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Abstract—We consider the fundamental problem of inferring
the causal direction between two univariate numeric random
variables X and Y from observational data. The two-variable
case is especially difficult to solve since it is not possible to use
standard conditional independence tests between the variables.

To tackle this problem, we follow an information theoretic
approach based on Kolmogorov complexity and use the Minimum
Description Length (MDL) principle to provide a practical
solution. In particular, we propose a compression scheme to
encode local and global functional relations using MDL-based
regression. We infer X causes Y in case it is shorter to describe
Y as a function of X than the inverse direction. In addition, we
introduce SLOPE, an efficient linear-time algorithm that through
thorough empirical evaluation on both synthetic and real world
data we show outperforms the state of the art by a wide margin.

Index Terms—Kolmogorov Complexity, MDL, Causal Infer-
ence, Regression, Hypercompression

I. INTRODUCTION

Telling cause from effect from observational data is one of
the fundamental problems in science [26], [18]. We consider
the problem of inferring the most likely direction between
two univariate numeric random variables X and Y . That is,
we are interested in identifying whether X causes Y , whether
Y causes X , or whether they are merely correlated.

Traditional methods, that rely on conditional independence
tests, cannot decide between the Markov equivalent classes
of X → Y and Y → X [18]. Recently, it has been postulated
however that if X → Y , there exists an independence between
the marginal distribution of the cause, P (X), and the condi-
tional distribution of the effect given the cause, P (Y | X) [25],
[9]. The state of the art exploits this asymmetry in various
ways, and overall obtain up to 70% accuracy on a well-known
benchmark of cause-effect pairs [24], [8], [20], [10], [17]. In
this paper we break this barrier, and give an elegant score that
is computable in linear-time and obtains over 82% accuracy
on the same benchmark.

To illustrate its strength, we show the results of our method,
called SLOPE, and four state-of-the-art methods over this
benchmark in Fig. 1. In particular, we show the accuracy over
the top-k pairs ranked according to the score at hand, the so-
called decision rate. The plot shows that SLOPE leads by large
margin over its competitors; it is 100% accurate over the 32
pairs it is most certain about, and is 90% accurate over its
top-74 out of 98 pairs. Unlike its competitors, its accuracies
are strongly significant with regard to the 95% confidence
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Figure 1: [Higher is better] Weighted accuracy of our method,
SLOPE, versus the state of the art in causal inference for
univariate numeric pairs as identified in a recent survey [17],
i.e., CURE [24], RESIT [20], IGCI [10] and ANM-pHSIC [8]
on the Tuebingen benchmark data set (98 pairs). The gray area
indicates the 95% confidence interval of a fair coin toss.

interval of a fair coin flip. Moreover, our score comes with a
natural significance test that allows us to weed out insignificant
results; when we consider the 83 significant pairs only we find
that SLOPE is even 85% accurate.

We base our method on the algorithmic Markov condition,
a recent postulate by Janzing and Schölkopf [9], that states
that if X causes Y , the factorization of the joint distribution
P (X,Y ) in the causal direction has a simpler description—in
terms of Kolmogorov complexity—than that in the anti-causal
direction. That is, if X → Y , K(P (X)) + K(P (Y | X)) ≤
K(P (Y )) + K(P (X | Y )). As any physical process can be
modelled by a Turing machine, this ideal score can detect any
causal dependence that can be explained by a physical process.
However, Kolmogorov complexity is not computable, so we
need a practical instantiation of this ideal. In this paper we do
so using the Minimum Description Length (MDL) principle,
which provides a statistically well-founded approximation of
Kolmogorov complexity.

Simply put, we propose to fit a regression model from
X to Y , and vice versa, measuring both the complexity
of the function, as well as the error it makes in bits, and
infer that causal direction by which we can describe the data
most succinctly. There is a little bit more to it, of course.
We carefully construct an MDL score such that we can
meaningfully compare between different types of functional
dependencies, including linear, quadratic, cubic, reciprocal,
and exponential functions. This way, for example, we will find



that we can more succinctly describe the data in Fig. 2a by
a cubic function than with a linear function, as while it takes
fewer bits to describe the latter function, it will take many
more bits to describe the large error it makes.

We do not only consider models that try to explain all the
data with a single, global, deterministic regression function,
but also allow for non-deterministic models. That is, we
consider compound regression functions that in addition to
a global deterministic function additionally include regression
functions for local parts of the data corresponding to specific,
duplicated X values. For example, consider the data in Fig. 2b,
where the Y values belonging to a single X value clearly show
more structure than the general linear trend. In contrast, if we
rotate the plot by 90 degrees, we do not observe the same
regularities for the X values mapped to a single Y value. In
many cases, e.g., Y = 1 there is only one mapping X value.
We can exploit this asymmetry by considering local regression
functions per value of X , each individually fitted but as we
assume all noise to be of the same type, all should be of the
same function class. In this particular example, we therewith
correctly infer that X causes Y . The MDL principle prevents
us from overfitting, as such local functions are only included
if they aid global compression. Last, but not least, we give a
linear-time algorithm, SLOPE, to compute this score.

As we model Y as a function of X and noise, our ap-
proach is somewhat reminiscent to causal inference based
on Additive Noise Models (ANMs) [25], where one assumes
that Y is generated as a function of X plus additive noise,
Y = f(X)+N with X ⊥⊥ N . In the ANM approach, we infer
X → Y if we can find a function from X to Y that admits an
ANM, but cannot do so in the opposite direction. In practice,
ANM methods often measure the independence between the
presumed cause and the noise in terms of p-values, and infer
the direction of the lowest p-value. As we will see, this leads
to unreliable confidence scores—not the least because p-values
are often strongly influenced by sample size [1], but also as
that a lower p-value does not necessarily mean that H1 is more
true, just that H0 is very probably not true [1]. We will show
that our score, on the other hand, is robust against sample size,
and correlates strongly with accuracy. Moreover, it admits an
elegant and effective analytical statistical test on the difference
in score between the two causal directions based on the no-
hypercompressibility inequality [3], [7].

