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ABSTRACT
We study how to obtain concise descriptions of discrete multivari-
ate sequential data. In particular, how to do so in terms of rich
multivariate sequential patterns that can capture potentially highly
interesting (cor)relations between sequences. To this end we allow
our pattern language to span over the domains (alphabets) of all
sequences, allow patterns to overlap temporally, as well as allow for
gaps in their occurrences.

We formalise our goal by the Minimum Description Length prin-
ciple, by which our objective is to discover the set of patterns that
provides the most succinct description of the data. To discover high-
quality pattern sets directly from data, we introduce DITTO, a highly
efficient algorithm that approximates the ideal result very well.

Experiments show that DITTO correctly discovers the patterns
planted in synthetic data. Moreover, it scales favourably with the
length of the data, the number of attributes, the alphabet sizes. On
real data, ranging from sensor networks to annotated text, DITTO
discovers easily interpretable summaries that provide clear insight
in both the univariate and multivariate structure.
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1. INTRODUCTION
Most real sequential data is multivariate, as when we measure

data over time, we typically do so over multiple attributes. Examples
include sensors in a network, frequency bands in seismic or ECG
data, transaction records, and annotated text. In this paper we
investigate how to succinctly summarise such data in terms of those
patterns that are most characteristic for the data.

To capture these characteristics, our pattern language needs to be
rich, i.e., patterns may span multiple aligned sequences (attributes)
in which no order between these attributes is assumed and occur-
rences may contain gaps. For example, if we consider a sensor
network, a pattern could be a characteristic set of values for multiple
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attributes at one point in time, or, more complex, a specific value for
one sensor, temporally followed by certain readings of one or more
other sensors. That is, patterns that are able to identify associations
and correlations between one or multiple attributes.

Having such a rich pattern language has as immediate conse-
quence that the well-known frequent pattern explosion hits partic-
ularly hard. Even for trivial data sets one easily finds enormous
numbers of frequent patterns, even at modest minimal frequency
thresholds [27]; the simplest synthetic dataset we consider con-
tains only five true patterns, yet the lower bound on the number of
frequent patterns is more than a billion.

Clearly, returning collections of such magnitude is useless, as
they cannot be inspected in any meaningful way. Rather, we want
a small set of such patterns that collectively describe the data well.
To find such sets, we employ the Minimum Description Length
(MDL) principle [8]. This approach has a proven track record in the
domain of transaction data mining [32, 24] and has also been suc-
cessfully applied to, e.g. sequential data [28, 10]. Because complex
multivariate sequential data is ubiquitous and correlation between
multiple sequences can give much insight to domain experts, here
we take this research further by defining a framework to summarise
this data, while able to efficiently deal with the enormous space of
frequent patterns. Note that, all real-valued time series can easily be
discretised to fit our framework, for example using SAX [13].

The humongous number of frequent patterns makes it intractable
to discover a small set of characteristic patterns by post-processing
the set of all frequent patterns; all the more because the MDL objec-
tive function on pattern sets is neither monotone nor sub-modular.
Hence we introduce a heuristic algorithm, called DITTO,1 that mines
characteristic sets of patterns directly from the data. In a nutshell,
DITTO mines good models by iteratively adding those patterns to
the model that maximally reduce redundancy. That is, it iteratively
considers the current description of the data and searches for pat-
terns that most frequently occur one after the other, and considers
the union of such pairs as candidates to add to the model. As such,
DITTO focusses on exactly those patterns that are likely to improve
our score, pruning large parts of the search space, and hence only
needs seconds to mine high-quality summaries.

Our extensive empirical evaluation of DITTO shows it ably dis-
covers succinct summaries that contain the key patterns of the data
at hand, and, importantly, that it does not pick up on noise. An
example of what we discover includes the following. When applied
to the novel Moby Dick by Herman Melville (one attribute) aligned

1The ditto mark (") is used in lists to indicate that an item is repeated,
i.e., a multivariate pattern.



with the corresponding part-of-speech tags (another attribute), the
summary DITTO discovers consists of meaningful non-trivial lin-
guistic patterns including “〈noun〉 of the 〈noun〉", e.g. “Man of the
World”, and “the 〈noun〉 of", as used in "the ship of (somebody)".
These summaries hence give clear insight in the writing style of
the author(s). Besides giving direct insight, the summaries we dis-
cover have high downstream potential. One could, for example, use
them for comparative analysis [4]. For example, for text identifying
similarities and differences between authors, for sensor networks
detecting and describing concept drift over time, and characterising
differences between patients. Such analysis is left for future work,
as we first have to be able to efficiently discover high quality pattern-
based summaries from multivariate sequential data. That is what we
focus on in this paper.

The remainder of this paper is organised as follows. We first
cover preliminaries and introduce notation in Section 2. In Section 3
we formally introduce the problem. Section 4 gives the details of
the DITTO algorithm. We discuss related work in Section 5, and
empirically evaluate our score in Section 6. We round up with
discussion and conclusions in Sections 7 and 8, respectively.

2. PRELIMINARIES AND NOTATION
As data type we consider databases D of |D| multivariate event

sequences S ∈ D, all over attributes A. We assume that the set of
attributes is indexed, such that Ai refers to the ith attribute of D.

A multivariate, or complex, event sequence S is a bag of |A| uni-
variate event sequences, S = {S1, . . . , S|A|}. An event sequence
Si ∈ Ωn

i is simply a sequence of n events drawn from discrete
domain Ωi, which we will refer to as its alphabet. An event is
hence simply an attribute–value pair. That is, the jth event of Si

corresponds to the value of attribute Ai at time j. We will write Ω
for the union over these attribute alphabets, i.e. Ω = ∪i∈|A|Ωi.

By ||S|| we indicate the number of events in a multivariate se-
quence S, and by t(S) the length of the sequence, i.e. the number of
time steps. We will refer to the set of events at a single time step j as
a multi-event, writing S[j] for the jth multi-event of S. To project a
multivariate event sequence S onto an individual attribute, we write
Si for the univariate event sequence on the ith attribute, and analo-
gously defineDi. For completeness, we define ||D|| =

∑
S∈D ||S||

for the total number of events, and t(D) =
∑

S t(S) for the total
number of time steps in D.

