
Getting to Know the Unknown Unknowns:
Destructive-Noise Resistant Boolean Matrix Factorization

Sanjar Karaev◦ Pauli Miettinen◦ Jilles Vreeken◦,•

Abstract
Finding patterns in binary data is a classical problem in data mining,
dating back to at least frequent itemset mining. More recently,
approaches such as tiling and Boolean matrix factorization (BMF),
have been proposed to find sets of patterns that aim to explain the full
data well. These methods, however, are not robust against non-trivial
destructive noise, i.e. when relatively many 1s are removed from
the data: tiling can only model additive noise while BMF assumes
approximately equal amounts of additive and destructive noise. Most
real-world binary datasets, however, exhibit mostly destructive noise.
In presence/absence data, for instance, it is much more common to
fail to observe something than it is to observe a spurious presence.
To address this problem, we take the recent approach of employing
the Minimum Description Length (MDL) principle for BMF and
introduce a new algorithm, Nassau, that directly optimizes the
description length of the factorization instead of the reconstruction
error. In addition, unlike the previous algorithms, it can adjust the
factors it has discovered during its search. Empirical evaluation
on synthetic data shows that Nassau excels at datasets with high
destructive noise levels and its performance on real-world datasets
confirms our hypothesis of the high numbers of missing observations
in the real-world data.

Keywords: Boolean matrix factorization; minimum description
length; unknown unknowns

1 Introduction
[A]s we know, there are known knowns; there are
things we know we know. We also know there are
known unknowns; that is to say we know there are
some things we do not know. But there are also
unknown unknowns – the ones we don’t know we
don’t know. And . . . it is the latter category that
tend to be the difficult ones. [30]

While then-Secretary of Defense Donald Rumsfeld probably
was not thinking about data mining when he made his famous
comment about unknown unknowns, they are, arguably, the
main problem data miners dealing with observation data have
to face. A known unknown, in this setting, is an element for
which we know we do not know its value. As an example, in
a movie rating matrix we know which movies the users have
not rated yet. In contrast, an unknown unknown is an element
we have not observed, but we do not know if this is because
it does not exist or because we have failed to observe it.

◦Max-Planck Institute for Informatics, Saarbrücken, Germany.
•Saarland University, Saarbrücken, Germany.
{skaraev,pmiettin,jilles}@mpi-inf.mpg.de

We assume that many real-world presence/absence (or
binary) datasets contain unknown unknowns, and that it is
much more common to fail to observe something that is than
it is to observe something that is not there. In other words, we
assume there is more destructive noise than there is additive
noise – without having to pre-specify these amounts exactly.

In order to find interesting patterns from the data,
we consider Boolean matrix factorization (BMF) [20], a
technique that has been successfully applied to a variety of
data mining problems considering binary data (e.g. [14, 16,
20, 22]). In its standard form, BMF aims to find a low-rank
Boolean factorization of the data that is as close to the original
as possible (i.e. minimizes the reconstruction error).

But here as well the unknown unknowns are the difficult
ones. When we know which observations are unknown, we
can ignore them, and fit the model (i.e. the Boolean matrix
factorization) only to the observed parts of the data. But we
cannot ignore all unobserved values, as that leaves only the
observations (1s in the data) to work with. Still, we also have
to be careful that we do not consider unobserved values as
important to actual observations – as standard reconstruction
error does – as this ignores our hypothesis that real data has
more unobserved than spuriously observed values.

To address this problem, we use the Minimum Descrip-
tion Length principle (MDL) [11, 26], which is very useful in
tackling the problem of the trade-off between fitting the data
well while keeping the model simple. In general, the more
complexity we allow in the model, the better we can fit the
data. However, having high model order comes at the cost of
fitting the noise. MDL identifies the optimal balance.

In this paper we present Nassau, a new BMF algorithm
that is designed to directly minimize description length. A
key aspect is that – unlike the majority of the previously
proposed BMF algorithms – it can correct its previous
mistakes. Nassau is quite robust to destructive noise, which
is especially beneficial for real-world data as in many domains
there are zeros simply due to the lack of observation.

2 Notation
In this paper we consider matrices of Boolean values. We
denote a matrix by upper-case boldface letters (A), and
vectors by lower-case boldface letters (a). If A is an n-by-m
Boolean matrix, |A| denotes the number of 1s in it, i.e.,

|A| = ∑i, j ai j. For a matrix A we denote its ith row by Ai

and its jth column by A j. The matrix obtained from A by
removing its jth column (respectively ith row) is denoted by
A− j (A−i). Given a matrix A of size n-by-m and a column
vector c of length n, or a row vector r of length m, we denote
by [A,c] and [A

r] the matrices obtained by concatenating A
with c and r, respectively.

Let A∈ {0,1}n×m, B∈ {0,1}n×k and C∈ {0,1}k×m. We
denote by B◦C the n-by-m Boolean product of matrices
B and C. The Boolean matrix product is defined like the
normal product, but over the Boolean semiring, that is,
(B◦C)i j =

∨k
`=1 Bi`C` j.

Let 〈B,C〉 be an (approximate) Boolean decomposition
of A, A ≈ B◦C. We call B and C factors of this decompo-
sition, and for any 1 ≤ l ≤ k, we refer to the rank-1 matrix
formed by the vector pair 〈Bl ,Cl〉 as a block. If X and Y
are n-by-m binary matrices, we use X⊕Y to denote their
element-wise exclusive or. Finally, we denote by L(A,B,C)
the description length of A for factor matrices B and C.

