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Abstract: How can we succinctly describe a million-node graph with a few simple sentences? Given a large graph, how
can we find its most “important” structures, so that we can summarize it and easily visualize it? How can we measure the
“importance” of a set of discovered subgraphs in a large graph? Starting with the observation that real graphs often consist of
stars, bipartite cores, cliques, and chains, our main idea is to find the most succinct description of a graph in these “vocabulary”
terms. To this end, we first mine candidate subgraphs using one or more graph partitioning algorithms. Next, we identify
the optimal summarization using the minimum description length (MDL) principle, picking only those subgraphs from the
candidates that together yield the best lossless compression of the graph—or, equivalently, that most succinctly describe its
adjacency matrix.

Our contributions are threefold: (i) formulation: we provide a principled encoding scheme to identify the vocabulary type of
a given subgraph for six structure types prevalent in real-world graphs, (ii) algorithm: we develop VoG, an efficient method to
approximate the MDL-optimal summary of a given graph in terms of local graph structures, and (iii) applicability: we report
an extensive empirical evaluation on multimillion-edge real graphs, including Flickr and the Notre Dame web graph. © 2015
Wiley Periodicals, Inc. Statistical Analysis and Data Mining: The ASA Data Science Journal, 2015
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1. INTRODUCTION

Given a large graph, such as the Facebook social
network, what can we say about its structure? As most real
graphs, the edge distribution will likely follow a power
law [1], but apart from that, is it random? If not, how can
we efficiently and in simple terms summarize which parts
of the graph stand out, and how? The focus of this paper is
exactly finding short summaries for large graphs, in order
to gain a better understanding of their characteristics.

Why not apply one of the many community detection,
clustering, or graph-cut algorithms that abound in the
literature [2–6], and summarize the graph in terms of
its communities? The answer is that these algorithms do
not quite serve our goal. Typically they detect numerous
communities without explicit ordering, so a principled
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selection procedure of the most “important” subgraphs is
still needed. In addition to that, these methods merely return
the discovered communities, without characterizing them
(e.g., clique, star), and, thus, do not help the user gain
further insights in the properties of the graph.

In this paper, we propose VoG, an efficient and effective
method to summarize and understand large real-world
graphs. In particular, we aim at understanding graphs
beyond the so-called “cavemen” networks that only consist
of well-defined, tightly-knit clusters, which are known as
cliques and near-cliques in graph terms.

The first insight is to best describe the structures in
a graph using an enriched set of “vocabulary” terms:
cliques and near-cliques (which are typically considered
by community detection methods), and also stars, chains,
and (near) bipartite cores. The reasons we chose these
“vocabulary” terms are: (i) (near-) cliques are included, and
so our method works fine on “cavemen” graphs and (ii) stars
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[8], chains [9], and bipartite cores [4,10] appear very often,
and have semantic meaning (e.g., factions, bots) in the tens
of real networks we have seen in practice (e.g., IMDB
movie-actor graph, co-authorship networks, netflix movie
recommendations, US Patent dataset, phonecall networks).

The second insight is to formalize our goal using the
minimum description length (MDL) principle [11] as a
lossless compression problem. That is, by MDL we define
the best summary of a graph as the set of subgraphs that
describes the graph most succinctly, i.e., compresses it best,
and, thus, helps a human to understand the main graph
characteristics in a simple, nonredundant manner. A big
advantage is that our approach is parameter-free, as at any
stage MDL identifies the best choice: the one by which we
save most bits.

Informally, we tackle the following problem:

Problem 1 (Graph Summarization—Informal)

• Given: a graph

• Find: a set of possibly overlapping subgraphs

• to most succinctly describe the given graph, i.e.,
explain as many of its edges in as simple possible
terms,

• in a scalable way, ideally linear on the number of
edges.

and our contributions can be summarized as:

1. Problem formulation: We show how to formalize
the intuitive concept of graph understanding using
principled, information theoretic arguments.

2. Effective and scalable algorithm: We design VoG
which is near-linear on the number of edges.

3. Experiments on real graphs: We empirically eval-
uate VoG on several real, public graphs spanning
up to millions of edges. VoG spots interesting
patterns like “edit wars” in the Wikipedia graphs
(Fig. 1).

This paper builds upon and expands on ref. [12]. There
are several differences from its earlier version: (i) We
provide more details about the problem formulation and
our algorithm, analyzing its time complexity, and giving
illustrative examples and figures (Sections 3 and 4); (ii)
We provide detailed analysis of the mined summaries
and findings on real graphs (Section 5); (iii) We extended
our discussion section to explain more questions that the
reader may have (Section 6), and also included qualitative

comparisons between our method and state-of-the-art
techniques in the related work (Section 7).

The roadmap for this paper is as follows. Section 2 gives
the overview and motivation of our approach. In Sections 3
and 4, we respectively present the problem formulation and
describe our method in detail. We empirically evaluate VoG
in Section 5 using qualitative and quantitative experiments
on a variety of real graphs. We discuss its implications and
limitations in Section 6 and cover related work in Section 7.
In Section 8, we round up with conclusions.

2. PROPOSED METHOD: OVERVIEW
AND MOTIVATION

Before we give our two main contributions in the next
sections, the problem formulation and the search algorithm,
we first provide the high-level outline of VoG, which stands
for Vocabulary-based summarization of Graphs:

• We use MDL to formulate a quality function:
a collection M of structures (e.g., a star here,
cliques there, etc.) is as good as its description
length L(G,M). Hence, any subgraph or set of
subgraphs has a quality score.

• We give an efficient algorithm for characterizing
candidate subgraphs. In fact, we allow any
subgraph discovery heuristic to be used for this,
as we define our framework in general terms and
use MDL to identify the structure type of the
candidates.

• Given a candidate set C of promising subgraphs,
we show how to mine informative summaries,
removing redundancy by minimizing the com-
pression cost.

VoG results in a list M of, possibly overlapping subgraphs,
sorted in importance order (compression gain). Together
these succinctly describe the main connectivity of the graph.

The motivation behind VoG is that people cannot
easily understand large graphs that appear as a clutter of
nodes and edges when visualized. On the other hand, a
handful of simple structures are easily understood, and
often meaningful. Next we give an illustrating example of
VoG, where the most “important” vocabulary subgraphs
that constitute a Wikipedia article’s (graph) summary are
semantically interesting.

Illustrating example: In Fig. 1 we give the results
of VoG on the Wikipedia Controversy graph; the
nodes are editors, and editors share an edge if they
edited the same part of the article. Figure 1(a) shows
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(a) (b) (c) (d)

Fig. 1 [Best viewed in color.] VoG: summarization and understanding of the most informative, from an information theoretic point of
view, structures of the Wikipedia Controversy graph. Nodes stand for Wikipedia contributors and edges link users who edited the
same part of the article. Without VoG, in fig. 1(a), no clear structures stand out. VoG spots stars in fig. 1(b) (Wikipedia editors and other
heavy contributors), and bipartite graphs in figs. 1(c) and (d) (reflecting “edit wars”, i.e., editors reverting others’ edits). Specifically,
fig. 1(c) shows the dispute between the two parties about a controversial topic and fig. 1(d) shows vandals (red circles) vs responsible
Wikipedia editors. (a) Original Wikipedia Controversy graph—plotted using the “spring embedded” layout [7]. No structure stands
out. (b) VoG: eight out of the ten most informative structures are stars (their centers in red—Wikipedia editors, heavy contributors
etc.). (c) VoG: The most informative bipartite graph—“edit war”—warring factions (one of them, in the top-left red circle), changing
each-other’s edits. (d) VoG: the second most informative bipartite graph, another ‘edit war’, this one between vandals (bottom left circle
of red points) vs. responsible editors (in white).

the graph using the spring-embedded model [7]. No clear
pattern emerges, and thus a human would have hard time
understanding this graph. Contrast that with the results of
VoG. Figures 1(b)–1(d) depict the same graph, where we
highlight the most important structures (i.e., structures that
save the most bits) discovered by VoG. The discovered
structures correspond to behavioral patterns:

• Stars → admins (+ vandals): in Fig. 1(b), with
red color, we show the centers of the most
important “stars”: further inspection shows that
these centers typically correspond to administra-
tors who revert vandalisms and make corrections.

