
Universal Dependency Analysis

Hoang-Vu Nguyen◦ Panagiotis Mandros◦ Jilles Vreeken◦

Abstract
Most data is multi-dimensional. Discovering whether any subset of
dimensions, or subspaces, shows dependence is a core task in data
mining. To do so, we require a measure that quantifies how de-
pendent a subspace is. For practical use, such a measure should be
universal in the sense that it captures correlation in subspaces of any
dimensionality and allows to meaningfully compare scores across
different subspaces, regardless how many dimensions they have and
what specific statistical properties their dimensions possess. Fur-
ther, it would be nice if the measure can non-parametrically and
efficiently capture both linear and non-linear correlations.

In this paper, we propose UDS, a multivariate dependence mea-
sure that fulfils all of these desiderata. In short, we define UDS
based on cumulative entropy and propose a principled normalisa-
tion scheme to bring its scores across different subspaces to the
same domain, enabling universal dependence assessment. UDS is
purely non-parametric as we make no assumption on data distri-
butions nor types of correlation. To compute it on empirical data,
we introduce an efficient and non-parametric method. Extensive
experiments show that UDS outperforms state of the art.

1 Introduction
Dependency and correlation analysis are key elements of
data mining. It has applications in many domains, includ-
ing biology and neuroscience [13, 24]. Traditionally, it fo-
cuses on two dimensions. More often than not, however, data
is multi-dimensional and can contain multivariate dependen-
cies e.g. hidden in subsets of dimensions, or subspaces [3].
Identifying such subspaces is an important step towards un-
derstanding the data. To do so, we need a universal measure.

First of all, the measure should be universal in the sense
that it is able to detect correlations in subspaces of any di-
mensionality. Second, for both usability by the domain ex-
perts as well as efficient search, it should allow for univer-
sal comparison of scores – regardless the number of dimen-
sions they were computed over, or the statistical properties
of these dimensions. Third, for exploratory analysis the mea-
sure should be able to non-parametrically capture both linear
and non-linear correlations, making no assumption on data
distributions nor types of correlation the data may contain.
Fourth, the measure should permit non-parametric and effi-
cient computation on empirical data.

Of the above desiderata, although perhaps most impor-
tant for practical use, universality is most often overlooked
in the literature. For instance, commonly used measures in

◦Max Planck Institute for Informatics and Saarland University,
Saarbrücken, Germany.
{hnguyen,pmandros,jilles}@mpi-inf.mpg.de

subspace search such as total correlation [4], CMI [16], and
quadratic measure of dependency QR [15] in general pro-
duce scores that are not comparable across subspaces of dif-
ferent dimensionality. Pearson’s correlation, HICS [11], and
MAC [17], while addressing universality, have other issues.
In particular, Pearson’s correlation is for pairwise linear cor-
relations. HICS relies on high dimensional conditional dis-
tributions and hence is prone to the curse of dimensionality.
For each subspace, MAC needs to compute correlation scores
of all dimension pairs before outputting the final score – a
potential source of inefficiency.

In this paper, we aim at addressing all desiderata. We
do so by proposing UDS, for universal dependency score. In
short, we define UDS based on cumulative entropy [6,20] – a
new type of entropy permitting non-parametric computation
on empirical data. To address universality, we propose a
principled normalisation scheme to bring scores of UDS
across different subspaces to the same domain, enabling
universal dependency assessment. Further, UDS is highly
suited to non-parametric exploratory analysis as we make
no assumption on data distributions nor types of correlation.
Lastly, we propose a non-parametric method to reliably and
efficiently compute UDS on empirical data. Our method
does not require to compute pairwise correlations of the
involved dimensions and scales near linearly to the data size.
Extensive experiments on both synthetic and real-world data
sets show that UDS has high statistical power and performs
very well in subspace search.

The road map is as follows. First, we present the prin-
ciples of our measure. In Section 3 we review cumulative
entropy, and introduce UDS in Sec. 4, followed by its com-
putation in Sec. 5. We review related work in in Sec. 6. We
empirically evaluate in Sec. 7, and round up with conclusions
in Sec. 8. For readability and succinctness, we postpone the
proofs for the theorems to the Appendix.

2 Correlation Measures – A Brief Primer
We consider a multivariate data set D with m records and
n real-valued dimensions X1, . . . , Xn. For each dimension
Xi, we assume that dom(Xi) = [mini,max i]. Further, we
write p(Xi) as its probability distribution function (pdf) and
P (Xi) as its cumulative distribution function (cdf).

Each non-empty subset S ⊂ {X1, . . . , Xn} constitutes
a subspace. To discover correlated subspaces, we need to

quantify correlation score corr(S) of S. We will mainly use
subspace {X1, . . . , Xd}where d ∈ [1, n] in our analysis. We
write X1,...,i for shorthand of X1, . . . , Xi (i ≥ 1).

In principle, corr(X1,...,d) quantifies to how much the
relation of X1,...,d deviates from the statistical independence
condition, i.e. how much their joint probability distribution
differs from the product of their marginal probability dis-
tributions [10, 26]. The larger the difference, the higher
corr(X1,...,d) is. Formally, we have

(2.1) corr(X1,...,d) = diff

(
p(X1,...,d),

d∏
i=1

p(Xi)

)
with diff being an instantiation of a divergence mea-
sure. An important property for data analysis is that [23]
corr(X1,...,d) is non-negative and zero iff X1,...,d are statis-

tically independent, i.e. p(X1,...,d) =
d∏
i=1

p(Xi).

As Eq. (2.1) works with multivariate distribution
p(X1,...,d), when d is large corr(X1,...,d) is prone to the
curse of dimensionality. Recognising this issue, [7, 16, 29]
factorise p(X1,...,d) and define
(2.2)

corr(X1,...,d) =
d∑
i=2

diff (p(Xi), p(Xi | X1,...,i−1)) .

To uphold the non-negativity and zero score requirements,
it suffices that diff (p(Xi), p(Xi | ·)) must be non-negative
and is zero iff p(Xi) = p(Xi | ·) [16].

As we can see, Eq. (2.2) is a factorised form of Equa-
tion (2.1). In particular, it computes corr(X1,...,d) by sum-
ming up the difference between the marginal distribution
p(Xi) and the conditional distribution p(Xi | X1,...,i−1) for
i ∈ [2, d]. In this way, loosely speaking corr(S) is the sum
of the correlation scores of subspaces

(X1, X2), . . . , (X1, . . . , Xi), . . . , (X1, . . . , Xd)
if we consider diff (p(Xi), p(Xi | X1,...,i−1)) to be the
correlation score of the subspace (X1,...,i). The advantage of
using lower dimensional subspaces is that corr(X1,...,d) in
Eq. (2.2) is more robust to high dimensionality. It, however,
in general is variant to the way we form the factorisation, i.e.
the permutation of dimensions used.

