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Abstract
Subgroup discovery (SGD) is presented here as a data-mining approach to helpfind interpretable local
patterns, correlations, and descriptors of a target property inmaterials-science data. Specifically, we
will be concernedwith data generated by density-functional theory calculations. At first, we
demonstrate that SGD can identify physicallymeaningfulmodels that classify the crystal structures of
82 octet binary (OB) semiconductors as either rocksalt or zincblende. SGD identifies an interpretable
two-dimensionalmodel derived fromonly the atomic radii of valence s and p orbitals that properly
classifies the crystal structures for 79 of the 82OB semiconductors. The SGD framework is
subsequently applied to 24 400 configurations of neutral gas-phase gold clusters with 5–14 atoms to
discern general patterns between geometrical and physicochemical properties. For example, SGD
helpsfind that van derWaals interactions within gold clusters are linearly correlated with their radius
of gyration and areweaker for planar clusters than for nonplanar clusters. Also, a descriptor that
predicts a local linear correlation between the chemical hardness and the cluster isomer stability is
found for the even-sized gold clusters.

1. Introduction

Rational design of advanced functionalmaterials, e.g., active and selective catalysts [1], efficient thermoelectrics
[2], and high-temperature superconductors [3], requires an understanding of the underlying fundamental
physicalmechanisms. Identifying interpretable4 [4] rule-basedmodels that describematerials phenomena is
therefore critical. For example, Brønsted–Evans–Polanyi relations allow for an efficient approach to estimate
activation energies of similar reactions [5], theGoldschmidt tolerance factor is an indicator for the stability and
structure of ionic crystals [6, 7], and the thermoelectric figure ofmerit, as well as semi-empiricalmodels, guide
the design of thermoelectrics [8]. However, in general it remains difficult to extract insights frommaterials-
science data and to discover rules for desiredmaterials properties and function.

Big-data analytics tools, e.g., statistical/machine learning, compressed sensing, and dataminingmethods,
are becomingwidely applied in thematerials-science community [9–19]. Efficient algorithms formodel
selection can be used for the estimation of alloy formation energies [20], andmachine-learning algorithms
trained on reaction data can help predict the crystallization outcomes ofmaterials [21]. Data analytics tools can
identify descriptors [22, 23] that characterize properties such as hole traps in amorphous silicon [24] and the
intrinsic dielectric breakdown field of insulators [25]. Importantly, the application of big-data analytics to obtain
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material insights and to predict novelmaterials can be enhanced by the availability of largematerials
repositories, e.g., AFLOWLIB, ComputationalMaterials Repository, Electronic Structure Project,Materials
Project, NovelMaterials Discovery (NOMAD), OpenQuantumMaterials Database, and Paulingfile [26]. Our
objective is to develop and exploit big-data analytics tools to discovermaterials insights and to predict advanced
materials from large collections ofmaterials data storedwithin theNOMADArchive [27].

Big-data analytics applied tomaterials-science data often focuses on the inference of a global prediction
model for some property of interest for a given class ofmaterials. However, the underlyingmechanism for some
target property could differ for differentmaterials within a large pool ofmaterials-science data. Consequently, a
globalmodelfitted to the entire datasetmay be difficult to interpret andmaywell hide or incorrectly describe the
actuating physicalmechanisms [28]. In these situations, localmodels describing subgroupswould be
advantageous to globalmodels. For illustration (see figure 1), a globally optimal regressionmodel could predict a
negative relationship between twomaterial properties, whereas among subgroups there exists a positive
relationship. As amore physical example, the transitionmetals of the periodic table are a subgroup, and the
actinides, lanthanides, and halogens are other subgroups. Thus, identification of subgroups is useful to gain an
understanding of similarities and differences betweenmaterials.

In this paperwe demonstrate amultipurpose data-mining algorithm called SGD to identify and describe
local patterns, correlations, and descriptors inmaterials-science data according to some desired target property
(or properties) [29–32]. Atfirst, we begin by formulating the SGDalgorithm formaterials-science applications.
Next, we demonstrate that SGD can identify physicallymeaningfulmodels that classify the crystal structures of
82 octet binary (OB) semiconductors as either rocksalt (RS) or zincblende (ZB) fromonly information of its
chemical composition. TheOB compounds have long been studied [22, 33–40], andwe consider it an exemplary
dataset for the demonstration of SGD tofind descriptors ofmaterials. Notably, SGDhelps us tofind a two-
dimensionalmodel derived fromonly the atomic radii of valence s and p orbitals that properly classify the crystal
structures for 79 of the 82OB semiconductors. Subsequently, we apply SGD to 24 400 configurations of neutral
gas-phase gold clusters with 5–14 atoms. Small gold clusters have different physical and chemical properties
than their bulk counterpart, and they exhibit a diverse array of physicochemical properties depending on their
size and shape [41–50]. The aimof investigating gold clusters here is two-fold: (1) to search for general structure-
property relationships holding across gold clusters of different sizes and vastly different configurations; and (2)
to demonstrate the versatility of SGDon a large and heterogeneous dataset. It is established that SGD can help
identify unexpected and general, size-independent, patternswithin the dataset of gold cluster configurations.

2. Subgroup discovery

The concepts of SGDoriginate from the early 90s, when the advent of large databasesmotivated the
development of explorative and descriptive analytics tools as an interpretable complement to the supervised
learning (or globalmodeling) paradigm [28, 30, 32, 51–54]. Belowwewill start with a discussion of the three
main components of SGD: (i) the use of a description language for identifying subpopulations within a given
pool of data (section 2.1); (ii) the definition of utility functions that formalize the interestingness (quality) of
subpopulations (section 2.2); and (iii) the design of aMonte Carlo search algorithm tofind selectors that
describe interesting subpopulations (section 2.3). As notational convention, wewrite ∣ ∣X to refer to the number

Figure 1.A schematic of an optimal global regressionmodel predicting a negative relationship betweenmaterial properties y1 and y2
(with nonzero error), whereas two subpopulations allow a nearly perfect fit using a linear regression functionwith positive slope.
Subgroup discovery aims to describe such subpopulations by Boolean selector functions (σ1 andσ2) defined as conjunctions (logical
AND, denoted as ) of basic selectors (the ci).
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of elements contained in X (the cardinality of )X , andP( )X to refer to the set of all possible subsets ofX (its
power set).Moreover, we denote by X Y the set of elements of X that are not contained in Y (its set
difference). Logical conjunctions AND,OR, andNOT, are represented by the symbols , , and .

