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Abstract—Causal inference is one of the fundamental prob-
lems in science. In recent years, several methods have been
proposed for discovering causal structure from observational
data. These methods, however, focus specifically on numeric
data, and are not applicable on nominal or binary data.

In this work, we focus on causal inference for binary data.
Simply put, we propose causal inference by compression. To
this end we propose an inference framework based on solid
information theoretic foundations, i.e. Kolmogorov complexity.
However, Kolmogorov complexity is not computable, and hence
we propose a practical and computable instantiation based on
the Minimum Description Length (MDL) principle.

To apply the framework in practice, we propose ORIGO,
an efficient method for inferring the causal direction from
binary data. ORIGO employs the lossless PACK compressor,
works directly on the data and does not require assumptions
about neither distributions nor the type of causal relations.
Extensive evaluation on synthetic, benchmark, and real-world
data shows that ORIGO discovers meaningful causal relations,
and outperforms state-of-the-art methods by a wide margin.

Keywords-causal inference; information theory; mdl

I. INTRODUCTION

Causal inference, telling cause from effect, is perhaps one
of the most important problems in science. To make absolute
statements about cause and effect, carefully designed exper-
iments are necessary, in which we consider representative
populations, instrument the cause, and control for everything
else [1]. In practice, setting up these experiments is very
expensive, or even impossible.

The study of the effect of combinations of drugs is
good example. Combining drugs can be positive as the
overall effect may be amplified, such as used in combination
treatment of HIV and cancer, but can also be negative as
there can be severe and possibly lethal side effects. Even
without considering the ethical side, for all but the smallest
number of drugs there are so many possible combinations
that it becomes practically impossible to test all of these in
a controlled manner.

We hence consider causal inference from observational
data. That is, the goal is to infer the most likely direction
of causation from data that has not been obtained in a com-
pletely controlled manner but is simply available. In recent
years large strides have been made in the theory and practice
of discovering causal structure from observational data [1]–
[3]. Most methods, and especially those that defined for pairs

of variables, however, can only consider continuous-valued
or discrete numeric data [4], [5] and are hence not applicable
on binary data such as one would have in the above example.

We propose a general framework for causal inference on
observational data. We base it on the solid foundations of
Kolmogorov complexity [6], [7], and develop a score for
pairs of data objects that identifies not only the direction [2],
but also quantifies the strength of causation, all the while
being unbiased to the complexities of the individual objects,
without making any assumptions on the distribution nor the
type of causal relation between the data objects, and without
requiring any parameters to be set.

Kolmogorov complexity is not computable, however, and
hence we derive a practical, computable version based on the
Minimum Description Length (MDL) principle [8], [9]. To
infer causal directions from binary data we propose ORIGO.1

ORIGO is both efficient and parameter-free. It builds on
the MDL-based PACK algorithm [10], and compresses data
using decision trees. Simply put, it encodes the data one
attribute at a time using a decision tree. Such a tree may
only split on previously encoded attributes. We use this
mechanism to measure how much better we can compress
the data of Y given the data of X , simply by (dis)allowing
the trees for Y to split on attributes of X , and vice versa.

Extensive experiments on synthetic, benchmark, and real-
world data show that ORIGO performs well in practice.
It is robust to noise, dimensionality, and skew between
cardinality of X and Y . It has high statistical power, and
outperforms a recent proposal for discrete data by a wide
margin. Further, ORIGO also performs well on continuous-
valued benchmark data after discretisation. Moreover, the
case studies confirm it provides intuitive results.

The main contributions of our work are as follows

• a theoretical framework for causal inference from obser-
vational data based on Kolmogorov complexity,

• an unbiased indicator that quantifies the causal direction
between pairs of data objects X and Y ,

• a practical framework for causal inference based on MDL,
• a causal inference method for binary data, ORIGO.
• an extensive set of experiments on synthetic and real data.

1ORIGO is Latin for origin



II. PRELIMINARIES

In this section, we introduce notations and background
definitions we will use in subsequent sections.

A. Notation

In this work, we consider binary data. A binary dataset
D is a binary matrix of size n-by-m consisting of n rows,
or transactions, and m columns, or attributes. A row is a
binary vector of size m. We use the notation Pr(ai = v) to
express the probability of an attribute ai assuming a value
v. The decision tree for ai is denoted by Ti. All logarithms
are to base 2, and by convention we use 0 log 0 = 0.

B. Kolmogorov Complexity

To develop our causal inference principle, we need the
concept of Kolmogorov complexity [6], [11], [12]. Below
we give a brief introduction.

The Kolmogorov complexity of a string x, denoted K(x),
is the length of the shortest binary program p∗ to a Universal
Turing machine U that generates x and halts. Let `(.)
be a function that maps a binary string to its length, i.e.
` : {0, 1}∗ → N. Then, K(x) = `(p∗). More formally, the
Kolmogorov complexity of a string x is given by

K(x) = min{`(p) | p ∈ {0, 1}∗ and U(p) = x} ,

where U(p) = x indicates that when the binary program p
is run on U , it generates x and halts. In particular, p∗ is the
most succinct algorithmic description of x. Intuitively, K(x)
is the length of the ultimate lossless compression of x. The
conditional Kolmogorov complexity, denoted K(x | y), is
the length of the shortest binary program p∗ that generates
x and halts when y is provided as an input to the program.