We eliminate such dependence by taking the maximum
score over all permutations. By considering the maximum
value, we aim at uncovering the best correlation score of
the dimensions involved, which is in line with maximal
correlation analysis [2, 21]. Formally, letting Fd be the set
of bijective functions σ : {1, . . . , d} → {1, . . . , d}, we have
(2.3)

corr(X1,...,d) = max
σ∈Fd

d∑
i=2

diff
(
p(Xσ

i), p(Xσ
i | Xσ

1,...,i−1)
)

where Xσ
i = Xσ(i) for i ∈ [1, d]. Like Eq. (2.2),

corr(X1,...,d) in Eq. (2.3) also is more robust to high dimen-

sionality. Further, it is permutation invariant. We design UDS
based on this factorised form.

To this end, one important issue however remains open,
which is: How to quantify diff (p(Xi), p(Xi | ·)) to fulfill
universality? We address this by means of cumulative
entropy [6, 20] which we introduce next.

3 Cumulative Entropy
In this section, we first provide background of cumulative
entropy (CE). Then, we review Cumulative Mutual Informa-
tion (CMI) [16] – a correlation measure that is defined based
on CE but does not address universality.

3.1 Background of Cumulative Entropy In principle, CE
captures the information content (i.e. complexity) of a prob-
ability distribution. However, different from Shannon en-
tropy, it works with cdfs and can be regarded as a substitute
for Shannon entropy on real-valued data. Formally, the CE
of a real-valued univariate random variable X is given as

h(X) = −
∫
P (x) logP (x)dx .

The conditional CE of a real-valued univariate random vari-
able X given Z ∈ Rd is defined as

h(X | Z) =
∫
h(X | z)p(z)dz .

The conditional CE has two important properties given by the
following theorem [6, 20].

THEOREM 3.1. h(X | Z) ≥ 0 with equality iff X is a
function of Z. h(X | Z) ≤ h(X) with equality iff X is
statistically independent of Z.

Besides, unconditional CE can be computed in closed-
form on empirical data. Let x1 ≤ . . . ≤ xm be the ordered

records of X . We have h(X) = −
m−1∑
i=1

(xi+1−xi) im log i
m .

Having introduced CE, next we review CMI.

3.2 Cumulative Mutual Information CMI follows the
factorised model of correlation measures in Eq. (2.3). It
instantiates diff (p(Xi), p(Xi | ·)) by h(Xi) − h(Xi | ·).
Following Theorem 3.1, this instantiation is non-negative
and zero iff p(Xi) = p(Xi | ·), which is desirable (cf.
Section 2). Formally, we have:

DEFINITION 3.1. Cumulative Mutual Information (CMI)
The CMI of X1,...,d is

CMI(X1,...,d) = max
σ∈Fd

d∑
i=2

h(Xσ(i))−h(Xσ(i) | Xσ(1),...,σ(i−1))

where h(Xσ(i) | Xσ(1)...,σ(i−1)) is h(Xσ(i) | Z) with
Z = Xσ(1),...,σ(i−1) being a random vector whose domain
is dom(Xσ(1))× · · · × dom(Xσ(i−1)).

Following Theorem 3.1, CMI satisfies the non-negativity
and zero score requirements of correlation measure. Further,
it is non-parametric and can capture different types of corre-
lation. It however has some pitfalls that we explain next.

3.3 Drawbacks of CMI First, CMI does not address uni-
versality. In particular, it tends to give higher dimensional
subspaces higher scores, as follows.

LEMMA 3.1. CMI(X1,...,d) ≤ CMI(X1,...,d+1) .

Proof. We postpone the proof to the online Appendix.

In addition, CMI scores of subspaces with the same
dimensionality may also have different scales. To show this,
we prove that the scale of CMI(X1,...,d) is dependent on
h(X1), . . . , h(Xd).

LEMMA 3.2. CMI(X1,...,d) ≤ max
σ∈Fd

d∑
i=2

h(Xσ(i)) .

Proof. We postpone the proof to the online Appendix.

That is, if two subspaces of the same dimensionality
have no common dimension, the upper bound of their CMI
scores may be different, rendering incomparable scales.
Combining the results of Lemma 3.1 and 3.2, we can see
that CMI does not address universality.

As the second issue, to compute CMI score of two
or more dimensions CMI needs to search for the optimal
permutation of the dimensions. The quality of this search is
dependent on how well conditional CE terms are estimated.
As CMI computes such terms using clustering, the search
quality and hence the quality of CMI are dependent on
how good the selected clustering algorithm is. Choosing a
suitable clustering method, however, is non-trivial.

UDS is also based on CE. In contrast to CMI, it does
address all requirements of a universal measure.

4 Universal Dependency Analysis
In short, UDS builds upon and non-trivially extends CMI to
fulfil universality. More specifically, to bring correlation
scores to the same scale – regardless of the number as
well as statistical properties of dimensions involved, we first
perform normalisation of the scores. Second, we judiciously
fix permutation of dimensions, i.e. no search is required.
Third, to avoid data clustering in correlation computation
we propose optimal discretisation to compute conditional
CE terms. Our optimisation problem is formulated such
that resulting conditional CE values do not overfit. In the
following, we focus on the first two aspects of UDS and
postpone the third one to Section 5.

4.1 Universal Dependency Score Function Our goal is
to normalise the scores such that they fall into the range

[0, 1] where 0 means no correlation at all. Note that simply
normalising CMI(X1,...,d) by d is not the solution. This is
because if we did so, following Lemma 3.2 the normalised
score would be upper-bounded by max

σ∈Fd

∑d
i=2 h(Xσ(i))/d.

As max
σ∈Fd

∑d
i=2 h(Xσ(i)) is dependent on X1, . . . , Xd, the

requirement of unbiased scores is not met. Hence, we instead
perform normalisation based on the following observation.

LEMMA 4.1. For each permutation σ ∈ Fd ,
d∑
i=2

h(Xσ(i))− h(Xσ(i) | Xσ(1),...,σ(i−1)) ≤
d∑
i=2

h(Xσ(i))

with equality iff Xσ(2),...,σ(d) are functions of Xσ(1).

Proof. We postpone the proof to the online Appendix.

With Lemma 4.1, we are now ready to define UDS. In
particular, we have:

DEFINITION 4.1. Universal Dependency Score (UDS)
The UDS of X1,...,d is UDS(X1,...,d) = max

σ∈Fd
Φσ(X1,...,d)

where

(4.4) Φσ(X1,...,d) =

d∑
i=2

h(Xσ(i))−h(Xσ(i)|Xσ(1),...,σ(i−1))

d∑
i=2

h(Xσ(i))

and with the convention that 0
0 = 0.

