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Abstract
Discovering correlated variables is one of the core problems in data
analysis. Many measures for correlation have been proposed, yet
it is surprisingly ill-defined in general. That is, most, if not all,
measures make very strong assumptions on the data distribution or
type of dependency they can detect.

In this work, we provide a general theory on correlation, with-
out making any such assumptions. Simply put, we propose cor-
relation by compression. To this end, we propose two correlation
measures based on solid information theoretic foundations, i.e. Kol-
mogorov complexity. The proposed correlation measures possess
interesting properties desirable for any sensible correlation mea-
sure. However, Kolmogorov complexity is not computable, and
hence we propose practical and computable instantiations based on
the Minimum Description Length (MDL) principle.

In practice, we can apply the proposed measures on any type of
data by instantiating them with any lossless real-world compressors
that reward dependencies. Extensive experiments show that the
correlation measures works well in practice, have high statistical
power, and find meaningful correlations on binary data, while they
are easily extendible to other data types.

1 Introduction
Discovering correlation is a key task in knowledge discovery.
Intuitively it is clear what correlation is – things that happen
or change together – formally, however, it is surprisingly ill-
defined. While there exist many measures of correlation, all
make assumptions on the type of data and the dependencies
they can consider. Pearson correlation, for example, only
works on pairs of continuous univariate random variables,
and can only detect linear correlations.

A large branch of correlation analysis methods are built
on statistical independence. That is, they rely on the joint
probability of x and y to deviate from their probability
under the independence assumption, i.e. p(x, y) 6= p(x)p(y).
While this provides a powerful framework, that in theory can
pick up any statistical dependency, it does assume that we
have access to the true probability distributions.

In practice, we do not know the true distributions, and
either fit an assumed distribution, or estimate its density.
Both directly affect whether and how well we detect corre-
lation. Moreover, in this setting we ignore the complexity
of these distributions themselves and hence run the risk of
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detecting spurious correlations through overfitting.
In this paper we define correlation from the ground on

up, without having to make any such assumptions. We do
so using Algorithmic Information Theory. We propose a
theoretical framework for correlation analysis based on Kol-
mogorov complexity. Loosely speaking, we measure how
correlated two sets of observations x and y are by how many
bits we save compressing the data together, exploiting the
dependencies between their corresponding observations, in-
stead of compressing the observations over x and y sepa-
rately. Our framework is highly general in the sense that it
can pick up any algorithmic dependency and it naturally ex-
tends to multivariate data of any kind. That is, we define
our score over mathematical objects in general, regardless
of whether these are discrete or continuous tabular data, for
sequential data, or graphs.

Specifically, we propose two measures, both of which
explicitly penalise redundancy to avoid free-rider patterns.
That is, if x and y are correlated, but independent of z,
s(x, y) should be larger than s(x, y, z). We show how to
instantiate these scores in practice through the Minimum
Description Length (MDL) principle using existing lossless
compressors. Thorough empirical evaluation on both syn-
thetic and real world data confirm these measures have very
high statistical power, are robust with regard to redundancy,
and identify interesting correlations in real world data.

In short, we formalise, for the first time, the connection
between correlation and algorithmic information theory. It is
important to note that our proposal is orthogonal to existing
methods. Our framework can be used both through existing
compressors, as well as suggests what compressors to study
in the future such that we can measure correlation over non-
standard data types such as complex multivariate sequences
and graphs. By developing better compressors, we more
closely approximate Kolmogorov complexity, and hence will
be able to better detect richer classes of correlation.

2 Preliminaries
In this section, we introduce notations and background defi-
nitions we will use in subsequent sections.

2.1 Kolmogorov Complexity To develop an algorithmic
theory for correlation, we need Kolmogorov complexity [4,
13, 24]. Below we give a brief introduction.



We write string to mean a finite binary string. The
Kolmogorov complexity of a string x, denoted K(x), is
the length of the shortest binary program p∗ to a Universal
Turing machine U that generates x and halts. Let `(.) be a
function that maps a string to its length, i.e. ` : {0, 1}∗ → N.
Then, K(x) = `(p∗). More formally, the Kolmogorov
complexity of a string x is given by

K(x) = min{`(p) | p ∈ {0, 1}∗ and U(p) = x} ,

where U(p) = x indicates that when the binary program p
is run on U , it generates x and halts. In particular, p∗ is the
most succinct algorithmic description of x. Intuitively,K(x)
is the length of the ultimate lossless compression of x.

In particular, we use prefix-free Kolmogorov complex-
ity, where the programs are prefix-free—no program is a pre-
fix of another program. In simple terms, this is equivalent
to considering the length of the shortest binary program to
compute x using a computer programming language such as
Python or Haskell, as these programs are prefix-free—there
is an end-of-program marker.

The conditional Kolmogorov complexity, denoted
K(x | y), is the length of the shortest binary program p∗

that generates x and halts when string y is provided as an
auxiliary input to the program.

Although Kolmogorov complexity is defined over
strings, we can interchangeably use it over data objects as
any finite data object can be encoded into a string [16]. No-
tably the Kolmogorov complexity of a data object is invari-
ant to how we encode it into a string. A data object can be a
random variable, sequence of events, a temporal graph, etc.