Our framework fits both categorical and transaction (item set)
data. With categorical data the number of events at each time step
is equal to the number of attributes. For simplicity, w.l.o.g., we
consider categorical data in the remainder.

As patterns we consider partial orders of multi-events, i.e. se-
quences of multi-events, allowing for gaps between time steps in
their occurrences. By t(X) we denote the length of a pattern X , i.e.
the number of time steps for which a pattern X defines a value. In
addition, we write ||X|| to denote the size of a pattern X , the total
number of values it defines, i.e.

∑
X[i]∈X

∑
x∈X[i] 1. For example,

in Figure 1 it holds that ||X|| = 4 and t(X) = 3.
We say a pattern X is present in a sequence S ∈ D of the data

when there exists an interval [tstart, · · · , tend] in which all multi-
eventsX[i] ∈ X are contained in the order specified byX , allowing
for gaps in time. That is, ∀X[i]∈X∃j∈[start,end]X[i] ⊆ S[j], and
k ≥ j + 1 for X[i] ⊆ S[j] and X[i + 1] ⊆ S[k]. A singleton
pattern is a single event e ∈ Ω and P is the set of all non-singleton
patterns. A minimal window for a pattern is an interval in the data
in which a pattern occurs which can not be shortened while still
containing the whole pattern [26]. In the remainder of this paper
when we use the term pattern occurrence we always expect it to

be a minimal window. Further, we use occs(X,S) for the disjoint
set of all occurrences of X in S. Figure 1 shows examples of two
categorical patterns occurring both with and without gaps.

Figure 1: Patterns X and Y occurring with (Dgap) and without
(Dno gap) gaps in the data.

Our method operates on categorical data. To find patterns in
continuous real-valued time series we first have to discretise it. SAX
[13] is a celebrated approach for doing so, and we will use it in
our experiments – though we note that any discretisation scheme
can be employed. This ordinal data can either be represented by
absolute values per time step, or by relative values that represent the
difference between each pair of subsequent values. These relative
values describe the changes in the data rather than the exact values –
by which different types of patterns can be discovered.

3. THEORY
In this section we give a brief introduction to the MDL principle,

we define our objective function, and analyse the complexity of the
optimization problem.

3.1 MDL Introduction
The Minimum Description Length principle (MDL) [8] is a

method for inductive inference that aims to find the best model
for the data. It is based on the insight that any regularity in the
data can be used to compress the data: the more we can compress,
the more regularity we have found. More formally, given a set of
modelsM, the best model M ∈M is the one that minimises

L(M) + L(D |M)

where L(M) is the length of the description of M , and L(D |M)
is the length of the description of the data.

To use MDL, we have to define how our model looks and how we
can use it to describe the data. That is, we need to be able to encode
and decode the data using our model.

3.2 MDL for Multivariate Sequential Data
As models for our data we consider code tables (CT ) [32, 28];

these are simple four-column look-up tables (or, dictionaries) be-
tween patterns on the left hand side, and associated codes on the
right hand side. In this paper we consider three types of codes, i.e.
pattern codes, gap codes and fill codes. We will explain the use of
these below, in Section 3.2.2 and Example 2.

Loosely speaking, whenever we read a pattern code codep(X |
CT ) we know we can start to decode the events of pattern X . A fill
code code f (X | CT ) tells us we can decode the next time step of
pattern X , whereas a gap code codeg(X | CT ) tells us there is a
gap in this occurrence of pattern X . To fill such a gap we read the
next pattern code. Note that, our approach thus allows for patterns
to interleave. For readability, we do not write CT wherever clear
from context. To make sure we can encode any multivariate event
sequence over Ω, we require that a code table at least contains all
singleton events. Next, we will describe how to use these code tables
to cover and encode a dataset. Further, we define how to compute



L(CT ) and L(D | CT ) and we conclude with our formal problem
definition.

3.2.1 Covering
A cover determines where we use each pattern when encoding a

dataset and also where gaps in patterns occur. More formally, a cover
C defines the set of all pattern occurrences that are used to cover
the complete dataset. Therefore, if one of the events from pattern
occurrence o is already covered by another pattern occurrence o′ ∈
C we say that the occurrence o overlaps with the current cover C, i.e.
C ∩ o 6= ∅, which we do not allow.

As we are after the minimal description, we want to use optimal
codes. Clearly, the more often a code is used, the shorter it should be.
This, however, creates a non-trivial connection between how often a
pattern is used to describe part of the data, and its code length. This,
in turn, makes the complete optimisation process, and in particular
that of finding a good cover of the data given a set of patterns
non-trivial. For the univariate case, we showed [28] that when
we know the optimal code lengths we can determine the optimal
cover by dynamic programming, and that we can approximate the
optimal cover by iteratively optimising the code lengths and the
cover. Although computationally expensive, for univariate data this
strategy works well. For multivariate data, naively seen the search
space grows enormously. More importantly, it is not clear how this
strategy can be generalised, as now the usages of two patterns are
allowed to temporally overlap as long as they do not cover the same
events. We therefore take a more general and faster greedy strategy.

To cover a dataset we need the set of patterns from the first
column of a code table CT , which we will refer to as PS (Patterns
and Singletons). In Algorithm 1 we specify our COVER algorithm,
which iterates through PS in a pre-specified order that we will
detail later. For each pattern X the algorithm greedily covers all
occurrences that do not overlap with already covered data, and have
fewer than t(X) gaps. To bound the number and size of gaps we
only allow occurrences where the number of gap positions is smaller
than the length of the pattern itself. This avoids gap codes becoming
cheaper than fill codes, by which occurrences with more gaps would
be preferred over compact occurrences. This process continues until
all data is covered. In Figure 2 we show in 3 steps how a PS is used
to cover the example dataset.