Our key contributions can be summarised as follows, we
(a) propose an MDL score for causal inference on pairs of

univariate numeric random variables,
(b) formulate an analytic significance test based on compres-

sion,
(c) show to model unobserved mechanisms via compound

deterministic and non-deterministic functions,
(d) introduce the linear-time SLOPE algorithm,
(e) give extensive empirical evaluation on synthetic and real-

world data, including a case study
(f) make all code, data generators, and data available.
The remainder of this paper is organised as usual. We

first give a brief primer to Kolmogorov complexity and the

0 1

0

1

X

Y

(a) deterministic

0 1

0

1

X

Y

(b) non-deterministic

Figure 2: Example deterministic and non-deterministic data.
In both cases the ground truth is X causes Y . The left-hand
data is generated using a quadratic function with Gaussian
noise, whereas the right-hand data is generated using a non-
deterministic function.

Minimum Description Length principle in Sec. II. In Sec. III
we introduce our score based on the algorithmic independence
of conditional, as well as a practical instantiation based on the
MDL principle. We introduce the linear-time SLOPE algorithm
to efficiently compute the conditional score in Sec. IV. Sec. V
discusses related work. We empirically evaluate SLOPE in
Sec. VI and discuss the results in Sec. VII. We round up with
conclusions in Sec. VIII.

II. PRELIMINARIES

In causal inference, the goal is to determine for two random
variables X and Y that are statistically dependent whether
it is more likely that X causes Y , denoted by X → Y , or
whether it is more likely that Y causes X , Y → X . In this
paper we consider the case where X and Y are univariate and
numeric. We work under the common assumption of causal
sufficiency [4], [17], [20], [28]. That is, we assume there is
no hidden confounder variable Z that causes both X and Y .

We base our causal inference score on the notion of Kol-
mogorov complexity, which we will approximate via MDL.
Below we give brief primers to these two main concepts.

A. Kolmogorov Complexity

The Kolmogorov complexity of a finite binary string x is
the length of the shortest binary program p∗ for a universal
Turing machine U that outputs x and then halts [11], [13].
Formally,

K(x) = min{|p| | p ∈ {0, 1}∗,U(p) = x} .

Simply put, p∗ is the most succinct algorithmic description of
x, and therewith Kolmogorov complexity of x is the length
of its ultimate lossless compression. Conditional Kolmogorov
complexity, K(x | y) ≤ K(x), is then the length of the
shortest binary program p∗ that generates x, and halts, given
y as input.



The Kolmogorov complexity of a probability distribution P ,
K(P ), is the length of the shortest program that outputs P (x)
to precision q on input 〈x, q〉 [13]. More formally, we have

K(P ) = min {|p| : p ∈ {0, 1}∗, |U(〈x, 〈q, p〉〉)− P (x)| ≤ 1/q} .

The conditional, K(P | Q), is defined similarly except
that the universal Turing machine U now gets the additional
information Q. The algorithmic mutual information between
two distributions P and Q is I(P : Q) = K(P )−K(P | Q∗),
where Q∗ is the shortest binary program for Q. For more
details on Kolmogorov complexity see [13].

B. Minimum Description Length Principle

Kolmogorov complexity is, however, not computable [13],
but we can approximate it in a well-founded and computable
way through the Minimum Description Length (MDL) princi-
ple [22], [7]. Conceptually, instead of all programs, Ideal MDL
considers only those for which we know that they output x
and halt, i.e., lossless compressors. Formally, given a model
class M, MDL identifies the best model M ∈M for data D
as the one minimizing

L(D,M) = L(M) + L(D |M) ,

where L(M) is the length in bits of the description of M , and
L(D | M) is the length in bits of the description of data D
given M . This is known as two-part, or crude MDL. There
also exists one-part, or refined MDL. Although refined MDL
has theoretically appealing properties, it is only efficiently
computable for a small number of model classes.

To use MDL in practice we need to define a model class,
and how to encode a model, resp. the data given a model, into
bits. Note that in MDL we are only concerned with optimal
code lengths, not actual codes—our goal is to measure the
complexity of a dataset under a model class, after all [7].

III. INFORMATION THEORETIC CAUSAL INFERENCE

In this section, we first introduce how to infer causal
directions using Kolmogorov complexity. Thereupon, we show
how to obtain a computable score based on the MDL principle.

A. Causal Inference by Kolmogorov Complexity

A central postulate in causal inference concerns the algo-
rithmic independence of conditionals. For multiple random
variables, this postulate is defined as follows [9].

Algorithmic Independence of Conditionals: A causal hy-
pothesis is only acceptable if the shortest description of the
joint density P is given by the concatenation of the shortest
description of the Markov kernels. Formally, we write

K(P (X1, . . . , Xn))
+
=
∑
j

K(P (Xj | PAj)) , (1)

which holds up to an additive constant independent of the
input, and where PAj corresponds to the parents of Xj in a
causal directed acyclic graph (DAG).

As we consider two variables, X and Y , either X is the
parent of Y or the other way round. That is, either

K(P (X,Y ))
+
= K(P (X)) +K(P (Y | X)) , or

K(P (X,Y ))
+
= K(P (Y )) +K(P (X | Y )) .

