showed an optimal algorithm for d-regular
trees. Prakash et al. [18] studied recovering multiple
seed nodes under the SI model by MDL, while Lappas
et al. [12] study the problem of identifying k seed
nodes, or effectors of a partially activated network,
which is assumed to be in steady-state under the
IC (Independent-Cascade) model. All three assume
complete graphs and noise-free snapshots.

Missing data in networks is an important yet rel-
atively poorly understood problem. A related line
of work studies the effect of sampling on measured
structural properties [3, 10, 2] or network construc-
tion [11, 15]. Another related line of work is learning
graphs from sets of observed cascades [7, 6], though they
assume there are no missing nodes in a cascade. Cor-
recting for the effects of missing data in cascades in
general has not seen much attention – the exception is
Sadikov et al. [20], who attempt to correct for the sam-
pling, yet only in broad statistical terms (like recover-
ing the average size and depth of cascades) assuming
a modified new cascade model (k-trees). In contrast,
we address the much more general problem of automat-
ically directly correcting at a per-node level, under a
fundamental epidemic model (the SI model).

In short, to the best of our knowledge, this paper
is the first to deal with simultaneously finding missing
nodes and concealed culprits in sampled epidemics.

3 Preliminaries

We first introduce the SI model and the MDL principle.

3.1 The Susceptible-Infected Model The most
basic epidemic model is the so-called ‘Susceptible-
Infected’ (SI) model [1]. Each object/node in the un-
derlying graph is in one of two states: Susceptible (S),
or Infected (I). Once infected, a node stays infected for-
ever. The model can be formalized for both continu-
ous time and discrete time, the latter being intuitively
most simple. At every discrete time-step, each infected
node attempts to infect each of its uninfected neigh-
bors independently with probability β, which reflects
the strength of the virus. Note that 1/β hence defines
a natural time-scale; intuitively it is the expected num-
ber of time-steps for a successful attack over an edge.
As an example, if we assume that the underlying net-
work is a clique of N nodes, the model can be written

as: I(t+ 1) = I(t) + β(N − I(t))I(t), where I(t) is the
number of infected nodes at time t.

3.2 Minimum Description Length Principle We
employ the Minimum Description Length (MDL) prin-
ciple [9] to define our objective function. Loosely speak-
ing, MDL is a practical version of Kolmogorov Complex-
ity [14], with both embracing the slogan Induction by
Compression. Given a set of modelsM, MDL identifies
the best model M∗ as the model M ∈ M that mini-
mizes L(M) + L(D | M), in which L(M) is the length
in bits of the description of model M , and L(D |M) is
the length of the data encoded with M .

4 Problem Formulation

In this section we discuss the problem setting, and then
formalize our objective in terms of MDL.

4.1 The Problem: General Terms We consider
undirected graphs G(V,E), with V the nodes, and E
the edges. In addition we are given a snapshot D ⊂ V
of nodes observed to be infected at time t. We allow
snapshots to be incomplete with regard to the true set
of infected nodes I∗ (e.g., sampling errors) as well as
allow nodes to be infected independent of the graph
structure. We assume the contagion spread following
the SI model with parameter β.

Loosely speaking, our goal is to find that ‘correc-
tion’ of the snapshot D that allows us to most easily
describe it in terms of a SI infection cascade. The key
idea is that describing D will be easier when we ‘allow’
the cascade to infect true missing nodes than when we
force it to ‘go around’ these nodes. To formalize this
in terms of MDL we have to define a model class M,
and how to encode model and data in bits. In recent
work [18] we considered noise-free snapshots. Here, we
do allow noise, and hence do need to formalize the cost
of reaching the given data given a model, L(D |M).

4.2 Our MDL Model Class We refer to the start-
ing points of an infection as its seed nodes. In the SI
model, nodes neighboring an infected node are under
constant attack. That is, per iteration each infected
node has a probability β to successfully attack an un-
infected neighbor. We refer to the set of nodes under
attack at iteration i as the frontier set F i. We write F i

d

for the subset of F i of nodes under attack by d infected
neighbors. Note that all nodes in F i

d have the same
probability of getting infected. That is, the probability
of a node n getting infected depends only on β and dni ,
the number of infected neighbors in iteration i.

We refer to a cascade of node infections as an
infection ripple. Basically, a ripple R is a list that,

starting from the seed nodes S, per iteration identifies
the sets of nodes that were successfully attacked. We
do not put any restrictions on the nodes that R may
or needs to infect. That is, R may infect any node in
V , also those missing from D, and R does not have to
infect all of D, allowing for externally infected nodes.

Combined, a tuple (S,R) is a model M ∈ M for a
given graph G and snapshot D. Together, they identify
the infected footprint I ⊂ V as the nodes infected
having run the ripple from the seed nodes. Ideally, I
will be equal to the true set of SI infected nodes I∗.