Although Kolmogorov complexity is defined over binary
strings, we can interchangeably use it over data objects as
any finite data object can be encoded into a string [7].

To derive our causal inference rule, we need the Kol-
mogorov complexity of a set of data objects. For a set of data
objects X = {x1, x2, . . . , xn}, its Kolmogorov complexity,
denoted K(X), is the length of the shortest binary program
to a Universal Turing machine U that lists the elements of
X and halts [13]. More formally, K(X) is given by

K(X) = min{`(p) | p ∈ {0, 1}∗ and
U(p) = 〈x1, 〈x2, . . . , 〈xn−1, xn〉 . . . 〉〉} ,

where U(p) = 〈x1, 〈x2, . . . , 〈xn−1, xn〉 . . . 〉〉 indicates that
when the binary program p is run on U , it generates
the listing of the elements in X . In turn, the conditional
complexity K(X | Y ) is the length of the shortest binary
program to U that generates listing of elements of X given
set of data objects Y as auxiliary information.

We refer the interested reader to Li & Vitányi [7] for more
details on Kolmogorov complexity.

III. CAUSAL INFERENCE BY ALGORITHMIC
INFORMATION THEORY

Suppose we are given two sets of data objects X and Y
that are correlated. We are interested in inferring the causal
relationship between X and Y . In other words, we want to
infer whether X causes Y , whether Y causes X , or they
are only correlated. To do so, we assume causal sufficiency.
That is, we assume there are no confounders – there are no
hidden common causes Z of X and Y .

Loosely speaking, we infer that X is likely a cause of
Y if the shortest joint description of X and Y is given by
the description of X followed by the description of Y given
X . Intuitively, we deduce that X causes Y , if it is easier to
describe X first, and then to describe Y given X than the
other way around. We use X → Y to indicate X causes Y ,
and Y → X for the other way around.

A. Causal Inference by Kolmogorov Complexity

Next we develop our causal inference rule from the
ground on up using Kolmogorov complexity.

A cornerstone postulate in causal inference states that if
X causes Y , it is easier to describe Y using X than the
other way around [1]. From Algorithmic Information Theory
(AIT) standpoint, this means, if X causes Y , X has more
information about Y than the other way around. Therefore,
if we can measure the amount of information X provide
towards the most succinct algorithmic description of Y , and
vice versa, we can perform causal inference.

In terms of AIT, if X causes Y , the shortest program
PY |X that computes Y from X , will be much simpler than
the shortest program PX|Y that computes X from Y . This
algorithmic viewpoint of causality bears close resemblance
to its statistical counterpart – the functional causal model [1]
– where an effect is modelled as a function of its cause,
and an unobserved noise term. Intuitively, program PY |X
consists of two parts; the compressible part of Y given
X , i.e. the causal mechanism, or function that generates
Y from X , and the incompressible part of Y given X ,
which is the randomness specific to Y and independent of
X , which is necessary to reconstruct the exact observed
values of Y given X . Importantly, PY |X will be much
simpler than PX|Y , the program that generates X from
Y , as it does not have to ‘reverse-engineer’ the process.
Therefore, in terms of the Kolmogorov complexity, we
expect K(Y | X) < K(X | Y ) if X causes Y .

To infer the causal direction, we can take the absolute
difference between K(Y | X) and K(X | Y ). However, in
practice, the complexities of X and Y are different. As a
result, inferring causal direction using the absolute difference
would be biased towards the simplest object. Therefore, to
reliably identify the correct direction, we have to normalise.

One way to normalise is to consider the relative condi-
tional complexity [5]. That is, we look at the reduction in
the complexity of Y knowing X . More formally, the relative



amount of directed information from X to Y using relative
conditional complexity, denoted δX→Y , is

δX→Y =
K(Y | X)

K(Y )
, (1)

and we define δY→X analogous. δX→Y takes a value of 1
when X has no information about Y and will be close to 0
when X has all the information about Y . If δX→Y < δY→X ,
we infer that X is likely to have caused Y than vice versa.
Alternatively, if δY→X < δX→Y , we infer Y → X .

While better than simple conditional complexity, the rela-
tive conditional complexity still suffers from undue bias, this
time towards the more complex set of data objects. That
is, when we have two sets of data objects with different
complexities, the relative conditional complexity favours the
causal direction from more complex set of data objects
towards the more simple one.

More formally, let X be more complex than Y , i.e.
K(X) > K(Y ). Now even if both X and Y contribute
equal amount of information in the succinct description of
each other, we will have δX→Y < δY→X due to different
quantities in the normalisation in both directions. To make
things worse, relative conditional complexity is also prone
to free-rider causal rules. To show this, by slightly abusing
the notation, we use xz for a set {x, z} and K(y | xz) for
K(y | x, z). By the property of Kolmogorov complexity, we
have K(y | xz) ≤ K(y). As a result, δxz→y ≤ δx→y . In
particular, if x is the cause of y then we are likely to infer
xz → y. That is, other data objects can piggyback on x
thereby giving us redundant causal rules.