To derive our correlation measure, we need the Kol-
mogorov complexity of not one, but multiple objects. That
is, we need Kolmogorov complexity of a set of data objects.
A set of data objects can be a set of random variables, a set
of sequences of events, a set of temporal graphs, etc. For a
set of data objects X , its Kolmogorov complexity, denoted
K(X), is the length of the shortest binary program to the
Universal Turing machine U computes the listing of the ele-
ments ofX and halts [11]. That is, ifX = {x1, x2, . . . , xn},
then K(X) is given by

K(X) = min{`(p) | p ∈ {0, 1}∗ and
U(p) = 〈x1, 〈x2, . . . , 〈xn−1, xn〉 . . . 〉〉} ,

where U(p) = 〈x1, 〈x2, . . . , 〈xn−1, xn〉 . . . 〉〉 indicates that
when the binary program p is run on a Universal Turing
machine U , it generates the listing of the elements in X , and
a way to tell them apart. In turn, the conditional complexity
K(X | Y ) is the length of the shortest binary program to a
Universal Turing machine that generates listing of elements
of X , and a way to tell them apart given a set of data objects
Y as auxiliary information.

Let K(x, y) be the Kolmogorov complexity of the set
{x, y} when x is generated first, and then y, and a descrip-

tion to tell them apart. Then we can expand K(x, y) as
K(x, y) = K(x) + K(y | x) + O(1) [16]. The symme-
try of information [16] for two data objects x and y implies
K(x, y) = K(y, x) + O(1). Generalising the symmetry of
information to a set X of n data objects, we note that K(X)
remains the same up to an additiveO(1) term irrespective of
the order in which data objects in X are generated.

From here onwards, we use +
= to indicate equality up to

an additive constant. For instance, K(x, y) +
= K(x) +K(y |

x). It is a standard practice in algorithmic information theory
literature to use additive term O(1) to mean a constant, con-
sidering the length of a fixed binary program, independent of
any variable in the expression.

We refer the interested reader to Li & Vitányi [16] for
more details on Kolmogorov complexity.

3 Correlation by Algorithmic Information Theory
Suppose we are given a set of data objects X . In practice, X
can be a set of random variables, a set of temporal graphs, a
set of event sequences, etc. We are interested in inferring
whether data objects x ∈ X are correlated. However,
we would like to do so without making any assumptions –
neither about distributions, nor about types of dependencies.

3.1 Correlation by Kolmogorov Complexity In broad
terms, correlation is a relationship between things that tend
to vary or occur together in a way not expected on the
basis of chance alone. For example, electricity consumption
in a building and electricity bill are correlated because
an increase in electricity consumption corresponds to an
increase in electricity bill.

In algorithmic information theoretic terms, we capture
correlation using the notion of computability. Suppose x
be a data object representing a series of n observations
a1, a2, . . . , an, and y represents b1, b2, . . . , bn. In general,
when analysing correlation between x and y, we look for
relation between observations ai ∈ x and bi ∈ y.

In algorithmic information theory, this translates to find-
ing the most succinct program that knows the underlying
relation between corresponding observations ai and bi, and
uses that to generate observations of x and y. As such, when
generating an observation bi of y, the program is only al-
lowed to use information from ai, but not from aj of x,
where i 6= j, and vice versa. By using these programs, we
only capture correlation.

Let Px be the shortest program that generates observa-
tions of x. Likewise Py for y. Let Pxy be the shortest pro-
gram that generates observations of both x and y. When
generating an observation ai of x, the program Pxy can ad-
ditionally use the information from corresponding observa-
tion bi of y. Therefore if there is any correlation between x
and y, the program Pxy can clearly exploit that dependency,
whereas Px and Py cannot. However, if there is no correla-
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FIGURE 1: Algorithmic model of correlation. Let x
be a data object representing a series of n observations
a1, a2, . . . , an, and y represents b1, b2, . . . , bn. (left) One
way to generate the observations of x and y is by independent
shortest programs Px and Py . (right) The alternative way is
through a single shortest program Pxy . The program Pxy ,
however, unlike Px and Py , additionally uses the information
from corresponding observation bi of y when generating an
observation ai of x, and vice versa. Therefore if x and
y are correlated, Pxy is the most succinct way to generate
observations of x and y. If x and y are algorithmically
independent, both ways of generating the observations of x
and y are equivalent.

tion between x and y, i.e. they are algorithmically indepen-
dent, then there is no difference in using a single program
Pxy from using two independent programs Px and Py . We
present this algorithmic model of correlation in Figure 1.

We can think of Pxy as a machinery that is the origin
of x and y, for it knows how to generate pairs of observa-
tions of x and y. This machinery can be a functional depen-
dency that maps each observation of x to an observation of y
with or without noise. Alternatively, it could also be a prob-
abilistic process that associates each observation of x with
an observation of y with certain probability. Importantly, by
using algorithmic information theory, we take into account
the complexity of the machinery as well.

This algorithmic model of correlation generalises to
a set of n data objects X . The trivial way to generate
the observations of data objects in X is by independent
shortest programs Px for every x ∈ X . If there is any
correlation between data objects inX , the most succinct way
to generate the observations of data objects in X is by the
single shortest program PX that can additionally exploit the
dependencies between corresponding observations of data
objects in X . More formally, K(X) ≤

∑
x∈X K(x), where

the inequality holds with equality when data objects inX are
algorithmically independent of each other.