3 BMF with MDL
3.1 MDL: a brief introduction. The Minimum Descrip-
tion Length principle (MDL) [11] is a practical version of
Kolmogorov Complexity. Both embrace the slogan Induction
by Compression. This can be roughly described as follows:
Given a set of models M , the best model M ∈M is the one
that minimizes L(M)+L(D |M), in which L(M) is the length
in bits of the description of M, and L(D |M) is the length of
the data when encoded with model M.

This is called two-part, or crude, MDL – as opposed to re-
fined MDL, where model and data are encoded together [11].
We use two-part MDL because we are specifically interested
in the model: the factors that give the best description of the
data. Note that MDL requires the compression to be loss-
less in order to allow for fair comparison between different
M ∈M , and that we are only concerned with code lengths,
not actual code words.

3.2 BMF: a brief introduction. In Boolean matrix factor-
ization, the goal is to (approximately) represent a Boolean
matrix as the Boolean product of two Boolean matrices. That
is, given Boolean matrix A, find Boolean matrices B and C
such that A ≈ B◦C. In minimum-error Boolean rank-k de-
composition one is given the n-by-m input matrix A and rank
k, and the goal is to find n-by-k and k-by-m factor matrices B
and C that minimize |A⊕ (B◦C)|.

Using the Boolean decomposition instead of a normal
(or non-negative) can give many advantages in data mining:
the binary factor matrices are often easier to interpret [18,20],
or the binary factors might be required in the application
(e.g. [14]), the Boolean factors can provide better input for
subsequent algorithms (e.g. [1, 31]), and for sparse input data,
the factors will be naturally sparse [19].

Unfortunately, computing the least-error BMF is NP-
hard, and has strong inapproximability results [18]. But there
is also another, more fundamental problem: the formulation
of the minimum-error Boolean rank-k problem requires a pri-
ori knowledge on k, the Boolean rank of the decomposition.
And as discussed in the Introduction, using the Hamming dis-
tance essentially assumes roughly equal distribution between
destructive and additive noise – something that we hypothe-
size is not true. In order to solve these two problems, we will
use the description length instead of the reconstruction error
to measure the quality of our decomposition.

3.3 MDL for BMF and problem definition. To use MDL,
we have to define what our models M are, how an M ∈M
describes a database, and how we encode these in bits.
Miettinen and Vreeken [22] proposed a number of MDL
objective functions for BMF. Here we use their so-called
typed data-to-model encoding, which was shown to be both
the most efficient as well as providing the best empirical
performance. Below we give the main ideas of this encoding
scheme. For further details we refer the reader to [22].

The description length of a Boolean n-by-m matrix A
factorized into B and C, such that A≈ B◦C, is defined as

(3.1) L(A,B,C) = L(B)+L(C)︸ ︷︷ ︸
L(M)

+L(A | B,C)︸ ︷︷ ︸
L(D|M)

,

where L(B)+L(C) are the description lengths of the factor
matrices and L(A |B,C) is the description length of the matrix
A given this model. The columns of B, and analogously the
rows of C, are encoded independently as binary vectors. One
such vector can be identified by two integers: one encoding
the number of nonzero elements in Bi (maximum n), and
the other encoding the index of Bi among all binary strings
having the same profile (maximum

(n
|Bi|
)
). The number of

bits for encoding the k columns of B is hence

L(B) = k log(n)+
k

∑
i=1

log
(

n
|Bi|

)
.

To reconstruct the data A given the factor matrices B and
C means we need to describe the error of this factorization.
We hence have to encode the exclusive OR of the data with
the model, E = A⊕ (B◦C). We can split E into unmodelled
1s, E+, and superfluous 1s, E−, where E+

i j = 1 if and only if
Ai j > (B◦C)i j and E−i j = 1 if and only if Ai j < (B◦C)i j. To
avoid rewarding structure in the error matrices E+ and E−
are encoded as binary strings in the same way as a column of
B. Combined, we have L(A | B,C) = L(E+)+L(E−), where

L(E+) = log(mn−|B◦C|)+ log
(

mn−|B◦C|
|E+|

)
,

and

L(E−) = log(|B◦C|)+ log
(
|B◦C|
|E−|

)
.

This concludes the definition of our MDL objective function.
We can now define the problem we aim to solve in this paper.

PROBLEM 3.1. (MDLBMF) Given a binary n-by-m matrix A,
the Minimum Description Length Boolean Matrix Factoriza-
tion (MDLBMF) problem is to find binary factor matrices B
and C such that we minimize the total description length

(3.2) L(A,B,C) .

Note that we do not require the rank of the decomposition
as an input; instead we automatically find the rank (and de-
composition) that minimizes the description length. Although
the computational complexity of the MDLBMF problem is un-
known, there are strong reasons to believe it is NP-hard [22].
Hence, we resort to heuristics.

4 Related Work
In BMF one decomposes a binary matrix into the Boolean
product of two matrices while minimizing some cost function.
Perhaps the intuitively most straightforward objective is to
minimize the number of errors, i.e. the Frobenius norm of the
residual. The Asso algorithm to solve BMF was proposed
by [20]. Later, [13] proposed a heuristic based on a mixed-
integer-programming formulation.

Error minimization is prone to overfitting, however, as
more factors always allow better reconstruction. In practice,
users thus have to choose the number of factors in advance.
Moreover, this objective builds on the assumption that noise
is equally likely to flip true 1s to 0s as it is to flip true 0s to
1s, which we argue here is not realistic.