In other words, two valid ways to describe the joint distribution
of X and Y include to first describe the marginal distribution
P (X) and then the conditional distribution P (Y | X), or first
to describe P (Y ) and then P (X | Y ).

Thereupon, Janzing and Schölkopf formulated the postulate
for algorithmic independence of Markov kernels [9].

Algorithmic Independence of Markov Kernels: If X → Y ,
the marginal distribution of the cause P (X) is algorithmically
independent of the conditional distribution of the effect given
the cause P (Y | X), i.e., the algorithmic mutual information
between the two will be zero,

I(P (X) : P (Y | X))
+
= 0 , (2)

while this is not the case in the other direction.

Simply put, for the true causal direction, the marginal
distribution of the cause is algorithmically independent of the
conditional distribution of the effect given the cause. Building
upon Eqs. (1) and (2), Mooij et al. [16] derived an inference
rule stating that if X causes Y ,

K(P (X))+K(P (Y | X)) ≤ K(P (Y ))+K(P (X | Y )) (3)

holds up to an additive constant. This means that if X → Y ,
the description of the joint distribution K(P (X,Y )) of first
describing the marginal distribution of the cause K(P (X))
and then describing the conditional distribution of the effect
given the cause K(P (Y | X)), will be shorter than the other
way around.

Although Eq. (3) already allows for inferring the causal
direction for a given pair, we obtain a more robust score,
allowing for fair comparison of results independent of data
sizes, when we normalise the result. In particular, Budhathoki
and Vreeken [4] recently proposed to normalise the scores
with the sum of the description lengths for the marginal
distributions. We therefore define our causal indicator as

∆X→Y =
K(P (X)) +K(P (Y | X))

K(P (X)) +K(P (Y ))
,

and ∆Y→X in the same manner. Consequently, we infer
X → Y , if ∆X→Y < ∆Y→X , and Y → X , if ∆X→Y >
∆Y→X and do not decide if ∆X→Y = ∆Y→X .

The confidence of our score is C = |∆X→Y − ∆Y→X |.
The higher, the more certain we are that the inferred causal
direction is correct. To avoid confusion, we want to emphasise
that C has nothing to do with a confidence interval, but can be
used to rank results of several tests. Below, after introducing
our practical score, we will show how we can in addition
define a practical statistical test.



B. Causal Inference by MDL

As Kolmogorov complexity is not computable, we will in-
stantiate ∆X→Y and ∆Y→X using the Minimum Description
Length principle [13], [7]. In practice this means we will
estimate ∆X→Y as

∆̂X→Y =
L(X) + L(Y | X)

L(X) + L(Y )

where L(X) is the length in bits of the description of
the marginal distribution of X , L(Y ) that of the marginal
distribution of Y , and L(Y | X) that of the conditional
distribution of Y given X . We define ∆̂Y→X analogue to
∆̂X→Y , and we infer X → Y , if ∆̂X→Y < ∆̂Y→X , Y → X ,
if ∆̂X→Y > ∆̂Y→X and do not decide if ∆̂X→Y = ∆̂Y→X
or below a user-defined threshold. Like above, confidence C is
simply the absolute difference between ∆̂X→Y and ∆̂Y→X .

Considering the difference between the encoded lengths is
related to, but not the same as considering the ratio of the
posteriors; we also include the complexity of the model, which
helps against overfitting. Intuitively, if the functions we find
for the two directions both explain the data equally well, we
prefer that direction that explains it using the simplest function.

This leaves us to explain how we encode the data, and, most
importantly, how we encode L(Y | X).

Intuition of the Conditional Encoding: The general idea is
simple: we use regression to model the data of Y given X .
That is, we model Y as a function f of X and independent
noise N , i.e. Y = f(X)+N . We do so by fitting a regression
function f over X and treating the error it makes as Gaussian
distributed noise. Naturally, the better f(X) fits Y , the fewer
bits we will have to spend on encoding errors. The more
parameters f(X) has, however, the more bits we will have to
spend on encoding these. This way, MDL naturally balances
the complexity of the model to that of the data [7]. For
example, while a linear function is more simple to describe
than a cubic one, the latter will fit the data plotted in Fig. 2a
so much better that MDL decides it is the better choice.

A key idea in our approach is to consider not only single
global deterministic regression functions fg , which works well
for deterministic data, but to also consider non-deterministic,
or compound functions as models. That is, we consider models
that besides the global regression function fg may additionally
consist of local regression functions fl that model Y for those
values x of X that non-deterministically map to multiple
values of Y . That is, per such value of X , we take the
associated values of Y , sort these ascending, and uniformly
re-distribute them on X over a fixed interval. We now see
how well, just for these re-distributed points, we can fit a local
regression model fl. This way, we will for example be able to
much more succinctly describe the data in Fig. 2b than with a
single global deterministic regression function, as we can now
exploit the structure that the values of Y have given a value
of X , namely, being approximately equally spaced. To avoid
overfitting we use MDL, and only allow a local function for
a value of X into our model if it provides a gain in overall
compression. Since we assume that for the true causal model

the data in the local components follows the same pattern, we
only allow models in which all local functions are of the same
type, e.g., all are linear, all are quadratic, etc.

In the following paragraphs, we formalise these ideas and
define our cost functions. All logarithms are to base 2, and we
use the common convention that 0 log 0 = 0.