Our goal is to identify correlation among data objects in
X . Therefore, we need to measure the amount of correlation
present in data objects in X . The amount of correlation
present inX can be simply defined as the absolute difference
between

∑
x∈X K(x) and K(X). That is, how much do

we save in the description of X if we describe X by a
single program as opposed to describing each data object
x ∈ X by individual programs. More formally, the amount
of algorithmic correlation present between data objects inX ,

denoted δ(X), is given by

δ(X) =

(∑
x∈X

K(x)

)
−K(X) .

We refer to δ(X) as the total algorithmic correlation of X
here onwards.

However, δ(X), being an absolute quantity, is hard to
compare across various sets of data objects, and hence dif-
ferent sets of random variables, sequence of events, tempo-
ral graphs, etc. For instance, if two strings of length 1 Mil-
lion bits possess total algorithmic correlation of 100 bits, we
can easily misinterpret that they are more correlated than two
strings of length 1000 bits that have the same value. There-
fore, to obtain comparable values, we have to normalise.
Next we define σ, the normalised version of the total algo-
rithmic correlation.

DEFINITION 1. The normalised total algorithmic correla-
tion of a set of data objects X is defined as

σ(X) =

∑
x∈X K(x)−K(X)∑

x∈X K(x)−minx∈X K(x)
.

The normalised total algorithmic correlation score has a
number of desirable properties.

LEMMA 3.1. For a set of data objects X , up to O(1) term

• 0 ≤ σ(X) ≤ 1,

• σ(X) = 0 iff X is algorithmically independent,

• σ(X) = 1 iff X is algorithmically fully correlated.

Proof. We postpone the proof to the Appendix.

To avoid redundancy, a correlation measure should pun-
ish redundancy. That is, a set of data objects containing a
correlated subset and other data objects independent of that
subset should not get an as high, or higher score than when
we only consider the correlated subset. The normalised total
algorithmic correlation punishes such redundant sets.

LEMMA 3.2. Let X be a set of algorithmically correlated
data objects. Let z be a data object which is algorithmically
independent of X . Let X ′ = X ∪ z. Then σ(X ′) < σ(X).

Proof. We postpone the proof to the Appendix.

The normalised total algorithmic correlation possesses
properties desired for any decent correlation score. First, it
has clear bounds – a lower bound of 0 and an upper bound of
1. A value of 0 implies the data objects are algorithmically
independent. A value of 1 implies the data objects are
fully correlated. The closer the score to 1, the stronger



the correlation and the closer the score to 1, the weaker the
correlation. Second, it punishes redundant sets.

Alternative to total algorithmic correlation, where we
measure the difference in bits of the independent description
versus the joint description, we can also naturally measure
algorithmic correlation by considering the contribution of
other data objects in the explanation of each data object. We
refer to the amount of algorithmic correlation thus derived
as total singular algorithmic correlation. More formally, the
total singular algorithmic correlation of X , denoted ∆(X),
is given by

∆(X) =
∑
x∈X

K(x)−K(x | X \ x) .

The total singular algorithmic correlation overestimates
the total algorithmic correlation. For that we present the
following lemma.

LEMMA 3.3. For a set of data objects X , ∆(X) ≥ δ(X).

Proof. We postpone the proof to the online Appendix.

As with the total algorithmic correlation, to compare the
total singular algorithmic correlation between different sets
of data objects, we need to normalise. Next we define φ, the
normalised version of total singular algorithmic correlation.

DEFINITION 2. The normalised total singular algorithmic
correlation of a set of data objects X is defined as

φ(X) =

∑
x∈X K(x)−K(x | X \ x)∑

x∈X K(x)
.

Although a relaxed formulation, total singular algorithmic
correlation shares the most important properties of total
algorithmic correlation.

LEMMA 3.4. For a set of data objects X , up to O(1) term

• 0 ≤ φ(X) ≤ 1,

• φ(X) = 0 iff X is algorithmically independent, and

• φ(X) = 1 iff X is algorithmically fully correlated.

Proof. We postpone the proof to the Appendix.

LEMMA 3.5. Let X be a set of algorithmically correlated
data objects. Let z be a data object which is algorithmically
independent of X . Let X ′ = X ∪ z. Then φ(X ′) < φ(X).

Proof. We postpone the proof to the Appendix.

The normalised total singular algorithmic correlation,
like the normalised total algorithmic correlation, possesses
properties desired for any decent correlation score. First, it

has clear bounds – a lower bound of 0 and an upper bound
of 1. Second, it punishes redundancy.

Correlation using Kolmogorov complexity has a number
of powerful properties. First, we do not need to assume
the distribution of data as we only need to consider the data
objects. Second, the correlation score is generic in the sense
that we are not restricted to one type of data. Third, we do
not need to assume any specific kind of correlation between
data objects in X , nor do we need to assume anything about
the shape or type of noise.

Connection to Statistical Dependence In this paper
we define correlation on the foundations of algorithmic
information theory. The other, and perhaps more well-
known branch of information theory, Shannon information
theory, can also be used to measure correlation. It does
so, however, in terms of statistical dependence. Next we
study the connection between algorithmic correlation and
statistical dependence.

Shannon entropy is the average amount of information
that the observer has gained after receiving a realised out-
come z of a discrete random variable Z [6]. Let p be
the probability mass function of Z. The Shannon entropy
of Z, denoted H(Z), is given by H(Z) = −

∑
z p(Z =

z) log p(Z = z). Therefore to transmit n events from Z, we
need H(Z) bits on average per event.