As discussed by Faloutsos and Megalooikonomou [6],
Kolmogorov Complexity, and its practical implementation,
the Minimum Description Length principle [11, 26], are
powerful, well-founded, and natural approaches to data
mining, as they allow us to identify the most succinct and least
redundant model for a dataset. MDL has been successfully
employed for a wide range of data mining tasks, including
discretization [7], outlier detection [28], classification [25],
and clustering [17].

Miettinen and Vreeken [21, 22] recently formulated the
BMF problem in terms of the Minimum Description Length
(MDL) principle [11, 26] in order to solve the model order
selection problem. Loosely speaking, this objective identifies
the best factorization as the one that provides the best lossless
compression of the data – thus automatically balancing the
complexity of the factorization with the reconstruction error.
The authors applied their score as post-processing for Asso
to identify the optimal model order. In this paper we propose
an algorithm that directly optimizes the description length,
taking advantage of the fact that this objective can naturally
handle different amounts of noise per type.

Tiling [10] is closely related to BMF, but aims at finding
submatrices full of 1s. Xiang et al. [32] proposed an algorithm

Algorithm 1 Nassau

Input: A ∈ {0,1}n×m, t,τ,θ ∈ (0,1), M > 0
Output: B ∈ {0,1}n×k and C ∈ {0,1}k×m

1: function Nassau(A, t,τ,θ ,M)
2: B′← 0n×0, C′← 00×m

3: Seeds← GetSeeds(A)
4: repeat
5: B← B′, C← C′
6: [b,c]← FindBlock(A,B,C,Seeds)
7: B′← [B,b], C′←

[
C
c
]

8: if M rounds since last update then
9: [B′,C′]← CyclUpd(A,B′,C′,Seeds,0,θ)

10: until L(A,B′,C′)≥ L(A,B,C)
11: while not converged do
12: [B,C]← CyclUpd(A,B,C,Seeds, t,θ)
13: t← t · τ
14: return B, C

to mine noisy tiles – i.e. allowing 0s in the area covered by
a tile. Given a collection of noisy tiles, Kontonasios and
De Bie [12] iteratively discover the most interesting tile,
defining interestingness through a local MDL score. Tatti and
Vreeken [29] use MDL to hierarchically identify the most
informative tile from data with ordered rows and columns.

Closer to our work is the Panda algorithm proposed
by Lucchese et al. [15]. Panda performs Boolean matrix
factorization, but instead of minimizing only the error, it
minimizes the sum of Frobenius norms of the residual and the
factor – by which the hidden assumption again is that false
positives and false negatives are equally likely. Recently, the
same authors proposed Panda+ [16] in which they optimize
the TypedXOR encoding of Miettinen and Vreeken [21].
Panda+ will be the main competitor to Nassau.

5 Algorithm
In this section we present Nassau, a new algorithm for
heuristically solving the MDLBMF problem. The existing
algorithms, Panda+ and Asso, never change an already-found
factor. This property simplifies the search for the (locally)
MDL-minimizing factorization [22], but has a drawback. The
first few blocks blocks probably cover large parts of the data,
but for higher-rank decompositions, these initial blocks can
become too coarse-grained. Nassau, on the other hand, does
iteratively refine previously discovered factors.

5.1 The main algorithm. Nassau (Algorithm 1) inter-
leaves the addition of new blocks and updating of already-
found ones. As new blocks add more fine-grained structure,
the coarser older factors become obsolete and can be replaced.

The algorithm starts by finding a set of seeds that provide
the starting point for finding the factorization (Line 3; see
Section 5.2). After initialization, Nassau starts its first
phase (Lines 4–10), where it repeatedly adds a new block

to the existing factorization until the description length does
not improve any more. The blocks are found using the
FindBlock routine (Algorithm 2, see Section 5.3). To adjust
the already-found factors, Nassau regularly calls CyclUpd
(Algorithm 3, Section 5.4).

When additional factors do not decrease the objective
further, we enter the last phase of the algorithm (Lines 11–13),
which entails refinement of the discovered blocks. This step
is explained in Section 5.4.

Nassau accepts several parameters that control its exe-
cution. Parameters t and τ control the simulated annealing
by giving the initial temperature and update ratio, respec-
tively, while M controls the frequency at which we update the
found factors. Hence, at the expense of run time, higher t and
lower τ and M potentially provide better results. Parameter θ

controls the mining process and is explained in Section 5.3.

5.2 Finding seed columns. Finding a good block to add
is a hard problem. Hence, we take an approach similar
to [16, 20], and start by finding a good collection of seed
columns. The seed column vectors are collected in the n-by-s
matrix Seeds. Later, the FindBlock algorithm will use these
seeds to build the final blocks. In principle, we can use any
method to create these seeds, including those used in [16, 20],
but here we present our approach, which is based on restarted
random walks.

A good seed captures the correlation between data rows.
Consider an n-by-m binary matrix A and the corresponding
bipartite graph G = (Vrows∪Vcols,E). The correlated rows of
A correspond to the highly interconnected nodes in Vrows, and
if two nodes are correlated, then a short random walk starting
from one of them is likely to frequently visit the other [27].
If we restart each walk from the same node frequently, the
fraction of time we spend on each node indicates how related
it is to the origin of the walk.