Complexity of the Marginals: We start by defining the cost
for the marginal distributions, L(X) and L(Y ), which mostly
serve to normalise our causal indicators ∆̂X→Y and ∆̂Y→X .
As we beforehand do not know how X or Y are distributed,
and do not want to incur any undue bias, we encode both
using a uniform prior with regard to the data resolution τ of
X and Y . That is, we have L(X) = −n log τ , where τ is
the resolution of the data of X . Note that resolution τ can be
different between X and Y—we specify how we choose τ in
the next section. We define L(Y ) analogue.

Complexity of the Conditional Model: Formally, we write F
for the set of regression functions, or model, we use to encode
the data of Y given X . A model F consists of at least one
global regression function fg ∈ F , and up to dom(X) local
regression functions fl ∈ F , associated with individual values
of X . We write Fl for the set of local regression functions
fl ∈ Fl, and require that all fl ∈ Fl are of the same type. The
description length, or encoded size, of F is

L(F ) =LN(|F |) + log

(
|X| − 1

|Fl| − 1

)
+

2 log(|F|) + L(fg) +
∑
fl∈Fl

L(fl) ,

where we first describe the number of local functions using
LN, the MDL optimal encoding for integers z ≥ 1 [23], then
map each fl to its associated value of X , after which we
use log |F| bits to identify the type of the global regression
function fg , and whenever Fl is non-empty also log |F| bits
to identify the type of the local regression functions fl, finally,
we encode the functions themselves. Knowing the type of a
function, we only need to encode its parameters, and hence

L(f) =
∑
φ∈Φf

LN(s) + LN(dφ · 10se) + 1 ,

where we encode each parameter φ up to a certain precision p.
We shift φ by the smallest integer number s such that φ·10s ≥
10p, i.e. p = 3 means that we consider three digits. What
remains is that we need to encode the shift, the shifted digit
and the sign.

Complexity of the Conditional Data: Reconstructing the
data of Y given f(X) corresponds to encoding the errors,
or deviations, the model makes. Since we fit our regression
functions by minimizing the sum of squared errors, which
corresponds to maximizing the likelihood under a Gaussian,
it is a natural choice to encode the errors using a Gaussian
distribution with zero-mean.

Since we have no assumption on the standard deviation, we
use the empirical estimate σ̂ to define the standard deviation



of the Gaussian. By doing so, the encoded size of the error of
F (X) with respect to the data of Y corresponds to

L(Y | F,X) =
∑
f∈F

(
nf
2

(
1

ln 2
+ log 2πσ̂2

)
− nf log τ

)
,

where nf is the number of data points for which we use a
specific function f ∈ F . Intuitively, this score is higher the less
structure of the data is described by the model and increases
proportionally to the sum of squared errors.

Complexity of the Conditional: Having defined the data and
model costs above, we can now proceed and define the total
encoded size of the conditional distribution of Y given X as

L(Y | X) = L(F ) + L(Y | F,X) . (4)

By MDL we are after that model F that minimises Eq. (4). Af-
ter discussing a significance test for our score, we will present
the SLOPE algorithm to efficiently compute the conditional
score in the next section.

Significance by Hypercompression: Ranking based on con-
fidence works well in practice. Ideally, we would additionally
like to know the significance of an inference. It turns out
we can define an appropriate hypothesis test using the no-
hypercompressibility inequality [3], [7]. In a nutshell, under
the hypothesis that the data was sampled from the null-model,
the probability that any other model can compresses it k bits
better is P0(L0(x)− L(x) ≥ k) ≤ 2−k.

This means that if we assume the null complexity, L0, to
be the least-well compressed causal direction, we can evaluate
the probability of gaining k bits by instead using the most-
well compressed direction. Formally, if we write L(X → Y )
for L(X) + L(Y | X), and vice-versa for L(Y → X), L0

would be max{L(X → Y ), L(Y → X)}. The probability that
the data can be compressed k = |L(X → Y ) − L(Y → X)|
bits better in the opposite direction then simply is 2−k.

In fact, we can construct a stronger test by assuming that
the data is not causated, but merely correlated. That is, we
assume both directions are wrong; the one compresses too
well, the other compresses too poor. Following, if we assume
these two to be equal in terms of exceptionality, the null
complexity is the mean between the complexities of the two
causal directions, i.e., L0 = min{L(X → Y ), L(Y → X)}+
|L(X → Y ) − L(Y → X)|/2. The probability of the best-
compressing direction is then 2−k with k = |L(X → Y ) −
L(Y → X)|/2. We can now set a significance threshold α as
usual, such as α = 0.001, and use this to prune out those cases
where the difference in compression between the two causal
directions is insignificant. We will evaluate this procedure, in
addition to our confidence score, in the experiments.

IV. THE SLOPE ALGORITHM

With the framework defined in the previous section, we
can determine the most likely causal direction and the cor-
responding confidence value. In this section we present the
SLOPE algorithm to efficiently compute the causal indicators.
To keep the computational complexity of the algorithm linear,

Algorithm 1: CONDITIONALCOSTS(Y,X)

input : random variables Y and X
output: score L(Y | X)

1 F = empty model;
2 fg = FITDETERMINISTIC(Y ∼ X,F);
3 F = F ∪ fg;
4 s = sg = L(F ) + L(Y | F,X);
5 Xu = {x ∈ X | count(x) ≥ 2};
6 foreach Fc ∈ F do
7 sc = sg, Fc = F ;
8 foreach xi ∈ Xu do
9 Yi = {y ∈ Y | y maps to xi};

10 Xi = norm(1 : |Yi|,min = −t,max = t);
11 fl = FITDETERMINISTIC(Yi ∼ Xi,Fc);
12 ŝ = L(Fc ∪ fl) + L(Y | Fc ∪ fl, X);
13 if ŝ < sc then sc = ŝ, Fc = Fc ∪ fl;
14 if sc < s then s = sc;

15 return s;

we restrict ourselves to linear, quadratic, cubic, exponen-
tial and reciprocal functions—although at the cost of extra
computation this class may be expanded arbitrarily. We start
by introducing the subroutine of SLOPE that computes the
conditional complexity of Y given X .