Note that Shannon entropy gives us the number of bits
to transmit the data under a given distribution. It does
not take the complexity of the distribution into account.
Kolmogorov complexity, on the other hand, considers only
the data irrespective of the source which generated it—and
hence, implicitly takes the complexity of the ‘distribution’
into account. Although different, there exists a connection
between Shannon entropy and Kolmogorov complexity.

This connection can be roughly described as fol-
lows [11]. For probability distributions with very low com-
plexity,1 the expected Kolmogorov complexity is equal to
Shannon entropy. For distributions with high complexity,
however, the two quantities might differ by a wide margin.
Algorithmic correlation hence implies statistical dependence
for distributions with low complexity, whereas for distribu-
tions with high complexity, the connection is not apparent.

Although Kolmogorov complexity has sound theoretical
foundations, due to the widely known halting problem, it
is not computable. Shannon entropy, on the other hand,
is computable iff the distribution is known. However, in
practice, distributions are hard to estimate, and finite sample
sizes makes things even worse—in practice we therefore
only work with estimates of Shannon entropy.

Kolmogorov complexity, on the other hand, can be ap-
proximated from above through lossless compression [16].

1Assuming that the data object is part of a sample space of a distribution.
We refer the interested reader to Grünwald & Vitányi [11] for more details.



In particular, the Minimum Description Length (MDL) prin-
ciple provides a statistically sound and computable means
for approximating Kolmogorov complexity [10, 21]. Next
we discuss how MDL can be used for computing the scores.

3.2 Correlation by MDL The Minimum Description
Length (MDL) principle [20] is a practical version of the
Kolmogorov complexity. It circumvents the computability
issue of the Kolmogorov complexity by restricting the pro-
grams to those that always halt, i.e. through lossless com-
pression. Moreover, we can select these programs using our
prior knowledge of the problem domain.

The MDL principle has its root in the two-part decom-
position of Kolmogorov complexity [16]. Like Kolmogorov
complexity, MDL embraces the slogan Induction by Com-
pression. It can be described roughly as follows. Given a
set of models M, and data D, the best model M ∈ M is
the one that minimises L(D,M) = L(M) + L(D | M),
where L(M) is the length, in bits, of the description of M ,
and L(D |M) is the length, in bits, of the description of the
data when encoded with the model M .

For our goal we need a model class M, consisting of
models that capture the correlation between data objects. As
such, these models should capture the dependency between
corresponding observations of data objects when described
together. For instance, let X = {x1, x2}, where x1 rep-
resents a series of observations a1, a2, . . . ak, and x2 repre-
sents b1, b2, . . . , bk. Our models in model class M should
describe X by describing ai given bi, or vice versa.

Suppose we have chosen our model classM. Then we
can approximate K(X) using MDL by L(X,MX), which
is defined as L(X,MX) = L(MX) + L(X | MX), where
L(MX) is the length, in bits, of the description of the MDL
optimal model for X , and L(X | MX) is the length, in
bits, of the description of X when encoded with MX . We
approximate K(x) by L(x,Mx) analogously.

Then the normalised total algorithmic correlation of X
using MDL is given by

σ̂(X) =

∑
x∈X L(x,Mx)− L(X,MX)∑

x∈X L(x,Mx)−minx∈X L(x,Mx)
.

We refer to this MDL based approximation of the normalised
total algorithmic correlation as normalised total compressive
correlation, shortly NTC.

To approximate the normalised total singular correla-
tion, we need to approximate conditional complexitiesK(x |
X \x). Let x̄ = X \x. We have K(X) +

= K(x̄) +K(x | x̄),
and it is easy to see thatK(x | x̄) +

=K(X)−K(x̄). Then the
normalised total singular algorithmic correlation of X using
MDL is given by

φ̂(X) =

∑
x∈X L(x,Mx)− L(X,MX)− L(x̄,Mx̄)∑

x∈X L(x,Mx)
.

We refer to this MDL based approximation of the normalised
total singular algorithmic correlation as normalised total
singular compressive correlation, shortly NSC. For both
scores, the bounds still hold up to an additive constant term,
since we are just restricting our model class with MDL.

The MDL based formulation has interesting properties.
First, it is computable, unlike the formulation based on
Kolmogorov complexity. Second, it is agnostic to the type
of data in its general form. Third, it does not require
assumptions on neither the distribution, nor the type of
dependency in data. Next we discuss how we to compute
the scores practically.

4 Correlation by Compression
To use MDL, and hence to compute the scores in practice, we
have to define our model class. Clearly it is desirable to have
a model class that is as general as possible. Further, the better
the overall description – of both model, and data given the
model – the better we approximate Kolmogorov complexity.
Importantly, we observe that to apply the MDL-based scores
under the selected model class, the following should hold up
to an additive constant term L(X,MX) ≤

∑
x∈X L(x,Mx).

Whereas theoretically possible, in practice there does
not exist a single lossless compressor that works on all
types of data. This means that for our purpose we have
to instantiate our scores with different lossless compressors.
Next we provide a brief overview of existing relevant MDL-
based lossless compressors.

Binary Data First we present existing MDL-based com-
pressors for binary data. SLIM [23] considers binary data as
transactions, and compresses these using a set of itemsets.
That is, it detects relevant co-occurrences of items, and dis-
covers that set of patterns by which it can compress the data
best. As an example, consider a binary dataset that consists
of transactions from a supermarket. If people buy bread and
butter very often, i.e. these products co-occur frequently in
the database. SLIM recognises this dependency, and adds
{bread, butter} as a pattern to its model if adding the pat-
tern to the model reduces the overall description length. As
a result, SLIM can identify correlation between items where
occurrence of one item implies the occurrence of other(s),
but cannot detect negative correlations or dependencies.