2.1.Description language
Consider some population P ofmaterials that contains subgroups corresponding to subpopulations ¢ ÍP P
that exhibit yet unknown regularities with respect to some properties of interest. The population ofmaterials is
assumed to be represented by a set of features, where each feature is amap (a function) a P V: of the
population into some value domainV .The implicit assumption is that features can bemeasured and are
comparable across allmaterials in the population. In the context of a specific analysis question, the features are
partitioned into two subsets: description features A and target variablesT .The description features are used to
describe subpopulations, whereas the target variables determine how important specific subpopulations are to
our question being analyzed. For example, if we are interested in examining the band gaps ofmaterials, then the
target variable is the band gap and the description features are thematerial’s properties, such as the number of
atoms in a crystal unit cell, the composition, and the radii of its atomic s and p orbitals. For lists of features that
we consider in our study, see tables S1 and S2 in the supporting information.

The next aspect of our analysis is the basic selectors.The definition of basic selectors is an important design
step that determines the interpretability and interestingness of the subgroup descriptions [32]. Basic selectors are
statements regarding the features such as ‘the band gap of thematerial is large’ or ‘thematerial has a rocksalt
crystal structure’. A set of basic selectors C are constructed from the description features a P V: according to
different rules depending on their type: categorical, ordinal andmetric (see table 1 for examples). For categorical
features, i.e., whenV is a discrete set with no relevant internal order, basic selectors of the form

º =( ) ( )c p a p v for all values Îv V are constructed. For ordinal features, i.e., whenV contains a set of
discrete and ordered values, but the scale cannot be used to interpolate between values in ameaningful way,
inequality constraints º( ) ( ) c p a p v and º( ) ( ) c p a p v for all Îv V are used. Formetric features, i.e.,
the values are from a continuous ordered scale that adheres to ameaningful notion of distance, selectors similar
to the ordinal case are constructed. In this case, however, we cannot simply use all possible cut-off values, but
instead have tofind a small computationally feasible subset. Ideally, wewould like to allow the SGDalgorithm to
either completely select or to completely deselect all groups ofmaterials with very similar feature values. This
goal can be approximated by finding cut-off values through k-means clustering [55]. That is, for a desired
number k of cut-off valueswe find a set ÍR V of +k 1 representative values thatminimize the sumof squared
differenceså -Î ( ( ) )( )a p r ,

p P a p
2 where rv minimizes -∣ ∣v r among Îr R for some a-value v. In this way,

each a-value in the population P is assigned to a cluster represented by one element in R.The cut-off values are
then given as the arithmeticmean between themaximumand theminimum a-value of neighboring clusters.

Based on afinal set of basic selectors C, subgroup descriptions are formed as complex Boolean selectors
s  { }P: true, false defined through conjunctions

s ⋅ º ⋅  ¼  ⋅( ) ( ) ( ) ( )c c 1l1

of basic statements ¼c c, , l1 ÎC.Analogously to previouswork by some of the authors [22], we define the
descriptor induced by s as the set of descriptive features that are referenced in s.5 The subpopulation of P that is
defined by s is called the extension of s and is written as

s s= Î =( ) { ( ) } ( )p P pext : true . 2

Although this definition yields ∣ ∣2 C possible subgroup selectors for a given set of basic selectors, usually only a
few of those describe distinct and interesting subpopulations. To algorithmically determine those of interest, we
have to formalize the notion of interestingness (quality) of subpopulations. As indicated above, this definition
refers to the target variablesT . In particular, let = ´ ¼ ´Y V Vk1 denote the joint domain of all target
variables. Then the utility of a selector s depends on the collection of Y values in its extension.

Table 1.Examples of basic statements constructed from categorical, ordinal, andmetric features.

Categorical Thematerial has a rocksalt crystal structure The gold cluster has a planar geometry

Ordinal Thematerial has�N atoms per unit cell The gold cluster has amean atom coordination�X

Metrica The band gap of thematerial is high The chemical hardness of the gold cluster is low

a The notion of high and low is based on cut-off values of themetric features determined via k-means clustering.

5
InGhiringhelli et al the term ‘descriptor’ refers to the set of features referenced in a linearmodel. Note that, in contrast to our usage here,

the SGD literature often uses the termdescriptor to refer to the selector itself and not to the set of variables it contains.
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2.2. Subgroup quality
The SGD literature utilizes different notions of subgroup quality depending on the type and number of target
variables, as well as on the kind of patterns to be discovered [32, 51]. A shared characteristic between quality
functions is that they are usually aweighted product of two factors corresponding to the relative size of the
selected subpopulation and the utility of the selection. Formally, for aweight parameter a Î [ ]0, 1 we consider
quality functions of the form

s s s= a a-( ) ( ) ( ( )) ( )q ucov ext , 31

where s s=( ) ∣ ( )∣ ∣ ∣Pcov ext is the coverage of s and P ( ) u P: is some utility function. The combination of
these two factors is required because individually each of them is triviallymaximized by either extremely general
selectors (maximizing coverage) or extremely specific selectors (maximizing utility). An alternative view on
considering size is that it plays a similar role as the regularization term inRidge Regression or LASSO [56, 57].
We use anα-value of 0.5 unlessmentioned otherwise, which puts equal importance on the generality and the
utility offindings.

Regarding the utility function, the traditional focus of SGD is to look for subgroups that exhibit target values
with a distribution that differs asmuch as possible from the distribution of the target variables in the global
population. A representative example is the (absolute)mean shift function = -( ) ∣ ∣u S m mm S P for a singlemetric
target variable, i.e., = { }T a with  a P: ,where å= Î ( ) ∣ ∣m a p UU p U

is themean value of a in a

populationU. Although focusing on large deviation can lead to interestingfindings, it has some problems in our
application context ofmaterials datasets: (1)Deviation in itself neglects consistency in the sense that subgroups
with a high target deviationmight have a poormodel fit of the target variable. For example, in a heterogeneous
materials-science data set a subgroupmight have a largemean shift but have a local standard deviation that is
higher than the global standard deviation. This is problematic for our goal of uncovering physical relations
betweenmaterial structure and properties, for whichwewant our findings to be highly consistent. (2) Focusing
on deviation has the implicit assumption that the global reference distribution is alreadywell understood and
distance from it is thereforemeaningful. However, the global distribution of properties in big-data ofmaterials is
often an effect of a large number ofmixed factors and therefore often too complex to describe in a compact way
in fact this complexity is one of the reasons to resort to localmodeling via SGD in thefirst place.