Let P(i | j) be the probability of reaching node i from
node j. We do one random walk for each node on the left part
of the graph, and on every step we have a fixed probability
ε to return back to the starting node. Otherwise, we go to
one of the neighbouring nodes, selecting them uniformly at
random. Now, the fraction of time we spend in node i in a
random walk starting from node v is

Πv(i) = ε ·1(v = i)+(1− ε) ∑
(i, j)∈E

Πv(j)P(i| j) .

The above equation can be solved using the dominant
eigenvector, similar to [27]. We generate one seed for each
data row v, and the seed has 1 on every row where the random
walk starting from v spends sufficient time.

5.3 Finding the blocks. Given the input matrix and the
current factorization, FindBlock (Algorithm 2) finds a new
block to be added to the factorization.

Algorithm 2 FindBlock

Input: matrices A ∈ {0,1}n×m, B ∈ {0,1}n×k, C ∈ {0,1}k×m,
Seeds ∈ {0,1}n×s, θ ∈ (0,1)

Output: block 〈b∗,c∗〉
1: function FindBlock(A,B,C,Seeds,θ)
2: b∗← 0n,c∗← 0m

3: for i = 1 to s do
4: b← Seedsi . The ith seed column.
5: repeat
6: c← argmaxc∈{0,1}m cover(A, [B,b],

[
C
c
]
,θ)

7: b← argmaxb∈{0,1}n cover(A, [B,b],
[

C
c
]
,θ)

8: until stopping criteria are satisfied
9: if L(A, [B,b],

[
C
c
]
)< L(A, [B,b∗],

[C
c∗
]
) then

10: b∗← b,c∗← c
11: return b∗,c∗

The algorithm tries every seed one by one, and uses
alternating updates. To compute the updates, we ignore all
the locations where the existing factorization has a non-zero,
as we cannot change that value. Then, given a fixed column
factor b, we build the corresponding row factor c by testing,
for every data column, if using b to cover that column would
improve the cover function:

cover(A,B,C,θ) = θ
∣∣{(i, j) : ai j = 1∧ (B◦C)i j = 1}

∣∣
−
∣∣{(i, j) : ai j = 0∧ (B◦C)i j = 1}

∣∣ .
We use the cover function as a surrogate to the full descrip-
tion length, partially to make this update step faster, and
partially to avoid some local optima. Further local optima
can be avoided by adjusting parameter θ ; setting θ = 1 re-
turns locally optimal blocks, but we can introduce some lo-
cally nonoptimal decisions (that can yield to better global
behaviour) by setting θ to a slightly larger (or smaller) value.

5.4 Updating the factors. As was mentioned above,
blocks found earlier might become outdated – that is, they
become less useful in covering data, or they can even become
redundant. This happens if we have added new blocks that
overlap with previous ones and cover the same data better.
In these cases we can improve the factorization by updating
the old blocks. CyclUpd (Algorithm 3) iteratively replaces
blocks with better alternatives. This is performed by first
removing a block, and then finding a replacement by calling
FindBlock with the current factors (Line 4).

Note that the objective is not strictly decreasing:
FindBlock is heuristic and is not guaranteed to improve
the result. However, we might still want to keep the up-
date to avoid getting stuck in a local minimum. In order to
accomplish this, we apply a technique similar to simulated
annealing. We use a temperature parameter t, which controls
the probability of accepting a new block that does not improve
the score. If a new block decreases the objective, we always
accept it; otherwise we will only do so with a probability

Algorithm 3 CyclUpd

Input: matrices A ∈ {0,1}n×m, B ∈ {0,1}n×k, C ∈ {0,1}k×m,
Seeds ∈ {0,1}n×s, t > 0, 0 < θ < 1

Output: Factors B∗ ∈ {0,1}n×k and C∗ ∈ {0,1}k×m

1: function CyclUpd(A,B,C,Seeds, t,θ)
2: B∗← B,C∗← C
3: for l = 1 to k do
4: [b,c]← FindBlock(A,B−l ,C−l ,Seeds,θ)
5: B′← [B−l ,b],C′←

[C−l
c
]

. Replace block
6: if L(A,B′,C′)< L(A,B,C) then
7: B← B′,C← C′
8: else
9: B← B′,C← C′ with probability t

10: if L(A,B′,C′)< L(A,B∗,C∗) then
11: B∗← B,C∗← C
12: return B∗,C∗

proportional to t. Notice that Nassau calls CyclUpd with
non-zero t only in its last simulated annealing phase.

Nassau does most of the work inside CyclUpd, which is
called every M iterations before all blocks are found (Line 9),
and then once again when the number of blocks is fixed (Line
12), making a total of k/M +1 calls. CyclUpd in turn calls
FindBlock O(k) times. FindBlock tries every seed vector,
and for each one builds (approximately) a corresponding
cover in time O(nm). Given that we have n seeds, this yields
the complexity of O(kn2m)/M for CyclUpd. Finding the seed
columns is done using restarted random walks [27], which
takes time O(n(n+m)). Thus the complexity of Nassau is
O(k/M)O(kn2m)+O(n(n+m)) = O(k2n2m/M) (assuming
M < k). It is worth noticing that the number of blocks k is
rather small and rarely exceeds 100, which, combined with
a relatively small constant hidden behind the asymptotics,
makes the algorithm a practical choice for most of the real-
world applications.

6 Experiments
In this section we empirically evaluate Nassau and compare
its performance to that of two competing algorithms.