That is, UDS(X1,...,d) is the maximum normalised cor-
relation over all permutation of X1,...,d. It is non-parametric
and can capture both linear or non-linear correlations. To
show that UDS meets universality, we prove some of its rele-
vant properties below.

LEMMA 4.2. We have
• 0 ≤ UDS(X1,...,d) ≤ 1.
• UDS(X1,...,d) = 0 iff X1,...,d are independent.
• UDS(X1,...,d) = 1 iff there exists Xi such that each
Xj ∈ {X1,...,d} \ {Xi} is a function of Xi.

Proof. We postpone the proof to the online Appendix.

Hence, UDS score of any subspace falls in the range
[0, 1], which means that we can compare correlation scores
across different subspaces. Thus, UDS addresses universal-
ity. It also meets the non-negativity and zero score require-
ments. In addition, as the values of UDS are bounded on both
sides we can interpret its scores more easily, which is clearly
a desirable property for practical correlation analysis [23].

4.2 Practical UDS To compute UDS, we still need to look
for the permutation that maximises the score. There are
d! candidate permutations in total. When d is large, the
search space is prohibitively large while in general has no

clear structure to optimise over. Thus, to boost efficiency we
propose a practical (heuristic) version of UDS. It intuitively
fixes a permutation for correlation computation and hence
saves time. Our experiments confirm that it works very well
in practice. Below we provide its formal definition.

DEFINITION 4.2. Practical UDS
The practical UDS of X1,...,d is

UDSpr (X1,...,d) = Φσ(X1,...,d)

where σ ∈ Fd is such that h(Xσ(1)) ≥ . . . ≥ h(Xσ(d)).

In other words, UDSpr chooses the permutation correspond-
ing to the sorting of dimensions in descending order of CE
values. We now give the intuition behind this design choice.

We see that to compute UDS, we must find the permuta-
tion π ∈ Fd such that Φπ(X1,...,d) is maximal. To maximise
this term, we should minimise its denominator and maximise
its numerator; see Eq. (4.4). For the former, it would most
likely help to exclude h(Xσ(1)), the largest unconditional CE
term. Thus, we expect a permutation where Xσ(1) appears
first to be good.

For the numerator, we make the following observation.
Assume that h(Xi) ≥ h(Xj), i.e., Xi is more random
than Xj . Then h(Xk | Xi) tends to be smaller than
h(Xk | Xj) [20]. For instance, if Xj is deterministic,
h(Xk | Xi) ≤ h(Xk | Xj) = h(Xk). So h(Xk | ·) tends to
get further away from h(Xk) as the conditional part becomes
more random, and vice versa.

Now assume that h(Xk) ≥ h(Xi). If Xk is after Xi

in the permutation, h(Xk) will appear in the numerator.
However, h(Xk | ·) tends to get close to h(Xk) as the
conditional part containing Xi is less random, i.e. h(Xk) −
h(Xk | ·) tends to be small.

If in the permutation Xk instead is before Xi, we will
have h(Xi) in the numerator. However, h(Xi | ·) gets
further away from h(Xi), i.e., h(Xi) − h(Xi | ·) tends to
be relatively large.

All in all, these suggest that: dimensions with large CE
values should be placed before those with small CE values to
maximise the numerator. Our experiments reveal that UDSpr
works very well in practice. In addition, similarly to UDS
its scores are in the range [0, 1]. Thus, UDSpr also fulfils
universality. Further, it satisfies the non-negativity and zero
score requirements.

We will use UDSpr in the rest of this paper and simply
call it UDS. In summary, UDS allows for universal correla-
tion assessment of subspaces with potentially different di-
mensionality as well as different statistical properties of the
involved dimensions. In addition, its computation does not
require searching for an optimal permutation nor computing
all pairwise correlations. Next, we explain how to efficiently
and non-parametrically compute UDS on empirical data.

5 Computing UDS

In this section, for exposition we focus on computing
UDS(X1,...,d). W.l.o.g., we assume that

UDS(X1,...,d) =

d∑
i=2

h(Xi)−h(Xi|X1,...,i−1)

d∑
i=2

h(Xi)

.

That is, the permutation of dimensions in UDS(X1,...,d),
which is fixed, is assumed to be X1, . . . , Xd.

To compute UDS(X1,...,d), we need to compute uncon-
ditional CE terms h(Xi) and conditional CE terms h(Xi |
X1,...,i−1). Following Section 3.1, h(Xi) where i ∈ [2, d]
can be computed in closed form.

For the conditional CE terms, we propose to compute
them by optimal discretisation, which has been shown to pre-
serve correlation structures in data [17,27]. In particular, we
formulate the computation of conditional CE terms as opti-
misation problems where we search for discretisations that
robustly maximise UDS(X1,...,d). Being robust here means
that we aim to obtain bins that preserve true correlation in
the data, while avoiding seeing structure when there is none,
i.e. overfitting. Note that optimal discretisation have been
proposed by us in [17, 27]. Our current work differ from
previous work in that we here introduce a different way to
formulate the solution of optimal discretisation. Therewith
we are able to provide non-trivial details of the algorithmic
approach, which consequently gives us more insight on the
runtime complexity. More on this will come shortly. For
now, we compute UDS(X1,...,d) as follows.

Computing h(X2 | X1): The value of h(X2 | X1) depends
on how we estimate the distribution of X1, or in other
words, how we discretise the realisations of X1. Here, we
propose to search for the discretisation of X1 that robustly
maximises h(X2) − h(X2 | X1). As h(X2) is fixed given
the realisations of X2, maximising h(X2) − h(X2 | X1) is
equivalent to minimising h(X2 | X1).

Computing h(Xi | X1,...,i−1) for i ≥ 3: Ideally, one
would simultaneously search for the optimal discretisations
of X1,...,i−1 that robustly minimise h(Xi | X1,...,i−1). This
however is very computationally expensive. We overcome
this by observing that, to this end, we have already dis-
cretised X1,...,i−2, and the resulting discretisations are for
robustly maximising UDS(X1,...,d). Hence, we choose to
search for the discretisation of Xi−1 only. By not re-
discretising any dimension already processed, we strongly
reduce runtime.

We now prove that the discretisation at each step can be
searched efficiently by dynamic programming. Naı̈vely,
the optimisation of each step can be cast as: Find the
discretisation of X minimising h(X ′ | I,X) where I is the
set of dimensions we have already discretised, and X,X ′ ∈
{X1,...,d} \ I . However, the more random X is, the smaller

h(X ′ | I,X) [20]. In terms of discretisation, this means that
when X is discretised into more bins, h(X ′ | I,X) tends
to be smaller. Or put differently, this naı̈ve optimisation may
prefer solutions with many bins to those with fewer bins, and
hence, potentially pick up spurious correlation.