Therefore, the utility functionswe define for this study aim for consistent findings by formalizing different
notions of purity in the distribution of target values. In particular, we consider the following utility functions:

• The (normalized) information gain = -( ) ( )u S H H HP S Pig for categorical target variables = ¼{ }T a a, , k1

with joint domain Y , where p p= -å Î ( ) ( )H y ylogU y Y U U is the Shannon entropy [58] of the empirical

probabilities p = Î ¼ =( ) ∣{ ( ( ) ( )) }∣ ∣ ∣y p U a p a p y U: , ,U k1 (defining p p =( ) ( )y ylog 0U U for
p =( ) )y 0 .U Thismeasure ismaximized by populationswith point distributions of target values (i.e., such
that there is a Îy Y with p =( ) )y 1U andminimized by those that have a uniform target distribution.

• The (standard) variation reduction = -( ) ( )u S s s sP S Pvr where

å=
-
-Î

( ( ))
∣ ∣

( )s
m t p

U 1
4U

p U

U
2

is the sample standard deviation in the case of a singlemetric target variable = { }T a ,  a P: ,with empirical
mean å= Î ( ) ∣ ∣m a p UU p U

(and in the case ofmultiplemetric target variables, the squared differences can for

example be replaced by the squared normof the difference vectors between sample values and themean vector).
Similar to the information gain u ,ig this utility function favors subgroupswhere the target values are as close as
possible to some localized value over groupswith uniformdistribution, only this time the deviation froma point
distribution ismeasured in ametric sense.

• The (Pearson) correlation gain = - -( ) (∣ ∣ ∣ ∣) ( ∣ ∣)u S r r r1S P Pcg between pairs of numeric target variables
= { }T a b, ,  a b P, : ,where

å=
-

- -

Î∣ ∣
( ) ( ) ( )

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟r

U

m a p

s

m b p

s

1

1
5U

p U

U
a

U
a

U
b

U
b

is the sample Pearson product-moment correlation coefficient of the paired a and b-values in the populationU
(with mU

x and sU
x being the samplemean and the standard deviation of target variable x as in the definition of the

variation reduction utility function). This utility function ismaximized (having a value of 1) for subpopulations
where the paired target values all lie on a line =(∣ ∣ )r 1 .S Hence, it is used tofind subgroupswhere there is an

4
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approximately linear relationship between twometric target variables. This is in contrast to traditional variants
where subgroupswith an unusual correlation (e.g., inverse effects) are sought [28].

The usage of these utility functions for uncovering interpretable local patterns and descriptors is
demonstrated in section 3. Beforehand, we describe a simple and robust algorithm forfinding subgroupswith
high quality values.

2.3. Search strategy
Optimizing any of the above quality functions is a computationally hard problemwith no knownpolynomial
time approximation algorithm (note that the size of the search space has an exponential relation to the number
of basic selectors considered). The standard algorithmic approach tofind optimal subgroups are exponential
time branch-and-bound algorithms, which can be effective for certain input datasets if a good bounding
function for the employed quality function is known [59]. Although deriving such bounding functions is an
interesting research problem, herewe follow a different route and utilize a heuristic two-stepMonte Carlo
sampling approach, whichworks well formany practical problems [60, 61]. The following procedure is repeated
iteratively for asmany random result patterns as desired:

1. Seed generation: Sample a random seed conjunction s0 with generation probability s s=( ) 0 proportional
to the size of the extension s∣ ( )∣ext .This can be implemented by a direct sampling approach in time

( )O mk ,where m denotes the number of data points and = ∣ ∣k C the number of basic selector functions
[61]. The idea is tofirst sample amember of the global populationwith a probability proportional to the
number of conjunctions of basic selectors that are true for that populationmember, and then to sample
uniformly a selector from those conjunctions.

2.Opportunistic pruning: Starting from s ⋅ º ⋅  ¼  ⋅( ) ( ) ( )c c ,l0 1 with the basic selectors in random order,
consider each ci for Î ¼{ }i l1, , and remove it if the quality s s¢- -( ) ( )q q ,i i1 1 where s¢-i 1 results from
s-i 1by removing ci (in this case define s s= ¢- ,i i 1 otherwise s s= - ).i i 1 Since all quality functions
considered here can be computed in time ( )O m , theworst-case time complexity of this step is ( )O mk .

For our analysis, subgroup selectors are chosen based on having the highest value of the quality function. At
least 10 000 random seeds are used in theMonte Carlo search of subgroup selectors. Upon reapplication of the
Monte Carlo algorithm, the same optimal subgroup selectors are found for the patterns described below.
Nevertheless, due to its nonexhaustive nature, theMonte Carlo procedure does not guarantee that superior
unfound patterns do not exist. The SGD algorithmwas implemented in theCreedoweb applicationwith the
realKD library [62].

3. Application

3.1.OB semiconductors: toward predicting crystal structures
Predicting the crystal structure of amaterial fromonly knowledge of its chemical composition is a long-standing
goal to facilitate the design ofmaterials [2, 63, 64]. Over four decades ago, vanVechten andPhillips [35, 36, 65]
analyzed the classification ofOB semiconductors and proposed a descriptor to classify the zincblende (ZB),
wurtzite (WZ) and rocksalt (RS) structures. Since the studies byVanVechten and Phillips,many researchers
have sought to identify superior descriptors to classify theOB compounds (see [22, 39, 40] and the references
within). Descriptors used to classify theOB crystal structures were typically introduced based on understanding
by the authors of the bonding nature of thesematerials.

As amore general and less biased approach, recently a two-step feature selection algorithm,which consists of
using the least absolute shrinkage and selection operatormethod followed byℓ0-constrainedminimization
(LASSO+ℓ0), was utilized to systematically discover an interpretable descriptor that provides a classification
and even quantitative energy differences of theOB compounds (as either ZB or RS) [22]. Figure 2 shows the
main conclusion. The two-dimensional descriptor is derived from solely combinations of the radii of the
maximumprobability density of the valence s ( )rs and valence p ( )rp orbitals of the free atomsA andB thatmake
up theOB compounds, as well as their ionization potential (IP) and electron affinity (EA).