One way to cope with this problem is to consider the com-
plexity of both X and Y . That is, instead of using relative
conditional complexity, we take the relative joint complexity.
We define the relative amount of directed information from
X to Y using relative joint complexity, denoted ∆X→Y , as

∆X→Y =
K(X) +K(Y | X)

K(X) +K(Y )
, (2)

and again defining ∆Y→X analogously. Importantly, the
normalising term is the same on both directions – there is
no bias due to the complexities of the individual objects.

It is important to note that in general the symmetry
of information implies K(X) + K(Y | X)

+
= K(Y ) +

K(X | Y ) [7]. As a result, the literature often claim that
cause cannot be distinguished from an effect using their
joint description. However, a recent result by Janzing &
Schölkopf [2] shows that the additive equality does not hold
when X causes Y or vice versa. In other words, if X → Y ,
there is indeed an asymmetry between cause and effect. This
is exactly the asymmetry we use in our causal inference rule.

In particular, Equation 2 takes a value of 1 when X has
no information about Y . The smaller the value (< 1), the
more the information X has about Y . If ∆X→Y < ∆Y→X ,
X has more information about Y and by the direction of

information, we infer that X is likely to be the cause of Y
than vice versa. If ∆Y→X < ∆X→Y , we infer Y → X . If
∆X→Y = ∆Y→X , we are undecided.

Causal inference using algorithmic information theory has
a number of powerful properties. First, we do not need to
assume the distribution of data as we only need to consider
the data objects. Second, the inference rule is generic in
the sense that we are not restricted to one type of data.
Third, we do not need to assume any specific kind of causal
mechanism between X and Y , nor do we need to assume
anything about the shape or type of noise within the data.

Although Kolmogorov complexity has sound theoretical
foundations, due to the widely known halting problem it is
not computable. We can approximate Kolmogorov complex-
ity from above through lossless compression, however. More
generally, the Minimum Description Length (MDL) prin-
ciple provides a statistically sound and computable means
for approximating Kolmogorov complexity. Next we discuss
how MDL can be used for causal inference.

B. Causal Inference by MDL

The Minimum Description Length (MDL) [8] principle
is a practical version of the Kolmogorov complexity. It
circumvents the computability issue of the Kolmogorov
complexity by restricting the programs to those that always
halt, yet are general enough to allow us to capture most
of the regularities. Moreover, we can select these programs
using our prior knowledge of the problem domain.

The MDL principle has its root in the two-part decom-
position of Kolmogorov complexity [7]. It can be roughly
described as follows [9]. Given a set of models M and
data D, the best model M ∈ M is the one that minimises
L(M) + L(D | M), where L(M) is the length, in bits, of
the description of the model, and L(D | M) is the length,
in bits, of the description of the data when encoded with
M . Intuitively L(M) represents the compressible part of
the data, and L(D |M) represents the noise in the data.

For our goal we will need a model class M, containing
causal models MX→Y = (MX ,MY |X) where MX is the
model that describes the structure of X , and MY |X is a
model for Y given X . Now assuming that we have already
defined our causal model class M, we can approximate
K(X) using MDL by L(X,MX), which is defined as

L(X,MX) = L(MX) + L(X |MX) ,

where L(MX) is the length, in bits, of the description of
the MDL optimal model for X , and L(X | MX) is the
length, in bits, of the description of X when encoded with
MX . Likewise for K(Y ). We can approximate K(Y | X)
by L(Y,MY |X | X), which is defined as

L(Y,MY |X | X) = L(MY |X) + L(Y |MY |X , X) ,

where L(MY |X) is the length, in bits, of the description of
the causal model from X to Y , and L(Y | MY |X , X) is



the length, in bits, of the description of Y when encoded
with MY |X given the data of X as auxiliary information.
Instantiating Equation 2 with MDL, we get the relative
amount of directed information from X to Y using MDL,
denoted ∆̂X→Y , as

∆̂X→Y =
L(X,MX) + L(Y,MY |X | X)

L(X,MX) + L(Y,MY )
, (3)

defining ∆̂Y→X analogously. As with Equation 2, ∆̂ takes a
value of 1 when X has no information about Y . The smaller
the value (< 1), the more the information X has about Y .
We infer X → Y , if ∆̂X→Y < ∆̂Y→X . Alternatively, when
∆̂Y→X < ∆̂X→Y , we infer Y → X . When ∆̂X→Y =
∆̂Y→X , we conclude that X and Y are correlated, but do
not have a causal relation.

IV. CAUSAL INFERENCE BY PACKING DATA

In this section we instantiate the above framework for
binary data. Henceforth, X represents a binary dataset, and
so does Y . To infer the causal direction using the MDL-
based formulation, we need a causal model class suitable
for causal inference on binary dataset. That is, we have to
define our model class that allows to causally explain Y
given X and vice versa.

There are several ways to capture the causal dependencies.
A natural way is to express dependencies in a Directed
Acyclic Graph (DAG) where nodes represent the variables
and directed edges represent the causal dependencies. Al-
ternatively, we can use decision trees – a form of graphical
model – over the variables. With decision trees, we get a
global overview, and capture local dependencies that identify
parts of the data that may causally depend on each other.