• Bipartite cores → edit wars: Fig. 1(c) and (d)
give the two most important near-bipartite-cores.
Manual inspection shows that these correspond
to edit wars: two groups of editors reverting
each others’ changes. For clarity, we denote the
members of one group by red nodes (left), and hi-
light the edges to the other group in pale yellow.

3. PROBLEM FORMULATION

In this section we describe the first contribution, the MDL
formulation of graph summarization. To enhance readabil-
ity, we list the most frequently used symbols in Table 1.

In general, the MDL principle [13], is a practical version
of Kolmogorov Complexity [14], which embraces the
slogan Induction by Compression. For MDL, this can be
roughly described as follows. Given a set of models M,

the best model M ∈ M minimizes

L(M) + L(D | M) ,

where

• L(M) is the length in bits of the description of
M , and

• L(D | M) is the length, in bits, of the description
of the data when encoded using the information
in M .

This is called two-part or crude MDL, as opposed
to refined MDL, where model and data are encoded
together [15]. We use two-part MDL because we are specif-
ically interested in the model: those graph connectivity
structures that together best describe the graph. Further,
although refined MDL has stronger theoretical foundations,
it cannot be computed except for some special cases.

Without loss of generality, we here consider undirected
graphs G(V, E) of n = |V| nodes, and m = |E | edges,
with no self-loops. Our theory can be straightforwardly
generalized to directed graphs—and similarly so for
weighted graphs, has an expectation or is willing to make
an assumption on the distribution of the edge weights.

To use MDL for graph summarization, we need to define
what our models M are, how a model M ∈ M describes
data, and how we encode this in bits. We do this next. It
is important to note that to ensure fair comparison, MDL
requires descriptions to be lossless, and, that in MDL we are
only concerned with the optimal description lengths —not
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Table 1. Description of major symbols.

Notation Description

G(V, E) graph
A adjacency matrix of G
V , n = |V| node-set and number of nodes of G respectively
E , m = |E | edge-set and number of edges of G respectively
fc, nc full clique and near clique respectively
fb, nb full bipartite core and near bipartite core respectively
st star graph
ch chain graph
� vocabulary of structure types, e.g., � ⊆ {fc, nc, fr, nr, fb, nb, ch, st}
Cx set of all candidates structures of type x ∈ �
C set of all candidate structures, C = ∪xCx

M a model for G, essentially a list of node sets with associated structure types
s, t ∈ M structures in M
area(s) edges of G (= cells of A) described by s
|S|, |s| cardinality of set S and number of nodes in s respectively
||s||, ||s||′ number of existing, resp. non-existing edges within the area of A that s describes
M approximation of adjacency matrix A deduced by M
E error matrix, E = M ⊕ A
⊕ exclusive OR
L(G, M) number of bits to describe model M , and G using M
L(M) number of bits to describe model M
L(s) number of bits to describe structure s

actual instantiated code words—and hence do not have to
round up to the nearest integer.

3.1. MDL for Graph Summarization

As models M , we consider ordered lists of graph
structures. We write � for the set of graph structure types
that are allowed in M , i.e., that we are allowed to describe
(parts of) the input graph with. We will colloquially refer
to � as our vocabulary. Although in principle any graph
structure type can be a part of the vocabulary, we here
choose the six most common structures in real-world graphs
[4,9,10] that are well-known and understood by the graph
mining community: full and near cliques (fc, nc), full and
near bi-partite cores (fb, nb), stars (st), and chains (ch).
Compactly, we have � = {fc, nc, fb, nb, ch, st}. We will
formally introduce these types after formalizing our goal.

Each structure s ∈ M identifies a patch of the adjacency
matrix A and describes how it is connected (Fig. 2). We
refer to this patch, or more formally the edges (i, j) ∈ A
that structure s describes, as area(s,M, A), where we omit
M and A whenever clear from context.

We allow overlap between structures: nodes may be part
of more than one structure. We allow, for example, cliques
to overlap. Edges, however, are described on a first-come-
first-serve basis: the first structure s ∈ M to describe an
edge (i, j) determines the value in A. We do not impose
constraints on the amount of overlap; MDL will decide for
us whether adding a structure to the model is too costly
w.r.t. the number of edges it helps to explain.

near-clique B

clique A

star C

chain D

Fig. 2 Illustration of our main idea on a toy adjacency matrix:
VoG identifies overlapping sets of nodes, that form vocabulary
subgraphs (cliques, stars, chains, etc). With overlap, VoG allows
for soft clustering of nodes, as in clique A and near-clique B.
Stars look like inverted L shapes (e.g., star C). Chains look like
lines parallel to the main diagonal (e.g., chain D).

Let Cx be the set of all possible subgraphs of up to n

nodes of type x ∈ �, and C the union of all of those sets,
C = ∪xCx . For example, Cfc is the set of all possible full
cliques. Our model family M then consists of all possible
permutations of all possible subsets of C—recall that the
models M are ordered lists of graph structures. By MDL,
we are after the M ∈ M that best balances the complexity
of encoding both A and M .

Our general approach for transmitting the adjacency
matrix is as follows. First, we transmit the model M .
Then, given M , we can build the approximation M of the
adjacency matrix, as defined by the structures in M; we
simply iteratively consider each structure s ∈ M , and fill
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out the connectivity of area(s) in M accordingly. As M

is a summary, it is unlikely that M = A. Still, in order to
fairly compare between models, MDL requires an encoding
to be lossless. Hence, besides M , we also need to transmit
the error matrix E, which encodes the error w.r.t. A. We
obtain E by taking the exclusive OR between M and A,
i.e., E = M ⊕ A. Once the recipient knows M and E, the
full adjacency matrix A can be reconstructed without loss.

With this in mind, we have as our main score

L(G,M) = L(M) + L(E),

where L(M) and L(E) are the numbers of bits that describe
the structures, and the error matrix E respectively. We note
that L(E) maps to L(D | M), introduced in Section 3. That
is, it corresponds to the length, in bits, of the description
of the data when encoded using the information in M . The
formal definition of the problem we tackle in this paper is
defined as follows.

Problem 2 (Minimum Graph Description Problem)
Given a graph G with adjacency matrix A, and the graph
structure vocabulary �, by the MDL principle we are after
the smallest model M for which the total encoded length

L(G,M) = L(M) + L(E)

is minimal, where E = M ⊕ A is the error matrix, and M is
an approximation of A deduced by M .

Next, we formalize the encoding of the model and the
error matrix.

3.2. Encoding the Model

For the encoded length of a model M ∈ M, we have

L(M) = LN(|M| + 1) + log

(|M| + |�| − 1

|�| − 1

)
︸ ︷︷ ︸

# of structures, in total, and per type

+
∑
s∈M

( − log Pr(x(s) | M) + L(s)
)

︸ ︷︷ ︸
per structure, in order, type and details

.