As a complementary localmodeling approach to the LASSO+ℓ0 globalmodeling paradigm, herewe
examine the crystal-structure classification ofOB semiconductors using SGD. The dataset of theOB compounds
is obtained fromGhiringhelli et al [22] (the full list of theOB compounds is provided in their supporting
information and all the input and outputfiles can be downloaded from theNOMADRepository using http://
link.aps.org/doi/10.1103/PhysRevLett.114.105503 as an external DOI reference). The feature space is
restricted to atomic properties of the free atomswithin theOB compounds; in total, 55 features are used in the
SGDalgorithm (crystal structure information, 14 atomic properties, and 40 features derived from those; see
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table S1 of the supporting information). For the application of SGD, the information gain utility function uig is
usedwith the sign of the energy difference betweenRS andZB as the target variable = D( { ( )})T sign .The
difference in energy between ZB andWZ structures for thesematerials is very small: themaximumabsolute
difference is 0.04 eV and the average over the dataset is 0.01 eV. Therefore, as in [22], we do not distinguish
betweenZB andWZandwe use the energy of ZB as the reference forD.A set C of 1 576 basic selectors is
generated from the remaining 54 description features according to the rules outlined in section 2.1.

Application of SGD identifies several pure subgroups that exclusively contain either only RS or only ZB
structures. Figure 3(a) shows the simplest (smallest number of basic selectors)maximumquality selectors found
for each of the two crystal structures. The RS subgroup andZB subgroup are described by the selectors
s º - ∣ ∣  r r r0.91 Å 1.22 Åp p s1

RS A B A and s º - ∣ ∣  r r r1.16 Å 1.27 Å,p p s1
ZB A B A respectively. Here

superscripts A andB denote the free atoms thatmake up the octet AB-type semiconductors. Since both
subgroups are pure, they have themaximum entropy gain ( s = s =( ) ( )u u 1,ig 1

RS
ig 1

ZB where for notational
convenience wewrite s( )u for s( ( ))u ext .TheRS subgroup covers all but two compounds of its respective
crystal structure group s =( ( ) )cov 39 82 ,1

RS whereas the ZB subgroup covers all but one s =( ( ) )cov 40 821
ZB .

A globalmodel can be created by combining the underlying descriptors of both subgroups shown in
figure 3(a), i.e., the descriptive features that are referenced in both s1

RS and s ,1
ZB which describe 79 of the 82OB

compounds correctly as either RS or ZB—and that is agnostic about only three structures that have a nearly
degenerate energy difference betweenRS andZB (36.5 meV for AgI, 19.0 meV forCuF, and 4.5 meV forMgTe).
This two-dimensional descriptor consists of only linear combinations of atomic radii of the valence s and p
orbitals, i.e., -{ ∣ ∣}r r r, .s p p

A A B SGDhelpsfind thatOB semiconductors with relatively larger values of rs
A and

-∣ ∣r rp p
A B favor RS structures, whereas smaller values favor ZB structures. Large valence p radii differences

between atomic elements suggests ionic character within compounds, whereas smaller atomic radii differences
suggest covalent character, which is in agreement with reports that ionicOB compounds typically formRS
structures [35, 36, 39, 65].

Figure 3(b) depicts RS andZB subgroups described by selectors consisting of previously reported
descriptors; namely, St. John andBloch’s sr and pr descriptors are used, which approximate the s–p contribution
to the electronegativity and the s–phybridization [33]. Interestingly, the descriptors thatmake up the optimally
found subgroup selectors (figure 3(a)) are similar to pr and sr (figure 3(b)). Selectors using sr and pr as
descriptive features describe 38 of the 41 ZB structures and 35 of the 41 RS structures. On the other hand,
subgroups described by selectors that consist of the two-dimensional descriptor found byGhiringhelli et alusing
LASSO+ℓ0 contain only 71 of the RS andZB structures (see figure S2 of the supporting information). This
illustrates the differentmodeling strategies used by LASSO+ℓ0 and SGD, i.e., LASSO+ℓ0 optimizes for a
single linear separating hyperplane, whereas SGDuses a (nonlinear) intersection of axis-parallel hyperplanes.
The LASSO+ℓ0 algorithm is suited tofind a globally optimal and sparse descriptor for crystal-structure
classification [22], which is complementary to the SGDmethodology. However, SGD could findmultiple local
models that, when combined, span a large and relevant portion of the dataset. This could be a useful strategy to
build structuremaps for crystal-structure prediction [64].

Figure 2.Computed energy differences (Δ) between rocksalt and zincblende crystal structures of the 82 octet AB-type binary
compounds organized according to the two-dimensional descriptor found using LASSO+ℓ0 [22].
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3.2. Neutral gas-phase gold clusters: the search for structure-property relationships
SGD is applied here to ascertain interpretable and general patterns between physicochemical and geometrical
properties for 24 400 neutral gas-phase gold clusters (sizes of 5–14 atoms). Gold clusters have been a topic of
sustained interest due to their various important and unique electronic, optical, and catalytic properties [66–74].
However, themajority of past computational studies on such clusters focused on a static,monostructure,
description at 0 K, but increasing amounts of evidence indicate dynamic structural disorder is a common feature
among clusters and that numerous isomers can coexist atfinite temperature. General patterns holding across
multiple cluster isomers of various sizes atfinite temperaturemay bemissed by this standard approach,
therefore belowwe analyze gold clusters generated from the canonical ensemble at various temperatures.