A. Calculating the Conditional Scores

Algorithm 1 describes the subroutine to calculate the con-
ditional costs L(Y | X) or L(X | Y ). We start with fitting a
global function fg for each function class c ∈ F and choose
the one fg with the minimum sum of data and model costs
(line 2). Next, we add fg to the model F and store the total
costs (3–4). For purely deterministic functions, we are done.

If X includes duplicate values, however, we need to check
whether fitting a non-deterministic model leads to a gain in
compression. To this end we have to check for each value xi
of X that occurs at least twice, whether we can express the
ascendingly ordered corresponding Y values, Yi, as a function
fl of uniformly distributed data Xi between [−t, t], where t is
a user-determined scale parameter (lines 9–12). If the model
costs of the new local function fl are higher than the gain on
the data side, we do not add fl to our model (13). As it is fair
to assume that for truly non-deterministic data the generating
model for each local component is the same, we hence restrict
all local functions to be of the same model class c ∈ F . As
final result, we return the costs according to the model with
the smallest total encoded size. In case of deterministic data,
this will be the model containing only fg .

B. Causal Direction and Confidence

In the previous paragraph, we described Algorithm 1, which
is the main algorithmic part of SLOPE. Before applying it, we
first normalise X and Y to be from the same domain and
then determine the data resolutions τX and τY for X and
Y . To obtain the data resolution, we calculate the smallest



difference between two instances of the corresponding random
variable. Next, we apply Algorithm 1 for both directions
to obtain L(Y | X) and L(X | Y ). Subsequently, we
estimate the marginals L(X) and L(Y ) based on their data
resolutions. This we do by modelling both as a uniform prior
with L(X) = −n log τX and L(Y ) = −n log τY . In the last
step, we compute ∆̂X→Y and ∆̂Y→X and report the causal
direction as well as the corresponding confidence value C.

C. Computational Complexity

To assess the computational complexity, we have to consider
the score calculation and the fitting of the functional relations.
The model costs are computed in linear time according to
the number of parameters, whereas the data costs need linear
time with regard to the number of data points n. Since we
here restrict ourselves to relatively simple functions, we can fit
these in time linear to the number of data points. To determine
the non-deterministic costs, in the worst case we perform n/2
times |F| fits over two data points, which is still linear. In
total the runtime complexity of SLOPE hence is O(n|F|). In
practice, this means that SLOPE is fast, and only takes seconds
up to a few minutes depending on the size of the data.

V. RELATED WORK

Causal inference from observational data is an important
open problem that has received a lot of attention in recent
years [4], [17], [24], [18]. Traditional constraint based ap-
proaches, such as conditional independence test, require at
least three random variables and can not decide between
Markov equivalent causal DAGs [18], [28]. In this work, we
focus specifically on those cases where we have to decide
between the Markov equivalent DAGs X → Y and Y → X .

A well studied framework to infer the causal direction
for the two-variable case relies on the additive noise as-
sumption [25]. Simply put, it makes the strong assumption
that Y is generated as a function of X plus additive noise,
Y = f(X) + N , with X ⊥⊥ N . It can then be shown that
while such a function is admissible in the causal direction,
this is not possible in the anti-causal direction. There exist
many approaches based on this framework that try to exploit
linear [25] or non-linear functions [8] and can be applied to
real valued [25], [8], [31], [20] as well as discrete data [19].
Recently, Mooij et al. [17] reviewed several ANM-based
approaches from which ANM-pHSIC, a method employing
the Hilbert-Schmidt Independence Criterion (HSIC) to test for
independence, performed best. For ANMs the confidence value
is often expressed as the negative logarithm of the p-value from
the used independence test [17]. P-values are, however, quite
sensitive to the data size [1], which leads to a less reliable
confidence value. As we will show in the experiments, our
score is robust and nearly unaffected by the data size.

Another class of methods rely on the postulate that if
X → Y the marginal distribution of the cause P (X) and
the conditional distribution of the effect given the cause
P (Y | X) are independent of each other. The same does not
hold for the opposite direction [9]. The authors of IGCI define

this independence via orthogonality in the information space.
Practically, they define their score using the entropies of X
and Y [10]. Liu and Chan implemented this framework by
calculating the distance correlation for discrete data between
P (X) and P (Y | X) [14]. A third approach based on this
postulate is CURE [24]. Here, the main idea is to estimate
the conditional using unsupervised inverse Gaussian process
regression on the corresponding marginal and compare the
result to the supervised estimation. If the supervised and
unsupervised estimation for P (X | Y ) deviate less than those
for P (Y | X), an independence of P (X | Y ) and P (X) is
assumed and causal direction X → Y is inferred. Although
well formulated in theory, the proposed framework is only
solvable for data of up to 200 data points and otherwise relies
strongly on finding a good sample of the data.