First, we transmit the total number of structures in M using
LN, the MDL optimal encoding for integers ≥ 1 [13]. Next,
by an index over a weak number composition, we optimally
encode the number of structures of each type x ∈ � in
model M . Then, for each structure s ∈ M , we encode its
type x(s) with an optimal prefix code [16], and finally its
structure.

To compute the encoded length of a model, we need to
define L(s) per graph structure type in our vocabulary.

3.2.1. Cliques

To encode a full clique, a set of fully connected nodes
as a full clique, we first encode the number of nodes, and
then their ids

L(fc) = LN(|f c|)
︸ ︷︷ ︸
# of nodes

+ log

(
n

|fc|
)

︸ ︷︷ ︸
node ids

.

For the number of nodes we re-use LN, and we encode their
ids by an index over an ordered enumeration of all possible
ways to select |fc| nodes out of n. As M generalizes the
graph, we do not require that fc is a full clique in G. If
only few edges are missing, it may still be convenient to
describe it as such. Every missing edge, however, adds to
the cost of transmitting E.

As long as they stand out from the background
distribution, less dense or near-cliques can be as interesting
as full-cliques. We encode these as follows

L(nc) = LN(|nc|)
︸ ︷︷ ︸
# of nodes

+ log

(
n

|nc|
)

︸ ︷︷ ︸
node ids

+ log(|area(nc)|)
︸ ︷︷ ︸

# of edges

+ ||nc||l1 + ||nc||′l0︸ ︷︷ ︸
edges

.

We first transmit the number and ids of nodes as above,
and then identify which edges are present and which are
not using optimal prefix codes. We write ||nc|| and ||nc||′
for resp. the number of present and missing edges in
area(nc). Then, l1 = − log((||nc||/(||nc|| + ||nc||′)), and
analogue for l0, are the lengths of the optimal prefix codes
for resp. present and missing edges. The intuition is that the
more dense (sparse) a near-clique is, the cheaper encoding
its edges will be. Note that this encoding is exact; no edges
are added to E.

3.2.2. Bipartite cores

Bipartite cores are defined as nonempty, nonintersecting
sets of nodes, A and B, for which there are edges only
between the sets A and B, and not within.

The encoded length of a full bipartite core fb is

L(fb) = LN(|A|) + LN(|B|)
︸ ︷︷ ︸

cardinality of A resp. B

+ log

(
n

|A|, |B|
)

︸ ︷︷ ︸
node ids in A and B

,

where we encode the size of A, B, and then the node ids.
Analogue to cliques, we also consider near bi-partite

cores, nb, where the core is not (necessarily) fully
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connected. To encode a near bi-partite core we have

L(nb) = LN(|A|) + LN(|B|)
︸ ︷︷ ︸

cardinality of A resp. B

+ log

(
n

|A|, |B|
)

︸ ︷︷ ︸
node ids in A and B

+ log(|area(nb)|)
︸ ︷︷ ︸

number of edges

+ ||nb||l1 + ||nb||′l0︸ ︷︷ ︸
edges

.

3.2.3. Stars

A star is specific case of the bipartite core that consists
of a single node (hub) in A connected to a set B of at least
2 nodes (spokes). For L(st) of a given star st we have

L(st) = LN(|st | − 1)

︸ ︷︷ ︸
number of spokes

+ log n

︸︷︷︸
id of hub node

+ log

(
n − 1

|st | − 1

)
︸ ︷︷ ︸
ids of spoke nodes

,

where |st | − 1 is the number of spokes of the star. To
identify the member nodes, we first identify the hub out
of n nodes, and then the spokes from the remaining nodes.

3.2.4. Chains

A chain is a list of nodes such that every node has an edge
to the next node, i.e., under the right permutation of nodes,
A has only the super-diagonal elements (directly above the
diagonal) nonzero. As such, for the encoded length L(ch)

for a chain ch we have

L(ch) = LN(|ch| − 1)

︸ ︷︷ ︸
# of nodes in chain

+
|ch|∑
i=0

log(n − i)

︸ ︷︷ ︸
node ids, in order of chain

,

where we first encode the number of nodes in the chain,
and then their ids in order. Note that

∑|ch|
i=0 log(n − i) ≤

|ch| log n, and hence by MDL is the better (i.e., as it is
more efficient) way of the two to encode the member nodes
of a chain.

3.3. Encoding the Error

Next, we discuss how we encode the errors made by M
with regard to A, store this information in the error matrix
E. There exist many different approaches for encoding the
errors—among which appealing at first glance is to simply
identify all node pairs. However, it is important to realize
that the more efficient our encoding is, the less spurious
“structure” will be discovered.

We hence follow [17] and encode E in two parts, E+
and E−. The former corresponds to the area of A that M

does model, and for which M includes superfluous edges.
Analogue, E− consists of the area of A not modeled by
M , for which M lacks edges. We encode these separately
as they are likely to have different error distributions. Note
that as we know near cliques and near bipartite cores are
encoded exactly, we ignore these areas in E+. We encode
the edges in E+ and E− similarly to how we encode near-
cliques, and have

L(E+) = log(|E+|) + ||E+||l1 + ||E+||′l0
L(E−) = log(|E−|)︸ ︷︷ ︸

# of edges

+ ||E−||l1 + ||E−||′l0︸ ︷︷ ︸
edges

.

That is, we first encode the number of 1s in E+ (respec-
tively E−), after which we transmit the 1s and 0s using
optimal prefix codes of length l1 and l0. We choose to use
prefix codes over a binomial for practical reasons, as prefix
codes allow us to easily and efficiently calculate accurate
local gain estimates in our algorithm, without sacrificing
much encoding efficiency (typically < 1 bit in practice).

Size of the Search Space. Clearly, for a graph of n nodes,
the search space M we have to consider for solving
the Minimum Graph Description Problem is enormous,
as it consists of all possible permutations of the collec-
tion C of all possible structures over the vocabulary �.
Unfortunately, it does not exhibit trivial structure, such as
(weak) (anti)monotonicity, that we could exploit for effi-
cient search. Further, Miettinen and Vreeken [18] showed
that for a directed graph finding the MDL optimal model of
only full-cliques is NP-hard. Hence, we resort to heuristics.

4. VOG: SUMMARIZATION ALGORITHM

Now that we have the arsenal of graph encoding based
on the vocabulary of structure types, �, we move on to the
next two key ingredients: finding good candidate structures,
i.e., instantiating C, and then mining informative graph
summaries, i.e., finding the best model M . An illustration of
the algorithm is given in Fig. 3. The pseudocode of VoG is
given in Algorithm 1, and the code is available for research
purposes at www.cs.cmu.edu/∼dkoutra/SRC/VoG.tar.

4.1. Step 1: Subgraph Generation

Any combination of clustering and community detec-
tion algorithms can be used to decompose the graph into
subgraphs, which need not be disjoint. These techniques
include, but are not limited to Cross-asssociations [2], Sub-
due [6], SlashBurn [8], Eigenspokes [4], and METIS [5].

Statistical Analysis and Data Mining: The ASA Data Science Journal DOI:10.1002/sam
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Fig. 3 Illustration of VoG step-by-step.

4.2. Step 2: Subgraph Labeling

Given a subgraph from the set of clusters or communities
discovered in the previous step, we search for the structure
x ∈ � that best characterizes it, with no or some errors
(e.g., perfect clique, or clique with some missing edges,
encoded as error).