We define a set of decision trees as our model class.
As such, we require a compressor for binary data that
uses a set of decision trees as its model class. Importantly,
the compressor should consider both the complexity of the
model and that of the data under the model into account. One
such compressor that fits our requirements is PACK [10]. In
particular, we instantiate the MDL-based causal score based
on Greedy PACK. Next we briefly explain how PACK works.

A. Packing Data

PACK is an MDL based algorithm for discover interesting
itemsets from binary data [10]. To do so, it discovers a set of
decision trees that together encode the data most succinctly.
The authors of PACK show there is a connection between
interesting itemsets and paths in these trees [10]. While we
do not care about these itemsets, it is the decision tree model
PACK infers that is of interest to us.

For example, consider a hypothetical binary dataset with
three attributes a1, a2, and a3. PACK aims at discovering the
set of trees such that we can encode the whole data in as few
as possible bits. In Figure 1(a) – 1(c) we give an example
of the trees PACK could discover. As the figure shows, a1

depends on a2, and a3 depends on both a1 and a2. These
trees identify both local causal dependencies, as well as the
global causal DAG shown in Figure 1(d).

For self containment, we repeat the main aspects of PACK.
Let n be the number of rows in binary data D, and m, the
number of attributes. Let M be a model that consists of a
set of decision trees, M = {T1, T2, . . . Tm}. An attribute ai
is encoded using its decision tree Ti, and hence the number
of bits needed by Ti to encode ai over complete data D
using optimal Shannon code [14] is given by

LD(Ti) =
∑

l∈lvs(Ti )

∑
v∈{0,1}

−nPr(ai = v | l) log Pr(ai = v | l) ,

where lvs(Ti) is the set of all leaves of Ti, and Pr(ai =
v | l) is the empirical probability of ai = v given that
leaf l is chosen [10]. The outer summation represents the
leaves that are selected by testing the values of the other
attributes within the same row, whereas the inner summation
represents the optimal Shannon code length for encoding two
possible values of ai.

The complexity of a leaf l of a tree T is encoded using
refined MDL [9] as

L(l) = log

n′∑
i=0

(
n′

i

)(
i

n′

)i(
n′ − k
n′

)n′−k

,

where n′ is the number of rows for which l is used [10].
To describe a tree Ti ∈ M , the number of nodes in Ti

is encoded first. In doing so, one bit is used to indicate
whether the node is a leaf or an intermediate node. For an
intermediate node, an extra logm bits is used to identify the
attribute representing the node [10]. Let intr(Ti) be the set
of all intermediate nodes of a tree Ti. Therefore, the number
of bits needed to describe the tree Ti and data D using Ti,
denoted L(Ti), is given by

L(Ti) = LD(Ti)+
∑

N∈intr(Ti )

(1+logm)+
∑

l∈lvs(Ti )

(1+L(l)) .

Putting it together, the total number of bits needed to
describe the trees, one for each attribute, and the complete
data D, denoted L(D,M), is given by

L(D,M) =
∑

Ti∈M
L(Ti) . (4)

To discover good models directly from data, Tatti &
Vreeken propose the Greedy PACK algorithm [10]. Greedy
PACK greedily optimises the MDL objective function given
in Equation 4. It starts with a tree model consisting only
of trivial trees – simplest tree without any other attribute as
shown in Figure 1(b). For each attribute, it discovers that
split on another attribute that maximises the compression
without creating cycles in the model. It greedily accepts the
overall best split, and iterates until no further split can be
found that saves any bits. We refer the interested reader to
the original paper [10] for more details on PACK.
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(c) T3, Tree for describing a3
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(d) Dependency DAG con-
structed from the trees in
(a), (b), and (c).

Figure 1. In (a), (b), and (c), we give the example decision trees generated
by PACK for a hypothetical binary dataset containing three attributes,
namely a1, a2, and a3. In (d), we show the DAG identified by those
trees.

B. Instantiating the MDL-based Score

Next we discuss how to use PACK to compute the MDL-
based causal score. To compute L(X,MX), we can simply
run PACK on X . Now, all that remains is to compute
L(Y,MY |X | X), i.e. compress Y given X . However, PACK
does not support conditional compression off-the-shelf. The
naive workaround is to compress X followed by Y together
to get L(X,MX) + L(Y,MY |X | X) in one go. However,
when doing so, we clearly do not want the attributes in X to
depend on the attributes in Y . Therefore we modify PACK
so that an attribute x ∈ X considers only the other attributes
in X as candidate parents for its decision tree. However, for
an attribute y ∈ Y , we consider all the other attributes in X
and Y as candidate parents for its decision tree.

To make it fair, we also compute the denominator of
Equation 3, i.e. L(X,MX) +L(Y,MY ) in one go. For that
we modify PACK so that it only considers the other attributes
in X when constructing a decision tree for an attribute in
X , and it only considers the other attributes in Y when
constructing a decision tree for an attribute in Y . From
here onwards, we refer to the PACK-based instantiation of
Equation 3 as ORIGO, which means origin in latin. Further,
we refer to the PACK-based instantiation of Equation 1 as
ORIGI (nothing special about the name here).