Example 1. In Algorithm 1, we start with an empty cover, corre-
sponding to an uncovered dataset as in the top left of Fig 2. Next,
we cover the data using the first pattern from the PS (line 1). For
each occurrence of the pattern {a

d
} (line 2), we add it to our cover

(line 4) when it does not overlap previously added elements and has
a limited number of gaps (line 3). In Step 1 of Fig 2 we show the
result of covering the data with the pattern {a

d
}. We continue to do

the same for the next pattern {h, e} in CT . This gives us the cover
as shown in Step 2. With only the singleton patterns left to consider
in CT there is only one way to complete our cover by using them
for all so far uncovered events. Now all events in the dataset are
covered, thus we can break out of our loop (line 6) and return the
final cover of Step 3 in Fig. 2 (line 7).

3.2.2 Encoding
A cover C specifies how the data will be encoded. Conceptually,

we can decompose it into a pattern code stream and a gap code
stream. The pattern stream Cp contains a sequence of pattern codes,
codep(X) for pattern X ∈ CT , used to describe the data, whereas
the gap code stream Cg consists of codes codeg(X) and code f (X)
indicating whether and where a pattern instance contains gaps or
not.

To encode a dataset we traverse our dataset from left-to-right and

Figure 2: Sample data D, code table CT , and cover C.

Algorithm 1 The COVER Algorithm

Input: A sequence S, a set of patterns PS , and C = ∅
Output: A cover C of S ∈ D using PS
1: for each X ∈ PS in order do // see Sec. 4 for order
2: for all o ∈ occs(X,S) do // all occurrences of X
3: if C ∩ o = ∅ and t(o) < 2t(X) then
4: C ← C ∪ o
5: if C completely covers S then
6: break
7: return C

top-to-bottom and each time we encounter a new pattern in our cover
we add the code for this pattern to Cp. When moving to the next
multi-event in the dataset we add for each pattern, that we already
encountered but not yet completely passed by, a gap or fill code to
Cg . We choose a gap code for a pattern if the current multi-event
does not contain any event from the pattern or a fill code if it does.
We are finished when we have encoded all multi-events in the data.

Example 2. In Figure 3 we show how a cover is translated to an
encoding. To encode the first multi-event we first add codep(a) and
then codep(Y ) to Cp. For the second multi-event we add codep(X)
to Cp and codeg(Y ) to Cg , because event e from pattern Y does
not yet occur in this multi-event. For the third multi-event we
add codep(a) to Cp, and codeg(X) and code f (Y ) to Cg . Code
codeg(X) marks the gap for pattern X and code f (Y ) indicates that
event e from pattern Y does occur in this multi-event. The fourth
multi-event results in the addition of codep(Y ) toCp and code f (X)
to Cg , where the latter marks the presence of event b from pattern
X in this multi-event. For the last multi-event we add codep(a) to
Cp and code f (Y ) to Cg , which completes the encoding.

Using Cp and Cg we can compute the actual codes to construct
the code table CT corresponding to PS used to cover the data.
We will encode the data using optimal prefix codes [7], the length
of which we can compute by Shannon entropy. In our case this
means that the length of an optimal pattern code for pattern X is the
negative log-likelihood of a pattern in the cover [8], that is

L(codep(X | CT )) = − log

(
usage(X)∑

Y ∈CT usage(Y )

)
,

where usage(X) is the number of times a pattern X is used to
describe the data, i.e. usage(X) = |{Y ∈ Cp|Y = codep(X)}|.

Gap and fill code lengths are computed similarly, corresponding
to the negative log-likelihood of these codes within the usages of



Figure 3: The encoding of the dataset given a cover and CT . See
Example 2 for more details.

the corresponding pattern. That is, we have

L(codeg(X | CT )) = − log

(
gaps(X)

gaps(X) + fills(X)

)
,

L(code f (X | CT )) = − log

(
fills(X)

gaps(X) + fills(X)

)
.

where gaps(X) and fills(X) are the number of times a gap, resp.
fill-code of patternX is used in the cover of the data, i.e. gaps(X) =
|{Y ∈ Cg | Y = codeg(X)}| and analogue for fills(X).

3.2.3 Encoded Length of Data Given Code Table
Now that we have determined the cover and encoding scheme, we

can formalise the calculation of the encoded length of the data given
the CT . This encoded length is the sum of the encoded length of
following terms: the pattern stream, the gap stream, the number of
attributes, the number of sequences and the length of each sequence.
Formally, we have

L(D | CT ) = L(Cp | CT ) + L(Cg | CT ) + LN(|A|)

+ LN(|D|) +
∑
S∈D

LN(|S|) ,

where LN is the MDL optimal Universal code for integers [8] and
the encoded length of the pattern and gap stream are simply the code
lengths of all codes in the streams,

L(Cp | CT ) =
∑

X∈CT

usage(X)L(codep(X))

L(Cg | CT ) =

t(X)>1∑
X∈CT

[
gaps(X)L(codeg(X))

+ fills(X)L(code f (X))
]

.

3.2.4 Encoded Length of Code Table
The encoded length of the code table consists of the following

parts. For each attribute Aj we encode the number of singletons and
their support in Dj . Then we encode the number of non-singleton
patterns in the code table, the sum of their usages, and then using a
strong number composition their individual usages. Last, we encode

the patterns themselves using L(X ∈ CT ). We hence have

L(CT | C) =
∑
j∈|A|

(
LN(|Ωj |) + log

(
|Dj |
|Ωj |

))
+ LN(|P|+ 1) + LN(usage(P) + 1)

+ log

(
usage(P)

|P|

)
+
∑
X∈P

L(X ∈ CT ) .

For the encoded length of a non-singleton pattern X ∈ CT we have

L(X ∈ CT ) = LN(t(X)) + LN(gaps(X) + 1)

+
∑
t(X)

log(|A|) +
∑
x∈X

L(codep(x | ST )) ,

where we first encode its length, and its total number of gaps – note
that we can derive the total number of fills for this pattern from these
two values. As LN is defined for integers z ≥ 1, we apply a +1
shift wherever z can be zero [8]. Then, per time step, we encode
for how many attributes the pattern defines a value, and what these
values are using the singleton-only, or Standard Code Table (ST ).
For the encoded length of an event given the ST we have

L(codep(x | ST )) = − log

(
support(x | D)

||D||

)
,

which is simply the negative log-likelihood of the event under an
independence assumption.