4.2.1. Step 2.1: Labeling perfect structures

First, the subgraph is tested against the vocabulary
structure types (full clique, full bipartite core, star, and

chain) for error-free match. The test for clique or chain
is based on its degree distribution. Specifically, if all the
nodes in the subgraph of size n have degree n − 1, then it
is a clique. Similarly, if all the nodes have degree 2 except
for two nodes with degree 1, the subgraph is a chain. On
the other hand, a subgraph is bipartite if the magnitudes of
its maximum and minimum eigenvalues are equal. To find
the node ids in the two node sets, A and B, we use Breadth
First Search (BFS) with node coloring. We note that a star
is a special case of a bipartite graph, where one set consists
of only one node. If one of the node sets has size 1, then
the given substructure is encoded as star.

Statistical Analysis and Data Mining: The ASA Data Science Journal DOI:10.1002/sam
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4.2.2. Step 2.2: Labeling approximate structures

If the subgraph does not have a “perfect” structure (i.e.,
it is not a full clique, full bipartite core, star, or chain),
the search continues for the vocabulary structure type that,
in MDL terms, best approximates the subgraph. To this
end, we encode the subgraph as each of the 6 candidate
vocabulary structures, and choose the structure that has the
lowest encoding cost.

Let m∗ be the graph model with only one subgraph
encoded as structure ∈ � (e.g., clique) and the additional
edges included in the error matrix. For reasons of efficiency,
instead of calculating the full cost L(G,m∗) as the encoding
cost of each subgraph representation, we estimate the local
encoding cost L(m∗) + L(E+

m∗) + L(E−
m∗), where E+

m∗ and
E−

m∗ encode the incorrectly modeled, and unmodeled edges
respectively (Section 3). The challenge of the step is to
efficiently identify the role of each node in the subgraph
(e.g., hub/spoke in a star, member of set A or B in a
near-bipartite core, order of nodes in chain) for the MDL
representation. We elaborate on each structure next.

• Clique: This representation is straightforward, as
all the nodes have the same structural role. All
the nodes are members of the clique or the near-
clique. For the full clique, the missing edges
are stored in a local error matrix, Efc , in order
to obtain an estimate of the global encoding
cost L(fc) + L(E+

fc) + L(E−
fc). For near-cliques

we ignore Enc , and, so, the encoding cost is L(nc).

• Star: Representing a given subgraph as a near-
star is straightforward as well. We find the highest
degree node (in case of a tie, we choose one
randomly), and set it to be the hub of the star,
and identify the rest nodes as the peripheral
nodes—which are also referred to as spokes. The
additional or missing edges are stored in the local
Error matrix, Est. The MDL cost of this encoding
is computed as L(st) + L(E+

st ) + L(E−
st ).

• Bipartite core: In this case, the problem of
identifying the role of each node reduces to
finding the maximum bipartite graph, which is
known as max-cut problem, and is NP-hard. The
need of a scalable graph summarization algorithm
makes us resort to approximation algorithms. In
particular, finding the maximum bipartite graph
can be reduced to semisupervised classification.
We consider two classes which correspond to
the two node sets, A and B, of the bipartite
graph, and the prior knowledge is that the highest-
degree node belongs to A, and its neighbors to
B. To propagate these classes/labels, we employ

Fast Belief Propagation (FaBP) [19] assuming
heterophily (i.e., connected nodes belong to
different classes). For near-bipartite cores L(E+

nb)

is omitted.

• Chain: Representing the subgraph as a chain
reduces to finding the longest path in it, which is
also NP-hard. We therefore, employ the following
heuristic. Initially, we pick a node of the subgraph
at random, and find its furthest node using BFS
(temporary start). Starting from the latter and by
using BFS again, we find the subsequent furthest
node (temporary end). We then extend the chain
by local search. Specifically, we consider the
subgraph from which all the nodes that already
belong to the chain, except for its endpoints, are
removed. Then, starting from the endpoints we
employ again BFS. If new nodes are found during
this step, they are added in the chain (rendering
it a near-chain with few loops). The nodes of the
subgraph that are not members of this chain are
encoded as error in Ech .

After representing the subgraph as each of the vocabulary
structures x, we employ MDL to choose the representation
with the minimum (local) encoding cost, and add the
structure to the candidate set, C. Finally, we associate the
candidate structure with its encoding benefit: the savings
in bits for encoding the subgraph by the minimum-cost
structure type, instead of leaving its edges unmodeled and
including them in the error matrix.

4.3. Step 3: Summary Assembly

Given a set of candidate structures, C, how can we
efficiently induce the model M that is the best graph
summary? The exact selection algorithm, which considers
all the possible ordered combinations of the candidate
structures and chooses the one that minimizes the cost,
is combinatorial, and cannot be applied to any nontrivial
candidate set. Thus, we need heuristics that will give a
fast, approximate solution to the description problem. To
reduce the search space of all possible permutations, we
attach to each candidate structure a quality measure, and
consider them in order of decreasing quality. The measure
that we use is the encoding benefit of the subgraph, which,
as mentioned before, is the number of bits that are gained
by encoding the subgraph as structure x instead of noise.
Our constituent heuristics are:

• Plain: The baseline approach gives as graph
summary all the candidate structures, i.e., M = C.
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• Top-k: Selects the top-k candidate structures as
sorted according to decreasing quality.

• Greedy’nForget: Considers each structure in
C sequentially, sorted by descending quality,
and iteratively includes each in M: as long as
the total encoded cost of the graph does not
increase, keeps the structure in M , otherwise it
removes it. Greedy’nForget continues this pro-
cess until all the structures in C have been con-
sidered. This heuristic is more computationally
demanding than the plain or top-k heuristics, but
still handles large sets of candidates structures
efficiently.

VoG employs all the heuristics and by MDL picks
the overall best graph summarization, or equivalently, the
summarization with the minimum description cost.

4.4. Toy Example

To illustrate how VoG works, we give an example on
a toy graph. We apply VoG on the synthetic Cavemen
graph of 841 nodes and 7 547 edges, which as shown in
Fig. 4 consists of two cliques separated by two stars. The
leftmost and rightmost cliques consist of 42, and 110 nodes
respectively; the big star (second structure) has 800 nodes,
and the small star (third structure) 91 nodes. Here is how
VoG works step-by-step:

Step 1: The raw output of the decomposition
algorithm consists of the subgraphs corresponding
to the stars, the full left-hand and right-hand
cliques, as well as subsets of these nodes.

Step 2: Through MDL, VoG correctly identifies
the type of these structures.

Step 3: Finally, via Greedy’nForget it auto-
matically finds the true four structures without
redundancy, and drops the structures that consist
of subsets of nodes.

Fig. 4 Toy graph: VoG saves 36% in space, by successfully
discovering the two cliques and two stars that we chained together.

The corresponding model requires 36% fewer bits than
the “empty” model, where the graph edges are encoded as
noise. We note that one bit gain already corresponds to
twice the likelihood.

4.5. Time Complexity of VoG

For a graph G(V, E) of n = |V| nodes and m = |E |
edges, the time complexity of VoG depends on the runtime
complexity of the algorithms that compose it, namely
the decomposition algorithm, the subgraph labeling, the
encoding scheme L(G,M) of the model, and the structure
selection (summary assembly).

For the decomposition of the graph, we use SlashBurn
which is near-linear on the number of edges of real graphs
[8]. The subgraph labeling algorithms in Section 4 are
carefully designed to be linear on the number of edges of
the input subgraph.

When there is no overlap between the structures in M , the
complexity of calculating the encoding scheme L(G,M) is
O(m). When there is overlap, the complexity is bigger:
assume that s, t are two structures ∈ M with overlap, and
t has higher quality than s, i.e., t comes before s in
the ordered list of structures. Finding how much “new”
structure (or area in A) s explains relative to t costs
O(|M|2). Thus, in the case of overlapping subgraphs, the
complexity of computing the encoding scheme is O(|M|2 +
m). As typically |M| � m, in practice we have O(m).