4.3 The Cost of the Data Given a tuple (S,R),
describing D means to correct I wrt. D – identifying the
nodes in I not in D, and vice-versa. For the nodes in I
missing from D we write C− = I \D, and for externally
infected nodes we have C+ = D \ I. Importantly,
(I \ C−) ∪ C+ = D describes D without loss.

In terms of MDL we have L(D | S,R) = L(C−) +
L(C+). Intuitively, nodes observed as infected but
which prove hard (impossible) to reach from the seeds
are likely candidates for C+, whereas those nodes
not observed as infected but which strongly simplify
reaching the infected footprint are likely candidates for
C−. We will use this intuition in our algorithm.

There exist use-cases without formal expectation
on the number of missing nodes. We then use the
intuition that larger C− resp. C+, should cost more
bits. We have L(C−) = LN(|C−|+ 1) + log

(|I|
|C−|

)
, and

L(C+) = LN(|C+|+ 1) + log
(|V \I|
|C+|

)
.

In both we transmit the number of nodes using the
MDL optimal code for integers ≥ 1, LN(z) = log∗(z) +
log c0, which requires more bits for larger numbers –
with log∗(z) = log z + log log z + ... including only the
positive terms and c0 such that all probabilities sum
to 1 [19]. The node ids we encode by an index over a
canonical enumeration.

More commonly, e.g., when sampling D ourselves,
we do have an expectation on the number of missing
nodes and know the probability p of keeping an infected
node – in other words, we expect (100×p)% of the truly
infected nodes I∗ to be in D. Here we assume a uniform
sampling rate – a common strategy, e.g., used in the
Twitter API. We can also interpret this as a probability
γ = (1 − p) on each node in I∗ to not be in D, i.e., to
be truly missing. In practice, we do not have access to
I∗, yet assuming I is a good approximation we can use
γ as a probability on I to be in C−. We then have

L(C− | γ) = − log Pr(|C−| | γ) + log

(
|I|
|C−|

)
with Pr(|C−| | γ) =

(
|I|
|C−|

)
γ|C

−|(1− γ)|I|−|C
−| ,

where we encode the size of C− using an optimal
prefix code, and then identify the node ids analogue
to above. A particular strength of this encoding is that
it is general for any other sampling strategy, as long as
Pr(n | θ) is defined accordingly.

4.4 The Cost of a Model To encode the seed
nodes and the ripple, (S,R), we can use the encoding
for noise-free snapshots [18]. For self-containedness
we here repeat its main aspects. For seeds, we have
L(S) = LN(|S|+ 1) + log

(|V |
|S|
)
. For the encoded length

of an SI-model infection ripple R starting from seed
nodes S we have L(R | S) = LN(T) +

∑T
i L(F i),

where T is the length of the ripple in number of
iterations. Per iteration we require L(F i) bits to
identify the nodes in F i that are successfully attacked,

L(F i) = −
∑
Fd

i ∈Fi

(
log Pr(md | fd, d) +md log md

fd
+

(fd −md) log
(

1− md

fd

))
where fd = |F i

d|, and md

is the number of nodes of attack degree d that get
infected. As the SI model considers every attack an
independent event with probability of success β, we can
calculate the probability of seeing md nodes out of fd
infected by a Binomial with parameter pd, with Pr(md |
fd, d) =

(
fd
md

)
pmd

d (1− pd)fd−md , where pd expresses the
independent probability of a node in Fd being infected,
pd = 1 − (1 − β)d. Knowing pd we can encode md

using an optimal prefix code, the length of which can
be calculated by Shannon entropy [4]. Knowing md, we
use optimal prefix codes to encode whether each node
in Fd was successfully infected or not.

4.5 The Problem: Formally With the above en-
codings we can now state the problem formally.
Minimal Noisy Infection Snapshot Problem
Given a graph G(V,E), the SI model with infection pa-
rameter β, and nodes D ⊆ V observed as infected, find
the missing nodes C− ⊆ V \ D, the observation errors
C+ ⊆ D, and the propagation ripple R that starts from
S ⊆ V and infects I = (D ∪ C−) \ C+, minimizing
L(D,S,R) = L(S) + L(R | S) + L(D | S,R) .

This definition explicitly identifies the noise in D:
the set of nodes C− = I \ D are the false negatives
of D, and C+ = D \ I are the false positives of D. To
find the optimal solution, we, however, face an immense
search space: any node in V \ D may be missing, and
any node in D may be erroneous. To identify the best I
we have to consider all ripples R for all I ⊆ V , starting
from any S ⊆ V . As there exists no trivial structure
(e.g., monotonicity) that we can exploit for fast search,
and knowing that finding a single MLE seed node in a
general graph without missing nodes or false-positives
errors is #P-Complete [22], we resort to heuristics.