To avoid this issue, we propose to first search for the
optimal discretisation at each permissible number of bins.
Then, using a regulariser we perform model selection to
identify the discretisation that best balances between corre-
lation preservation and robustness. Our regulariser takes into
account the number of bins and hence alleviates the overfit-
ting issue. The flow is as follow: optimal discretisation first,
then model selection.

5.1 Optimal Discretisation Our problem can be stated
as: Given an integer λ ∈ [1,m], find the discretisation
of X into λ bins that minimises h(X ′ | I,X) where I
is the set of dimensions we have already discretised, and
X,X ′ ∈ {X1,...,d} \ I .

Proof of dynamic programming. To prove that dynamic
programming is applicable, we prove that the optimal solu-
tion to the above problem exhibits optimal substructure.

Formally, let Gλ be the set of possible discretisations on
X that produce exactly λ bins. For each g ∈ Gλ, we let
{bg1, . . . , b

g
λ} be the set of bins formed by g. Each bin bgi =

(lgi , u
g
i] where lg1 = min(X), ugλ = max (X), and lgi = ugi−1

for i ∈ [2, λ]. There is a one-to-one correspondence between
each discretisation and the set of bins it forms. Thus, we will
use both interchangeably.

Note that the dimensions in I have been discretised.
Their discrete space consists of hypercubes; each has |I|
sides corresponding to |I| dimensions. Let C1, . . . , Ck be
the non-empty hypercubes. It holds that k < m. For each
bin bgi (i ∈ [1, λ]) and hypercube Cj (j ∈ [1, k]), we write
|Cj , bgi | as the number of data points falling into the (|I|+1)-
dimensional hypercube made up by extending Cj with bgi .
Our optimisation problem is equivalent to solving

(5.5) min
g∈Gλ

λ∑
i=1

k∑
j=1

|Cj ,bgi |
m h(X ′ | Cj , bgi) .

Let dsc be the optimal solution and {bdsc1 , . . . , bdscλ } be its
bins. For any bin b, we write h(X ′ | I, b) as h(X ′ | I)
computed using only the points falling into b. We have that

λ∑
i=1

k∑
j=1

|Cj ,bdsci |
m h(X ′ | Cj , bdsci)(5.6)

=
|bdscλ |
m

k∑
j=1

|Cj ,bdscλ |
|bdscλ |

h(X ′ | Cj , bdscλ)︸ ︷︷ ︸
h(X′|I,bdscλ)

+
m−bdscλ
m

λ−1∑
i=1

k∑
j=1

|Cj ,bdsci |
m−bdscλ

h(X ′ | Cj , bdsci) .

must be minimal among all discretisation g ∈ Gλ. We denote
the first term on the right hand side of Eq. (5.6) as Term1 and
the second term as Term2.

As dsc is optimal, {bdsc1 , . . . , bdscλ−1} is the optimal way
to discretize into λ − 1 bins the values X ≤ ldscλ . In other
words, these bins are the solution to Eq. (5.5) w.r.t. λ − 1
and the values X ≤ ldscλ . We prove this by contradiction.
In particular, we assume that the optimal solution instead is
{a1, . . . , aλ−1} 6= {bdsc1 , . . . , bdscλ−1}. Then, it holds that

λ−1∑
i=1

k∑
j=1

|Cj ,bdsci |
m−bdscλ

h(X ′ | Cj , bdsci)

>
λ−1∑
i=1

k∑
j=1

|Cj ,ai|
m−bdscλ

h(X ′ | Cj , ai) .

Following Eq. (5.6), this means {a1, . . . , at, bdscλ } is a better
way to discretize X minimising h(X ′ | I,X), which
contradicts our assumption on dsc.

Hence, the optimal solution dsc exhibits optimal sub-
structure. This motivates us to build a dynamic programming
algorithm to solve our problem.

Algorithmic approach. Our method is summarised in Algo-
rithm 1. Here, we first form bins {a1, . . . , aβ} (Line 1). We
will explain the rationale of this shortly.

Each term s[i] =
∑i
j=1 |ai| is the total support of bins

a1, . . . , ai. We compute such terms from Lines 6 to 8 for
later use in Lines 17 and 18. This step takes O(β).

Each term f [j][i] where 1 ≤ j ≤ i ≤ β is equal to
h(X ′ | I,

⋃i
k=j ak), i.e. h(X ′ | I) computed using data

points contained in
⋃i
k=j ak. These terms are analogous to

Term1. In Lines 9 to 11, we pre-compute them for efficiency
purposes. This step in total takesO(m logm+mβ2). Please
refer to the online Appendix for the detailed explanation.

Each value val [λ][i] where λ ∈ [1, β] and i ∈ [λ, β]
stands for h(X ′ | I,X) computed by optimally merging
(discretising) initial bins a1, . . . , ai into λ bins. b[λ][i] con-
tains the resulting bins. Our goal is to efficiently compute
val [1 . . . β][β] and b[1 . . . β][β]. To do so, from Lines 12
to 14 we first compute val [1][1 . . . β] and b[1][1 . . . β]. Then
from Lines 15 to 22, we incrementally compute relevant el-
ements of arrays val and b, using the recursive relation de-
scribed in Eq. (5.6). This is standard dynamic programming.
Note that in Line 17, term s[i]−s[j]

s[i] f [j + 1][i] corresponds to

Term1 while term s[j]
s[i] val [λ− 1][j] corresponds to Term2.

The processing from Lines 12 to 22 takes O(β3). As
β � m, our algorithm in total takes O(m logm+mβ2).