Ab initio replica-exchangemolecular dynamics (REMD) [75] simulations are performedwith the FHI-aims
electronic-structure code [76] to generate the gold cluster configurations based on uniform sampling of the
canonical ensemble at temperatures from100 to 814 K. REMD simulations utilized light-tier 1 (excluding the
hydrogenic 6 h basis functions)numerical settingswith energies and forces obtained from spin-polarizedDFT
with the PBE exchange-correlation functional [77] corrected formany-body dispersion (MBD) [78] (whichwe
denote as PBE+MBD). Relativistic effects are treated using the ‘atomic ZORA’ scalar correction [79, 80]. See
[74] for validation of the usedREMD6 settings and the choice of exchange-correlation functional, as well as the
importance of including van derWaals corrections. Gold cluster geometries and their features are sampled from
each replica in theREMD simulation every 1.0–2.3 ps, yielding 2 440 configurations per gold cluster size (24 400
configurations total for Au5–Au14). Because the quality function depends on coverage, we chose to uniformly
sample the gold cluster configurations as a function of size to ensure that one gold cluster size is not biased over

Figure 3.Application of subgroup discovery to the 82 octet binary semiconductors helps us identify interpretable selectors that
describe subgroups of the rocksalt (RS) and zincblende (ZB) structures. (a)The subgroups described by selectors s1

RS (describing the
RS subgroup) and s1

ZB (describing the ZB subgroup)with the highest quality value for a two-dimensional descriptor. (b)The
subgroups described by selectors consisting of St. John andBloch’s sr and pr descriptors [33]. The dashed blue and green lines denote
the (nonlinear) intersection of axis-parallel hyperplanes that contain the ZB andRS subgroups. The squares and circles denote
zincblende and rocksalt crystal structures, respectively. Green: rocksalt subgroup described by s ;i

RS Blue: zincblende subgroup
described by s ;i

ZB gray: points described by neither selector. Another representation of s1
RS and s1

ZB is shown infigure S1 of the
supporting information, where instead the axes are chosen to be the two-dimensional descriptor found byGhiringhelli and coworkers
using LASSO+ℓ0 [22].

6
REMD simulations used a 10 fsmolecular dynamics (MD) time stepwith 8–15 replicas exponentially distributed over a temperature range

of at least 100–814 K. Between replica exchanges, canonical ensembleMD is carried out for 500 fs. The totalMD simulation time is at least
3 ns for each gold cluster size. The stochastic velocity rescaling thermostat with a time-scale parameter of 100 fs is used to ensure proper
sampling of the canonical distribution.
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others when searching for subgroups. Additionally, all patterns identified using SGDwere preserved upon
subsampling of the gold cluster configurations.

The features computed for each cluster geometry are: relative total energyDE (relative to themost stable
structure at each size), normalized radius of gyrationRg0,IP, EA,HOMO–LUMOenergy gap E ,HL cluster size
N , replica temperatureT , atom coordination histogram (a vector containing the number of atomswith a certain
bond coordination number) [81], and relative intramolecular van derWaals energyDEvdW (relative to the
structure with the largest van derWaals energy at each size), among others. A list of the gold cluster features is
provided in table S2 of the supporting information and all the configurations can be downloaded from the
NOMADRepository (http://dx.doi.org/10.17172/NOMAD/2016.11.02-1). Since at finite temperatures a gold
cluster will never be exactly at aminimumon the potential energy surface, all features of the gold clusters are
computed from the unrelaxed structures generated from the canonical ensemble.

3.2.1. Finding patterns of theHOMO–LUMOenergy gap
TheHOMO–LUMOenergy gap ( )EHL of neutral gold clusters is known to oscillate depending onwhether the
cluster has an even or odd number of atoms [82, 83]. The even–odd oscillatory behavior of EHL is due to spin
pairing for the even-sized neutral gold clusters and the lack of spin pairing for the odd-sized clusters. As a tutorial
example, wefirst demonstrate that the SGD algorithm can help rediscover the knownphenomenon that neutral
clusters with an odd number of atoms have a small EHL relative to neutral clusters with an even number of
atoms. Algorithmically, subgroups of gold cluster configurationswith a low standard deviation of theHOMO–
LUMOenergy gap are sought. That is, the target variable is specified as = { }T EHL and the standard variation
reduction utility function uvr is used (see section 2.2 for the definition of uvr). A set C of 338 basic selectors is
generated (using 6 cut-off values formetric variables). Examples of basic selectors are statements such as ‘the
number of atoms in the gold cluster is an even number’, ‘the number of the atoms in the gold cluster is8 ,’ or
‘the energy of the gold cluster configuration is low (i.e., an energetically favorable configuration).’

Upon application, SGD finds that the highest quality subgroup is described by the selector s º ( )Nodd ,1
HL

which has a coverage of s =( )cov 0.501
HL (the subgroup covers 50%of the total population) and a utility value

of s =( )u 0.89vr 1
HL (89%of the standard deviation of theHOMO–LUMOenergy gap is reduced in this

subgroup relative to the global data). In other words, the clusters with an odd number of atoms (N=5, 7, 9, 11
and 13) form awell-defined subgroup, figure 4(a). The second highest quality subgroup found is described by
s º ( ) N Neven 7,2

HL which has s =( )cov 0.402
HL and s =( )u 0.61.vr 2

HL Interestingly, Au6 is excluded
from this subgroup because it has an unusually large EHL due to its highly stable ground state structure as a result
of itsσ-aromaticity [42, 46, 83]. As shown infigures 4(b) and (c), the distribution of theHOMO–LUMOenergy
gap values indicates two high quality subgroups; namely, ( ) ( ) N N Nodd and even 7, and the lower quality
subgroupN=6. Infigure 4(c), the oscillation in theHOMO–LUMOgapwith respect to cluster size is observed,
as well as the fact that larger even-sized gold clusters generally have a decreasing averageHOMO–LUMOgap
(due to their increasinglymetallic nature).Moreover, theHOMO–LUMOenergy gap varies dramatically
depending on cluster configuration at a given size.

3.2.2. Structural and electronic properties of planar/quasi-planar and nonplanar gold clusters
SGD is next applied to discern general patterns among the structural and electronic features of planar/quasi-
planar and nonplanar (compact, three-dimensional) structures. Small gold clusters often adopt stable planar
geometries as a consequence of relativistic effects [84, 85], and planar and nonplanar structures can coexist
simultaneously at finite temperature [86–88]. It is important to emphasize that theoretical studies using
traditional generalized gradient functionals (without van derWaals corrections) are biased towards planar
structures for gold clusters [47, 49]; however, our benchmark studies using PBE+MBDwith tight-tier 2
settings have reasonable agreement with isomer energetics predictions usingHSE06+MBDaswell as
RPA@PBE.Geometries and energy differences between the lowest energy planar and nonplanar clusters using
PBE+MBDare provided infigure S3 of the supporting information. Detailed analysis of the choice of
exchange-correlation functional on relative isomer stabilities between planar and nonplanar neutral gold
clusters as well as the importance of temperature on cluster isomer probabilities based on analysis of free energy
surfaces will be reported in a separate article.