PACK [27] is another MDL-based compressor for binary
data. Its model contains binary decision trees for each
attributes that are dependent on other attributes. As a result,
it can identify complex interactions between attributes. That
is, it considers not just the 1s in the data, but also the 0s.
As an example, let us consider the binary dataset containing
transactions from a supermarket again. Suppose 90% of the
time when people buy beer, they do not buy milk. PACK
recognises this type of dependency, and can hence be used to
measure positive as well as negative correlations.

Other Data There exist MDL-based compressors for



other types of data as well. For instance, SQS [28] consid-
ers univariate sequential data. Correlation intuitively only
makes sense in multivariate data, and hence SQS is not ap-
plicable here. DITTO, a recent proposal by Bertens et al. [2]
extends SQS to multivariate event sequences. As such, in
principle it is applicable within our framework. For static
respectively temporal graphs, relevant compressors include
VOG [14] and TIMECRUNCH [22]. Both, however, consider
only single graphs, and hence cannot pick correlation from
multiple temporal graphs. It will make for interesting future
work to extend these algorithms to multi-graphs—by which
our framework will then allow to also measure correlation
between graphs.

5 Related Work
Identifying correlated variables is one of the core tasks
in data analysis. It comes as no surprise that numerous
correlation measures have been proposed over the years.
However, most of them make assumption about either the
distribution or the underlying dependency or both. We define
correlation using algorithmic information theory without
making any such assumptions. Clearly it is impossible
to give an exhaustive overview of literature on correlation.
Therefore we only cover those that are widely in use.

For over a century, the Pearson correlation coefficient
has been the workhorse for understanding the bivariate re-
lationships in statistical practice. However, it only detects
linear dependency, and works on numeric data. There exist
variations of the Pearson correlation coefficient like phi co-
efficient [7] for binary variables, and Spearman rank correla-
tion coefficient [25] for measuring the statistical dependence
between the ranking of two variables. Distance Correlation
(dCor) [26] generalises and extends the Pearson correlation
coefficient to multiple variables. It can detect non-linear cor-
relations as well. However, it introduces the notion of covari-
ance with respect to a stochastic process. Like the Pearson
correlation coefficient, dCor works only on numeric data.

There are information theoretic measures like the mu-
tual information, and its generalisation to more than two ran-
dom variables such as the total correlation [29]. However,
they require assumption on the distribution. The Maximal
Information Coefficient (MIC) [19] is a continuous variable
counterpart to mutual information for two discrete random
variables. It finds the discretisation of variables that max-
imise their normalised mutual information. MAC [18] gen-
eralises MIC to more than two variables by identifying dis-
cretisations of all variables that maximise their normalised
total correlation. MIC and MAC only work on numeric data.

There are non-linear measures of statistical dependence
that define correlation in terms of projections of origi-
nal data. Examples include Kernel Canonical Correlation
Analysis (KCCA) [1], Randomized Dependence Coefficient
(RDC) [17], Maximum Mean Discrepancy (MMD) [3].

Statistical tests like t-test, ANOVA, and chi-square, are
widely used in data analysis. However, they assume that
the test-statistic follows a certain distribution under the null
hypothesis. There are also unconventional techniques for
discovering correlated attributes. One such algorithm is
the Fractal Dimension Attribute Significance Estimator (FD-
ASE) [9] that uses fractal dimension for identifying corre-
lated attributes. It can identify both linear and non-linear
correlations. However it only works on numerical attributes,
and requires a self-similarity property for a database.

The use of Algorithmic Information Theory (AIT) in
data analysis is not new. Several measures have been pro-
posed using AIT to capture the similarity between objects.
Among them two widely known measures are Normalized
Information Distance (NID) [15] and the Compression Dis-
similarity Measure (CDM) [12]. Whereas CDM works only
with two objects, there is a generalisation of NID for multi-
ple data objects [5]. However, here we are not interested in
similarity, but in correlation. We describe a set of data ob-
jects by exploiting the dependency between corresponding
observations of the data objects in the set, as opposed to de-
scribing data objects considering dependencies between all
observations of the data objects in the set.

We define correlation from scratch without making any
assumptions using algorithmic information theory. We also
propose two scores to measure the strength of correlation
among a set of data objects. The scores can be applied to
any type of data by instantiating them with any lossless real-
world compressors that reward dependencies.

6 Experiments
Next we empirically evaluate our framework on synthetic
and real-world data. In particular, we consider binary data,
as we identified there exist two powerful compressors for
multivariate binary data, i.e. SLIM [23] and PACK [27].

We implemented the framework in Python, and provide
the source code for research purposes, along with the used
datasets and synthetic dataset generator.2 All experiments
were executed single threaded on MacBook Pro with 2.5
GHz Intel Core i7 processor and 16 GB memory.

Further we note that comparison against other methods
is also non-trivial. Here we aim to define correlation in clear
terms without making any assumptions, and give a general
framework for measuring correlation. Hence we present the
experiments as a proof of concept for the proposal.