6.1 Algorithms and parameters. We used three algo-
rithms, Nassau,1 Panda+ [16], and Asso [20]. For Asso,
we followed the approach of [22] to compute the MDL-
minimizing factorization. These algorithms take various pa-
rameters. For Nassau we used the same parameters in all
experiments, and we set the initial annealing temperature
t = 0.8, temperature scaling τ = 0.6, weight θ = 1.1, and
launched the cyclic updates in every M = 5 rounds. Asso

takes one parameter, the rounding threshold τ . For synthetic

1The Nassau code is available for research purposes at http://people.
mpi-inf.mpg.de/~pmiettin/nassau/; for the other two algorithms, we
used code provided by the authors.

experiments, we tried values from 0 to 1 at increments of 0.1;
for real-world experiments, we followed the setup of [22], and
tried the values from 0.1 to 0.95 with increments of 0.025.
In all cases, we selected the value of τ that yields the mini-
mal MDL cost factorization. For Panda+, we minimize the
description length (i.e. the JE error function) and use random-
ization with 10 re-starts. Other parameters were left at their
default values.

Panda+ optimizes an encoding that differs slightly to the
one we focus on. For fair comparison we thus ran a set of
baseline experiments with both encodings. This, however, did
not give results that were different in any significant way, and
hence we do report these results separately – the fact that the
encoding we use gives very similar results to the encoding
used by Panda+ was also noted in [22].

6.2 Synthetic data. We first use synthetic data to test the
algorithms on data of known ground truth and characteristics.
To that end, we generated 1000-by-800 matrices by first
creating two binary factor matrices B∗ and C∗, computing
their product A = B∗ ◦C∗, and applying noise to A in order
to obtain the final input matrix Ã. In addition to the results
from the algorithms, we also report the results obtained with
the original factor matrices B∗ and C∗. We call this the True
Model. The amount of noise is measured in percentages
of non-zeros in A. That is, p% of destructive noise flips an
expected p |A|/100 of the 1s of A, while p% of additive noise
flips an expected, p |A|/100 of the 0s.

When generating the matrices, we varied one parameter
and kept the rest fixed. In particular, we evaluated different
levels of additive and destructive noise, density of the matrix,
and rank (model order). All results are averaged over 10
instances per configuration. When not varied, the rank was
kept at 15, the density at 8%, and additive noise at 3%. To
evaluate how well the algorithms perform with increasing
amounts of destructive noise, we ran two sets of experiments,
one with 15% destructive noise and one with 50%.

Destructive noise. We start by testing the effects of
the destructive noise, shown in Figure 1a. Initially Nassau

and Asso are indistinguishable from the true model, while
Panda+ has much higher description length. At around
40% destructive noise, however, Nassau starts to perform
better than Asso, and continues in that way until the end.
Meanwhile, we observe that while Panda+ under-performs
overall, it does relatively well when the data becomes very
sparse (high levels of destructive noise). This may mean its
search procedure is well-equipped to find blocks in sparse
data.

Additive noise. The purpose of this test is to find how
robust the algorithms are to additive noise, that is when 0s
are turned to 1s. Keeping the destructive noise constant at
15%, we find that up to 60% additive noise both Nassau and
Asso still find models virtually indistinguishable from the

0 10 20 30 40 50 60 70
0

20000

40000

60000

80000

100000

120000

140000

160000

180000

noise level

d
e
sc
ri
p
ti
o
n
le
n
g
th

Nassau
Asso
Panda+
True Model

(a) Varying destructive noise.

0 10 20 30 40 50 60 70
0

50000

100000

150000

200000

250000

300000

350000

400000

450000

noise level

d
e
sc
ri
p
ti
o
n
le
n
g
th

Nassau
Asso
Panda+
True Model

(b) Varying additive noise
(15% destructive noise).

2 4 6 8 10 12 14 16 18 20
0

50000

100000

150000

200000

250000

300000

350000

400000

density

d
e
sc
ri
p
ti
o
n
le
n
g
th

Nassau
Asso
Panda+
True Model

(c) Varying density (15% de-
structive noise).

2 4 6 8 10 12 14 16 18 20
0

50000

100000

150000

200000

250000

300000

350000

400000

density

d
e
sc
ri
p
ti
o
n
le
n
g
th

Nassau
Asso
Panda+
True Model

(d) Varying density (50% de-
structive noise).

2 4 6 8 10 12 14 16 18 20
2

4

6

8

10

12

14

16

18

20

22

true model order

f
o
u
n
d
m
o
d
e
l
o
r
d
e
r

Nassau
Asso
Panda+
True Model

(e) True and estimated model
order (15% destructive noise).

2 4 6 8 10 12 14 16 18 20
0

10

20

30

40

50

60

70

80

true model order

f
o
u
n
d
m
o
d
e
l
o
r
d
e
r

Nassau
Asso
Panda+
True Model

(f) True and estimated model
order (50% destructive noise).

Figure 1: Results on synthetic data. Markers are mean values over 10 repetitions, error bars are twice the standard deviation.
The noise level (both additive and destructive) is relative to the number of 1s.

true model, while Panda+ is consistently worse except at
70% noise (Figure 1b).

Varying density. We varied the density of the noise-
free matrices from 2% to 20%. At 15% destructive noise
(Fig. 1c), Nassau and Asso discover models on par with the
true model, while Panda+ is clearly much worse. With 50%
destructive noise (Fig. 1d), Nassau and Panda+ are virtually
indistinguishable until the density reaches 16%, after which
the performance of Panda+ starts to degrade.