Remarks. Notice that in our solution, we form initial bins
{a1, . . . , aβ} of X where β � m. Ideally, one would
start with m bins. However, in the extreme case when all
realisations ofX are distinct, h(X ′ | I,X) will be zero. This
is known as the empty space issue [12]. On the other hand,
by pre-partitioning X in to β bins, we ensure that there is

Algorithm 1 UDS Optimal Discretisation

1: Create initial bins {a1, . . . , aβ} of X
2: Create a double array s[1 . . . β]
3: Create a double array f [1 . . . β][1 . . . β]
4: Create a double array val [1 . . . β][1 . . . β]
5: Create an array b[1 . . . β][1 . . . β] to store bins
6: for i = 1→ β do
7: s[i] =

∑i
j=1 |ai|

8: end for
9: for 1 ≤ j ≤ i ≤ β do

10: f [j][i] = h(X ′ | I,
⋃i
k=j ak)

11: end for
12: for i = 1→ β do
13: b[1][i] =

⋃i
k=1 ak and val [1][i] = f [1][i]

14: end for
15: for λ = 2→ β do
16: for i = λ→ β do
17: pos = arg min

j∈[1,i−1]
Ω(j, i, λ) where Ω(j, i, λ)

=
(

s[i]−s[j]
s[i] f [j + 1][i] + s[j]

s[i] val [λ− 1][j]
)

18: val [λ][i] = Ω(pos, i, λ)
19: Copy all bins in b[λ− 1][pos] to b[λ][i]

20: Add
⋃i
k=pos+1 ak to b[λ][i]

21: end for
22: end for
23: Return val [1 . . . β][β] and b[1 . . . β][β]

sufficient data for a statistically reliable computation, while
also boosting efficiency. Choosing a suitable value for β is a
trade-off between accuracy and efficiency.

5.2 Model Selection We propose a regularisation scheme
that helps to balance between correlation preservation and
robustness. First, we assume that the dimensions of I are
respectively discretised into e1, . . . , e|I| bins. We pick the
best number of bins λ∗ as follows,

(5.7) λ∗ = arg min
λ∈[1,β]

h(X′|I,X)
h(X′) + H(I,X)

log β+
|I|∑
i=1

log ei

where λ is the number of bins that X is discretised into
and H(I,X) is the joint entropy of dimensions in I and
discretised X . In short, when λ is small, the first term of
Eq. (5.7) is large while the second term is small. Conversely,
when λ is large, the first term is small while the second term
is large. The optimal λ∗ yields the best balance between
the two terms, i.e. the best balance between the cost of the
model and the cost of the data given the model. This will help
avoiding choosing many bins when there is no real structure.

6 Related Work
Dependence analysis traditionally deals with two random
variables. For this setting, prominent measures include Pear-
son’s correlation, Spearman’s correlation, Hilbert-Schmidt
independence criterion [9], distance correlation [26], mutual
information [5], and maximal information coefficient [24].

To discover multivariate correlations in multi-
dimensional data, recently multivariate measures have
been proposed. Total correlation [10, 29] is defined based
on Shannon entropy. It is a generalisation of mutual
information to the multivariate setting. It however tends to
give higher dimensional subspaces larger scores, regardless
if correlations in such subspaces are strong [5].

Cumulative mutual information (CMI) [16] which uses
cumulative entropy is designed specifically for real-valued
data. Like total correlation, CMI is biased towards high
dimensional subspaces (see Section 3.3).

Quadratic measures of dependency [18, 21, 25] permit
empirical computation in closed form. They closely follow
the correlation model in Eq. (2.1) and define their scores us-
ing multivariate joint distributions. Thus, they are suscepti-
ble to the curse of dimensionality. Further, they lack a formal
normalisation scheme to address universality.

Recently, Keller et al. [11] propose HICS in the re-
lated problem setting. To compute correlation of X1,...,d,
HICS averages over multiple random runs of the form
diff (p(Xi), p(Xi | {X1,...,d} \ {Xi})) whereXi is selected
randomly in each run. This causes two issues. First, HICS
scores are non-deterministic, making subspace search results
potentially unpredictable. Second, by using conditional dis-
tributions with d − 1 conditions, HICS is also prone to high
dimensionality issue.

In earlier work, we proposed MAC [17] – a normalised
form of total correlation. The score is based on Shannon
entropy over discretised data which MAC obtains by optimis-
ing w.r.t. cumulative entropy. With UDS we stay closer to
the source, as we define and optimise our score using just
cumulative entropy; we only use Shannon entropy to choose
the number of bins over which to report the score. Further,
whereas MAC needs to optimise the dimension order, UDS
avoids this and scales better.

7 Experiments
In this section, we empirically evaluate UDS. In particular,
we first study its statistical power on synthetic data sets. Sec-
ond, as common in subspace search we plug UDS to existing
search algorithms [11, 15] to mine correlated subspaces. We
evaluate output subspaces both quantitatively using cluster-
ing and outlier detection, as well as qualitatively.

We compare to CMI [16], MAC [17], and HICS [11].
As further baseline, we include UDS¬r, a variant of UDS
that does not use regularisation. For each competitor, we
optimise parameter settings according to their respective

papers. For UDS and UDS¬r, the default setting is β =
20. Like [17, 18, 24], we form initial bins {a1, . . . , aβ} by
applying equal-frequency binning. We implemented UDS in
Java, and make our code available for research purposes.1 All
experiments were performed single-threaded on i7-4600U
CPUs with 16GB RAM. We report wall-clock running times.

7.1 Statistical Power To verify the suitability of UDS to
correlation analysis, we first perform statistical tests using
synthetic data sets. Here, the null hypothesis is that the data
dimensions are statistically independent. To determine the
cutoff for testing the null hypothesis, we first generate 100
data sets with no correlation. Next, we compute their corre-
lation scores and set the cutoff according to the significance
level α = 0.05. We then generate 100 data sets with correla-
tion. The power of the measure is the proportion of the 100
new data sets whose correlation scores exceed the cutoff.

We generate each data set with correlation as follows.
Let l = n/2 where n is the desired dimensionality. We gen-
erate Xl×1 = Al×l × Zl×1 where Zi ∼ Gaussian(0, 1) and
Al×l is fixed with aij initially drawn from Uniform[0, 1].
Here, Xl×1 and Zl×1 are two vectors, each having l dimen-
sions. We let {X1, . . . , Xl} = Xl×1. Next, we generate
Wl×1 = Bl×l × Xl×1 where Bl×l is fixed with bij ini-
tially drawn from Uniform[0, 0.5]. Then, using a function
f we generate Xi+l = f(Wi) + ei where i ∈ [1, l], and
ei ∼ Gaussian(0, σ); we control noise by varying σ. We use
four instantiations of f :

f1(x) = 2x+ 1 , f2(x) = x2 − 2x ,
f3(x) = log(|x|+ 1) , f4(x) = sin(2x) .

That is, we test with both linear and non-linear correlations.
To study universality, we test with four cases: 1) data

sets with as well as without correlation have the same di-
mensionality n; 2) those with correlation have dimensional-
ity n while those without have dimensionality n+ e where e
is the number of extra dimensions; 3) those with correlation
have dimensionality n + e while those without have dimen-
sionality n; 4) those with as well as without correlation have
arbitrary dimensionality. We find 2) and 3) to yield very sim-
ilar results; hence, we report results of 2) only. For brevity,
we further postpone the results of 4) to the online Appendix.