As far as the selection method is concerned, the Top-
k heuristic that we propose has complexity O(k). The
Greedy’nForget heuristic has runtime O(|C| × o × m),
where |C| is the number of structures identified by VoG,
and o the time complexity of L(G,M).

5. EXPERIMENTS

In this section, we aim to answer the following questions:
Q1. Are the real graphs structured, or random and noisy?
Q2. What structures do the graph summaries consist of, and
how can they be used for understanding?
Q3. Is VoG scalable and able to efficiently summarize
large graphs?

The graphs we use in the experiments along with their
descriptions are summarized in Table 2. Controversy is
a coeditor graph on a known Wikipedia controversial topic
(name withheld for obvious reasons), where the nodes are
users and edges mean that they edited the same sentence.
Chocolate is a coeditor graph on the “Chocolate” article.
The descriptions of the other datasets are given in Table 2.

Graph decomposition. In our experiments, we modify
SlashBurn [8], a node reordering algorithm, to generate
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Table 2. Summary of graphs used.

Name Nodes Edges Description

Flickr [20] 404 733 2 110 078 Friendship social
network

WWW-Barabasi
[21]

325 729 1 090 108 WWW in nd.edu

Epinions [21] 75 888 405 740 Trust graph
Enron [22] 80 163 288 364 Enron email
AS-Oregon [23] 13 579 37 448 Router connections
Wikipedia-
Controversy

1 005 2 123 Co-edit graph

Wikipedia-
Chocolate

2 899 5 467 Co-edit graph

candidate subgraphs. The reasons we use SlashBurn are
(i) it is scalable and (ii) it is designed to handle graphs
without “cavemen” structure. We note that VoG would only
benefit from using the outputs of additional decomposition
algorithms.

SlashBurn is an algorithm that reorders the nodes so
that the resulting adjacency matrix has clusters or patches of

nonzero elements. The idea is that removing the top high-
degree nodes in real world graphs results in the generation
of many small-sized disconnected components (subgraphs),
and one giant connected component whose size is signifi-
cantly smaller compared to the original graph. Specifically,
it performs two steps iteratively: (i) It removes top high
degree nodes from the original graph; (ii) It reorders the
nodes so that the high-degree nodes go to the front, dis-
connected components to back, and the giant connected
component (GCC) to the middle. During the next iterations,
these steps are performed on the giant connected compo-
nent. A good node-reordering method will reveal patterns,
as well as large empty areas as shown in Fig. 5 on the
Wikipedia Chocolate network.

In this paper, SlashBurn is modified to decompose
the input graph. In more details, we focus on the first
step of the algorithm, which removes the high degree
node by “burning” its edges. This step is depicted for a
toy graph in Fig. 6(b), where the green dotted line shows
which edges were “burnt.” Then, the hub with its egonet,
which consists of the hub’s one hop away neighbors and

Fig. 5 Adjacency matrix before and after node-ordering on the Wikipedia Chocolate graph. Large empty (and dense) areas appear,
aiding the graph decomposition step of VoG and the discovery of candidate structures. (a) Original. (b) After re-ordering.

(a) (b) (c)

Fig. 6 Illustration of the graph decomposition and the generation of the candidate structures. (a) Initial toy graph, (b) SlashBurn on
the toy graph and (c) candidate structures (in circles).
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Table 3. [Lower is better.] Quantitative analysis of VoG with different summarization heuristics: Plain, Top10, Top100, and
Greedy’nForget. The first column, Original, presents the cost, in bits, of encoding the adjacency matrix with an empty model
M . For different heuristics we show the relative number of bits needed to describe the adjacency matrix. In parentheses, precursored
by “u.e.” (for unexplained edges) we give the fraction of edges that are not explained by the structures in the model, M . The lowest
description cost is in bold.

VoG

Original Compression Unexplained edges

Graph (bits) Plain Top10 Top100 Greedy’nForget Plain Top10 Top100 Greedy’nForget

Flickr 35 210 972 81% 99% 97% 95% 4% 72% 39% 36%
WWW-Barabasi 18 546 330 81% 98% 96% 85% 3% 62% 51% 38%
Epinions 5 775 964 82% 98% 95% 81% 6% 65% 46% 14%
Enron 4 292 729 75% 98% 93% 75% 2% 77% 46% 6%
AS-Oregon 475 912 72% 87% 79% 71% 4% 59% 25% 12%
Chocolate 60 310 96% 96% 93% 88% 4% 70% 35% 27%
Controversy 19 833 98% 94% 96% 87% 5% 51% 12% 31%

the connections between them, form the first candidate
structures. Moreover, the connected components with size
greater or equal to two and smaller than the size of the GCC,
consist additional candidate structures (see Fig. 6(c)). In the
next iteration, the same procedure is applied to the giant
connected component, yielding this way a set of candidate
structures. We use MDL to determine the best-fitting type
per discovered candidate structure.

5.1. Q1: Quantitative Analysis

In this section we apply VoG to the real datasets of
Table 2, and evaluate the achieved description cost, and
edge coverage, which are indicators of the discovered
structures. The evaluation is done in terms of savings
w.r.t. the base encoding (Original) of the adjacency matrix
of a graph with an empty model M . Although we refer to
the description cost of the summarization techniques, we
note that compression itself is not our goal, but our means
for identifying structures important for graph understanding
or attention routing. This is also why it does not make
sense to compare VoG against standard matrix compression
techniques: whereas VoG has the goal of describing a
graph with intelligible structures, specialized algorithms
may exploit any statistical correlations to save bits.

We compare two summarization approaches: (i) Origi-
nal: The whole adjacency matrix is encoded as if it con-
tains no structure; that is, M = ∅, and all of A is encoded
through L(E−) and (ii) VoG, our proposed summarization
algorithm with the three selection heuristics (Plain, Top10
and Top100, Greedy’nForget1). We ignore very small
structures; the candidate set C includes subgraphs with at

1 By carefully designing the Greedy’nForget heuristic to
exploit memoization, we are able to efficiently compute the best
structures within the candidate set. Although restricting our search
space to a small number of candidate structures—ranked in

least 10 nodes, except for the Wikipedia graphs where the
size threshold is set to three nodes. Among the summaries
obtained by the different heuristics, we choose the one that
yields the smallest description length.

Table 3 presents the summarization cost of each tech-
nique with respect to the cost of the Original approach, as
well as the fraction of the edges that remains unexplained.
The lower the ratios (i.e., the lower the obtained descrip-
tion length), the more structure is identified. For example,
VoG-Plain describes Flickr with only 81% of the bits
of the Original approach, and explains all but 4% of the
edges, which means that 4% of the edges are not encoded
by the structures in M .

Observation 1 Real graphs do have structure; VoG, with
or without structure selection, achieves better compression
than the Original approach that assumes no structure.

Greedy’nForget finds models M with fewer structures
than Plain and Top100—which is important for graph
understanding and guiding attention to few structures—and
often obtains (much) more succinct graph descriptions. This
is due to its ability to identify structures that are informative
with regard to what it already knows. In other words,
structures that highly overlap with ones already selected
into M will be much less rewarded than structures that
explain unexplored parts of the graph.

5.2. Q2: Qualitative Analysis

In this section, we showcase how to use VoG and
interpret its output.

decreasing order of quality—can yield faster results, we report
results on the whole search space.
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5.2.1. Graph summaries

How does VoG summarize real graphs? Which are the
most frequent structures? Table 4 shows the summarization
results of VoG for different structure selection techniques.