Theminimum thickness of a gold cluster configuration has been used as an order parameter tomonitor the
planarity of a cluster [86]. Instead, here the planar/quasi-planar (fromhere on called planar or 2D) and
nonplanar (3D) gold clusters are approximately discriminated based on their normalized radius of gyration. The
radius of gyration is computed as the rootmean square distance of the cluster’s parts from its center ofmass. The
normalized radius of gyration is obtained by dividing the radius of gyration of each cluster configuration by the
radius of gyration of the lowest energy planar structure at each size. Planar clusters have a larger radius of
gyration comparedwith nonplanar structures due to their less compact nature. Cut-off values for discriminating
between planar and nonplanar clusters and are chosen based on examining the probability distribution of the
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radius of gyration (see table S3 andfigure S4 of the supporting information).We refer to this categorical feature
as ‘Shape’, i.e., planar or nonplanar.

Although there is a broad distribution ofHOMO–LUMOenergy gaps depending on cluster size and
geometry, no statistically significant local patterns between EHL and planar or nonplanar structures are found
using SGD. TheMonteCarlo procedure does not guarantee that unfound patterns do not exist, and thuswe
cannot ascribe significance to the lack of a found pattern.However, application of SGDusing the information
gain utility function uig with planar or nonplanar categorization as the target variable = { }T Shape elucidates
that themajority of low energy (stable)planar structures have an average atom coordination number of less than
or equal to three (seefigure 5). The identified subgroup selector is s º D  # E 1.88 eV mean 3.1

Sh The
extension s= ( )S ext 1

Sh described by s1
Sh contains 14 097 configurations (coverage of 58%) of sizes 5–14 atoms

that are almost exclusively planar (p =( )2D 0.98S and s =( )u 0.86ig 1
Sh ). In other words, low-energy planar

clusters with 5–14 atoms typically have a coordination number less than or equal to three (although the
subgroup is dominated by clusters of Au5–Au10). The high coverage of this subgroup reinforces the notion that
gold cluster isomers within this size range typically adopt planar geometries due to their energetic stability [49].
Note, Au13 andAu14 rarely adopt planar gold cluster configurations [49, 88] at finite temperature and therefore
are notwidely included in this subgroup (figure 5(b)).

One can examine the importance of the individual descriptive featuresmaking up the selectors by removing
them and examining the generalized selector’s properties. For example, if the descriptive featureD E 1.88 eV
is removed from s1

Sh then the generalized selector s º # mean 32
Sh is produced, which describes planar

structures with less purity s =( ( ) )u 0.77 .ig 2
Sh It is unexpected that the average atom coordination number of

low-energy planar gold clusters remains3 across a broad range of clusters sizes; for an infinite fcc(111) the

Figure 4.Gold cluster configurations are examined for subgroups of theHOMO–LUMOenergy gapwith a low standard deviation. (a)
TheHOMO–LUMOenergy gap of each cluster is shown against its relative total energy (i.e., the energy of each cluster configuration is
referenced against itsmost stable structure for each size). (b)The population of gold clusters with a certain value theHOMO–LUMO
energy gap, with the threemain subgroups labeled. (c)TheHOMO–LUMOenergy gap of each cluster configuration as a function of
cluster size. Red: subgroup described by s2

HL .
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average atom coordination is six, and the ‘inner’ atoms of planar gold clusters are also six-fold coordinated. In
some cases, the low average atom-coordination number of planar clusters relative to theirmore compact,
nonplanar, isomer counterpartsmay result in increased reactivity due to the presence ofmore under-
coordinated sites and better electron-accepting capabilities [89–91].

3.2.3. Intra-cluster van derWaals interactions and its shape dependence
VanderWaals (vdW) interactions are critical to include in electronic-structure theory calculations for
determining the correct energetic ordering ofmaterial configurations, e.g., adsorption configurations of
molecules on surfaces [92] and peptide conformers [93]. It has been suggested that nonplanar cluster
configurations aremore stabilized by intramolecular vdW interactions than planar cluster configurations [88],
but this has yet to be quantified or demonstrated across a large range of cluster sizes and geometries atfinite
temperature. To test this hypothesis, SGD is applied using the variation reduction utility function uvr with the
intramolecular vdWenergy (referenced to themaximumat each size) as the target variable = D( { })T E ,vdW

figure 6(a). Note, recall here thatDEvdW is just the long-range correlation energy within theMBD framework
[78]. The highest quality selector found is s º   ( ) N N8 10 Shape 2D1

vdW with s =( )cov 0.261
vdW and

s =( )u 0.84.vr 1
vdW This subgroup describes the phenomena that planar ( )2D gold clusters generally exhibit

weaker vdW interactions than nonplanar clusters for Au8–Au10 clusters. Although the Au8–Au10 pattern is
highlighted infigure 6(a), subgroups describing similar phenomena for sizes 11–12 are also found.

The pattern found by SGD is further supported based on examination of the vdWenergy difference between
the lowest energy planar and nonplanar structures as a function of size. The vdW interaction per atombecomes
increasingly larger in nonplanar clusters relative to planar clusters as the cluster size increases, figure 6(b).
Additionally, the visualization infigure 6(a) suggests the existence of an unexpected higher order pattern: for
certain cluster sizes there appears to be a linear relationship between the normalized radius of gyration and the
vdWenergy. SGD is used to test this hypothesis by augmenting the set of target variables to ¢ = D{ }T R E,g0 vdW

and using the correlation gain utility function u .cg SGD finds s º N 83
vdW with s =( )cov 0.703

vdW and a

correlation gain of s =( )u 0.49,cg 3
vdW which corresponds to a local Pearson product-moment correlation

coefficient of =r 0.84.S Bymodifying theweight parameter a, smaller groupswith an evenmore linear
relationship can be found, e.g., s º N 134

vdW with =r 0.97S using a = 1 8.The compact nature of the
nonplanar gold clusters increases its intra-cluster vdW interactions relative to planar clusters, even though the
nonplanar clusters are less polarizable [94]. The strong influence of vdW interactions on stabilizing nonplanar
gold structures relative to planar structures suggests that an accurate treatment of vdW interactions is required
for predicting the correct isomer energetic ordering of polarizable nanoclusters.