Recently, Janzing and Schölkopf postulated that if X → Y ,
the complexity of the description of the joint distribution
in terms of Kolmogorov complexity, K(P (X,Y )), will be
shorter when first describing the distribution of the cause
K(P (X)) and than describing the distribution of the effect
given the cause K(P (Y | X)) than vice versa [9], [12]. To
the best of our knowledge, Mooij et al. [16] were the first to
propose a practical instantiation of this framework based on
the Minimum Message Length principle (MML) [30] using
Bayesian priors. Vreeken [29] proposed to approximate the
Kolmogorov complexity for numeric data using the cumulative
residual entropy, and gave an instantiation for multivariate
continuous-valued data. Perhaps most related to SLOPE is
ORIGO [4], which uses MDL to infer causal direction on
binary data, whereas we focus on univariate numeric data.

VI. EXPERIMENTS

In this section we empirically evaluate SLOPE. In particular,
we consider synthetic data, a benchmark data set, and a real-
world case study. We implemented SLOPE in R and make both
the code, the data generators, and real world data publicly
available for research purposes.1 We compare SLOPE to the
state of the art for univariate causal inference. These include
CURE [24], IGCI [10] and RESIT [20]. From the class of
ANM-based methods we compare to ANM-pHSIC [8], [17],
which a recent survey identified as the most reliable ANM
inference method [17]. We use the implementations by the
authors, sticking to the recommended parameter settings.

To run SLOPE, we have to define the parameter t, which
is used to normalise the data Xi within a local component,
on which the data Yi is fitted. Generally, the exact value of
t is not important for the algorithm, since it only defines the
domain of the data points Xi, which can be compensated by
the parameters of the fitted function. In our experiments, we
use t = 5 and set the precision p for the parameters to three.

A. Synthetic Data

We first consider data with known ground truth. To generate
such data, we follow the standard scheme of Hoyer et al. [8].

1http://eda.mmci.uni-saarland.de/slope/

http://eda.mmci.uni-saarland.de/slope/
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Figure 3: [Higher is better] Accuracies of SLOPE, RESIT
and IGCI on synthetic data. The first letter of the labels
corresponds to the distribution of X (u: uniform, g: sub-
Gaussian, b: binomial and p: Poisson), the second letter to that
of the noise (u: uniform, g: Gaussian and n: non-additive).

That is, we first generate X randomly according to a given
distribution, and then generate Y as Y = f(X) +N , where f
is a function that can be linear, cubic or reciprocal, and N is
the noise term, which can either be additive or non-additive.

Accuracy: First, we evaluate the performance of SLOPE
under different distributions. Following the scheme above, we
generate X randomly from either

1) a uniform distribution with min = −t and max = t,
where t ∼ unif(1, 10),

2) a sub-Gaussian distribution by sampling data with
N (0, s), where s ∼ unif(1, 10) and taking each value
to the power of 0.7 maintaining its sign,2

3) a binomial distribution with p ∼ unif(0.1, 0.9) and the
number of trials t ∼ dunif(1, 10)e, or

4) a Poisson distribution with λ ∼ unif(1, 10).

Note that the binomial and Poisson distribution generate
discrete data points, which with high probability results in non-
deterministic pairs. To generate Y we first apply either a linear,
cubic or reciprocal function on X , with fixed parameters,
and add either additive noise using a uniform or Gaussian
distribution with t, s ∼ unif(1,max(x)/2) or non-additive
noise with N (0, 1)| sin(2πνX)|+N (0, 1)| sin(2π(10ν)X)|/4
according to [24], where we choose ν ∼ unif(0.25, 1.1). For
every combination we generate 100 data sets of 1000 samples
each.

Next, we apply SLOPE, RESIT, and IGCI and record how
many pairs they correctly infer. As they take up to hours to
process a single pair, we do not consider CURE and ANM
here. We give the averaged results over all three function types
in Fig. 3. In general, we find that SLOPE and IGCI perform on
par and reach 100% for most setups, whereas SLOPE performs
better on the sub-Gaussian data. If we consider the single
results for linear, cubic and reciprocal, we find that on the
linear data with sub-Gaussian distributed X , SLOPE performs
on average 7% better than IGCI.

Confidence: Second, we investigate the dependency of the
RESIT, IGCI, and SLOPE scores on the size of the data. In an

2We consider sub-Gaussian distributions since linear functions with both
X and N Gaussian distributed are not identifiable by ANMs [8].
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Figure 4: [The more stable the better] Confidence values on
a cubic function for different sample sizes. Unlike RESIT
and IGCI, the SLOPE scores can be meaningfully compared
between different sample sizes.

ideal world, a confidence score is not affected by the size of
the data, as this allows easy comparison and ranking of scores.

To analyse this, we generate 100 datasets of 100, 250, 500
and 1 000 samples each, where X is Gaussian distributed and
Y is a cubic function of X with uniform noise. Subsequently,
we apply RESIT, IGCI and SLOPE and record their confidence
values. We show the results per sample size in Fig. 4. As
each method uses a different score, the scale of the Y-axis
is not important. What is important to note, is the trend of
the scores over different sample sizes. We see SLOPE has
very consistent confidence values that are independent of the
number of samples, in strong contrast to RESIT and IGCI.
For RESIT the standard deviation of the confidence values
grows with the sample size, while for IGCI, we observe that
the average confidence increases with the number of samples.
In other words, while it is easy to compare and rank SLOPE
scores, this is not the case for the two others—which, as we
will see below results in comparatively bad decision rates.

Non-Determinacy: Local regression on non-deterministic
data adds to the modelling power of SLOPE, yet, it may also
lead to overfitting. Here we evaluate whether MDL protects
us from picking up spurious structure.

To control non-determinacy, we sample X uniformly from
k equidistant values over [0, 1], i.e., X ∈ [ 0

k ,
1
k , · · · ,

k
k ]. To

obtain Y , we apply a linear function and additive Gaussian
noise as above. Per data set we sample 1 000 data points.