5 Solution and Algorithms

We now describe our proposed approach. Suppose an
oracle gives us the true seeds from which the infection
started, our goal then is to find a footprint I from
which it is easy to reconstruct the observed snapshot
D. To make reaching that I simpler, we can (at a
cost) ‘flip’ uninfected nodes and consider them infected
– and vice versa. For C−, these should be nodes
that make reaching I simpler; nodes for which the
optimal ripple would otherwise spend bits on many
unsuccessful attacks, nodes that make it easier to reach
D. In contrast, C+ should consist of nodes observed
as infected but which are extremely costly to reach
from the observed infections; far-apart disconnected
components that can only be reached by adding overly
many nodes to C−.

5.1 Overall Strategy The above observation sug-
gests a simple strategy: keep track of how many bits
the ripple needs to encode the final state of each node,
and flip the nodes with the highest cost. That is, keep
track of both the total cost to keep it uninfected and the
effort to reach the node. Intuitively, the first part corre-
sponds to aggregated local costs: nodes with high such
cost are likely good candidates for C−. Our algorithm
quickly identifies all such candidates without having to
calculate these individual costs.

Minimizing the second part of the cost requires
calculating the MLE path to every node in D. This
is infeasible for large graphs. We note that in most
applications, including epidemiology and social media,
false positive rates are very low (i.e., the probability
that an observed ‘infection’ is wrong). This allows the
leap of faith that all connected components in D of at
least 2 nodes are not purely due to chance. That is, they
either require their own seed, or should be connected to
another component – e.g. by nodes in C−. Under the
same assumption, we axiomatically identify C+ as the
(rare) disconnected singleton nodes of D.

To summarize, with C+ defined as above, our task
is to find a set of missing nodes C−, a seed set S and a
ripple R such that under the SI model if we start from
the seed set S the infection ripple R spreads to all nodes
in D and C−, and it is the cheapest setting according to
our MDL score. Next, to solve this problem we propose
NetFill (§ 5.2 and 5.3).

5.2 NetFill – Main Idea Assume we are given a
budget of at maximum k missing nodes |C−| ≤ k:
how can we find the best nodes? Following from the
discussion above, good candidates would be nodes which
have a high cost of attempted infections. Intuitively,
the larger the number of infected neighbors – i.e., the

infected degree dni
– of a healthy node n, the larger the

number of infection attempts, and hence the higher the
cost we will have to pay to keep the node un-infected.
Hence it seems sensible to choose the k nodes with
highest dni

from the set V \ D. There are, however,
two clear disadvantages to this approach: (a) we do not
know k, and (b) we ignore both the seeds and the ripple
of the infection. For example, consider the following:

SA B

Here if node S was the seed then intuitively node A
should have been infected, whereas by using infected de-
grees, B would be the top-most candidate. Preliminary
experiments showed that in practice this strategy indeed
consistently outputs the wrong number and identity of
seeds – even when given the true k as input.

To solve these issues, we follow a different approach.
It is easy to see that the choice of C− will affect the
identity of the seed set S. Additionally, the above
example demonstrates that the choice of S also affects
the choice of the missing node set – this is because
the seeds determine what is the best possible ripple.
Consequently, cheaper ripples will require fewer missing
nodes to be ‘filled-in’. Following this observation, we
take an EM-style alternating-minimization approach:

Task (a) find best seeds given a set of missing nodes,

Task (b) find best missing nodes given seed nodes.

Given an initialization, we alternate these steps un-
til convergence. Task (a) is similar to finding seeds un-
der perfect data, while Task (b) requires us to efficiently
find missing node sets given a set of seeds.

5.3 NetFill – Details Next, we discuss how we solve
each of the two tasks above, and then how to combine
them into the NetFill algorithm.

5.3.1 Task (a): Find seeds given missing nodes
In this task, we are given a set of missing nodes,
and need to find the best seeds under this perfect,
noise-free, information. In principle we can use any
seed-finding algorithm for this task. Under perfect
information, however, our MDL score reduces to that
of NetSleuth [18], which is a solution towards finding
a good set of seed nodes S given an accurate D: exactly
Task (a)’s assumption. Hence, we simply instantiate
findSeeds(D,G(V,E), C−) using NetSleuth(G,D ∪
C−). Note that this allows the seeds to be ‘concealed’
w.r.t. D, as they may be selected from the nodes in C−.

5.3.2 Task (b): Find missing nodes given seeds
In this step, we assume that the seed set S along with
the missing nodes from the previous iteration, C−prev,
are given, and our task is to find the best set of missing
nodes C−. With S given and assumed accurate, the
naive approach is to list all possible C− and let MDL
decide which is the best solution. Sadly, this approach is
computationally infeasible. Instead we propose to find
C− incrementally and greedily; at every step we find
the next best ‘hidden hazard’ node n∗ to add to C−.