Observation 2 The summaries of all the selection heuri-
stics consist mainly of stars, followed by near-bipartite
cores. In some graphs, like Flickr and WWW-Barabasi,
there is a significant number of full cliques.

From Table 4 we also observe that Greedy’nForget
drops uninteresting structures, and reduces the graph
summary. Effectively, it filters out the structures that
explain edges already explained by structures in model M .

In order to gain a better understanding of the structures
that VoG finds, in Figs 7 and 8, we give the size
distributions of the most frequent structures in the Flickr
social network, the WWW-Barabasi web graph and the
Enron email network.

Observation 3 The size distribution of the stars and near-
bipartite cores follows a power law.

Moreover, the distribution of the size of the full cliques
in Flickr follows a power law as well. As far as the
distribution of the size of full cliques and bipartite cores in
WWW-Barabasi is concerned, there is no clear pattern.
In Figs 7 and 8, we denote with blue crosses the size
distribution of the structures discovered by VoG-Plain, and

Table 4. Summarization of graphs by VoG (for different heuristics). The most frequent structures are the stars (st) and near-bipartite
cores (nb). For each graph and selection technique (heuristic), we provide the frequency of each structure type: “st” for star, “nb” for
near-bipartite cores, “fc” for full cliques, “fb” for full bipartite-cores, “ch” for chains, and “nc” for near-cliques.

Plain Top10 Top100 Greedy’nForget

Graph st nb fc fb ch nc st nb st nb fb ch st nb fc fb

Flickr 24 385 3 750 281 9 - 3 10 - 99 1 - - 415 - - 1
WWW-Barabasi 10 027 1 684 487 120 26 - 9 1 83 14 3 - 403 7 - 16
Epinions 5 204 528 13 - - - 9 1 99 1 - - 2 738 - 8 -
Enron 3 171 178 3 11 - - 9 1 99 1 - - 2 323 3 3 2
AS-Oregon 489 85 - 4 - - 10 - 93 6 1 - 399 - - -
Chocolate 170 58 - - 17 - 9 1 87 10 - 3 101 - - -
Controversy 73 21 - 1 22 - 8 2 66 17 1 16 35 - - -

(a) (b)

(c)

Fig. 7 Flickr: The size of the stars, the near-bipartite cores and full cliques follows the power law distribution. Distribution of the size
of the most informative, from an information theoretic point of view, structures by VoG (blue crosses) and VoG-Top100 (red circles).
(a) Stars, (b) Bipartite and near-bipartite cores and (c) Full cliques.
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(a) (b)

(c) (d)

(e) (f)

Fig. 8 The distribution of the size of the most “interesting,” from the MDL point of view, structures (stars, near-bipartite cores) follow
the power law distribution both in the WWW-Barabasi web graph (left) and the Enron email network (right). The distribution of
structures discovered by VoG and VoG-TOP100 are denoted by blue crosses and red circles respectively. (a) Stars, (b) near-bipartite
cores, (c) stars, (d) full cliques, (e) Bipartite cores and (f) near-bipartite cores.

with red circles the size distribution for the structures found
by VoG with the Top100 heuristic.

5.2.2. Graph understanding

Are the “important” structures found by VoG semanti-
cally meaningful? For sense-making, we analyze the dis-
covered subgraphs in the nonanonymized real datasets
Controversy, Chocolate and Enron.

Wikipedia–Controversy: Figures 1 and 9(a) and (b)
illustrate the original and VoG-based visualization of the
Controversy graph. The VoG-Top10 summary consists
of eight stars and two near-bipartite cores (see also Table 4).
The eight-star configurations correspond mainly to adminis-
trators, such as “Future_Perfect_at_sunrise,” who do many
minor edits in various parts of the article and also revert
vandalisms. The most interesting structures VoG identifies

are the near-bipartite cores, which reflect: (i) the conflict
between the two parties and (ii) an “edit war” between
vandals and administrators or loyal Wikipedia users.

In Fig. 9(c), the encoding cost of VoG is given as a
function of the selected structures. The dotted blue line
corresponds to the cost of the Plain encoding, where
the structures are added sequentially in the model M , in
decreasing order of quality (local encoding benefit). The
solid red line maps to the cost of the Greedy’nForget
heuristic. Given that the goal is to summarize the graph
in the most succinct way, and at the same time achieve
low encoding cost, Greedy’nForget is effective. Finally,
in Fig. 10 we consider the models M with increasing
number of structures (in decreasing quality order) and
show the number of edges that each one explains.
Specifically, Fig. 10(a) refers to the models that consist
of ordered subsets of all the structures (∼120) that
VoG-Plain discovered and Fig. 10(b) refers to models
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(a) (b) (c)

Fig. 9 The VoG summary of the Controversy graph, and effectiveness of the Greedy’nForget heuristic. The top 10 structures of
the graph summary of VoG consist of eight stars (Fig. 9(a)) and two bipartite graphs (Fig. 9(b), 1(d)). Figure 9(c) shows the encoding
cost for the Plain (dotted blue line) and Greedy’nForget (solid red line) heuristics. Greedy’nForget minimizes the encoding cost
by greedily selecting from a sorted, in decreasing quality order, set of structures the ones that reduce the cost. Thus, Greedy’nForget
leads to better encoding costs and smaller summaries (here only 40 are chosen) than Plain (∼120 structures). (a) VoG: The eight top
“important” stars whose centers are denoted with red rectangles (b) VoG: The most “important” bipartite graph (node set A denoted by
the circle of red points) (c) Effectiveness of Greedy’nForget (in red). Encoding cost of VoG vs. number of structures in the model, M .

Fig. 10 Wikipedia-Controversy: VoG-GnF successfully drops uninteresting structures that explain edges already explained by
structures in model M . Edges explained by models with increasing number of structures generated by (a) VoG and (b) VoG-GnF.

incorporating ordered subsets of the ∼35 structures kept
by VoG-Greedy’nForget. We note that the slope in
Fig. 10(a) is steep for the first ∼35 structures, and then
increases with small rate, which means that the new
structures that are added in the model M explain few
new edges (diminishing returns). On the other hand, the
edges explained by the structures discovered by VoG-
Greedy’nForget increase with higher rate, which signifies
that VoG-Greedy’nForget drops uninteresting structures
that explain edges already explained by structures in
model M .

Wikipedia–Chocolate: The visualization of Wikipedia
Chocolate is similar to the visualization of the Contro-
versy and is given in Fig. 11 for completeness. As shown
in Table 4, the Top10 summary of Chocolate contains
nine stars and one near-bipartite core. The center of the

highest ranked star corresponds to “Chobot,” a Wikipedia
bot that fixes interlanguage links, and thus touches sev-
eral, possibly unrelated parts of a page. Other stars have
as hubs administrators, who do many minor edits, as well
as heavy contributors. The near-bipartite core captures the
interactions between possible vandals and administrators (or
Wikipedia contributors) who were reverting each other’s
edits resulting in temporary (semi-) protection of the web-
page. Figure 11(c) illustrates the original and VoG-based
visualization of the who-edits-whose-text graph for the arti-
cle on chocolate.