6.1 Synthetic Data To evaluate the scores on data with the
known ground truth, we use synthetic data. We generate
synthetic data on a per row basis, where presence of the
first attribute is based on a fair coin toss. For independent
datasets, the other attributes are similarly generated. For

2http://eda.mmci.uni-saarland.de/cbc/
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correlated datasets, presence of an attribute is dependent
on presence of previous attribute with a certain probability,
termed here onwards as dependency.

Statistical Power First we assess whether the scores
infer correlation when correlation really exists. For that we
test their statistical power. The null hypothesis is that the
data dimensions are statistically independent. To determine
the cut-off for testing the null hypothesis, we first generate
200 datasets with no correlation. Then we compute their
correlation scores, and set the cut-off value at a significance
level of 0.05. Next, we generate new 200 datasets with
correlation. The statistical power is the proportion of the 200
new datasets whose correlation score is below the cut-off.

To this end, we generate binary datasets with 5 dimen-
sions, and 5 000 rows. In Figure 2(a) we plot statistical pow-
ers of both scores using SLIM at various dependencies. For
PACK, we give the plot in Figure 2(b). We observe that both
scores achieve perfect powers at all level of dependencies
using both compressors. From here onwards, unless stated
otherwise, we use PACK as our running compressor as its
model class already encompasses the model class of SLIM.

Next we study statistical powers of the scores on
datasets with various dimensions. We fix the dependency to
0.5. In Figure 2(c), we show powers of the scores at various
dimensions. In all cases, both scores show perfect power.

In the next experiment, we examine statistical powers
of the scores in presence of noisy dimensions. To this end,
first we generate a dataset X having 5 dimensions with a
dependency of 0.5. Then we add to it extra dimensions that
are independent of each other as well as the original data. In
Figure 2(d), we give the plot showing powers of the scores at
varying number of extra dimensions. We observe that both
scores achieve perfect statistical powers in all cases.

Robustness against Redundancy Next we examine
how well the scores punish redundancies in practice. To
this end, first we generate a binary dataset X with random
dependency over the range 40% to 100%, and the number
of dimensions chosen uniformly at random over the range
2 to 6. Then we create a new dataset X ′ by adding extra
dimensions to X that are independent of each other as well
as the original data. The number of extra dimensions are
chosen randomly over the range 1 to 6. We uniformly sample
500 such pairs of X and X ′ using this technique.

The results are presented in the Appendix. In Fig-
ure 3(a), we show the scatter plot of NTC scores for X and
X ′. Likewise for NSC in Figure 3(b). In both plots, we
observe that both scores significantly punish redundancies.
Further we also give scatter plot for the difference in NTC
and NSC scores for X and X ′ in Figure 3(c). We observe
that the score differences of NTC and NSC are close.

Overall, we see that both scores punish redundancies.
Further they are highly stable, and effectively discern corre-
lated data from independent binary data.

6.2 Real-world Data After examining the performance of
the scores in synthetic data, next we present the results from
real-world data.

Quantitative Evaluation First we consider six datasets
taken from Frequent Itemset Mining Implementations
(FIMI) repository3 and UCI Machine Learning repository.4

We employ level-wise search with pruning at a threshold of
0.85. We report the results in Table 2 (see Appendix). For
each dataset, we give the number of rows, the number of
columns. Further we show the number of correlated patterns
discovered using NTC and NSC up to a maximum level of 3
and 4 respectively.

We discover significantly fewer patterns out of all pos-
sible pattern combinations. For instance, from the adult
dataset, we only discover 6 297 correlated patterns out of∑4

i=2

(
97
4

)
= 3 616 936 possible patterns using NSC. As for

NTC, we only discover 3. Overall we observe that NTC dis-
covers relatively fewer correlated patterns than NTC. This
is also in line with the fact that the total singular algorith-
mic correlation overestimates total algorithmic correlation.
These results show the scores can be plugged in to a search
algorithm to find correlated patterns from real-world data.

Qualitative Evaluation Next we examine whether the
results are meaningful. For that, we inspect correlated
patterns discovered from various real-world datasets. In
particular, for conciseness, we report results using NTC,
unless stated otherwise.

Lotto Dataset The Lotto dataset is taken from the
website of the Belgian National Lottery,5 and contains the
results of all lottery draws between May 1983 and May 2011.
Each draw consists of seven numbers (six plus one bonus
ball) out of a total of 42.

We apply level-wise search on the Lotto dataset. We
do not discover any correlated patterns up to an extremely
low threshold score of 0.004 using both scores. This also
confirms to our prior belief that lottery numbers are random.

ICDM Abstracts Dataset The ICDM Abstracts dataset
is available from the authors of [8]. It consists of abstracts –
stemmed and stop-words removed – of 859 papers published
at the ICDM conference until the year 2007. Each abstract is
represented by a row and words are the attributes. As such,
there are 3 933 attributes.

We only consider attributes with a minimum support
of 20, and apply level-wise search at a threshold of 0.3.
Accordingly we discover 609 patterns. From those, we
give few exemplars along with their scores in Table 1. We
see some obvious correlations: nearest appears often with
neighbour. Likewise naive with bayes. We also discover
correlations in higher dimensions. For instance, generic

3http://fimi.ua.ac.be/data/
4http://archive.ics.uci.edu/ml/datasets.html
5http://www.nationale-loterij.be/

http://fimi.ua.ac.be/data/
http://archive.ics.uci.edu/ml/datasets.html
http://www.nationale-loterij.be/
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FIGURE 2: For synthetic binary datasets, we report for both scores (a), (b) statistical powers at various dependencies using
SLIM and PACK respectively, (c) powers at various dimensionalities, and (d) powers at various extra dimensionalities.