Model order. Last, we varied the model order (rank)
between 2 and 20. With 15% destructive noise, Nassau and
Asso obtained exact results, while Panda+ was mostly under-
estimating (Fig. 1e). With 50% destructive noise (Fig. 1f),
Nassau over-estimates slightly more than Panda+, although
for both methods we see occasional high variance.

6.3 Real-world datasets. Next, we consider 10 real-world
datasets, most of which are publicly available. Below we give
a short description for each, and an overview in Table 1.

4News is a subset of the 20Newsgroups data, containing
the usage of 800 words over 400 posts for 4 newsgroups.2

Abstracts represents the words in all abstracts of the
papers accepted at the ICDM conference up to 2007, where
the words have been stemmed and stop words removed [2].3

2The authors are grateful to Ata Kabán for pre-processing the data [18].
3Available upon request from the author [2]

DBLP conf. contains records of which of the 19 con-
ferences the 6980 authors had published in. The dataset is
collected from the DBLP database and it is pre-processed
as in [18].4 DBLP co-auth. is a (symmetric) co-authorship
matrix of a subset of the authors in the DBLP conf. data.

Dialect contains presence data of dialectical linguistic
properties in 506 Finnish municipalities [3, 4].

DNA Amp. contains information on DNA copy number
amplifications. Such copies activate oncogenes and are
hallmarks of nearly all advanced tumours [24]. Amplified
genes represent attractive targets for therapy and prognostics.

Firewall 2 describes the reachability between two IP
addresses [5].5 It has an exact Boolean decomposition of 10
factors [5], and hence should be highly compressible.

Mammals consists of presence records of European
mammals within areas of 50 by 50 kilometers [23].6

Mushroom contains edibility records of mushrooms [9].
Lastly, Paleo consists of fossil records per location.7

6.4 Quantitative evaluation of real-world results. We
start by studying the compression ratios of the real-world
data sets. By compression ratio, we mean the description

4http://www.informatik.uni-trier.de/~ley/db/
5http://www.hpl.hp.com/personal/Robert_Schreiber/
6Available for research purposes from the Societas Europaea Mammalog-

ica at http://www.european-mammals.org
7NOW 030717, http://www.helsinki.fi/science/now/ [8].

Table 1: Real-world dataset overview. L /0 is the description
length in bits with the empty model (without any factors).

Dataset Rows Columns %1s L /0

4News 400 800 3.5 70379
Abstracts 859 3933 1.2 319468
DBLP co-auth. 2345 2345 0.5 244754
DBLP conf. 6980 19 13.0 73785
Dialect 1334 506 16.1 430435
DNA Amp. 4590 392 1.5 199429
Firewall 2 325 590 19.0 134546
Mammals 2670 194 16.1 330302
Mushroom 8192 112 19.3 650373
Paleo 501 139 5.1 20223

Table 2: Compression ratio L% = 100× L/L /0 (smaller is
better) and model order k for the real-world datasets.

Nassau Panda+ Asso

Dataset L% k L% k L% k

4News 93.1 12 92.7 5 93.6 17
Abstracts 95.3 3 86.7 128 97.2 19
DBLP conf. 90.3 3 92.4 3 90.0 4
DBLP co-auth. 94.1 60 95.9 11 95.8 178
Dialect 42.0 30 57.3 17 48.8 37
DNA Amp. 43.6 100 63.4 20 49.8 58
Firewall 2 2.4 6 2.7 8 1.7 5
Mammals 54.5 29 66.8 8 64.6 17
Mushroom 72.6 4 63.6 15 50.6 59
Paleo 89.7 15 91.2 3 91.4 19

length L obtained by the algorithm divided by the description
length of the data using an empty model, i.e. when no factors
are used to represent it, L /0. The smaller this ratio is, the better
the discovered factorization compresses the data. The results
are presented in Table 2.

Out of the ten datasets in Table 2, Nassau obtains the
best compression ratio in five – and in each of these cases it
outperforms the second-best result by at least one percentage
point. Panda+ is the best for the two sparse text datasets,
4News and Abstracts, although for 4News Nassau is only 0.4
and Asso only 0.9 percentage points worse. For all practical
purposes, we would consider 4News a tie. Similarly, Asso is
better in DBLP conf., but only by 0.3 percentage points, more
clearly in Firewall 2, and by a wide margin in Mushroom.

If we consider the two cases where Nassau is sig-
nificantly worse than the best method, Abstracts (against
Panda+) and Mushroom (against Asso), we notice that in
both cases Nassau reports significantly smaller model order
than the best method (3 vs. 128 and 4 vs. 59, respectively).
It seems that in these cases the random walks were unable
to find good seed vectors. Indeed, when we re-ran Nassau

on Mushroom but generating the seeds as Asso does, we
obtained a compression ratio of 56.4 with 44 factors – a sig-
nificant improvement confirming that the random walks do
not necessarily produce good seeds for every data set.

Scalability. The implementations of these methods are
not fully comparable. Panda+ is a full-C implementation,
Asso is a mixture of C and Matlab, while Nassau is written
purely in Matlab. Also, the different methods use different
levels of parallelization, and the running time for all these
algorithms is heavily influenced by the eventual model order.
For Asso, the number of different rounding thresholds τ to
try, and for Panda+, the number of random re-starts, also
have obvious effects. That said, in our experiments, Panda
was generally the fastest, followed by Nassau and Asso, but
the order could vary from dataset to dataset. All methods
were able to finish all datasets within 24 hours, except for
Asso with DBLP co-auth., which took more than four days.