How should we select this ‘next best node’ n? From
our MDL score we know that adding a node will change
both the cost of the missing nodes, L(C−), as well
as the cost L(R) of the ripple from S for reaching
the infected set. By the connection between encodings
and distributions [9], we can interpret L(R) as the
negative log-likelihood of the ripple. Our strategy is
hence to choose that node n which maximally increases
the likelihood L(·) that S is indeed the seed set for the
resulting infections (D∪n). We remark that considering
only the number of infected neighbors only takes the
cost dni of not infecting a node into account. Instead
here the likelihood measures the total effect of flipping a
node; that is, we implicitly consider the cost of infecting
n, its neighbors, neighbors-of-neighbors and so on till we
reach D. However, computing the exact total likelihood
is computationally very expensive, and hence we use
the total expected error R instead, i.e., the empirical
risk between the actual state and expected state of the
snapshot if the seed set was S. Formally,

(5.1) R(D | S) =
∑
i∈V

(1i∈D − E[state of i | S]) ,

where 1i∈D = 1 if i ∈ D (0 otherwise), and state of a
node can be infected/uninfected. We can then use the
MDL score of L(C−) +L(R) to see if adding n reduced
the total bits – note that as S is constant in this Task,
so is L(S).

Single seed: Assume for now we have one seed S =
{s}; later we discuss how to extend this to multiple
seeds. Start with C− = ∅. From above, the best
single node to add to C− minimizes total expected error
R(D ∪ n | s). Equivalently,

(5.2) n∗ = arg max
n

[R(D | s)−R(D ∪ n | s)] .

As s was computed in Task (a) via NetSleuth, we use
Lemma 3 from [18] for E[·] into Equation 5.1 and obtain

R(D | s) ≈
∑
i∈D

(1− u1(i)u1(s)) ,

where u1 is the smallest eigenvector of LD∪C−
prev

–

the submatrix of the graph laplacian L = Deg − G

corresponding to the ‘infected set’ on which s was
computed, i.e. D ∪ C−prev. In other words, we take the
subset of rows and columns from L corresponding to
the nodes in D ∪ C−prev. Note that the sum is only over
the observed infections D while the expected states are
calculated using u1(·) based on s (which, in turn, was
based on C−prev). So the best single node to add to C−

can be written as:

n∗ = arg max
n

[∑
i∈D∪n

ũ1(i)ũ1(s)−
∑
i∈D

u1(i)u1(s)

]

where ũ1 is the smallest eigenvector of the new laplacian
submatrix we obtain after adding the node n. Thus we
need to compute the change of the smallest eigenvector
from u1 to ũ1 when the laplacian submatrix L(·) changes
after a node n is added to the infected set. Again, di-
rectly computing this change for each node is expensive
as this involves O(N) eigenvalue computations.

How to do this faster? We propose to use matrix
perturbation theory [23] to compute this change approx-
imately. Our Lemma 5.1 below together with the fact
that many real graphs have large eigen-gap gives us a
way of quickly approximating and finding the node n∗.

Lemma 5.1. Given a seed node s, and λ1 − λ2 >
3 for LD∪C−

prev
, with nb(n) the neighbors of a

node n, under spectral perturbation we have n∗ ≈
arg max

n

∑
i∈nb(n) u1(i).

Proof. Omitted for brevity.

Loosely speaking, u1 measures the closeness of nodes
in the infected graph to seed s. In particular, s
has the largest value of u1(·) and so minimizes R(·).
Hence using above, Zn =

∑
i∈nb(n) u1(i) measures how

connected a node n is to centrally located infected nodes
w.r.t. s in D. This immediately captures our intuition
that the missing nodes should depend on the seed as
well as the structure. It is important to note that while
choosing the new C− we have to ignore the effect of the
old C−prev; we need to find nodes C− based directly on
the seed s; not the missing-node set based on which s
was itself computed. So before computing Zn, we set
∀ i ∈ C−prev u1(i) = 0, which ensures that z-scores are
computed based only on the observed infected set and
seed s. Though, nodes in C−prev can re-appear in C− as
they can still have non-zero Zs.
Multiple seeds: The extension of the above to mul-
tiple seeds is not straightforward. Consider the case in
which we have two seeds s1 and s2. Naively applied, our
Z-score will choose only those nodes that are ‘close’ to
seed s1 – e.g., in the grid network of Fig. 4(e) we would
choose only nodes close to the seed in the left-blob. How

Algorithm 1: findMissing: Finds the set of
missing nodes given a set of seed nodes

input : Data D, graph G(V,E), seed set S and the
old missing set C−prev

output : Missing nodes C−

1 Let S = {∅, s1, s2, . . . , sl−1};

2 ZS
n = findNodeScores(G, D, C−prev, S);

3 C− = ∅ and i = 0;
4 while L(S,D,R,C−) decreases do
5 C− = C− ∪ arg max

n∈V \D∪C−
ZS

n ;

6 i = i+ 1;

7 return C−;
Function findNodeScores (G,D,C−prev, S) :