3.3 Formal Problem Definition
Loosely speaking, our goal is to find the most succinct description

of the data. By MDL, we define the optimal set of patterns for the
given data as the set for which the optimal cover and associated
optimal code table minimise the total encoded length. As such we
have the following problem definition.

Minimal Pattern Set Problem Let Ω be a set of events and let D
be a multivariate sequential dataset over Ω, find the minimal set of
multivariate sequential patterns P and cover C of D using P and
Ω, such that the encoded length L(CT , D) = L(CT | C) +L(D |
CT ) is minimal, where CT is the code-optimal code table for C.

Let us consider how complex this problem is. Firstly, the number
of possible pattern sets (with a maximum pattern length of n) is

2|Ω|n−|Ω|−1∑
k=1

(
2|Ω|

n

− |Ω| − 1

k

)
.

Secondly, to use a pattern set to cover the data we also need to
specify the order of the patterns in the set. That is, we need to find
the optimal order for the elements in the pattern set to find the one
that minimises the total encoded length. The total number of ways
to cover the dataset using one of the possible ordered pattern sets is

2|Ω|n−|Ω|−1∑
k=1

(
2|Ω|

n

− |Ω| − 1

k

)
× (k + |Ω|)! .

Moreover, unfortunately, it does not show submodular structure
nor (weak) (anti-)monotonicity properties by which we would be
able to prune large parts of it. Hence, we resort to heuristics.

4. THE DITTO ALGORITHM
In this section we present DITTO, an efficient algorithm to heuris-

tically approximate the MDL optimal summary of the data. In



Algorithm 2 The DITTO Algorithm

Input: The dataset D and singleton code table ST
Output: An approximation to the Minimal Pattern Set Problem
1: CT ← ST
2: Cand ← CT × CT
3: for X ∈ Cand in Candidate Order do
4: if L(D,CT ⊕X) < L(D,CT ) then
5: CT ← PRUNE(D,CT ⊕X)
6: CT ← VARIATIONS(D,X,CT )
7: Cand ← CT × CT

8: return CT

particular, it avoids enumerating all multivariate patterns, let alone
all possible subsets of those. Instead, it considers a small but highly
promising part of this search space by iterative bottom-up search
for those patterns that maximally improve the description. More
specifically, we build on the idea of SLIM [24] and SQS [28]. That
is, as candidates to add to our model, we only consider the most
promising combinations of already chosen patterns – as identified
by their estimated gain in compression.

We give the pseudo code of DITTO as Algorithm 2. We start
with singleton code table ST (line 1) and a set of candidate pat-
terns of all pairwise combinations of singletons (line 2). We then
iteratively add patterns from the candidate set to code table CT
in Candidate Order: ↓ estimated gain(X), ↓ support(X | D),
↓ ||X||, ↓ L(X | ST ) and ↑ lexicographically (line 3). This order
prefers the most promising candidates in terms of compression gain.
When a new pattern improves the total encoded length L(D,CT )
we keep it, otherwise we discard it (line 4). After acceptance of a
new pattern we prune (line 5) CT and recursively test whether to
add variations (line 6) of the accepted pattern in combination with
its gap events. When all variations are tested recursively, we update
the candidate set by combining CT × CT (line 7).

We give the details of each of these steps below, as well as ex-
plain how to gain efficiency through smart caching, and discuss the
computational complexity of DITTO.

4.1 Covering
As detailed in the previous sections, to compute L(D,CT ), we

first need to cover the data with CT . The COVER algorithm covers
the data using the patterns as they are ordered in CT . To find
the optimal cover we need to identify the cover order that leads
to the smallest encoded length of the data. We do so greedily,
by considering the pattern set in a fixed order. As our goal is
to compress the data, we prefer patterns that cover many events
with just a short code length. We hence define the Cover Order
as follows: ↓ ||X||, ↓ support(X | D), ↓ L(X | ST ) and ↑
lexicographically. It follows the intuition that we give preference
to larger and more frequent patterns, for which we expect a higher
compression gain, to cover the data first, as these maximise the
likelihood of the cover.

4.2 Candidates and Estimation
Conceptually, at every iteration the set of candidates from which

we can choose, consists of the Cartesian product of the code table
with itself. Two patterns X and Y can be combined to form new
candidate patterns. Each alignment of X and Y without gaps in
either X , Y and the resulting pattern, forms a new candidate, with
the exception of alignments in whichX and Y overlap. See Figure 4
for an example.

Selecting the candidate with the highest gain is very expensive –
we would need to cover the whole data for every candidate. Instead,

Original patterns X and Y

Pattern X

X0: a b

X1: c

X2:

Pattern Y

Y 0:
Y 1: d

Y 2: e f

The 4 possible candidate patterns we can construct from X and Y

Pattern Z1

Z0: a b

Z1: c d

Z2: e f

Pattern Z2

Z0: a b

Z1: c d

Z2: e f

Pattern Z3

Z0: a b

Z1: c d

Z2: e f

Pattern Z4

Z0: a b

Z1: d c

Z2: e f

Figure 4: The 4 possible candidate patterns constructed from differ-
ent alignments of X and Y .

we select the candidate with the highest estimated gain – which can
be done much more efficiently. Intuitively, based on the estimated
gain (∆L′) we only consider candidate patterns in a lazy fashion
based on their usage and do not consider patterns with a lower
usage than the current best candidate. For notational brevity, for
a pattern X ∈ CT we use x = usage(X). Further, let s be the
total usage count of all patterns in CT , i.e. s =

∑
X∈CT x. For

CT ′ = CT ⊕ Z, we use x′ and s′ similarly. We estimate z, the
usage of Z, optimistically as the minimum of the usages of X and
Y – and as x/2 when X = Y (because the usage of XX can not
be higher). Formally, our gain estimate ∆L′(CT ⊕ Z,D) of the
true gain ∆L(CT ⊕ Z,D) for adding pattern Z = X ∪ Y to CT
is as follows,

∆L′(CT ′, D) = ∆L′(CT ′ | D) + ∆L′(D | CT ′) ,

∆L′(CT ′ | D) = − LN(|Z|)−
∑
l(Z)

log(|A|)

−
∑

Z[i]∈Z

∑
z∈Z[i]

L(codep(z | ST )) ,

∆L′(D | CT ′) = s log s− s′ log s′ + z log z − x log x

+ x′ log x′ − y log y + y′ log y′ .