3.2.4. Analyzing relationships between chemical hardness and cluster stability
The concept of chemical hardness is typically understood as the resistance of a system’s chemical potential to a
change in the number of electrons, and thus it is often used as a reactivity index [95–98]. Correlations have been
found between the chemical hardness, stability, polarizability, and size of different systems [99–101]. Statistical
mechanics in the grand canonical ensemble suggests that the ground state structure of a systemhas the
maximumhardness of all the possible states at 0 K [102–104]. As amanifestation of the principle ofmaximum
hardness, relativelymore stable lithium clusters (those having amagic number of atoms)were predicted to have

Figure 5. Subgroup selectors are identified that describe the structural and electronic features of planar/quasi-planar structures. (a)
The normalized radius of gyration of each cluster configuration is shown against its relative total energy. (b)The normalized radius of
gyration of each cluster configuration as a function of size. Red: subgroup described by s ;1

Sh Blue: additional points included in
generalized variant s s s s  =( ) ( ) ( )ext ext ext ;2

Sh
1
Sh

2
Sh

1
Sh gray: points described by neither selector s s s  = ( )1

Sh
2
Sh

2
Sh.
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a localmaximum in their chemical hardness [101]. However, towhat degree correlations between chemical
hardness and stability are present in a large set of cluster configurations in the canonical ensemble is not known.

To formalize this question for SGD the target variables are set to the relative total energy (referenced to the
lowest energy cluster at each size) and the chemical hardness (referenced to themaximumhardness cluster at
each size) h= D D{ }T E, and the utility function to the correlation gain u .cg The chemical hardness is
calculated at 0 K, which is sufficient because thermal corrections to the hardness are small even above room
temperature [105, 106]. Although the global linear correlation between cluster stability and chemical hardness is
small = -( )r 0.27 ,P SGDfinds a selector that describes a strong local linear trend, figure 7. The highest quality
subgroup selector identified is s º D   #( ) E N0.178 eV even mode 5,1

hd
vdW where#mode is the

mode of the distribution of the atom coordination number. This subgroup has a coverage of s =( )cov 0.201
hd

(20%of the total population) and correlation gain of s =( )u 0.54cg 1
hd corresponding to a local Pearson

correlation coefficient of = -r 0.81S .
It appears that the chemical hardness cannot generally predict the correct trend for the stability ofmultiple

isomers [107]. However, within the subgroup described by s1
hd the hardness principle qualitatively holds (with

coverage of 40%of the even-sized gold clusters in the dataset). The selector s1
hd is quite complex and relates

seemingly unrelated features, i.e., van derWaals energy, atom size, and coordination number, tofind a local
descriptor that linearly correlates chemical hardness and stability, i.e., less stable cluster geometries are less
chemically hard. Clusters with an odd number of atoms are excluded from the subgroup description because
their hardness is nearly constant with geometry, which results from their unpaired electron. The importance of
the constraint on the atom coordinationmode can be illustrated by considering the nonoptimal selector s2

hd

obtained by removing# mode 5 from s .1
hd This subgroup described by s2

hd has a substantially weaker linear
relationship between chemical hardness and energy = -( )r 0.66 .S Further investigation into other systems for
trends between chemical hardness, reactivity, and stability is required for a deeper understanding.

4. Conclusions

Advances in big-data analytics, i.e., statistical andmachine learning, compressed sensing, and datamining,
alongside the exponential growth ofmaterials-science repositories are opening innovative avenues for
identifying advanced functionalmaterials for use in applications such as batteries, thermoelectrics, and
superconductors. Nevertheless, it remains challenging to screen databases of hypothetical and knownmaterials
for anomalies and to predictmaterials with superior properties than existing ones. Additionally, finding
predictive descriptors ofmaterials fromhigh-dimensional datamanually is laborious, error-prone, and typically
subjective. Consequently, the development and application of sophisticated big-data analytics tools to extract
materials insights is required.

One promising approach is to use SGD,which is a descriptive data-mining technique tofind interpretable
local patterns, correlations, and descriptors of properties according to some target property (or properties) of
interest. As a complement to globalmodeling techniques, here SGD is formulated in the context ofmaterials
science, and two exemplary systems are examined: (1) 82OB semiconductors tofind physicallymeaningful rule-
basedmodels that predict their crystal structure as either zincblende or rocksalt (RS); and (2) 24 400

Figure 6.Gold cluster configurations are examined for patterns involving intra-cluster van derWaals interactions. (a) SGDfinds
subgroup selectors using the variation reduction utility functionwith the relative intramolecular vdW interaction energy DEvdW

(referenced to itsmaximumvalue at each size) as the target variable. Red: subgroup described by s ;1
vdW Blue: additional points

included in generalized variant s s s s  =( ) ( ) ( )ext ext ext ;2
vdW

1
vdW

2
vdW

1
vdW gray: points described by neither selector

s s s  = ( ) .1
vdW

2
vdW

2
vdW (b)The intramolecular vdWenergy difference per atombetween the lowest energy planar and nonplanar

gold cluster geometries as a function of size (based on structures infigure S3 of the Supporting Information).
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configurations of neutral gas-phase gold clusters with 5–14 atoms to search for general structure-property
relationships holding across numerous gold cluster isomers of various sizes.

In this paper, SGD is demonstrated tofind an interpretable two-dimensionalmodel consisting only of
atomic radii of valence s and p orbitals that properly classifies 79 of the 82OB structures as either rocksalt or
zincblende. Since the octets are only part of over 550 knownABn binary solids [38], SGD can likely be used to
find descriptors in the broader class of binary solids aswell as construct structuremaps, and these are directions
for further investigation. For the gold clusters, unexpected and general trends are found upon application of
SGD. For example, the intramolecular van derWaals interactions within planar clusters are typically
significantly weaker comparedwith nonplanar, compact, clusters. This suggests that van derWaals interactions
can be critical for accurately predicting the isomer energetic ordering of gold nanoclusters, especially for the
planar to nonplanar geometrical transition.

Data analytics tools applied tomaterials-science data will continue to facilitate the understanding of
structure-property relationships and the rational design of advancedmaterials. Nonetheless, limitations in both
machine learning and data-mining approaches remain. In particular, for SGDan important open problem is the
design of efficient optimal solvers for the quality function variants proposed in this work. Although theMonte
Carlo algorithmdiscovers interesting patterns, it remains heuristic in nature. This prevents us to draw
conclusions from the absence of certain patterns in the result set. For instance, are there hitherto undiscovered
relations between theHOMO–LUMOenergy gap, gold cluster stability, and gold cluster geometry? The design
of optimal solvers for the proposed variants of SGD is currently underway to address this question, among
others.We posit that SGDwill serve as a useful tool for the extraction of insights frombig data ofmaterials, and
its continued development will help pave theway towardmaterials discovery.
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Notes

All the examples reported in this paper can be run via web-based tutorials accessible via: https://analytics-
toolkit.nomad-coe.eu/Creedo/index.htm,where the users can also interactively change the input settings and
compare the outcomewith our results. These tutorials are part of theNOMADanalytics toolkit (https://
analytics-toolkit.nomad-coe.eu/), which is developed in the context of theNOMADLaboratory (https://
nomad-coe.eu/).