The results for case 1) are in Figure 1. Here, we set
m = 4000 and vary n. The results for case 2) are in Figure 2.
Here, we fix m = 4000 and n = 20, and vary e.

Going over all results, we see that UDS consistently
achieves the best performance in all cases. Moreover, it has
from almost perfect to perfect statistical power across differ-
ent values of data size m, dimensionality n, and the number
of extra dimensions e. We outperform MAC most likely be-
cause we consistently stick to cumulative entropy instead of
transitioning between this entropy notion and Shannon en-

1http://eda.mmci.uni-saarland.de/uds/

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50

P
o

w
e

r

Number of dimensions

UDS UDS-r CMI

MAC HICS

(a) Power on f1

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50

P
o

w
e

r

Number of dimensions

UDS UDS-r CMI

MAC HICS

(b) Power on f2

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50

P
o

w
e

r

Number of dimensions

UDS UDS-r CMI

MAC HICS

(c) Power on f3

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50

P
o

w
e

r

Number of dimensions

UDS UDS-r CMI

MAC HICS

(d) Power on f3

Figure 1: [Higher is better] Statistical power on synthetic
data sets for the setting where m = 4000 and n is varied.

tropy. The clear margin of UDS over UDS¬r shows the im-
portance of our model selection step (cf., Section 5.2). HICS
does not perform so well in high dimensionality perhaps due
to its use of high dimensional conditional distributions.

Regarding efficiency, UDS is much faster than MAC
and on par with UDS¬r, CMI, and HICS. As UDS clearly
outperforms UDS¬r, we skip UDS¬r in the following.

7.2 Quality of Subspaces – Quantitative Results Here
we plug all methods into beam search [11] to find correlated
subspaces. As common in subspace search [4, 16, 17],
we evaluate quality of output subspaces by each method
through clustering, which tends to yield meaningful results
on subspaces with high correlations [4, 14].

For each method, we apply DBSCAN [8] – a well-
known clustering technique – on top of its output subspaces.
We follow [1] to aggregate the results of all subspaces.
We experiment with 6 real labeled data sets from UCI
Repository, regarding their class labels as ground truth. As
performance metric, we use F1 measure. The results are in
Table 1. We see that UDS performs very well, achieving
the best F1 scores on all data sets. This implies that UDS
finds better correlated subspaces that help DBSCAN to more
accurately discover true clusters.

7.3 Quality of Subspaces – Qualitative Results To eval-
uate the efficacy of UDS in exploratory analysis, we apply
it on two real data sets: Communities & Crime from de-
mographic domain [22] and Energy from architecture do-
main [28]. As these data sets are unlabeled, we cannot assess
clustering quality as before. We instead perform subspace

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50

P
o

w
e

r

Number of extra dimensions

UDS UDS-r CMI

MAC HICS

(a) Power on f1

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50

P
o

w
e

r

Number of extra dimensions

UDS UDS-r CMI

MAC HICS

(b) Power on f2

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50

P
o

w
e

r

Number of extra dimensions

UDS UDS-r CMI

MAC HICS

(c) Power on f3

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50

P
o

w
e

r

Number of extra dimensions

UDS UDS-r CMI

MAC HICS

(d) Power on f3

Figure 2: [Higher is better] Statistical power on synthetic
data sets for m = 4000, n = 20, and varying e.

Data UDS CMI MAC HICS

Optical 0.61 0.40 0.48 0.36
Leaves 0.70 0.52 0.61 0.45
Letter 0.82 0.64 0.82 0.49
PenDigits 0.85 0.72 0.85 0.71
Robot 0.54 0.33 0.46 0.21
Wave 0.50 0.24 0.38 0.18

Average 0.67 0.48 0.60 0.40

Table 1: [Higher is better] Clustering results (F1 scores) on
real-world data sets.

search to detect correlated subspaces, and investigate the dis-
covered correlations. We present some interesting correla-
tions discovered by UDS. All reported correlations are sig-
nificant at α = 0.05 following the testing procedure in [24].

On Communities & Crime, UDS finds a multivariate
correlation among % of people in the community with high
education, % with low education, % employed as worker,
and % employed as manager. This correlation is intuitively
understandable. Surprisingly, it is not detected by methods
other than UDS and MAC. For exposition, we plot some of
its 2-D projections in Figure 3. For each correlation pattern
in this figure, we plot the function that best fit it – in term of
R2. Two out of three functions are polynomials of degree 5,
implying the respective correlation patterns are non-linear.

On Energy, UDS identified a multivariate correlation be-
tween outdoor temperature, indoor CO2 concentration, heat-
ing consumption, and drinking water consumption. We plot

some of its 2-D projections in Figure 4. The correlation pat-
terns there range from linear (Figure 4(a)) to non-linear (Fig-
ures 4(b) and 4(c)). They are also intuitively understandable.
Interestingly, no competitor including MAC can detect all of
them. For instance, MAC is able to identify the first pattern
only. This could be attributed to the fact that MAC computes
Shannon entropy over discretised data that it obtains by op-
timising w.r.t. cumulative entropy.

8 Conclusion
In this paper, we studied the problem of universally, non-
parametrically, and efficiently assessing subspace correla-
tions in multivariate data. By universal, we mean that 1) we
are able to capture correlation in subspaces of any dimen-
sionality and 2) we allow comparison of correlation scores
across different subspaces – regardless how many dimen-
sions they have and what specific statistical properties their
dimensions possess. To address all issues, we proposed UDS.
In short, we defined UDS based on cumulative entropy. We
fulfilled universality by introducing a principled normalisa-
tion scheme to bring UDS scores across different subspaces
to the same domain. We presented a non-parametric and ef-
ficient method to compute UDS on empirical data. Extensive
experiments showed that UDS outperformed state of the art
in both statistical power and subspace search.

Acknowledgements
The authors are supported by the Cluster of Excellence
“Multimodal Computing and Interaction” within the Excel-
lence Initiative of the German Federal Government.

References

[1] I. Assent et al. DUSC: Dimensionality unbiased subspace
clustering. In ICDM, pages 409–414, 2007.

[2] L. Breiman and J. H. Friedman. Estimating optimal transfor-
mations for multiple regression and correlation. J. Am. Stat.
Assoc., 80(391):580–598, 1985.

[3] P. Chanda et al. On mining statistically significant attribute
association information. In SDM, pages 141–152, 2010.

[4] C. H. Cheng et al. Entropy-based subspace clustering for
mining numerical data. In KDD, pages 84–93, 1999.

[5] T. M. Cover and J. A. Thomas. Elements of Information
Theory. Wiley-Interscience New York, 2006.

[6] A. D. Crescenzo and M. Longobardi. On cumulative en-
tropies. J. Stat. Plan. Inference, 139(2009):4072–4087, 2009.