99 for i = 1 to l do

10 Gi = D ∪ C−prev \
⋃i−1

j=0{sj} = infected subgraph;

11 ui = smallest eigenvector of Gi;
12 ui(l) = 0 ∀ l ∈ C−prev;
13 for n ∈ V \D do
14 Zi

n =
∑

j∈nb(n) ui(j);

15 for node n ∈ V \D do

16 ZS
n = maxZ1

n,Z2
n, ...Zk

n;

17 return ZS
n ;

to instead choose nodes that are close to either left and
right blobs? To boost diversity, we adopt ‘exoneration’:
we set the first seed s1 as un-infected (and hence ‘exon-
erate’ the nodes close to it) and recompute the small-
est eigenvector of the laplacian submatrix defined by
D ∪ C−prev \ s1 (call this vector u2). Then the Zn-score
based on u2 (call it Z2

n) will measure the appropriate-
ness of adding a node based on its centrality w.r.t. to
seed s2. In general, for a l seed problem we will have
u1, u2,...ul. For these l eigenvectors we will have l Zn’s
for every node in V \D. For node n, we define the con-
solidated ZS

n = max{Z1
n,Z2

n, ...Z l
n} (as before, we also

set ∀ i ∈ C−prev, ∀ l ul(i) = 0). Thus the best node to
be added in the case of multiple seeds is a node which
is very central and close to at least one of the seeds i.e.
which has the maximum value of ZS

n .
How many nodes to add? Finally, we just add the
top scoring nodes according to the ZS

n scores to C−

until MDL tells us to stop. Note that we don’t need
to re-compute ZS

n after every addition, as S is assumed
correct in this Task. Algorithm 1 gives the pseudo-code.

5.3.3 The complete algorithm Given the two pro-
cedures above for Task (a) and Task (b), we can now
combine them into the NetFill algorithm. We give the
pseudo-code as Algorithm 2. First we need to initialize
C− for the procedure. In principle any heuristic can be
used, here we choose to use the frontier-set; we set the
initial C− as the set of all those uninfected nodes which

Algorithm 2: NetFill

input : Data D, graph G, and infectivity β
output : Missing nodes C−, ripple R and seed set S

1 C− = frontier-set of D in G;
2 {S,R} = findSeeds(D,C−, G);
3 while L(S,D,R,C−) decreases do
4 {S,R} = findSeeds(D,C−, G);
5 C−prev = C−;
6 C− = findMissing(G,S,D,C−prev);

7 return S,R,C−;

are connected to at least one infected node (the frontier
set). After initialization, we calculate the seeds S for
this C− and D. We then use the alternating approach
by iteratively optimizing C− and S, until the stopping
condition. As discussed at the start of this section, C+

is defined as the disconnected singleton nodes in D∪C−.
We stop when the MDL cost ceases to decrease. One
detail is that we need to calculate the ripple R when
calculating the MDL score. When doing so we know I
and can hence simply follow [18] and greedily maximize
the likelihood of the ripple by iteratively infecting the
most likely number of nodes, which is easily computed
based on the mode of Bernoulli trials.

Due to its complex nature, L(S,D,R,C−) is not a
pure convex function – though in practice it does show
a convex-like structure. Hence, if we add one node at
a time in Algorithm 1 we might get stuck at a local
minima. To be more robust, instead we add batches of
k nodes. Experiments show a value of ∼10 works well.
Complexity: The complexity of NetFill is O(j ×
(l × (E + V) + k × log (V −D))) with j is the number
of iterations to converge. In our experiments we found
j ≈ 3, while l and k are � D. Hence in practice,
NetFill is sub-quadratic (and near-linear in many
cases).

6 Experiments

We evaluate NetFill1 on both synthetic and real-world
data. For ease of visualization we use the synthetic
Grid network, where each node has 4 neighbors. AS-
Oregon has a power-law degree distribution [5] and
is hence a natural exemplar for biological and social
networks. MemeTracker is based on memes (short
phrases) cascading on blogs. In the Flixster dataset,
cascades of movie ratings happen over a social network.
There exist different ways of learning the historical
graph from these datasets [13, 8], and they have been
used in multiple information diffusion studies [7]. For
Grid and AS-Oregon we simulate a SI process by

1Our code is available for research purposes at:
http://www.cs.vt.edu/~badityap/CODE/netfill-code.tgz

randomly choosing seeds and validate by randomly
sampling the infected nodes. For MemeTracker and
Flixster we use real cascades from the data itself.

There exist no direct competitors to NetFill and
hence we compare against three baselines (a) Net-
Sleuth, (b) Frontier, which returns the uninfected
frontier of D (i.e. F) as C− and seeds chosen by Net-
Sleuth on D ∪ F as S; and (c) Simulation, which
simulates SI up till reaching D from the same seeds
as Frontier. As mentioned in the survey, we do not
compare against [20], as they correct only in broad sta-
tistical terms, not at the same finer granularity level as
NetFill.