Although our focus is primarily on binary data, we can
infer causal direction from categorical data as well. To this
end, we can binarise the categorical data creating a binary
feature per value. As the implementation of PACK already
provides this feature, we do not have to binarise categorical
data ourselves. Moreover, as we will see in the experiments,
with a proper discretisation, we can infer reliable causal
directions from continuous real-valued data as well.

C. Computational Complexity

Next we analyse the computational complexity of ORIGO.
To compute ∆̂X→Y , we have to run PACK on the full dataset
twice – once for denominator, and once for numerator
in Equation 3. Greedy PACK uses the ID3 algorithm to
construct binary decision trees, therewith the computational
complexity of Greedy PACK is O(2mn), where n is the
number of rows in the data, and m the total number of
attributes in X , and Y . To infer the causal direction, we
have to compute both ∆̂X→Y , and ∆̂Y→X . Therefore, in
the worst case, the computational complexity of ORIGO is
O(2mn). Although this looks horrible, in practice, ORIGO
is fast, and completes within seconds.

V. RELATED WORK

Inferring causal direction from observational data is a
challenging task because of the lack of controlled ran-
domised experiments. However, it has also attracted quite
a lot of attention over the years [1], [2], [15], [16]. Yet,
most of the causal inference frameworks are built for either
continuous real-valued, or discrete numeric data.

Constraint-based approaches like conditional indepen-
dence test [1], [15] require at least three observed random
variables. Moreover, these constraint-based approaches can-
not distinguish Markov equivalent causal DAGs [17] and
therefore cannot decide between X → Y and Y → X .

There do exist methods that can infer the causal direction
from two random variables. Generally, they exploit the
properties of the joint distribution. In particular, the Additive
Noise Models (ANMs) [4], [16], [18], [19] assume that the
effect is governed by the cause and an additive noise, and
the causal inference is done by finding the direction that
admits such a model. Peters et al. [20] proposes an ANM
for discrete numeric data. These methods, however, assume
the joint probability distribution, the class of causal depen-
dencies, as well as the distribution of the noise. Moreover,
as they rely on regression, it is not straightforward to adopt
ANMs for modeling ordinal or nominal variables.

Further, there are methods that use the asymmetry of the
joint distribution to distinguish the cause from the effect. The
linear trace method [21], [22] infers linear causal relations
of the form Y = AX , where A is the structure matrix that
maps the cause to the effect, using the linear trace condition
which operates on A, and the covariance matrix of X , ΣX .
The kernelized trace method [23] can infer non-linear causal
relations, but requires the causal relation to be deterministic,
functional, and invertible. In contrast, we do not make any
assumptions on the causal relation between the variables.

The algorithmic information-theoretic approach views
causality in terms of the algorithmic similarity between
objects. The key idea is that if X causes Y , the shortest
description of the joint distribution P (X,Y ) is given by
the separate descriptions of the distributions P (X) and



P (Y | X) [2]. It has also been used in justifying the additive
noise model based causal discovery [24].

However, as Kolmogorov complexity is not computable,
causal inference using algorithmic information theoretic
frameworks require practical implementations, or notions
of independence. For instance, the information-geometric
approach [3] defines independence via orthogonality in
information space. Janzing & Schölkopf [2] sketch how
comparing marginal distributions, and resource bounded
computation could be used to infer causation, but do not
give practical instantiations. Vreeken [5] propose a causal
framework and instantiates it with the cumulative entropy
to infer the causal direction in continuous real-valued data.

All above methods consider numeric data only. Causal
inference on observational binary or nominal data has seen
much less attention. The classic proposal by Silverstein
et al. [25] relies on a conditional independence test, and
hence require an independent variable Z to be able to
determine whether X and Y are causally related. Our closest
competitor is the very recent proposal by Liu et al. [26].
DC uses distance correlation between empirical distributions
P (X) and P (Y | X) to infer the causal direction from
multivariate categorical data. In contrast, our method does
not only provide the strength of causal direction, but as the
experiments show its decision tree based model allows it to
recognize more subtle dependencies.

VI. EXPERIMENTS

We implemented ORIGO in Python and provide the source
code for research purposes, along with the used datasets, and
synthetic dataset generator.2 All experiments were executed
single-threaded on MacBook Pro with 2.5 GHz Intel Core
i7 processor and 16 GB memory running Mac OS X. We
consider synthetic, benchmark, and real-world data. In par-
ticular, we note that both ORIGO, and ORIGI are parameter-
free. We compare ORIGO against ORIGI, and DC [26].

A. Synthetic Data

To evaluate ORIGO on the data with known ground truth,
we consider synthetic data. In particular, we generate binary
data X and Y such that attributes in Y probabilistically
depend on the attributes of X , termed here onwards as
dependency. Throughout the experiments on synthetic data,
we generate X of size 5000-by-k, and Y of size 5000-by-l.