Patterns NTC

nearest, neighbour 0.66

naive, bayes 0.54

state [of the], art, nearest, neighbour 0.35

naive, bayes, methodology 0.30

TABLE 1: Exemplars from patterns discovered by level-wise
search on the ICDM Abstracts data at a threshold of 0.3.

terms like state [of the] art appear often in the abstract, this
time it happens to be mostly seen with nearest neighbour.

Mammals Dataset In our last case study, we consider
the Mammals dataset provided by the European Mammal
Society.6 It consists of presence records of 124 European
mammals within 2 183 areas of 50-by-50 kilometers.

Using level-wise search at a threshold of 0.48, we
discover 3 correlated patterns: {norway lemming, european
pine vole}, {norway lemming, european pine vole, balkan
mole}, and {moose, fallow deer} in descending order of NTC
scores. Take for instance the top most correlated pattern.
It turns out that norway lemming is a common species of
lemming found commonly in northern European countries.
And european pine vole is also native to Europe, hence also
found in northern European countries. In short, both of them
are present in northern European countries.

7 Discussion
The experiments show that both scores work well in prac-
tice. We identify true correlation regardless of the dimen-
sionality with high statistical power, even at low level of de-
pendencies. Moreover both scores punish redundancies. In
real-world data, we discover correlated patterns. Further the
qualitative case studies show that the results are meaningful.

6http://www.european-mammals.org/

In this work, we give a clear definition of correlation
without making any assumptions. We can apply the pro-
posed scores by instantiating them with any lossless real-
world compressor that rewards dependencies. As such, the
more powerful the compressor, the better the solution. How-
ever, we still have the choice of a specific compressor if we
are only interested in certain type of dependency. By no
means we claim that we have solved the problem of corre-
lation completely. However, we believe this work demon-
strates the potential of the framework, and – hopefully – con-
vinces researchers to frame their research within it.

We ran our experiments on binary data. However,
the generality of our framework covers any type of data.
We studied correlation in sequential data as well using
DITTO [2], an MDL-based compressor for multivariate se-
quential data. We observed DITTO not only uses multivari-
ate sequential patterns, but also univariate sequential patterns
for summarising multivariate sequential data. As a result, the
scores are not bounded in the interval [0, 1] any more. One
avenue for further research would be to build a compressor
for multivariate sequential data that rewards dependencies,
and plug in our framework for correlation analysis.

To mine correlated patterns from data, we employed
level-wise search with pruning. Notably we found signifi-
cantly fewer patterns out of a large number of possible pat-
terns from data. However, the proposed scores do not exhibit
monotonicity property. To show this, consider a set of three
binary random variables {a, b, c}, where a and b are indepen-
dent, but c is an XOR of a and b. Whereas σ({a, b}) = 0,
σ({a, b, c}) = 1 (same for NSC). It would be interesting to
research whether the scores exhibit certain properties desir-
able for pruning search space under a restricted model class.
Moreover it would also be interesting to see the performance
of the scores under different search schemes.

In the experiments, we used existing MDL-based loss-
less compressors for binary data – SLIM and PACK. How-
ever, the framework works on any type of data in its gen-
erality by instantiating it with any lossless compressor that

http://www.european- mammals.org/


rewards dependencies. One direction for future work is to
build a powerful real-world compressor that can pick various
types of dependencies from any type of data. Alternatively
we can also only focus on one type of data, and build a com-
pressor that picks correlation from it. In the future, we would
like to apply our framework on other types of data as well –
continuous real-valued, sequential, temporal graph, etc.

8 Conclusion
We gave a general theory on correlation without making any
assumptions using algorithmic information theory. In par-
ticular, we proposed two correlation measures using Kol-
mogorov complexity. The correlation measures possess in-
teresting properties desirable from any sensible correlation
measure. To circumvent the computability issue of Kol-
mogorov complexity, we proposed practical instantiations
based on the Minimum Description Length principle.

In practice, the proposed measures can be applied on
any type of data by instantiating them with any lossless
real-world compressors that reward dependencies. Extensive
evaluations showed that the correlation measures works well
in practice, have high statistical power, and find meaningful
correlations on binary data, while they are easily extendible
to other data types
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A Proof of Lemma 3.1
LEMMA 3.1. For a set of data objects X , up to O(1) term

• 0 ≤ σ(X) ≤ 1,

• σ(X) = 0 iff X is algorithmically independent,

• σ(X) = 1 iff X is algorithmically fully correlated.

Proof. We have K(X) ≤
∑

x∈X K(x). The equality
holds up to O(1) term iff data objects in X are algorithmi-
cally independent of each other. Trivially

∑
x∈X K(x) −

minx∈X K(x) > 0 for |X| > 1. Therefore up to O(1) term
σ(X) ≥ 0, where σ(X) +

= 0 iff data objects in X are algo-
rithmically independent.