6.1 Evaluation Functions – Subtle Issues There
are several subtle issues for using evaluation func-
tions. In short, as for evaluating missing nodes C− the
true negative rate is important we use both precision
and the well-known Matthews Correlation Coefficient
(MCC) [16] that takes the complete confusion matrix
into account. For evaluating the seed nodes S, as the SI
process is stochastic and computing exact likelihoods
is intractable in practice, hence following [18] we use

Q =
Lalg(·)
Ltrue(·) . For all three metrics, the closer to 1 the

better.

6.2 Performance on Synthetic data
We simulate two scenarios on Grid using the SI process

with β = 0.1: (a) n seeds to produce n distinct yet
connected blobs (Grid-Con); and (b) n seeds to produce
n disconnected blobs (Grid-Disc). We let the process
infect between 450 and 650 nodes, we sample to get the
input using p = 0.9. We here report results for n = 2,
noting these are representative for larger seed sets.

First we consider NetSleuth and find, as men-
tioned in the introduction, it does not work for this
problem: it does not recover missing nodes (precision
zero), hence it can not find low-cost ripples (Q scores
� 1), and thus too many and wrongly located seeds.
See, e.g., Figs. 1 and 4a. For the remainder we hence
do not compare against NetSleuth any further.

With regards to C−, Fig. 4 shows that all other
methods show good performance in returning true miss-
ing nodes (green). Whereas NetFill matches human
intuition, Frontier and Simulation, however, return
overly many false positives (orange). We plot the pre-
cision and MCC in Fig. 3 (left). This figure shows that
NetFill performs best for recovering missing nodes.
The baselines Simulation and Frontier choose overly
many nodes. Hence, their predictions are no better than
random, and we see MCC scores closer to zero.

Next, we investigate the near-convexity of L, which
decides how many missing nodes NetFill chooses.

70 80 90 100 110 120
2000

2500

3000

3500

4000

Number of nodes added (k)

M
D

L
SC

O
RE NetFill Minimum

at k = 90

0 10 20 30
820

840

860

880

900

Number of nodes added (k)

M
D

L
SC

O
RE NetFill Minimum

 at k = 20

Figure 2: Our score is near-convex, and identifies the
correct size of |C−|: MDL scores for Grid-Con (left) and
the left component of Grid-Disc (right).

0

0.2

0.4

0.6

0.8

1

Precision MCC

Pr
ec

is
io

n/
M

CC
 S

co
re

Simulation
Frontier
NetFill

0

0.5

1

1.5

2

2.5

3

Simulation Frontier NetFill

Q
 S

co
re

Ideal

Simulation
Frontier
NetFill

Figure 3: NetFill performs well: Precision and MCC
scores (left) and Q score (right) for Grid-Con.

Fig. 2 shows that in practice the score is close to convex
for k, with minima close to the ground truth.

With regards to seed nodes, in Fig. 4 we see that
both NetFill and Frontier discover good candidates
(black) – note that Simulation requires the true seed
set as input parameter. To evaluate the quality of the
ripple R and the seed set S, we consider the Q scores
in Fig. 3. NetFill closely approximates the ideal – its
solution requires as few bits as are needed for the ground
truth – while many more bits are needed to describe the
solutions of Simulation and Frontier. For Grid-Disc
NetFill even finds a solution that is more simple to
describe (has higher likelihood) than the ground truth.

6.3 Real Graphs with Simulated Cascades
Next, we evaluate performance of NetFill on a graph
with power-law degree distribution, but keep control
over the infection model. More in particular, we run
SI multiple times on the AS-Oregon graph using a sin-
gle random seed of medium to high degree. We vary the
number of infected nodes from 700–1500, choose β = 0.1
and sampling using p = 0.9.

For the missing nodes, the results in Fig. 5 (a)
we see that NetFill performs well in terms of both
precision and MCC scores, while the baselines return
so many false positives that their precision and MCC
scores are low. Fig. 5 (b) shows that NetFill scores
well too identifying seed nodes. In fact, averaged over
all simulations NetFill has a Q of 1.03 – close to the
ideal, implying that its seed sets S and ripple R are
of high quality. Simulation and Frontier perform
rather poorly with average Q scores of 7.45 and 4.57.

(a) NetSleuth (b) Simulation given true seeds (c) Frontier (d) NetFill

Figure 4: Seeds and Missing Nodes: Performance of NetFill and competitors on Grid-Con. NetSleuth finds no
missing nodes and returns wrong seeds (black). Simulation (given the true seeds) and Frontier (finding good seeds)
return overly many false positives (orange). NetFill performs well in both identifying missing nodes (green) as well as
recovers the seeds. Grey nodes are infected, false positives are orange, and false negatives are cyan. Best viewed in color.