To this end, we generate data on a per attribute basis.
First, we assume the ordering of attributes – the ordering of
attributes in X followed by the ordering of attributes in Y .
Then, for each attribute, we generate a binary decision tree.
In doing so, we only consider the attributes preceding it in
the ordering as candidate nodes for its decision tree. Then,
each row is generated by following the ordering of attributes,
and using their corresponding decision trees. Further, we

2http://eda.mmci.uni-saarland.de/origo/

use the split probability to control the depth/size of the
tree. We randomly choose weighted probabilities for the
presence/absence of leaf attributes.

This way we are certain that there is a dependency in
one direction. In general, we expect this direction to be the
true causal direction, i.e. X → Y . Note that we cannot be
absolutely sure that the model in the reverse direction, from
Y to X , would be inferior to the one that we plant all the
time. All the reported values are averaged over 200 samples
unless stated otherwise.

1) Performance: First we examine the effect of depen-
dency on various metrics – the percentage of correct infer-
ences (accuracy), the percentage of indecisive inferences,
and the percentage of incorrect inferences. We start with
k = l = 3. We fix the split probability to 1.0, and generate
the trees with the maximum possible height, i.e. k+l−1 = 5.
In Figure 2(a), we give the plot showing various metrics
at various dependencies for the generated pairs. We see
that with the increase in dependency, indecisiveness quickly
drops to zero, while accuracy increases sharply towards
90%. Note that at zero dependency, there are no causal
edges, hence ORIGO is correct in being indecisive.

Next we study the effect of the maximum height h of the
trees on the accuracy of ORIGO. We set k = l = 3, and
the split probability to 1.0. In Figure 2(b), we observe that
the accuracy gets higher as h increases. This is due to the
increase in the number of causal edges with the increase in
the maximum height of the tree. Although the increase in
accuracy is quite large when we move from h = 1 to 2, it
is almost negligible when we move from h = 2 onwards.
This shows that ORIGO can already infer the correct causal
direction when there are only few causal edges in the DAG.

Next we analyse the effect of the split probability on the
accuracy of ORIGO. For that, we set k = l = 3, dependency
to 1.0, and generate trees with the maximum possible height.
In Figure 2(c), we observe that the accuracy of ORIGO
increases with the increase in the split probability. This is
due to the fact that the depth of the tree increases with the
increase in the split probability. Consequently, there are more
causal edges, therewith the more accurate ORIGO is.

Next we investigate the accuracy of ORIGO on cause-
effect pairs with asymmetric number of attributes. For that,
we fix the split probability to 1.0, and generate trees with
the maximum possible height. At every level of dependency,
we generate 200 cause-effect pairs where 100 of them have
k = 1, l = 3 and remaining 100 have k = 3, l = 1. In
Figure 4(a), we give the plot comparing the accuracy of
ORIGO against ORIGI and DC. We see that ORIGO outper-
forms both competitors by a fair margin at every dependency.
The difference in accuracy gets larger as the dependency
increases. Notably, this observation also empirically bolsters
our argument on the unbiased nature of the relative joint
complexity in Section III.

Next we consider the symmetric case where k = l = 3.



For the experiment we use set the split probability to 1.0,
and generate trees with the maximum possible height. In
Figure 4(b), we show the plot comparing the accuracy of
ORIGO against ORIGI, and DC. We see that both ORIGO and
ORIGI outperform DC at almost every dependency. We note
that for the pairs without dependency, DC infers a causal
relationship in over 45% of the cases.

2) Dimensionality: Next we study the robustness against
dimensionality. First we consider cause-effect pairs with
symmetric number of attributes, i.e. k = l and vary it
between 1 and 10. We fix the dependency to 0.7, the split
probability to 1.0, and the maximum height of trees to 5.
In particular, we compare ORIGO against ORIGI and DC. In
Figure 3(a), we see that ORIGO is highly accurate in every
setting. With the exception of the univariate case, ORIGI also
performs well when both X and Y have the same cardinality.

In practice, however, we also encounter cause-effect pairs
with asymmetric cardinalities. To evaluate performance in
this setting, we set respectively k and l to 5 and vary the
other between 1 to 10 – and generate 100 data pairs per
setting. We see that ORIGO outperforms ORIGI by a huge
margin the stronger the unbalance between the cardinalities
of X and Y . This is explained by the inherent bias of ORIGI
as discussed in Section III. In addition, we see that ORIGO
outperforms DC in every setting.

3) Hypothesis Testing: To evaluate whether ORIGO in-
fers relevant causal direction, we employ swap randomi-
sation [27]. Let ε = |∆̂X→Y − ∆̂Y→X |. We compare the
ε value of the actual cause-effect pair to those of 100
swap randomised versions of the pair. We set k = l = 3,
the dependency to 1.0, the probability of split to 1.0, and
generate trees with maximum possible height. The null
hypothesis is that the ε value of the actual data is likely
to occur in random data. However, we observe that the
probability of getting a ε value of the actual data in a random
data is zero, i.e. p-value = 0. Therefore, we can reject the
null hypothesis at a much lower significance level.