6.5 Qualitative evaluation of real-world results. We
studied the results on two datasets, DBLP co-auth. and Mam-
mals, more carefully in order to understand the types of re-
sults we can obtain from Nassau (and its competitors). As
Table 2 shows, DBLP co-auth. is not very compressible, while
Mammals is reduced to almost half of its original size.

DBLP co-auth. The DBLP co-auth. data is a graph, i.e. a
symmetric matrix, and while none of the methods tested here
assume symmetry, we would expect that a good factorization
would be (approximately) symmetric. This, however, is not
the case for Panda+ or Asso: in symmetric decompositions,
the two factor matrices would be the same, but for Asso,
1.2% of the values differ, and for Panda+, 1.6% of the values
in the factor matrices differ. For Nassau, only 0.3% of the
values are different.

Looking at the factors, we observed that in particular
Asso finds very skewed blocks that have many rows but few
columns, or vice versa, being clearly unable to capitalize on
the symmetry of the matrix. Panda+ returns more square-like
blocks, but they still have almost four times as many rows
as columns (or vice versa) on average. The blocks Nassau
returns have an average rows/columns ratio of 1.7, giving the
most square-like blocks.

We show two exemplar factors found by Nassau in the
DBLP co-auth. data. It shows the known collaborations
between the authors in a factor. Here, Nassau has identified
two (quasi-) cliques of famous data mining and machine
learning researchers with strong collaboration patterns.

Mammals. Both Panda+ and Asso perform so-called
hierarchical factorization (rank-(k−1) factorization is part
of the rank-k factorization), while Nassau is designed to
avoid that. We studied these different behaviours with the
Mammals data and using the first four left-hand-side factors
(i.e. columns of B) for each method. As the rows of the data
correspond to locations in Europe, we visualize the factors

M Sch
ubert

T Seidl

H−P Krie
gel

P Kunath

M Renz

K Kailin
g

S Brech
eise

n

P Kro
ger

A Pryakhin

C Bohm

M Schubert

T Seidl

H−P Kriegel

P Kunath

M Renz

K Kailing

S Brecheisen

P Kroger

A Pryakhin

C Bohm

H Park J Y
e

R Ja
nard

an

V Kumar

H Xiong
Q Li

H Park

J Ye

R Janardan

V Kumar

H Xiong

Q Li

C H Q Ding

Figure 2: We find intuitive quasi-cliques. Example subma-
trices of DBLP co-auth. as selected by Nassau. Black cells
indicate joint papers, grey cells stand for self-loops.

using maps in Figure 3. For Nassau the first four factors
are very compact and correspond very closely to countries in
Europe. For Panda+, the first factor covers almost the whole
area of Europe that was part of the data, and the other three
factors also cover large, not very well-defined areas. The
same holds true for Asso, although to a slightly lesser extent.
In other words, the results by Nassau in Figure 3 correspond
to species that are very specific to certain areas, while both
Panda+ and Asso selected common species.

7 Discussion
The experiments show that Nassau performs well in practice.
The evaluation on synthetic data shows it is resistant to
high amounts of destructive noise, reliably discovering
factorizations of the correct model order and of complexities
close to the ground truth. For real-world data Nassau

discovered the most succinct descriptions for five out of ten
datasets, while being a close second for three more. Manual
inspection showed that the factors Nassau finds are concise,
clean, and more interpretable than those of Asso and Panda+.
Overall, the experiments permit two conclusions: 1) Nassau
performs very well when the data exhibits large amounts of
destructive noise, and 2) our hypothesis that real-world data
contains large amounts of destructive noise is warranted.

We see two main avenues for further research. First of
all, the seed generation process of Nassau can be improved.
Preliminary experiments suggest that by adding the seeds
that Asso considers to Nassau, even better factorizations can
be discovered – alternatively, it will be interesting to see if
in addition the seed generation process of Panda+ can be
incorporated. The second line of research is optimization, of
both the process and the implementation.

8 Conclusions
We studied the problem of Boolean matrix factorization under
the assumption that in general it is more likely not to have
observed the value of a cell than to have done so – and that
the reliability of both observations differs. We formalized this

problem by the Minimum Description Length principle, and
proposed Nassau, a new algorithm that directly optimizes
the description length of the factorization. Nassau is non-
hierarchical and is capable of fixing errors it has previously
made. Empirical evaluation on synthetic data shows that
Nassau is very robust to high levels of destructive noise.
Experiments on real-world data show it finds more compact
and intuitive factors than the state of the art, which are more
inclined to ‘simply’ cover large parts of the data.

Acknowledgements
S. Karaev is funded by the International Max Planck Re-
search School for Computer Science and by the Saarbrücken
Graduate School of Computer Science.

J. Vreeken is supported by the Cluster of Excellence
“Multimodal Computing and Interaction” within the Excel-
lence Initiative of the German Federal Government.

References

[1] E. Cergani and P. Miettinen. Discovering relations using
matrix factorization methods. In CIKM, pages 1549–1552,
2013.

[2] T. De Bie. Maximum entropy models and subjective interest-
ingness: An application to tiles in binary databases. Data Min.
Knowl. Disc., 23(3):407–446, 2011.