6.4 Real Graphs with Real Cascades
Next, we use data that defines the infected set D for

us. That is, here we do not simulate the SI model
to construct D. There exist multiple ways to extract
the cascades and the graph. For MemeTracker we
consider two sets of cascades: the Memetracker (MT)
methodology of phrase matching, and cascades based on
explicit hyperlinks (HL) [13]. For the graph, we use the
HL and MT networks as learnt by NetInf [7]. We thus
consider four combinations of network and infected set:
HL-HL, HL-MT , MT -HL and MT -HL.

We select missing nodes using a sampling rate of p =
0.7, and choose β = 0.1 – noting that different values
lead to similar results. We use two high-volume memes
that were popular in 2008: “Lipstick on a pig” and “The
state of the economy”. It is important to emphasize here
that SI is an abstraction; although the network here was
learnt using a SI-inspired model [7], the actual spread
of information in the data may not precisely match
our assumptions. Moreover the network extracted here
using machine-learning algorithms is itself noisy. In
spite of all this, NetFill discovers interesting results.

For conciseness we only report results for HL-MT ,
noting these are representative for the other combina-
tions. With respect to missing nodes, NetFill outper-
forms the baselines as seen in Fig. 5 (c). Just as for AS-
Oregon, Frontier and Simulation perform poorly as
they select almost the entire graph as C−: NetFill’s
precision is more than 5× better than these baselines.
With regards to the culprits, Fig. 5 (d) shows the solu-
tion discovered by NetFill has a Q score only a frac-
tion higher than the ground truth.
Truly Missing Nodes: As MemeTracker is itself a
sample from true cascades in the web, we can apply
NetFill on the complete data set with the goal of
discovering nodes that were missed when collecting the
data. We used HL-MT using an expected sampling rate
of p = 0.9. At this sampling rate NetFill identifies 22
nodes (websites) as missing, including ‘nbcbayarea.com’
and ‘chicagotribune.com’. By checking their archives
we verified that 6 sites indeed contain the meme “The

state of the economy”, whereas 2 others discuss politics
and economic situation in USA in general. For the
others verification was not possible – some are not online
anymore, others do not offer searchable archives.
Flixster : Last, we consider the Flixster dataset to
evaluate how well NetFill does when the data does
not follow our assumptions. That is, unlike for Meme-
Tracker , for Flixster is unclear whether SI is a meaning-
ful model – it is interesting to see whether NetFill still
outperforms the baselines. In Flixster , the infected set
D is a group of people who rated a certain movie, the
undirected graph constructed from the friend relation-
ship. We consider movies of medium volume infection,
|D| ≈ 3000. We used a sampling rate of p = 0.9. The
edge weights were computed following [8], and we set
the infection probability β as the mean edge weight.

We find that NetFill here also outperforms the
baselines in precision, MCC , as well as Q-score with a
wide margin (figure omitted for brevity) – the difference
being dramatic for the latter. These scores also show
that NetFill is conservative when the data does not
follow the model, which prevents overfitting and allows
it to find relatively accurate descriptions.
Scalability and Robustness Last, but not least, we
considered the scalability and robustness of NetFill.
In short, NetFill is near-linear and robust against
varying sampling rates. We omit details for brevity.

7 Discussions

The experiments demonstrate that NetFill performs
very well – it obtains high precision and MCC scores
for both simulated and real-world graphs and cascades
– outperforming the baselines by a clear margin. Inter-
estingly, NetFill works well even for the MemeTracker
and Flixster datasets – which do not necessarily fol-
low the (idealized) SI model, and for which the sam-
pling rates are unknown – showcasing the power of our
method and formulation.

The small-scale case study for MemeTracker also
shows that our overall approach works in practice:
NetFill recovered 8 truly missing infections from a

0

0.1

0.2

0.3

0.4

Precision MCC

Pr
ec

is
io

n/
M

CC
 S

co
re

Simulation
Frontier
NetFill

(a)

0

2

4

6

8

Simulation Frontier NetFill

Q
 S

co
re

Ideal

Simulation
Frontier
NetFill

(b)

0

0.1

0.2

0.3

0.4

Precision MCC

Pr
ec

is
io

n/
M

CC
 S

co
re

Simulation
Frontier
NetFill

(c)

0

0.5

1

1.5

2

2.5

3

Simulation Frontier NetFill

Q
 S

co
re

Ideal

Simulation
Frontier
NetFill

(d)

Figure 5: Good performance on real data: AS-Oregon
(top) and MemeTracker HL-MT (bottom). NetFill has
best precision, MCC , and Q scores.

real dataset. It is valid to argue that the SI model
is somewhat simplistic for the type of information
diffusion in this data. Investigating how NetFill can
be extended towards the richer infection models like
SIR and SEIR, as well as how to incorporate infection
timestamps will make for engaging future research.