To assess whether ORIGO infers causal relationship when
the causal relationship really exists, we test its statistical
power. The null hypothesis is that there is no causal relation-
ship between cause-effect pairs. To determine the cut-off for
testing the null hypothesis, we first generate 100 cause-effect
pairs with no causal relationship. Then we compute their ε
values and set the cut-off ε value at a significance level
of 0.05. Next we generate new 100 cause-effect pairs with
causal relationship. The statistical power is the proportion
of the 100 new cause-effect pairs whose ε value exceeds the
cut-off delta value.

We set k = l = 3, the split probability to 1.0, and
generate trees with the maximum possible height. We give
the results in Figure 4(c). The lines corresponding to ORIGO
and ORIGI overlap as both have the same high statistical
power, outperforming DC in every setting.

Last, but not least, we observe that for all the above exper-

Table I
RESULTS ON TÜBINGEN MULTIVARIATE CAUSE-EFFECT PAIRS [28].
“X” MEANS THE CORRECT CAUSAL DIRECTION IS INFERRED, “×”

MEANS THE WRONG DIRECTION, AND “−” MEANS INDECISION.

Dataset #rows |X| |Y | Truth ORIGO ORIGI DC

Weather forecast 10 226 4 4 Y → X − X −
Ozone 989 1 3 Y → X X X ×
Auto-Mpg 392 3 2 X → Y X X ×
Radiation 72 16 16 Y → X X X −

iments inferring the causal direction for one pair typically
takes only up to a few seconds.

Next we evaluate ORIGO on real-world data.

B. Real-world Data

1) Univariate Pairs: First we evaluate ORIGO on bench-
mark cause-effect pairs with known ground truth [28].
In particular, we take 95 univariate pairs. We considered
various discretisation strategies – including Equi-Frequency,
and Equi-Width binning, MDL-based histogram density es-
timation [29], and parameter-free unsupervised interaction
preserving discretisation (IPD) [30]. We obtained the best
results using IPD, and will report these below.

In general, we can trade-off the percentage of correct
decisions versus the percentage of cases in which a decision
is taken (decision rate) by taking decisions only for ε ≥ εt
for some threshold εt. Following [3], we show the percentage
of correct decisions versus the decision rate in Figure 5. If
we look over all the pairs, we find that ORIGO infers correct
direction in roughly 58% of all decisive pairs. When we
consider only those pairs where ε is relatively high, i.e. those
pairs where ORIGO is most decisive we see that over the top
10% most decisive pairs it is 80% accurate, yet still 70 %
accurate for the top 30 % pairs, which is on-par with the
top-performing causal inference frameworks for continuous
real-valued data [3], [4].

2) Multivariate Pairs: Next we evaluate ORIGO quanti-
tatively on real-world data with multivariate pairs. For that
we consider four cause-effect pairs with known ground truth
taken from [28]. We use IPD to discretise the data. We give
the base statistics in Table I. For each pairs, we report the
number of rows, the number of attributes in X , the number
of attributes in Y , the ground truth. Furthermore, we report
the results of ORIGO, ORIGI, and DC.

We find that ORIGO infers correct direction in 3 pairs and
is indecisive in Weather forecast dataset. On the other hand,
ORIGI infers correct direction in all datasets. DC, however,
is either indecisive or incorrect.

C. Qualitative Results

1) Acute inflammation dataset: The Acute inflammations
dataset is taken from the UCI repository.3 It consists of the

3http://archive.ics.uci.edu/ml/
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Figure 2. For synthetic datasets with k = l = 3, we report (a) various metrics at various dependencies (b) the accuracy at various dependencies for trees
with various maximum heights, and (c) the accuracy at various split probabilities for ORIGO.
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Figure 3. For synthetic datasets, we report the accuracy (a) in symmetric
case with k = l, and (b) in asymmetric case (5 vs. varying cardinalities).

presumptive diagnosis of two diseases of urinary system for
120 potential patients. There are 6 symptoms – temperature
of the patient (x1) , occurrence of nausea (x2), lumber pain
(x3), urine pushing (x4), micturition pains (x5), burning
of urethra, itch, swelling of urethra outlet (x6). All the
symptoms are binary but the temperature of the patient,
which takes a real value between 35◦C − 42◦C. The two
diseases for diagnosis are inflammation of urinary bladder
(y1) and nephritis of renal pelvis origin (y2).

We discretise the temperature into two bins using
IPD. This results in two binary attributes x11 and x12.
We then run ORIGO on the pair X,Y where X =
{x11, x12, x3, x4, x5, x6} and Y = {y1, y2}. We find that
Y → X . That is, ORIGO infers that the diseases cause the
symptoms, which is in agreement with intuition.

2) ICDM abstracts dataset: Next we consider the ICDM
abstracts dataset, which is available from the authors of [31].
This dataset consists of abstracts – stemmed and stop-words
removed – of 859 papers published at the ICDM conference
until the year 2007. Each abstract is represented by a row
and words are the attributes.