Enron: The Top10 summary for Enron has nine stars and
one near-bipartite core. The centers of the most informative
stars are mainly high ranking officials (e.g., Kenneth Lay
with two email accounts, Jeff Skilling, Tracey Kozadinos).
As a note, Kenneth Lay was long-time Enron CEO, while

Statistical Analysis and Data Mining: The ASA Data Science Journal DOI:10.1002/sam



Koutra et al:: Summarizing and Understanding Large Graphs 15

(a) (b) (c)

Fig. 11 VoG: summarization of the structures of the Wikipedia Chocolate graph. The top-10 structures of the VoG graph summary
consist of 9 stars (10(a)) and one bipartite graph (10(b)). In (10(c)) the Greedy’nForget (red line) heuristic reduces the encoding cost
by keeping about 100 most important of 250 identified structures. The blue line corresponds to the encoding cost of greedily adding the
identified structures in decreasing order of encoding benefit.(a) VoG: The nine most “important” stars (the hubs of the stars denoted by
the cyan points). (b) VoG: The most “important” bipartite graph (node set A denoted by the rectangle of cyan points). (c) Effectiveness
of Greedy’nForget (in red). Encoding cost of VoG vs. number of structures in the model, M .

Fig. 12 Enron: Adjacency matrix of the top near-bipartite core
found by VoG, corresponding to email communication about an
“affair,” as well as for a smaller near-bipartite core found by VoG
representing email activity regarding a skiing trip.

Jeff Skilling had several high-ranking positions in the
company, including CEO and managing director of Enron
Capital & Trade Resources. The big near-bipartite core in
Fig. 12 is loosely connected to the rest of the graph, and
represents the email communication about an extramarital
affair, which was broadcast to 235 recipients. The small
bipartite graph depicted in the same spy plot captures the
email activity of several employees about a skiing trip on
New Year.

5.3. Q3: Scalability of VoG

In Fig. 13, we present the runtime of VoG with respect
to the number of edges in the input graph. For this
purpose, we induce subgraphs of Notre Dame dataset
(WWW-Barabasi) for which we give the dimensions in
Table 5. We ran the experiments on a Intel(R) Xeon(R)
CPU 5160 at 3.00 GHz, with 16 GB memory. The structure

Fig. 13 VoG is near-linear on the number of edges. Runtime,
in seconds, of VoG (Plain) vs. number of edges in graph. For
reference we show the linear and quadratic slopes.

Table 5. Scalability: induced subgraphs of WWW-Barabasi.

Name Nodes Edges

WWW-Barabasi-50k 49 780 50 624
WWW-Barabasi-100k 99 854 205 432
WWW-Barabasi-200k 200 155 810 950
WWW-Barabasi-300k 325 729 1 090 108

identification is implemented in Matlab, while the selection
process in Python. A discussion about the runtime of VoG
is also given in the supplementary material.

Observation 4 All the steps of VoG are designed to be
scalable. Figure 13 shows the complexity is O(m), i.e., VoG
is near-linear on the number of edges of the input graph.

6. DISCUSSION

The experiments show that VoG successfully solves an
important open problem in graph understanding: how to
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find a succinct summary for a large graph. Here we address
some questions, that a reader may have.

Question 1: Why does VoG use the chosen vocabulary
structures consisting of stars, (near-) cliques, (near-)
bipartite cores and chains, and not other structures?
Answer 1: We noticed that these structures appear very
often, in tens of real graphs, (e.g., in patent citation net-
work, in phone-call networks, in netflix recommendation
system, etc.), while they also have semantic meaning, such
as factions or popular entities. Moreover, these graph struc-
tures are well-known and conceptually simple, making the
summaries that VoG discovers easily interpretable.

Question 2: What if a new structure such as “loops” proves
to be frequent in real graphs? How can VoG handle this
case?
Answer 2: VoG can easily be extended to handle new
vocabulary terms. The key insight for the vocabulary
term encodings in Section 3 is to encode the necessary
information as succinctly as possible. In fact, as by MDL we
can straightforwardly compare two or more model classes,
MDL will immediately tell us whether a vocabulary set V1

is better than a vocabulary set V2: the one that gives the
best compression cost for the graph wins!

Question 3: Why fix the vocabulary terms beforehand,
why not automatically determine the most appropriate
vocabulary for a given graph?
Answer 3: The reasons are simple: scalability and inter-
pretability. For a vocabulary term to be useful, it needs to
be easily understood by the user. This also relates to why
we define our own encoding and optimization algorithm,
instead of using off-the-shelf general purpose compressors
based on Lempel-Ziv (such as gzip) or statistical compres-
sors (such as PPMZ); these provide state-of-the-art com-
pression by exploiting complex statistical properties of the
data, making their models very complex to understand.
Local-structure based summaries, on the other hand, are
much more easily understood.

Frequent-patterns have been proven to be interpretable
and powerful building blocks for data summarization [24-
26]. While a powerful technique, spotting frequent sub-
graphs has the notoriously expensive subgraph isomorphism
problem in the inner loop. This aside, published algorithms
on discovering frequent subgraphs (e.g., ref. [27]), are not
applicable here, since they expect the nodes to have labels
(e.g., carbon atom, oxygen atom, etc.) whereas we focus on
large unlabeled graphs.

Question 4: Why would you focus on compression, since
your goal is pattern discovery and understanding?
Answer 4: Compression is not our goal; it is only our
means to find good patterns. High compression ratios are

exactly a sign that we discovered many redundancies (i.e.,
patterns) which can be explained in simple terms (i.e., struc-
tures), and thus, we understand the input graph better.

Question 5: Why use SlashBurn for the graph decompo-
sition?
Answer 5: We use SlashBurn to generate candidate sub-
graphs, because it is scalable, and designed to handle graphs
without “cavemen” structure. However, any graph decom-
position method could be used instead, or even better a
combination of decomposition methods could be applied.
We conjecture that the more graph decomposition methods
provide the candidate structures for VoG, the better the
resulting summary will be. Essentially, there is no correct
graph partitioning technique, since each one of them works
by optimizing a different goal. MDL, which is indispensable
component of VoG, will be able to discover the best struc-
tures among the set of candidate structures.

Question 6: What if you already know a few subgraph
structures of the graph, can VoG take this into account?
Answer 6: Yes. If you already know that certain nodes form
a clique, star, etc., it is trivial to adapt VoG to use this as
its base model M (as opposed to the empty model). When
describing the graph, VoG will then only report those struc-
tures that best describe the remainder of the graph.

Question 7: Some edge distributions are more or less likely
to generate certain structures, can VoG be extended such
that it can take specific edge distributions into account
and only report structures that stand out from such a
distribution?
Answer 7: Yes! In this paper we aim to assume as little as
necessary for the edge distribution, such that VoG is both
parameter-free and nonparametric at its core. However, as
long as you can calculate the probability of an adjacency
matrix, P(E), we can trivially define L(E) = − log P(E).
Hence, for instance, if your distribution would have a higher
clustering coefficient (that is, dense areas are more likely),
the cost for having a dense area in E will be relatively
low, and hence VoG will only report structures that stand
out from this (assumed) background distribution. Recent
work by Araujo et al. [28] explores discovering communi-
ties that exhibit a different hyperbolic—power-law degree
distributed—connectivity than the background distribution.
It will be interesting to extend VoG with hyperbolic dis-
tributions for both subgraphs, as well as for encoding the
error matrix.

Question 8: What if your vocabulary terms do not explicitly
show in my graph, but other, more complex ones do?
Answer 8: A core property of MDL is that it identifies
the model in a model class that best describes your graph
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regardless of whether the true model is in that class. More
simply put, we will return the model that gives the most
succinct description of your graph in the vocabulary terms
at hand: our model class. In this example, we will give a
more crude description of the graph structure than would be
ideal. This means we have to spend more bits than ideal,
which means we are guarded against overfitting. For the
theory behind MDL for model selection, see ref. [15].