8 Conclusions

In summary, we studied the problem of finding missing
nodes and concealed culprits in noisy infected graphs.
We approach the problem using compression, and give
an efficient method, NetFill, that approximates the
ideal and automatically recovers both number and iden-
tities of missing nodes and seed nodes effectively. Our
main contributions include:

(a) Problem Formulation: We defined the missing node
problem in terms of MDL: the best solution de-
scribes the data most succinctly.

(b) Fast Algorithm: We provide a conceptually simple
and fast algorithm, NetFill, which principally
optimizes our score with an EM-like approach.

(c) Extensive Experiments: NetFill performs very
well on synthetic and real data, even giving mean-
ingful results when our assumptions may not hold.

Acknowledgements: This material is based on work sup-

ported by the National Science Foundation under Grant no.

IIS-1353346 and by the Maryland Procurement Office under

contract H98230-14-C0127. JV is supported by the Clus-

ter of Excellence “Multimodal Computing and Interaction”

within the Excellence Initiative of the German Federal Gov-

ernment. Any opinions, findings and conclusions or recom-

mendations express in this material are those of the au-

mendations express in this material are those of the au-

thor(s) and do not necessarily reflect the views of the re-

spective funding agencies.

References

[1] R. M. Anderson and R. M. May. Infectious Diseases of

Humans. Oxford University Press, 1991.
[2] S. P. Borgatti, K. M. Carley, and D. Krackhardt. On

the robustness of centrality measures under conditions of

imperfect data. Soc. Netw., 28(2):124 – 136, 2006.
[3] E. Costenbader and T. W. Valente. The stability of

centrality measures when networks are sampled. Soc. Netw.,

25(4):283–307, 2003.
[4] T. M. Cover and J. A. Thomas. Elements of Information

Theory. Wiley-Interscience, 2006.

[5] M. Faloutsos, P. Faloutsos, and C. Faloutsos. On power-law
relationships of the internet topology. In SIGCOMM, 1999.

[6] M. Gomez-Rodriguez, D. Balduzzi, and B. Schölkopf. Un-

covering the temporal dynamics of diffusion networks. In
ICML, 2011.

[7] M. Gomez-Rodriguez, J. Leskovec, and A. Krause. Inferring
networks of diffusion and influence. In KDD, 2010.

[8] A. Goyal, F. Bonchi, and L. V. Lakshmanan. Learning

influence probabilities in social networks. In WSDM, 2010.
[9] P. Grünwald. The Minimum Description Length Principle.

MIT Press, 2007.

[10] G. Kossinets. Effects of missing data in social networks.
Soc. Netw., 28(3):247–268, 2006.

[11] A. Lakhina, J. W. Byers, M. Crovella, and P. Xie. Sam-

pling biases in ip topology measurements. In In IEEE IN-
FOCOM, pages 332–341, 2003.

[12] T. Lappas, E. Terzi, D. Gunopulos, and H. Mannila.

Finding effectors in social networks. In KDD, 2010.
[13] J. Leskovec, L. Backstrom, and J. Kleinberg. Meme

tracking and the dynamics of news cycle. In KDD, 2009.

[14] M. Li and P. Vitányi. An Introduction to Kolmogorov
Complexity and its Applications. Springer, 1993.

[15] A. Maiya and T. Berger-Wolf. Benefits of bias: Towards
better characterization of network sampling. In KDD, 2011.

[16] B. Matthews. Comparison of the predicted and observed

secondary structure of T4 phage lysozyme. BBA Prot.
Struct., 405(2):442 – 451, 1975.

[17] H. Nishiura, G. Chowell, and C. Castillo-Chavez. Did mod-

eling overestimate the transmission potential of pandemic
H1N1-2009? Sample size estimation for post-epidemic

seroepidemiological studies. PLoS ONE, 6(3), 03 2011.
[18] B. A. Prakash, J. Vreeken, and C. Faloutsos. Spotting

culprits in epidemics: How many and which ones? In
ICDM. IEEE, 2012.

[19] J. Rissanen. Modeling by shortest data description. Annals
Stat., 11(2):416–431, 1983.

[20] E. Sadikov, M. Medina, J. Leskovec, and H. Garcia-Molina.
Correcting for missing data in information cascades. In

WSDM. ACM, 2011.
[21] M. Salathé, L. Bengtsson, T. J. Bodnar, D. D. Brewer,

J. S. Brownstein, C. Buckee, E. M. Campbell, C. Cattuto,

S. Khandelwal, P. L. Mabry, and A. Vespignani. Digital
epidemiology. PLoS Comput Biol, 8(7), 2012.

[22] D. Shah and T. Zaman. Rumors in a network: Who’s the
culprit? IEEE TIT, 57(8):5163–5181, 2011.

[23] L. Wu, X. Ying, X. Wu, and Z.-H. Zhou. Line orthogona-
lity in adjacency eigenspace with application to community

partition. In IJCAI, 2011.