We use OPUS MINER on the ICDM abstracts dataset to
discover top 100 self-sufficient itemsets [32]. Then, we apply
ORIGO on those 100 self-sufficient itemsets. We sort the
discovered causal directions by their ε value in decreasing
order. In Table II, we give 7 highly characteristic and non-
redundant results along with their ε values taken from top
11 causal directions. We expect the causal directions having

Table II
RESULTS OF ORIGO ON ICDM. WE GIVE 7 CHARACTERISTIC AND

NON-REDUNDANT EXEMPLARS DRAWN FROM TOP 11 CAUSAL
DIRECTIONS SORTED BY THEIR ε VALUES.

discovered causal direction ε

frequent itemset→ mining 0.002966

drift→ concept 0.002048

walk→ random 0.001912

lda→ linear 0.001797

upper→ bound 0.001730

fp→ tree 0.001677

anomaly→ detection 0.001599

higher ε values to show clear causal connection, and indeed
we see that this is the case.

For instance, frequent itemset mining is one of the core
areas of data mining and studied by many. Clearly, when
frequent itemset appears in a text, it is likely to cause mining
to appear in the text than vice versa. Likewise, neural is
likely to cause network to appear in the text and not the
other way around. Overall, we see that the causal directions
discovered by ORIGO in the ICDM dataset are sensible.

3) Adult dataset: The Adult dataset is taken from the
UCI repository and consists of 48 832 records from the
census database of the US in 1994. Out of 14 attributes,
we consider only four – work-class, education, occupation,
and income. In particular, we binarise work-class attribute
into four attributes as private, self-employed, public-servant,
and unemployed. We binarise education attribute into seven
attributes as dropout, associates, bachelors, doctorate, hs-
graduate, masters, and prof-school. Further, we binarise
occupation attribute into eight attributes as admin, armed-
force, blue-collar, white-collar, service, sales, professional,
and other-occupation. Lastly, we binarise income attribute
into two attributes as >50K and <=50K.

We run OPUS MINER on the resulting data and get top 100
self-sufficient itemsets. Then we apply ORIGO on those 100
self-sufficient itemsets. In Table III, we report 5 interesting
and non-redundant causal directions identified by ORIGO
drawn from the top 14 strongest causal directions. Inspect-
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Figure 4. For synthetic datasets, we compare (a) the accuracy in asymmetric case (1 vs. 3), (b) the accuracy at various dependencies in symmetric case
(k = l = 3), (c) the statistical power at various dependencies.
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Figure 5. Percentage of correct decisions vs decision rate for univariate
Tübingen cause-effect pairs discretised using IPD.

Table III
RESULTS OF ORIGO ON Adult. WE GIVE 5 CHARACTERISTIC

EXEMPLARS DRAWN FROM THE TOP RANKED CAUSAL DIRECTIONS.

discovered causal direction ε

public-servant professional doctorate→ >50K 0.000126

self-employed white-collar→ >50K 0.000108

public-servant professional masters→ >50K 0.000108

public-servant admin hs-graduate→ <=50K 0.000107

blue-collar dropout→ <=50K private 0.000103

ing the results, we see that ORIGO infers sensible causal
directions from the adult dataset. For instance, take these
two causal directions public-servant professional masters→
>50K and public-servant admin hs-graduate → <=50K.
Whereas a professional with a master’s degree working in a
public office is likely to earn >50K, a high school graduate
working in a public office in an administrative position is
likely to earn <=50K.

Overall, these results show that ORIGO finds sensible
causal directions from real-world data.

VII. DISCUSSION

The experiments show that ORIGO works well in practice.
ORIGO reliably identifies true causal structure regardless
of cardinality, skew, with high statistical power, even at
low level of causal dependencies. On benchmark data it
performs very well, despite sub-optimal discretization in the

pre-processing. Moreover, the qualitative case studies show
that the results are sensible.

Although these results show the strength of our frame-
work, and of ORIGO in particular, we see many possibilities
to further improve. For instance, PACK does not work
directly on categorical data. By binarising the categorical
data, it can introduce undue dependencies. This presents an
inherent need for a lossless compressor that works directly
on categorical data which is likely to improve the results.

Further, we rely on discretisation strategies to discretise
continuous real-valued data. We observe different results on
continuous real-valued data depending on the discretisation
strategy we pick. It would make an engaging future work
to devise a discretisation strategy for continuous real-valued
data that preserves causal dependencies. Alternatively, it will
be interesting to instantiate the framework using regression
trees to directly consider real-valued data.

Note that our framework is based on causal sufficiency
assumption. Extending ORIGO to include confounders is
another avenue of future work. Moreover, our inference
principle is defined over data in general, yet we restricted our
analysis to binary, categorical, and continuous real-valued
data. It would be interesting to apply our inference principle
on time-series data. To instantiate our MDL framework the
only thing we need is a lossless compressor that can capture
directed relations on multivariate time-series data.

VIII. CONCLUSION

We considered causal inference from observational data.
We proposed a framework for causal inference based on
Kolmogorov complexity, and gave a generally applicable and
computable framework based on the Minimum Description
Length (MDL) principle.

To apply the framework in practice, we proposed ORIGO,
an efficient method for inferring the causal direction from
binary data. ORIGO uses decision trees to encode data,
works directly on the data and does not require assumptions
about neither distributions nor the type of causal relations.
Extensive evaluation on synthetic, benchmark, and real-
world data showed that ORIGO discovers meaningful causal



relations, and outperforms state-of-the-art methods by a wide
margin.
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