The value of δ(X) is maximum when K(X) is mini-
mum. We can lower bound K(X) by minx∈X K(x). That
is, the Kolmogorov complexity of a set of data objects is
at least the Kolmogorov complexity of the least complex
data object in the set. In particular, when all the data ob-
jects in X are algorithmically fully correlated, we can use
one data object to explain all the others. In that particu-
lar case, K(X) +

= minx∈X K(x). Using the lower bound,
we have K(X) ≥ minx∈X K(x). Therefore we have∑

x∈X K(x) − K(X) ≤
∑

x∈X K(x) − minx∈X K(x).
Following this, σ(X) ≤ 1 up to O(1) term. Importantly,
σ(X) +

= 1 iff the data objects in X are algorithmically fully
correlated.

Therefore, up to O(1) term we have 0 ≤ σ(X) ≤ 1. �

B Proof of Lemma 3.2
LEMMA 3.2. Let X be a set of algorithmically correlated
data objects. Let z be a data object which is algorithmically
independent of X . Let X ′ = X ∪ z. Then σ(X ′) < σ(X).

Proof. We can decompose K(X ′) using chain rule as
K(X ′) +

= K(X) +K(z | X). But since z is algorithmically
independent of X , we have K(z | X) = K(z). Therefore
K(X ′) +

= K(X) +K(z). Then σ(X ′) is given by

σ(X ′) +
=

∑
x∈X′ K(x)−K(X ′)∑

x∈X′ K(x)−minj∈X′ K(j)

+
=

∑
x∈X K(x) +K(z)−K(X)−K(z | X)∑

x∈X K(x) +K(z)−minj∈X′ K(j)

+
=

∑
x∈X K(x) +K(z)−K(X)−K(z)∑
x∈X K(x) +K(z)−minj∈X′ K(j)

+
=

δ(X)∑
x∈X K(x) +K(z)−minj∈X′ K(j)

.

It is easy to see that
∑

x∈X K(x)+K(z)−minj∈X′ K(j) >∑
x∈X K(x)−minj∈X K(j).

Therefore σ(X ′) < σ(X). �

C Proof of Lemma 3.3
LEMMA 3.3. For a set of data objects X , ∆(X) ≥ δ(X).

Proof. We use the chain rule expansion of K(X) as

K(X) = K(x1) +K(x2 | x1) +K(x3 | x2, x1) + · · ·+
K(xn | xn−1, . . . , x2, xn) +O(1)

≥ K(x1 | x2, x3, . . . , xn)+

K(x2 | x1, x3, . . . , xn) + · · ·+
K(xn | x1, x2, . . . , xn−1)

≥
∑
x∈X

K(x | X \ x)

Thus δ(X) ≤ ∆(X) up to O(1) term. �

D Proof of Lemma 3.4
LEMMA 3.4. For a set of data objects X , up to O(1) term

• 0 ≤ φ(X) ≤ 1,

• φ(X) = 0 iff X is algorithmically independent, and

• φ(X) = 1 iff X is algorithmically fully correlated.

Proof. By the property of Kolmogorov complexity, we have
K(x) > K(x | y). Therefore, it is easy to see that∑

x∈X K(x) ≥
∑

x∈X K(x | X \ x). The inequality
holds with equality up to O(1) iff data objects in X are
algorithmically independent of of each other. Hence φ(X) ≥
0 up to O(1) term.

The value of
∑

x∈X K(x)−K(x | X \ x) is maximum
when

∑
x∈X K(x | X\x) is minimum. We can lower bound∑

x∈X K(x | X \ x) by 0. That is, when data objects in X
are fully algorithmically correlated, we have ∀x ∈ X , K(x |
X \ x) +

= 0. Therefore we have
∑

x∈X K(x | X \ x) ≥ 0 up
to O(1) term. And hence φ(X) ≤ 1.

Therefore, we have 0 ≤ φ(X) ≤ 1 up to O(1) term. �

E Proof of Lemma 3.5
LEMMA 3.5. Let X be a set of algorithmically correlated
data objects. Let z be a data object which is algorithmically
independent of X . Let X ′ = X ∪ z. Then φ(X ′) < φ(X).

Proof. The total singular algorithmic correlation for X ′ is
given by

∆(X ′) =
∑
x∈X′

K(x)−K(x | X \ x)

+
= K(z)−K(z | X) +

∑
x∈X

K(x)−K(x | X \ x)

+
=

∑
x∈X

K(x)−K(x | X \ x) ∵ K(z | X) = K(z)

+
= ∆(X) .

Trivially we have
∑

x∈X′ K(x) ≥
∑

x∈X K(x). Therefore
φ(X ′) < φ(X). �
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FIGURE 3: For 500 sampled synthetic binary datasets, we give (a) scatter plot of NTC(X) vs NTC(X ′), (b) scatter plot of
NSC(X) vs NSC(X ′), and (c) scatter plot of NTC(X) − NTC(X ′) vs NSC(X) − NSC(X ′). X ′ is a dataset obtained by
adding independent dimensions to a correlated dataset X . As our compressor, we use PACK.

#patterns

max level=3 max level=4

Dataset #rows #cols NTC NSC NTC NSC

Adult 48 842 97 3 206 3 6 297

Anneal 898 71 5 86 5 837

Breast 699 16 6 28 6 63

Chess 3 196 75 35 510 35 2 845

Led7 3 200 24 7 10 7 10

Mushroom 8 124 119 45 480 55 6 945

TABLE 2: Result of level-wise search on real-world data.
For each dataset, we report the number of rows, the number
of columns. Further we provide the number of correlated
patterns discovered using NTC and NSC employing level-
wise search up to a level of 3 and 4 at a threshold of 0.85
using PACK.
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