[7] N. Drissi et al. Generalized cumulative residual entropy for
distributions with unrestricted supports. Res. Lett. Signal
Process., 2008:1–5, 2008.

[8] M. Ester et al. A density-based algorithm for discovering
clusters in large spatial databases with noise. In KDD, pages
226–231, 1996.

[9] A. Gretton et al. Measuring statistical dependence with
Hilbert-Schmidt norms. In ALT, pages 63–77, 2005.

(a) % high education vs. % employed as
worker

(b) % high education vs. % employed as
manager

(c) % low education vs. % employed as
manager

Figure 3: Examples of correlation discovered by UDS on demographic data. Of the competitors, only MAC discovers these
patterns.

(a) water consumption vs. CO2 concentration (b) heating consumption vs. water
consumption

(c) water consumption vs. outdoor
temperature

Figure 4: Example correlations discovered by UDS on climate data. Of the competitors, only MAC discovers the first pattern.

[10] T. S. Han. Multiple mutual informations and multiple interac-
tions in frequency data. Information and Control, 46(1):26–
45, 1980.

[11] F. Keller et al. HiCS: High contrast subspaces for density-
based outlier ranking. In ICDE, pages 1037–1048, 2012.

[12] J. A. Lee and M. Verleysen. Nonlinear Dimensionality
Reduction. Springer, New York, 2007.

[13] J. H. Macke et al. Generating spike trains with specified
correlation coefficients. Neural Computation, 21(2):397–
423, 2009.

[14] E. Müller et al. Evaluating clustering in subspace projections
of high dimensional data. PVLDB, 2(1):1270–1281, 2009.

[15] H. V. Nguyen et al. 4S: Scalable subspace search scheme
overcoming traditional apriori processing. In BigData Con-
ference, pages 359–367, 2013.

[16] H. V. Nguyen et al. CMI: An information-theoretic contrast
measure for enhancing subspace cluster and outlier detection.
In SDM, pages 198–206, 2013.

[17] H. V. Nguyen et al. Multivariate maximal correlation analy-
sis. In ICML, pages 775–783, 2014.

[18] H. V. Nguyen et al. Unsupervised interaction-preserving
discretization of multivariate data. Data Min. Knowl. Discov.,
28(5-6):1366–1397, 2014.

[19] H. V. Nguyen and J. Vreeken. Non-parametric jensen-
shannon divergence. In ECML/PKDD, 2015.

[20] M. Rao et al. Cumulative residual entropy: A new measure

of information. IEEE Trans. Inf. Theory, 50(6):1220–1228,
2004.

[21] M. Rao et al. A test of independence based on a generalized
correlation function. Signal Processing, 91(1):15–27, 2011.

[22] M. Redmond and A. Baveja. A data-driven software tool
for enabling cooperative information sharing among police
departments. Eur. J. Oper. Res., 141(3):660–678, 2002.

[23] A. Renyi. On measures of dependence. Acta Mathematica
Academiae Scientiarum Hungarica, 10(3-4):441–451, 1959.

[24] D. N. Reshef et al. Detecting novel associations in large data
sets. Science, 334(6062):1518–1524, 2011.

[25] S. Seth et al. A unified framework for quadratic measures
of independence. IEEE Trans. Signal Process., 59(8):3624–
3635, 2011.

[26] G. J. Székely and M. L. Rizzo. Brownian distance covariance.
Ann. Appl. Stat., 3(4):1236–1265, 2009.

[27] J. Vreeken. Causal inference by direction of information. In
SDM, pages 909–917, 2015.

[28] A. Wagner et al. Performance analysis of commercial build-
ings – results and experiences from the german demonstration
program ‘energy optimized building (EnOB)’. Energy and
Buildings, 68:634–638, 2014.

[29] S. Watanabe. Information theoretical analysis of multivariate
correlation. IBM J. Res. Dev., 4:66–82, 1960.

A Proofs
Proof. [Lemma 3.1] By definition, we have

CMI(X1,...,d)

= max
σ∈Fd

d∑
i=2

h(Xσ(i))− h(Xσ(i) | Xσ(1),...,σ(i−1)).

For each σ ∈ Fd,

d∑
i=2

h(Xσ(i))− h(Xσ(i) | Xσ(1),...,σ(i−1))

≤
d∑
i=2

h(Xσ(i))− h(Xσ(i) | Xσ(1),...,σ(i−1))

+ h(Xd+1)− h(Xd+1 | Xσ(1),...,σ(i)).

This holds because from Theorem 3.1,

h(Xd+1) ≥ h(Xd+1 | Xσ(1),...,σ(i)).

Hence, for each σ ∈ Fd,

d∑
i=2

h(Xσ(i))− h(Xσ(i) | Xσ(1),...,σ(i−1))

≤ max
σ∈Fd+1

d+1∑
i=2

h(Xσ(i))− h(Xσ(i) | Xσ(1),...,σ(i−1)).

In other words, CMI(X1,...,d) ≤ CMI(X1,...,d+1).

Proof. [Lemma 3.2] From Theorem 3.1, it holds that

d∑
i=2

h(Xσ(i))− h(Xσ(i) | Xσ(1),...,σ(i−1))

≤
d∑
i=2

h(Xσ(i))

≤ max
σ∈Fd

d∑
i=2

h(Xσ(i)).

Hence, we arrive at: CMI(X1,...,d) ≤ max
σ∈Fd

d∑
i=2

h(Xσ(i)).

Proof. [Lemma 4.1] The result follows from the proof of
Lemma 3.1. Based on, Theorem 3.1, the equality holds iff
for each i ∈ [2, d], Xσ(i) is a function of Xσ(1),...,σ(i−1).
This means that

• Xσ(2) is a function of Xσ(1).

• Xσ(3) is a function of Xσ(1) and Xσ(2).

• . . .

• Xσ(d) is a function of Xσ(1),...,σ(d−1).

This is equivalent to thatXσ(2),...,σ(d) are functions ofXσ(1).

Proof. [Lemma 4.2] That 0 ≤ UDS(X1,...,d) ≤ 1 follows
from Theorem 3.1 and Lemma 4.1.

UDS(X1,...,d) = 0 iff for each σ ∈ Fd,

d∑
i=2

h(Xσ(i))− h(Xσ(i) | Xσ(1),...,σ(i−1)) = 0.

This means that for each i ∈ [2, d], Xσ(i) is independent
of Xσ(1),...,σ(i−1), which is equivalent to Xσ(1),...,σ(d) are
independent.

UDS(X1,...,d) = 0 iff there exists σ ∈ Fd such that

d∑
i=2

h(Xσ(i))− h(Xσ(i) | Xσ(1),...,σ(i−1)) =

d∑
i=2

h(Xσ(i)).