[3] S. M. Embleton and E. S. Wheeler. Finnish dialect atlas for
quantitative studies. J. Quant. Ling, 4(1–3):99–102, 1997.

[4] S. M. Embleton and E. S. Wheeler. Computerized dialect
atlas of Finnish: Dealing with ambiguity. J. Quant. Ling,
7(3):227–231, 2000.

[5] A. Ene, W. Horne, N. Milosavljevic, P. Rao, R. Schreiber,
and R. E. Tarjan. Fast exact and heuristic methods for role
minimization problems. In SACMAT, pages 1–10, 2008.

[6] C. Faloutsos and V. Megalooikonomou. On data mining,
compression and Kolmogorov complexity. Data Min. Knowl.
Disc., 15(1):3–20, 2007.

[7] U. Fayyad and K. Irani. Multi-interval discretization of
continuous-valued attributes for classification learning. In
UAI, pages 1022–1027, 1993.

[8] M. Fortelius et al. Neogene of the old world database of
fossil mammals (NOW), 2003. http://www.helsinki.fi/
science/now/.

[9] A. Frank and A. Asuncion. UCI machine learning repository.
http://archive.ics.uci.edu/ml, 2010.

[10] F. Geerts, B. Goethals, and T. Mielikäinen. Tiling databases.
In DS, pages 278–289, 2004.

[11] P. Grünwald. The Minimum Description Length Principle.
MIT Press, 2007.

[12] K.-N. Kontonasios and T. De Bie. An information-theoretic
approach to finding noisy tiles in binary databases. In SDM,
pages 153–164. SIAM, 2010.

[13] H. Lu, J. Vaidya, and V. Atluri. Optimal Boolean matrix
decomposition: Application to role engineering. In ICDE,
pages 297–306, 2008.

N
a
s
s
a
u

P
a
n
d
a
+

A
s
s
o

Figure 3: We discover compact descriptions The first four factors discovered on the Mammals data using, from top to
bottom, Nassau, Panda+, and Asso.

[14] H. Lu, J. Vaidya, V. Atluri, and Y. Hong. Constraint-aware role
mining via extended Boolean matrix decomposition. IEEE
Trans. Depend. Secure, 9(5):655–669, 2012.

[15] C. Lucchese, S. Orlando, and R. Perego. Mining top-k patterns
from binary datasets in presence of noise. In SDM, page
165–176, 2010.

[16] C. Lucchese, S. Orlando, and R. Perego. A unifying frame-
work for mining approximate top-k binary patterns. IEEE
Trans. Knowl. Data En., 26(12):2900–2913, 2014.

[17] M. Mampaey and J. Vreeken. Summarising categorical data by
clustering attributes. Data Min. Knowl. Disc., 26(1):130–173,
2013.

[18] P. Miettinen. Matrix Decomposition Methods for Data Mining:
Computational Complexity and Algorithms. PhD thesis,
University of Helsinki, 2009.

[19] P. Miettinen. Sparse Boolean matrix factorizations. In ICDM,
pages 935–940, 2010.

[20] P. Miettinen, T. Mielikäinen, A. Gionis, G. Das, and H. Man-
nila. The discrete basis problem. IEEE Trans. Knowl. Data
En., 20(10):1348–1362, Oct. 2008.

[21] P. Miettinen and J. Vreeken. Model order selection for
Boolean matrix factorization. In KDD, page 51–59, 2011.

[22] P. Miettinen and J. Vreeken. MDL4BMF: Minimum description
length for Boolean matrix factorization. ACM Trans. Knowl.
Discov. Data, 8(4):A18:1–31, 2014.

[23] A. Mitchell-Jones, G. Amori, W. Bogdanowicz, B. Krystufek,
P. H. Reijnders, F. Spitzenberger, M. Stubbe, J. Thissen,

V. Vohralik, and J. Zima. The Atlas of European Mammals.
Academic Press, 1999.

[24] S. Myllykangas, J. Himberg, T. Böhling, B. Nagy, J. Hollmén,
and S. Knuutila. DNA copy number amplification profiling of
human neoplasms. Oncogene, 25(55):7324–7332, 2006.

[25] J. Quinlan. C4.5: Programs for Machine Learning. Morgan-
Kaufmann, Los Altos, California, 1993.

[26] J. Rissanen. Modeling by shortest data description. Automat-
ica, 14(1):465–471, 1978.

[27] D. Shahaf and C. Guestrin. Connecting two (or less) dots:
discovering structure in news articles. ACM Trans. Knowl.
Discov. Data, 5(4):A24:1–31, 2012.

[28] K. Smets and J. Vreeken. The odd one out: Identifying and
characterising anomalies. In SDM, pages 804–815, 2011.

[29] N. Tatti and J. Vreeken. Discovering descriptive tile trees by
fast mining of optimal geometric subtiles. In ECML PKDD.
Springer, 2012.

[30] U.S. Department of Defense. DoD News Briefing —
Secretary Rumsfeld and Gen. Myers, 12 Feb 2002.
http://www.defense.gov/transcripts/transcript.

aspx?transcriptid=2636 Accessed 2 Oct 2014.
[31] J. Wicker, B. Pfahringer, and S. Kramer. Multi-label classifi-

cation using Boolean matrix decomposition. In SAC, pages
179–186, 2012.

[32] Y. Xiang, R. Jin, D. Fuhry, and F. Dragan. Summarizing
transactional databases with overlapped hyperrectangles. Data
Min. Knowl. Disc., 23:215–251, 2011.