Question 9: VoG does not explicitly encode the linkage
between structures. Can it give high-level insight in how
the structures in a summary are connected?
Answer 9: Yes. We allow nodes to participate in multiple
structures, and such nodes are exactly those that implicitly
“link” two structures. For example, a node can be part of
a clique, as well as the starting-point of a chain, therewith
“linking” the clique and the chain. The linkage structure of
the summary can hence be trivially extracted by inspecting
whether the node sets of structures in the summary overlap.
It may depend on the task whether one prefers to show the
high level linkage of the structure, or give the details per
structure in the summary.

7. RELATED WORK

Work related to VoG comprises MDL based approaches,
as well as graph partitioning and visualization.

7.1. MDL and Data Mining

Faloutsos and Megalooikoumou [29] argue that as many
data mining problems are related to summarization and
pattern discovery, they are intrinsically related to Kol-
mogorov complexity. Kolmogorov complexity [14] identi-
fies the shortest lossless algorithmic description of a dataset,
and provides sound theoretical foundations for both iden-
tifying the optimal model for a dataset, and defining what
structure is. While not computable, it can be practically
implemented by the MDL principle [11,15]—lossless com-
pression. Examples of applications in data mining include
clustering [30], classification [31], discovering communi-
ties in matrices [32], model order selection in matrix
factorization [17,33], outlier detection [34,35], pattern set
mining [24,26], finding sources of infection in large
graphs [36], and for making sense of selected nodes in
graphs [37]—just to name a few.

We are, to the best of our knowledge, the first to
employ MDL with the goal of summarizing a graph with
a vocabulary beyond simple rectangles, as well as with
allowing overlap between structures.

7.2. Graph Compression and Summarization

Boldi [38] studied the compression of web graphs
using the lexicographic localities; Chierichetti et al. [39]
extended it to the social networks; Apostolico et al. [40]
used BFS for compression. Maserrat et al. [41] used
multiposition linearizations for neighborhood queries. Feng
et al. [42] encode edges per triangle using a lossy encoding.
SlashBurn [8] exploits power-law behavior of real world
graphs, addressing the “no good cut” problem [3]. Tian
et al. [43] present an attribute-based graph summarization
technique with nonoverlapping and covering node groups;
an automation of this method is given by Zhang et al. [44].
Toivonen et al. [45] use a node structural equivalence based
approach for compressing weighted graphs.

An alternative way of “compressing” a graph is by
sampling nodes or edges from it [46,47]. The goal of
sampling is to obtain a graph of smaller size, which
maintains properties of the initial graph, such as the degree
distribution, the size distribution of connected components,
the diameter, or latent properties including the community
structure [48] (i.e., the graph sample contains nodes from
all the existing communities).

None of the above provide summaries in terms of
connectivity structures over nontrivial sub-graphs. Also,
we should stress that we view compression not as the
goal, but as the means to identify summaries that help
us to understanding the graph in simple terms, i.e., to
discover sets of informative structures that explain the graph
well. Furthermore, our VoG is designed for large scale
block based matrix vector multiplication where each square
block is stored independently from each other for scalable
processing in distributed platforms like MapReduce [50].
The above mentioned works are not designed for this
purpose: the information of the outgoing edges of a node
is tightly inter-connected to the outgoing edges of its
predecessor or successor, making them inappropriate for
square block based distributed matrix vector multiplication.

7.3. Graph Partitioning

Assuming away the “no good cut” issue, there are
countless graph partitioning algorithms: Koopman and
Siebes [25, 51] summarize multirelational data, or, heavily
attributed graphs. Their method assumes the adjacency
matrix is already known, as it aims at describing the node
attribute-values using tree-shaped patterns.

Subdue [6] is a famous frequent-subgraph based sum-
marization scheme. It iteratively replaces the most frequent
subgraph in a labeled graph by a meta-node, which allows
it to discover small lossy descriptions of labeled graphs.
In contract, we consider unlabeled graphs. Moreover, as
our encoding is lossless, we can by MDL fairly com-
pare between radically different models and model classes.
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Navlakha et al. [52] follow a similar approach to Cook
and Holder [6], by iteratively grouping nodes that see high
inter-connectivity. Their method is hence confined to sum-
marizing a graph in terms of nonoverlapping cliques and
bipartite cores. In comparison, the work of Miettinen and
Vreeken [17,33] is closer to ours, even though they discuss
MDL for Boolean matrix factorization. For directed graphs,
such factorizations are in fact summaries in terms of pos-
sibly overlapping full cliques. With VoG we go beyond a
single-term vocabulary, and, importantly, we can detect and
reward explicit structure within subgraphs.

Chakrabarti et al. [32] proposed the cross-association
method, which provides a hard clustering of the nodes into
groups, effectively looking for near-cliques. Papadimitriou
et al. [53] extended this to hierarchies, again of hard
clusters. Finally, Rosvall and Bergstrom [54] propose
information-theoretic approaches for community detection,
again hard-clustering the nodes of the graph. With VoG
we allow nodes to participate in multiple structures,
and can summarize graphs in terms of how subgraphs
are connected, beyond identifying that they are densely
connected.

7.4. Graph Visualization

Apolo [55] is a graph tool used for attention routing.
The user picks a few seeds nodes and Apolo interac-
tively expands their vicinities enabling this way sense-
making. An anomaly detection system for large graphs,
OPAvion [56], mines graph features using Pegasus [57]),
spots anomalies by employing OddBall [58], and lastly
interactively visualizes the anomalous nodes via Apolo.
In ref. [59], Shneiderman proposes simply scaled den-
sity plots to visualize scatter plots, ref. [60] presents ran-
dom and density sampling techniques for datasets with
several thousands of points, while NetRay [61] focuses
on informative visualizations of the spy, distribution
and correlation plots of web-scale graphs. Dunne and
Shneiderman [62] introduce the idea of motif simplifi-
cation to enhance network visualization. Some of these
motifs are part of our vocabulary, but VoG also allows
for near-structures, which are common in real-world
graphs.

What sets VoG apart: Unlike VoG, none of the above
methods meet all the following specifications: (i) gives a
soft clustering, (ii) is scalable, (iii) has a large vocabulary
of graph primitives (beyond cliques/cavemen-graphs), and
(iv) is parameter-free. Moreover, the graph visualization
techniques focus on anomalous nodes or how to visualize
the patterns of the whole graph. In contrast, VoG attempts
to find not specific nodes, but informative structures that
summarize well the graph, and therefore provides a small
set of nodes and edges that are worth (by the MDL

principle) visualizing. The preliminary version of VoG is
described in ref. [63].

8. CONCLUSION

We studied the problem of succinctly describing a large
graph in terms of connectivity structures. Our contributions
are:

• Problem formulation: We proposed an informa-
tion theoretic graph summarization technique that
uses a carefully chosen vocabulary of graph prim-
itives (Section 3).

• Effective and scalable algorithm: We gave VoG,
an effective method which is near-linear on the
number of edges of the input graph (Section 5.3).

• Experiments on real graphs: We discussed inter-
esting findings like exchanges between Wikipedia
vandals and responsible editors on large graphs,
and also analyzed VoG quantitatively as well as
qualitatively (Sections 1 and 5).

Future work includes extending the VoG vocabulary to
more complex graph structures that we know appear in real
graphs, such as core-peripheries, (bipartite core whose one
set also forms a clique), and so-called “jellyfish” (cliques
of stars), as well as implementing VoG in the distributed
computing framework like Map-Reduce.
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