Following Lemma 4.1, this means that Xσ(2),...,σ(d) are
functions of Xσ(1).

LEMMA A.1. It holds that:
• 0 ≤ UDSpr (X1,...,d) ≤ 1.
• UDSpr (X1,...,d) = 0 iff X1,...,d are independent.
• UDSpr (X1,...,d) = 1 iff Xσ(2),...,σ(d) are functions of
Xσ(1).

Proof. That 0 ≤ UDSpr (X1,...,d) ≤ 1 follows from Theo-
rem 3.1 and Lemma 4.1.

UDSpr (X1,...,d) = 0 iff

d∑
i=2

h(Xσ(i))− h(Xσ(i) | Xσ(1),...,σ(i−1)) = 0.

This means that for each i ∈ [2, d], Xσ(i) is independent
of Xσ(1),...,σ(i−1), which is equivalent to Xσ(1),...,σ(d) are
independent.

UDSpr (X1,...,d) = 1 iff

d∑
i=2

h(Xσ(i))− h(Xσ(i) | Xσ(1),...,σ(i−1)) =

d∑
i=2

h(Xσ(i)).

Following Lemma 4.1, this means that Xσ(2),...,σ(d) are
functions of Xσ(1).

B Detailed Complexity Analysis
We pre-sort the values of X1, . . . , Xn. For each dimension
X , we maintain a rank index structure RIX where RIX [i] is
the row index of the i th smallest value of X .

When computing h(X ′ | I,X), we pre-partition X in
to bins {a1, . . . , aβ}. Recall that C1, . . . , Ck are the non-
empty hypercubes of I . To efficiently compute f [j][i] where

0

0.2

0.4

0.6

0.8

1

f1 f2 f3 f4

P
o
w
e
r

UDS UDS-r CMI

MAC HICS

Figure 5: [Higher is better] Statistical power on synthetic
data sets for the setting where m = 4000 and the dimension-
ality of each data set created is randomly drawn from [2, 50].

1 ≤ j ≤ i ≤ β, we have to make sure that values of X ′

within each combination (Cy, az) for y ∈ [1, k] and z ∈
[1, β] are already sorted. We achieve this by using RIX′ . In
particular, we loop through each row index, starting from 0.
For each index i, we obtain the real row index which is
RIX′ [i]. Hence, we obtain the respective row. For this row,
we retrieve the respective combination (Cy, az) that it has.
Then, we add X ′ value of the row to the list of X ′ values
of (Cy, az). In this way, we have values of X ′ sorted in all
combinations (Cy, az).

Now, for each j ∈ [1, β], we run i from j to β. If i = j,
f [j][i] is in fact h(X ′ | I) computed using the data points
in bin ai. If i > j, we compute f [j][i] by merging lists of
sorted valuesX ′ of (C1, ai), . . . , (Ck, ai) with the respective
list of (C1,

⋃i−1
z=j az), . . . , (Ck,

⋃i−1
z=j az). That is, we merge

the list of (Cy, ai) with that of (Cy,
⋃i−1
z=j az). The merge

is done efficiently using merge procedure of the well-known
merge sort.

Therefore, computing f [j][i] where 1 ≤ j ≤ i ≤ β in
total takes O(m logm+mβ2).

C Additional Results on Statistical Power
The results for case 4), where data sets with and without
correlation have arbitrary dimensionality, are in Figure 5.
Here, m = 4000 and the dimensionality of each data set
created is randomly drawn from [2, 50]. We see that UDS
consistently achieves the best statistical power across f1, f2,
f3, and f4. This means that it is able to universally quantify
correlations of subspaces with different dimensionality.

D Sensitivity to β
To assess sensitivity of UDS to β, we use the setting of case
1) where data sets with as well as without correlation have
the same dimensionality n. In particular, we generate data
sets with m = 4000 and n = 20. We vary β from 5 to 40
with step size being 5. The results are in Figure 6. We see
that UDS is very stable for β > 10. This implies that it allows
easy parameterization.

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40

P
o
w
e
r

β

(a) Power on f1

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40

P
o
w
e
r

β

(b) Power on f2

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40

P
o
w
e
r

β

(c) Power on f3

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40

P
o
w
e
r

β

(d) Power on f4

Figure 6: [Higher is better] Sensitivity to β: Statistical power
on synthetic data sets for the setting where m = 4000 and
n = 20.

1

10

100

1000

10000

100000

1000 4000 7000 10000

T
im

e
 (

m
s)

Data Size

UDS UDS-r CMI

MAC HICS

(a) Runtime vs. m

1

10

100

1000

10000

100000

1000000

0 10 20 30 40 50

T
im

e
 (

m
s)

Dimensionality

UDS UDS-r CMI

MAC HICS

(b) Runtime vs. n

Figure 7: [Lower is better] Scalability to data size m and
dimensionality n. The default setting is m = 4000 and
n = 20. The runtime axis is in log scale.

E Efficiency Results
For efficiency to data size m, we generate data sets with
dimensionality n = 20 and m varied. For efficiency to
dimensionality n, we generate data sets with size m = 4000
and n varied. The results are in Figure 7. We see that UDS
scales much better than MAC and on par with other methods.
MAC is inefficient because it has to compute all pairwise
correlations of a subspace before outputting its final score.

F Results on Outlier Detection
Besides clustering, we also use outlier detection to test qual-
ity of correlated subspaces found by each method. Again,
we plug all methods into beam search to find correlated
subspaces. As common in subspace search [11], for each
method we apply LOF, a well-known technique for outlier
detection, on top of its output subspaces. Outlier detection

Data UDS CMI MAC HICS

Ann-Thyroid 0.98 0.96 0.96 0.95
Satimage 0.98 0.74 0.95 0.86
Segmentation 0.54 0.39 0.51 0.49
Wave Noise 0.51 0.50 0.50 0.48
WBC 0.50 0.47 0.48 0.47
WBCD 0.99 0.92 0.99 0.91

Average 0.75 0.66 0.73 0.69

Table 2: [Higher is better] Outlier detection results (AUC
scores) on real-world data sets.

also tends to yield meaningful results on subspaces with high
correlations [11, 16].

To show that UDS can work with various data sets,
we pick another 6 real labeled data sets – also from UCI
Repository – for testing purposes. For each of these data
sets, we follow standard procedure in the literature and create
outliers by randomly taking 10% of the smallest class. As
performance metric, we use AUC (Area under ROC Curve).
The results are in Table 2. We see that UDS consistently
achieves the best AUC scores on all data sets. This implies
that it finds better correlated subspaces that help LOF to more
accurately identify true outliers.