That is, the estimated gain of adding pattern Z to CT thus consists
of the estimated gain in the size of the data, minus the increase in
the size of CT . Note that, ∆L′ is an estimate and for simplicity
we ignore the effects of adding pattern Z to code table CT on the
pattern and (no-)gap usages of patterns other than X and Y .

4.3 Pruning
After the acceptance of a new pattern in our code table other

patterns may have become redundant as their role may have been
overtaken by the newer pattern. Therefore, each time a pattern X is
successfully added to the code table, we consider removing those
Y ∈ CT for which the usage decreased and hence the pattern code
length increased. Algorithm 3 describes how a code table is pruned.

4.4 Generating Pattern Variations
To efficiently discover a large and diverse set of promising pat-

terns – without breadth-first-search, which takes long to find large
patterns, and without depth-first-search, which would be prohibitively
costly – we consider variations of each accepted pattern to the code
table. That is, when a pattern leads to a gain in compression, we
consider all ways by which we can extend it using events that occur
in the gaps of its usages. This way we consider a rich set of candi-
dates, plus speed up the search as we are automatically directed to
patterns that actually exist in the data. Algorithm 4 outputs a code
table possibly containing variations of the lastly added pattern Y .



Algorithm 3 The PRUNE Algorithm

Input: The dataset D and a code table CT
Output: A pruned code table
1: Cand ← X ∈ CT with decreased usage
2: for X ∈ Cand in Prune Order do
3: if L(D,CT \X) < L(D,CT ) then
4: CT ← CT \X
5: Cand ← Cand ∪ {Y ∈ CT | usage decreased}
6: Cand ← Cand \X
7: return CT

Algorithm 4 The VARIATIONS Algorithm

Input: The dataset D, a pattern Y and a code table CT
Output: A code table possibly containing variations of Y
1: Cand ← Y × gap events(Y )
2: for X ∈ Cand do
3: if L(D,CT ⊕X) < L(D,CT ) then
4: CT ← PRUNE(D,CT ⊕X)
5: CT ← VARIATIONS(D,X,CT )

6: Cand ← Cand \X
7: return CT

For example, consider the dataset {a, b, a, b, c, a, c, a} where
pattern {a, a} occurs twice with a gap of length one. After adding
pattern {a, a} to CT we consider the patterns {a, b, a} and {a, c, a}
for addition to CT .

4.5 Faster Search through Caching
The space of all possible multivariate patterns is extremely rich.

Moreover, in practice many candidate patterns will not lead to any
gain in compression. In particular, those that occur only very infre-
quently in the data are unlikely to provide us any (or much) gain
in compression. We thus can increase the efficiency of DITTO by
allowing the user to impose a minimum support threshold for candi-
dates. That is, only patternsX will be evaluated if they occur at least
σ times in the data. To avoid time and again re-evaluating candidates
of which we already know that they are infrequent, we cache these
in a tree-based data structure. Only materialised infrequent pattern
are added to the tree. Future candidates are only materialised when
none of its subsets are present in the tree, as by the a priori principle
we know it can not be frequent [15].

Even though this tree can theoretically grow very large, in practice
it stays relatively small because we only consider a small part of the
candidate space. That is, we only combine patterns we know to be
frequent to form new candidate patterns. In practice, we found that
DITTO only has to cache up to a few thousand candidates. Using
this tree we see speed ups in computation of 2 to 4 times, while also
memory consumption is strongly reduced. For some datasets the
difference is even bigger, up to an order of magnitude.

In this work we only consider keeping track of infrequent candi-
dates. Note, however, that at the expense of some optimality in the
search additional efficiency can be gained by also storing rejected
candidates in the tree. In both theory and practice, however, candi-
dates rejected in one iteration may lead to compression gain later in
the process [24].

4.6 Complexity
The time complexity of DITTO has a simple upper bound as

follows. In the worst-case we cover the data for each frequent
pattern from the set of all frequent patterns F in each iteration.

Covering takes O(|CT | × ||D||) and the number of iterations is
worst-case O(|F|). Together, the worst-case time complexity is

O(|F|2 × |CT | × ||D||) .

From the experiments in Section 6, however, we will learn that this
estimate is rather pessimistic. In practice the code table stays small
(|CT | � |F|), we only consider a subset of all frequent patterns
and we do this greedily. In practice the runtime of DITTO therefore
stays in the order of seconds to minutes.

5. RELATED WORK
The first to use MDL to summarise transaction data were Siebes

et al. [22], resulting in KRIMP [32]. It shifted focus from the long-
standing goal of mining collections of patterns that describe the
set of all frequent patterns, e.g. closed [20] frequent patterns, to a
pattern set that describes the data.

Similar to the transaction data domain, summarisation of se-
quential data also developed from frequent pattern mining. For
sequential data, the key types of patterns studied are frequent subse-
quences [21], and frequent episodes [1, 16]. As with all traditional
pattern mining approaches, redundancy is also a key problem when
mining sequential patterns [33, 9]. To this end, Tatti and Vreeken
[28] proposed to instead approximate the MDL-optimal summarisa-
tion of event sequence data using serial episodes. Their method SQS
deals with many challenges inherent to this type of data, such as the
importance of the order of events and the possibility for patterns to
allow gaps in their occurrences – aspects we build upon and extend.
Other methods exist, but either do not consider [2, 14] or do not
punish gaps [10, 11] with optimal codes. None of these methods
consider, or are easily extended to multivariate sequential data.