In Fig. 5 we plot the non-determinism of the model, i.e. the
average number of used bins divided by the average number
of bins SLOPE could have used, against the number of distinct
X values. As a reference, we also include the average number
of values of Y per value of X . We see that for at least 75
unique values, SLOPE does not infer non-deterministic models.
Only at 40 distinct values, i.e., an average of 25 duplicates per
X , SLOPE consistently starts to fit non-deterministic models.
This shows that if anything, rather than being prone to overfit,
SLOPE is conservative in using local models.
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Figure 5: [SLOPE does not overfit] Percentage of non-
deterministic models SLOPE chooses, resp. the expected num-
ber of Y values per X value, for the number of unique values
of X .

B. Real World Data

Next we evaluate SLOPE on real world benchmark data. In
particular, we consider the Tuebingen cause-effect data set.3

At the time of writing the data set included 98 univariate
numeric cause effect pairs. We compare SLOPE to IGCI,
RESIT, ANM, and CURE, using the suggested parameter
settings for this benchmark. In addition, we include SLOPED
in our comparison, which is an ablated version of SLOPE that
only fits a single global deterministic function.

Decision Rate and Accuracy: We first consider the accuracy
and decision rates over the benchmark data. To determine the
decision rate for an approach, we order the results according
to its confidence values. We then determine, from k = 1 to
98, the accuracy over the top-k ranked pairs. To determine the
accuracy at k we weigh each pair according to its specification
in the database. In case an algorithm does not decide, we weigh
this result as one half of the corresponding weight.

We plot the results in Fig. 6, where in addition we show
the 95% confidence interval for the binomial distribution with
success probability of 0.5 in gray. We observe that SLOPE
strongly outperforms its competitors in both decision rate and
overall accuracy; it identifies the correct result for top-ranked
32 data sets, over the top-74 pairs (which correspond to 73.8%
of the weights) it has an accuracy of 90%, while when overall
it obtains an accuracy of 82.4%.

In Fig. 7 we show the corresponding confidence values of
SLOPE for the benchmark pairs. The plot emphasises not only
the predictive power of SLOPE, but also the strong correlation
between confidence value and accuracy. In comparison to the
other approaches the decision rate (Fig. 6) of SLOPE is stable
and only decreases slightly at the very end. Moreover, our
competitors obtain much worse overall accuracies, between
56% (CURE) and 71% (RESIT), which for the most part are
insignificant.

We identify three reasons why SLOPE performs better than
other approaches based on functional learning. First, we con-
sider also piecewise regression, which leads to an improvement
of 10% for SLOPE compared to SLOPED. Second, we consider
the complexity of the functions, and incorporate the model
cost to prevent overfitting; as they are so powerful, methods

3https://webdav.tuebingen.mpg.de/cause-effect/
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Figure 6: [Higher is better] Decision rates of SLOPE, CURE,
RESIT, IGCI and ANM on the Tuebingen benchmark data set
(98 pairs). SLOPED is an ablated version of SLOPE, which fits
the data with a single deterministic function (more detailed
version of Fig. 1).

based on Gaussian process learning, for example, are likely
to overfit. Last, the calculation of our confidence value is less
dependent on the data size.

If we not only consider the confidence values, but also
our proposed statistical test, we can improve our results even
further. After adjusting the p-values using the Benjamini-
Hochberg correction [2] to control the false discovery rate
(FDR), 83 out of the 98 decisions are significant w.r.t. α =
0.001. As shown in Fig. 7 the pairs rated as insignificant
correspond to small confidence values. In addition, from the
15 insignificant pairs, 9 were inferred incorrect from SLOPE
and 6 correct. Over the significant pairs the weighted accuracy
increases to 84.9%.

To provide further evidence that the confidence values
and the p-values are indeed related, we plot the adjusted p-
values and confidence values in Fig. 8a. We observe that high
confidence values correspond to highly significant p-values.
We also computed the decision rate for SLOPE when ranking
by p-values, and find it is only slightly worse than that ranked
by confidence. We posit that confidence works better as it is
more independent of the data size. To test this, we calculate
the correlation between data size and corresponding measures
using the maximal information coefficient (MIC) [21]. We find
a medium correlation between confidence and p-values (0.64),
and between p-values and data size (0.55), and only a weak
correlation between confidence and data size (0.31).

To show that the strength of our method comes from
its ability to fit non-deterministic models, we also consider
SLOPED, an ablated version of SLOPE that only considers
deterministic models, i.e., only considers models that consist
of a single global regression function. As it uses the same
score, we see in Fig. 6 that its decision rate is still good.
Although the overall accuracy drops by 10% to 72.1%, it is
still as good as the best competing method. This also shows
that the full approach is much better able to deal with a broader
spectrum of cause effect pairs.

Apart from the accuracies, we also tracked which functional
dependencies SLOPE found on the benchmark data. We found
that most of the time (54.6%), it fits linear functions. For
23.7% of the data it fits exponential models, and for 15.5%



1 19 39 58 78 98

0

0.1

0.2

data set rank

C
correct
incorrect
insignificant

Figure 7: Confidence values of SLOPE for the Tuebingen
benchmark pairs, in descending order, corresponding to Fig. 6.
Correct inferences marked in green, errors in red, and infer-
ences insignificant at α = 0.001 marked with a gray arrow.