Figure 7.Gold cluster configurations are examined for linear correlations between the chemical hardness and the stability of the
cluster. (a)The relative chemical hardness of each cluster is shown against its relative total energy. The selector s1

hd describes a
subgroupwith a local linear correlation between chemical hardness and cluster stability. (b)The relative chemical hardness of each
cluster configuration as a function of cluster size. Red: subgroup described by s ;1

hd Blue: additional points included in generalized
variant s s s s  =( ) ( ) ( )ext ext ext .2

hd
1
hd

2
hd

1
hd The points of s s( ) ( )ext ext2

hd
1
hd are displayed in figure 7(a) only; Gray: points

described by neither selector s s s  = ( )1
hd

2
hd

2
hd.
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[89] Martińez A 2010 J. Phys. Chem.C 114 21240
[90] SekharDeH,Krishnamurty S and Pal S 2010 J. Phys. Chem.C 114 6690
[91] StaykovA,Nishimi T, YoshizawaK and Ishihara T 2012 J. Phys. Chem.C 116 15992
[92] LiuW,RuizV, ZhangG-X, Santra B, RenX, SchefflerM andTkatchenkoA 2013New J. Phys. 15 053046
[93] TkatchenkoA, RossiM, BlumV, Ireta J and SchefflerM2011Phys. Rev. Lett. 106 118102
[94] Idrobo J C,WalkoszW, Yip S F,Öğüt S,Wang J and Jellinek J 2007Phys. Rev.B 76 205422
[95] Ayers PWandParr RG2000 J. Am.Chem. Soc. 122 2010
[96] Chattaraj PK 2009Chemical Reactivity Theory: ADensity Functional View (Boca Raton: CRCPress) p 610
[97] Malek A andBalawender R 2015 J. Chem. Phys. 142 054104
[98] Pan S, SolaM andChattaraj PK 2013 J. Phys. Chem.A 117 1843
[99] Ghanty TK andGhosh SK 1993 J. Phys. Chem. 97 4951
[100] ZhouZ and Parr RG1989 J. Am.Chem. Soc. 111 7371
[101] HarbolaMK andNatl P 1992Acad. Sci. USA 89 1036
[102] YangWandParr RG 1985Proc. Natl Acad. Sci. USA 82 6723
[103] PearsonRG1993Acc. Chem. Res. 26 250
[104] Parr RG andChattaraj PK 1991 J. Am. Chem. Soc. 113 1854
[105] Franco-PérezM,Gázquez J L andVela A 2015 J. Chem. Phys. 143 024112
[106] Franco-PérezM,Gázquez J L, Ayers PWandVela A 2015 J. Chem. Phys. 143 154103
[107] Noorizadeh S 2005 J.Mol. Struct.: THEOCHEM 713 27

14

New J. Phys. 19 (2017) 013031 BRGoldsmith et al

http://realkd.org/creedo-webapp/
https://labdev-nomad.esc.rzg.mpg.de/home/
https://doi.org/10.1038/345297a0
https://doi.org/10.1021/acs.chemmater.5b04299
https://doi.org/10.1103/RevModPhys.42.317
https://doi.org/10.1021/jp9935992
https://doi.org/10.1103/PhysRevLett.89.033401
https://doi.org/10.1103/PhysRevB.74.165423
https://doi.org/10.1073/pnas.0600637103
https://doi.org/10.1002/qua.21504
https://doi.org/10.1063/1.2743005
https://doi.org/10.1039/b717686b
https://doi.org/10.1126/science.1161166
https://doi.org/10.1088/1367-2630/15/8/083003
https://doi.org/10.1039/b509983h
https://doi.org/10.1016/j.cpc.2009.06.022
https://doi.org/10.1103/PhysRevLett.77.3865
https://doi.org/10.1063/1.4865104
https://doi.org/10.1063/1.478813
https://doi.org/10.1063/1.472460
https://doi.org/10.1021/ct3010563
https://doi.org/10.1103/PhysRevB.62.R2287
https://doi.org/10.1021/cr00085a006
https://doi.org/10.1103/PhysRevB.39.3005
https://doi.org/10.1103/PhysRevLett.98.015701
https://doi.org/10.1103/PhysRevB.81.174205
https://doi.org/10.1039/c1fd00027f
https://doi.org/10.1021/jp108370m
https://doi.org/10.1021/jp1004852
https://doi.org/10.1021/jp301898t
https://doi.org/10.1088/1367-2630/15/5/053046
https://doi.org/10.1103/PhysRevLett.106.118102
https://doi.org/10.1103/PhysRevB.76.205422
https://doi.org/10.1021/ja9924039
https://doi.org/10.1063/1.4906555
https://doi.org/10.1021/jp312750n
https://doi.org/10.1021/j100121a015
https://doi.org/10.1021/ja00201a014
https://doi.org/10.1073/pnas.89.3.1036
https://doi.org/10.1073/pnas.82.20.6723
https://doi.org/10.1021/ar00029a004
https://doi.org/10.1021/ja00005a072
https://doi.org/10.1063/1.4923260
https://doi.org/10.1063/1.4923260
https://doi.org/10.1016/j.theochem.2004.09.029

	1. Introduction
	2. Subgroup discovery
	2.1. Description language
	2.2. Subgroup quality
	2.3. Search strategy

	3. Application
	3.1. OB semiconductors: toward predicting crystal structures
	3.2. Neutral gas-phase gold clusters: the search for structure-property relationships
	3.2.1. Finding patterns of the HOMO–LUMO energy gap
	3.2.2. Structural and electronic properties of planar/quasi-planar and nonplanar gold clusters
	3.2.3. Intra-cluster van der Waals interactions and its shape dependence
	3.2.4. Analyzing relationships between chemical hardness and cluster stability


	4. Conclusions
	Acknowledgments
	Notes
	References