One of the first to consider multivariate sequential patterns, by
searching for multi-stream dependencies, were Oates et al. [19].
Tatti and Cule [27] formalised how to mine the set of closed frequent
patterns from multivariate sequential data, where patterns allow
simultaneous events. In [35] the mining of high utility sequential
patterns is studied, where they allow simultaneous events. Chen et
al. [5] and Moerchen et al. [18] study mining interval-based patterns,
where frequency is determined by how often univariate patterns
co-occur within a given interval. All these methods are traditional
pattern mining techniques in the sense that they return all patterns
that pass an interestingness threshold.

Whereas traditional pattern mining techniques often only consider
discrete data, there does exist extensive literature on mining patterns
in continuous valued time series. These patterns are often called
‘motifs’ [12, 6]. For computational reasons, many of these methods
first discretise the data [13]. Most motif discovery algorithms con-
sider only univariate data. Example proposals for motif discovery
in a multivariate setting include that by Tanaka et al. [25], who first
transform the data into one dimension before the pattern discovery
process and do not consider gaps, and by [17], who do not allow
patterns to temporally overlap even if they span different dimensions
and do not consider variable-length motifs. More recently Vespier
et al. [30], mine characteristic multi-scale motifs in sensor-based
time series but aim at mining all motifs, not a succinct summary.

To the best of our knowledge there are no methods yet to sum-
marise multivariate sequential data, other than regarding each at-
tribute separately or with restrictions on the pattern language [3].
In this work we introduce DITTO to discover important sequential
associations between attributes by mining succinct summaries using
rich multivariate patterns.



6. EXPERIMENTS
We implemented DITTO in C++ and generated our synthetic data

and patterns using Python. We make our code available for research
purposes.2 All experiments were conducted on a 2.6 GHz system
with 64 GB of memory. For our experiments on real data we always
set the minimum support threshold as low as feasible, unless domain
knowledge suggests otherwise.

We evaluate DITTO on a wide range of synthetic and real world
data. As discussed in Sec. 5, there exist no direct competitors to
DITTO. Traditional pattern mining and motif discovery methods
‘simply’ mine all patterns satisfying some constraints. For sum-
marising sequential data, most existing methods consider univariate
data [28, 10]. The only summarisation approach for multivariate se-
quential data considers the special case where attributes are ordered
(e.g. frequency bands) [3], whereas we consider multivariate sequen-
tial data in general. We empirically compare DITTO to SQS [28].
We do so by applying SQS to each univariate sequence Si ∈ D,
combining these results into one pattern set.

6.1 Synthetic Data
To validate whether DITTO correctly identifies true multivariate

sequential patterns from a dataset, we first consider synthetic data.
In particular, we generate random data in which we plant a number
of randomly generated patterns of different characteristics. Clearly,
ideally the true patterns are recovered. Moreover, ideally no other,
spurious patterns that are only due to noise are returned. To this end
we perform an extensive set of experiments varying the number of
events, the number of attributes and the alphabet size of the dataset,
and the number, frequency and size of the planted patterns.

Data Generation
As noted in Table 1, for each experiment we generated t(D) random
multi-events on |A| attributes (i.e. a total of ||D|| events) with an
alphabet size per attribute of |Ωi|. Further, after the data generation
|P| patterns are planted, where each pattern X has a size ||X||, a
5% chance on a gap between subsequent multi-events, and a support
such that each pattern spans support% of all events in the dataset.
An example of an insertion of a pattern in a random dataset that does
not lead to an actual occurrence of that pattern is when due to the gap
chance the minimal window of the pattern contains too many gaps.
We do not allow patterns to overwrite each other during generation,
as this makes evaluation much more complicated – i.e. it becomes
unclear whether not recovering a pattern is an artefact of the search
or of the data generation process. Further, only for experiments
with 50 attributes, we prevented that pattern occurrences interleave
and did not allow an event to be used in more than one pattern to
assure that the planted patterns are actually present in the data. This
restriction is justified because we are merely testing whether our
algorithm is able to find multivariate patterns in multivariate data
and without it patterns will easily crowd each other because of the
high number of attributes.

Evaluation
We evaluate the quality of the pattern set discovered by considering
how close they represent the planted patterns. In particular, follow-
ing [34] we consider both exact (=) and subset (⊂) matches. Exact
indicates that the pattern exactly corresponds with a planted pattern,
whereas subset implies that it is only part of a planted pattern. In
addition, we consider how well the planted patterns are recovered;
we report how many of the events of the ground truth pattern set P
we can cover with the discovered patterns. The higher this ratio, the

2http://eda.mmci.uni-saarland.de/ditto/

better this result. Last, we consider the gain in compression of the
discovered model over the initial, Standard Code Table. The higher
this number, the better – the best score is attained when we recover
all patterns exactly, and no further noise.

Results
We first consider the traditional approach of mining all (closed)
frequent multivariate patterns. We do so using the implementation of
Tatti and Cule [27]. We use a minimal support of 90% of the lower-
support planted pattern. This choice is made to ensure that even
when not all insertions of a pattern result in an actual occurrences,
it can still be discovered. For the most simple synthetic dataset we
consider, corresponding to the first row of Table 1, this takes a few
days, finally reporting a lower bound of 14 092 944 394 frequent
patterns, and returning 6 865 closed frequent patterns – hardly a
summary, knowing there are only 5 true patterns. In the remainder
we therefore do not consider traditional pattern mining.

Next, we consider DITTO and SQS. We report the results in Ta-
ble 1. On the right hand side of the table we see that DITTO recovers
all planted patterns, and does not report a single spurious pattern
(!). In all cases it recovers the ground truth model, and obtains the
best possible gain in compression. Next to the exactly identified
planted pattern sometimes it also identifies some subsets of the
planted patterns. This is a result of the data generation, i.e. subsets
are sometimes included in the code table when planted occurrences
contain too many gaps to be covered with the exact pattern. The
patterns SQS discovers, on the other hand, are only small univariate
fragments of the ground truth, recovering roughly only 10% to 30%
of the ground truth. The near-zero gains in compression corroborate
it is not able to detect much structure.