0 0.05 0.1 0.15 0.2

100

101

102

α = 0.001

C

−
lo
g
1
0
p

(a) C vs. p-value

IG
C

I
SL

O
PE

R
ES

IT
A

N
M

C
U

R
E

101
102
103
104
105
106

tim
e

(s
)

(b) runtime

Figure 8: (left) Confidence and significance of SLOPE on the
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dence are also insignificant. (right) Runtime in seconds over
all 98 pairs, in log-scale. SLOPE is more accurate than all, and
faster than all except for IGCI.

cubic models. Quadratic and reciprocal models are rarely
fitted (6.2%). This shows that working with a richer class of
functions allows us to pick up more structure. In addition,
we observe that although we allow to fit complex models, in
many cases a simple model is preferred since it has sufficient
explanatory power at lower model costs.

C. Case Study: Octet Binary Semi Conductors

To evaluate real-world performance we conduct a case study
on octet binary semi-conductors [5], [27]. In essence, these
are 82 different materials for which we have data on the
radii of electron orbitals, and important other energy quantities
that together determine their chemical properties. The target
of interest is the energy difference δE between rocksalt and
zincblende crystal structures. It is still an open challenge to
find that combination of physical properties that can fully
explain δE [5], [6]. For causal inference, it suffices to know
that the energy difference is influenced by the descriptor
variables and not the other way round.

As there is no known combination of physical properties
that fully describes δE , we mine the top 10 features that each
explain as much of δE as possible [15], and therewith obtain
10 cause effect pairs where we set δE as X and one of the
mined features as Y . After consulting with domain experts,
we assume Y → X as ground truth for all pairs.

We find that SLOPE infers the correct direction for 9 out of
10 pairs. The only error is also the only insignificant score
(p = 0.199) at α = 0.001. In comparison, we find that
CURE infers all pairs correctly, whereas IGCI makes the same
decisions as SLOPE. RESIT and ANM, on the other hand, only
get 4 resp. 5 pairs correct.

D. Runtime

Last, we evaluate the computational efficiency of SLOPE. To
this end we report, per method, the wall-clock time needed to
decide on all 98 pairs of the benchmark data set. We ran these
experiments on Linux servers with two six-core Intel Xenon
E5-2643v2 processors and 64GB RAM. The implementations
of SLOPE, IGCI and RESIT are single-threaded, whereas
ANM and CURE are implemented in Matlab and use the
default number of threads. We give the results in Fig. 8. We
see that IGCI is fastest, followed by SLOPE, which takes 1 475
seconds to processes all pairs. The other competitors are all at
least one order of magnitude slower. Taking 13 days, CURE
has the longest runtime. The large gain in runtime of SLOPE
compared to RESIT, ANM and CURE rises from the fact that
those methods employ Gaussian process regression to fit the
functions.

VII. DISCUSSION

The experiments clearly show that SLOPE works very well.
It performs well in a wide range of settings, both on synthetic
and real world data. In particular on the latter it outperforms
the state of the art, obtaining highly stable decision rates and
an overall accuracy of more than 10% better than the state
of the art. Our case study showed it makes sensible decisions.
Most importantly, SLOPE is simple and elegant. Its models are
easy to interpret, it comes with a stable confidence score, a
natural statistical test, and is computationally efficient.

The core idea of SLOPE is to decide for the causal direction
by the simplest, best fitting regression function. To deal with
non-deterministic data, we allow our model to additionally
use local regression functions for non-deterministic values of
X , which the experiments show leads to a large increase in
performance. Importantly, we employ local regression within
an MDL framework; without this, fitting local regressors
would not make sense, as it would lead to strong overfitting.

A key advantage of our MDL-based instantiation of the
algorithmic Markov condition, compared to HSIC-based in-
dependence tests and IGCI, is that our score is not dependent
on the size of the data. This makes it possible to meaningfully
compare results among different tests; this is clearly reflected
in the stable decision rates. Another advantage is that it allows
us to define a natural statistical test based on compression
rates, which allows us to avoid insignificant inferences.

Although the performance of SLOPE is impressive, there is
always room for improvement. With regard to confidence and
significance, we are highly interested in investigating whether
we can define a test that directly infers the significance of a
confidence score (without resorting to permutation testing).



In addition, it is possible to improve the search for local
components by considering alternate re-distributions of X ′,
apart from uniformly ascending values. This is not trivial, as
there exist n! possible orders, and it is not immediately clear
how to efficiently optimise regression fit over this space. More
obviously, there is room to expand the set of function classes
that we use at the moment—kernel based, or Gaussian-process
based regression are powerful methods that, at the expense of
computation, will likely improve performance further.

For future work, we additionally aim to consider the de-
tection of confounding variables—an open problem that we
believe our information theoretic framework naturally lends
itself to—as well as to extend SLOPE to multivariate and
possibly mixed-type data. We are perhaps most enthusiastic
about leveraging the high accuracy of SLOPE towards inferring
causal networks from biological processes without the need of
conditional independence tests.

VIII. CONCLUSION

We studied the problem of inferring the causal direction
between two univariate numeric random variables X and Y .
To model the causal dependencies we proposed an MDL-based
framework employing local and global regression. Further,
we proposed SLOPE, an efficient linear-time algorithm, to
instantiate this framework. In addition, we introduced 10 new
cause effect pairs from a material science data set.

Empirical evaluations on synthetic and real world data show
that SLOPE reliably infers the correct causal direction with
an high accuracy. On benchmark data, at over 82% accuracy
SLOPE outperforms the state of the art by more than 10%,
provides a more robust decision rate, while additionally also
being computationally more efficient. In future research, we
plan to refine our statistical test, consider detecting confound-
ing, causal inference on multivariate setting, and use SLOPE
to infer causal networks directly from data.
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