Regarding runtime and scalability, DITTO scales very favourably.
Although SQS is faster it considers only the much simpler case of
univariate data and patterns. DITTO requires seconds, up to a few
minutes for the largest data, even for very low minimal support
thresholds. Analysing the runtime of DITTO in more detail show
how well its heuristics work; most time is spent on computing the
minimal windows for candidates, of which up to ten thousand are
materialised. Only for a few hundred of these a full cover of the data
is required to evaluate their contribution to the model. Smart imple-
mentation for computing the minimal windows of all candidates in
one pass will hence likely speed up DITTO tremendously.

6.2 Real World Data
As case studies we consider 4 datasets. An ECG sensor dataset, a

structural integrity sensor dataset of a Dutch bridge, the text of the
novel Moby Dick tagged with part-of-speech tags, and a multilingual
text of an European Parliament resolution. See Table 2 for their
characteristics.

ECG.
To investigate whether DITTO can find meaningful patterns on

real-valued time series we consider a well-known ECG dataset.3

For ease of presentation, and as our main goal is to show that
DITTO can discover multivariate patterns, we consider only two
sensors. As preprocessing steps we applied 3 transformations: we
subsampled the data, we transformed it from absolute to relative,
and we discretised it using SAX [13]. For the subsampling we
replaced each 5 subsequent values with their average, thus creating
a sequence 5 times shorter. Thereafter, we transformed the absolute
data into relative data by replacing each value by the difference
of its successor and its own value. Lastly, we discretised each

3ECG – physionet.org/physiobank/database/stdb



Table 1: DITTO discovers all planted patterns on all synthetic datasets, without picking up on noise. Given are the base statistics of the
synthetic datasets, and the results of SQS and DITTO. For SQS and DITTO we give the number of exactly recovered patterns (=) and the
number of discovered patterns that are subsets of planted patterns (⊂). Further, we report how much of the ground truth is recovered (R%), as
well as the gain in compression over the singleton-only model (L%), for both higher is better. Last, we give the runtime in seconds.

Data Planted Patterns SQS DITTO

||D|| t(D) |A| |Ωi| |P| ||X|| support = ⊂ R% ∆L% time = ⊂ R% ∆L% time

100 000 10 000 10 100 5 3–7 1% 0 1 9.5 0.1 3 5 0 100.0 3.0 2
100 000 10 000 10 100 5 5 10% 0 0 0 0 3 5 5 100.0 31.6 31
100 000 10 000 10 1000 5 3–7 1% 0 1 8.0 0 12 5 0 100.0 2.9 4
100 000 10 000 10 100 20 3–7 1% 0 9 19.5 0.9 4 20 0 100.0 12.9 15
500 000 10 000 50 100 5 3–7 1% 0 0 0 0 15 5 1 100.0 3.1 41
500 000 50000 10 100 5 3–7 1% 0 1 10.0 0.2 4 5 0 100.0 3.1 28

1 000 000 100000 10 100 5 3–7 1% 0 4 31.8 0.3 4 5 14 100.0 3.3 374

Table 2: Results on 4 real datasets. We give the basic statistics, as well as the number of patterns and relative gain in compression for both SQS
and DITTO. The high compression gains show that DITTO discovers much more relevant structure than SQS.

Data SQS DITTO

Dataset t(D) |D| |A| |Ω| support |P| ∆L% time (s) |P| ∆L% time (s)

ECG 2 999 1 2 6 10 57 38.8 1 11 75.3 360
Bridge 5 000 1 2 10 100 21 58.8 1 22 76.3 325
Moby Dick 2 248 103 2 887 5 20 1.7 3 79 14.3 102
Text 5 960 115 3 4 250 10 35 1.6 12 51 2.2 136

Figure 5: The top ordered pattern for the ECG data in the code table
(left) and its first 2 occurrences in the data (right). The first time
step of an occurrence is marked in green, subsequent ones in blue,
and the last in red.

attribute into 3 intervals using SAX. Using a minimum support of
10, within 360 seconds DITTO discovers a code table containing 11
non-singleton patterns that capture the main structure of the data.
In Figure 5 we plotted 2 occurrences of the top ordered pattern of
this code table. This is a multivariate pattern which shows a very
characteristic repeating structure in the data comprising a longer flat
line ending with a peak on both attributes simultaneously. Showing
the power of our pattern language, note that the pattern does not
define any values on the second attribute for the first and second-last
time steps (indicated with arrows in Figure 5), while it does on
the first attribute. This flexibility allows us to use this multivariate
pattern to describe a larger part of the data.

Like for the synthetic data, we also ran SQS. Again we see that as
it cannot reward multivariate structure it does not obtain competitive
gains in compression. Close inspection shows it returns many small
patterns, identifying consecutive values.

Bridge.
Next we consider the setting of monitoring the structural integrity

of a bridge in the Netherlands.4 Amongst the collected sensor data
are the strain, vibration and temperature. We selected 2 strain sen-
sors (1 Hz) on consecutive pillars of the bridge and decomposed the
signals into low, medium and high frequency components using tech-
niques from [29]. We used the medium frequency components, after
preprocessing, as our dataset. As preprocessing, we transformed the
absolute values into relative values by replacing each value by the
difference of its successor and its own value. We then discretised
each z-normalised attribute into 5 intervals using SAX [13].

For a support threshold of 100, it takes DITTO 325 seconds to
discover a code table with 22 non-singleton patterns. Although
only one more than SQS at the same threshold, the patterns DITTO
discovers are more descriptive. That is, they are multivariate and
larger, leading to a much higher gain in compression. Moreover,
the patterns it discovers correctly show the correlation between
the attributes, whereas the patterns SQS discovers only identify
univariate patterns.

Moby Dick.
For more interpretable results, we next evaluate on text data. In

particular we considered the first chapter of the book Moby Dick,
written by Herman Melville,5 aligning the text with part-of-speech
tags.67 That is, one attribute comprises a stream of the words used
in the book; each sentence is regarded as a sequence. The other
attribute contains the tags that identify the type and function of each
of these words. For example,

4Bridge – infrawatch.liacs.nl
5www.gutenberg.org
6http://nlp.stanford.edu/software/tagger.shtml
7https://gate.ac.uk/wiki/twitter-postagger.html



attribute 1: VB PRP NNP
attribute 2: Call me Ishmael

for which we will further use the following notation, where each
time step is enclosed by curly brackets and the symbols for dif-
ferent attributes within a time step are divided by a comma: {VB,
Call}{PRP, me}{NNP, Ishmael}. A short description for the part-
of-speech tags in this example can be found in Table 4.

With a support threshold of 5, it takes DITTO 102 seconds to
discover 79 non-singleton patterns. After studying the resulting
pattern set we found that the identified patterns show highly intuitive
multivariate structure. The highest ordered patterns together with
examples of text fragments that match these patterns are shown in
Table 3.

Table 3: The highest ordered patterns in the code table for the Moby
Dick dataset, together with example fragments of from the text
which correspond to the patterns.

Pattern Example text fragments
{TO, to}{VB}{DT, a}{NN} to get a broom, to buy (him) a coat
{DT, the}{JJ}{NN} the green fields, the poor poet
{DT, a}{JJ}{NN} a mazy way, a hollow trunk
{DT, the}{JJ}{NNS} the wild conceits, the old (sea-)captains
{PRP, i}{RB}{VB} I quietly take, I always go
{EX, there}{VBZ, is} there is

Table 4: A short description of the part-of-speech tags used in the
examples in this paper for the Moby Dick experiment.

Tag Explanation
DT Determiner
EX Existential there
JJ Adjective
NN Noun, singular or mass
NNP Proper noun, singular
NNS Noun, plural
PRP Personal pronoun
RB Adverb
TO to
VB Verb, base form
VBZ Verb, 3rd person singular present

Given the modest compression gain that SQS obtains, see Table 2,
it is clear there is not much structure in each of the attributes sep-
arately; DITTO, however, is able to find a significant amount of
multivariate structure.

Multilingual Text.
As a final experiment, to further corroborate whether DITTO dis-

covers meaningful and interpretable multivariate patterns, we con-
sider mining patterns between the same text in different languages.
To this end we collected a text in English, French and German from
the European Parliament register of documents.8 In this data we
expect frequent combinations of words within one (or more) lan-
guage(s), as well as (and of more interest), multivariate patterns in
the form of translations between the languages. As a preprocessing
step all text data was stemmed and stop words were removed. To
keep the different languages aligned we regarded every paragraph
as a subsequence and padded shorter aligned subsequences with
sentinel events which are ignored by DITTO. This ensures that the
8Text – www.europarl.europa.eu/RegistreWeb

difference in length of the sentences in different languages will not
lead to very big misalignments.

For a support threshold of 10, DITTO takes 136 seconds to dis-
cover 51 non-singleton patterns. The highest ordered pattern, i.e. the
one that aids compression most, is a translation pattern; it identifies
the correct relation between the French word relève, the German
phrase stellt fest dass and the English word note. Other high ordered
patterns are the English EUR (x) million and the German (x) Millio-
nen EUR, and the words parliament, Parlament and parlement in
English, German and French, respectively.

The modest compression gain of DITTO over SQS, see Table 2,
indicates this data is not very structured, neither univariately, nor
multivariately. One of the reasons being the different order of
words between different languages which results in very large gaps
between translation patterns.

7. DISCUSSION
Overall, the experiments show that DITTO works well in practice.

In particular, the experiments on synthetic data show that DITTO
accurately discovers planted patterns in random data for a wide
variety of data and patterns dimensions. That is, DITTO discovers
the planted patterns regardless of their support, their size, and the
number of planted patterns – without discovering any spurious
patterns. DITTO also performed well on real data – efficiently
discovering characteristic multivariate patterns.

The results on the annotated text are particularly interesting; they
give clear insight in non-trivial linguistic constructs, characterising
the style of writing. Besides giving direct insight, these summaries
have high downstream potential. One could, for example, use them
for comparative analysis [4]. For example, for text identifying
similarities and differences between authors, for sensor networks
detecting and describing concept drift over time, and characterising
differences between patients.

Although DITTO performs very well in practice, we see ways to
improve over it. Firstly, MDL is not a magic wand. That is, while
our score performs rather well in practice, we carefully constructed
it to reward structure in the form of multivariate patterns. It will be
interesting to see how our score and algorithms can be adapted to
work directly on real-valued data. Secondly, it is worth investigating
whether our current encoding can be refined, e.g. using prequential
codes [4]. A strong point of our approach is that we allow for noise
in the form of gaps in patterns. We postulate that we can further
reduce the amount of redundancy in the discovered pattern sets by
allowing noise in the occurrences of a pattern, as well as when we
allow overlap between the occurrences of patterns in a cover. For
both cases, however, it is not immediately clear how to adapt the
score accordingly, and even more so, how to maintain the efficiency
of the cover and search algorithms.

Last, but not least, we are interested in applying DITTO on vast
time series. To accomodate, the first step would be to investigate
parallelisation; the search algorithm is trivially parallelisable, as
candidates can be generated and estimated in parallel, as is the
covering of the data. More interesting is to investigate more efficient
candidate generation schemes, in particular top-k mining, or lazy
materialization of candidates.

Previous work has shown that MDL-based methods work par-
ticularly well for a wide range of data mining problems, including
classification [32, 11] and outlier detection [23]. It will make for
interesting future work to investigate how well DITTO solves such
problems for multivariate event sequences. Perhaps the most promis-
ing direction of further study is that of causal inference [31].



8. CONCLUSION
We studied the problem of mining interesting patterns from mul-

tivariate sequential data. We approached the problem from a pattern
set mining perspective, by MDL identifying the optimal set of pat-
terns as those that together describe the data most succinctly. We pro-
posed the DITTO algorithm for efficiently discovering high-quality
patterns sets from data.

Experiments show that DITTO discovers patterns planted in syn-
thetic data with high accuracy. Moreover, it scales favourably with
the length of the data, the number of attributes, and alphabet sizes.
For real data, it discovers easily interpretable summaries that provide
clear insight in the associations of the data.

As future work, building upon our results on the part-of-speech
tagged text data, we are collaborating with colleagues from the
linguistics department to apply DITTO for analysis of semantically
annotated text and for inferring patterns in morphologically rich
languages.
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