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Abstract—Additive Noise Models (ANMs) provide a theo-
retically sound approach to inferring the most likely causal
direction between pairs of random variables given only a sample
from their joint distribution. The key assumption is that the
effect is a function of the cause, with additive noise that is
independent of the cause. In many cases ANMs are identifiable.
Their performance, however, hinges on the chosen dependence
measure, the assumption we make on the true distribution.

In this paper we propose to use Shannon entropy to measure
the dependence within an ANM, which gives us a general ap-
proach by which we do not have to assume a true distribution, nor
have to perform explicit significance tests during optimization.

The information theoretic formulation gives us a general, effi-
cient, identifiable, and, as the experiments show, highly accurate
method for causal inference on pairs of discrete variables—
achieving (near) 100% accuracy on both synthetic and real data.

Index Terms—Causal Inference, ANM, Shannon Entropy

I. INTRODUCTION

Determining cause from effect is one of the fundamental
problems in science. As it is often either very difficult, ex-
pensive, or simply impossible to perform a randomized study,
the key question is whether we can accurately infer causal di-
rections from observational data. Traditional constraint-based
approaches, such as those based on conditional independence
tests [1], [2] can do so up to Markov equivalence; they
cannot distinguish between X → Y and Y → X . In this
paper we consider exactly this case. In particular, we give a
highly accurate and identifiable method for inferring the causal
direction between two discrete random variables X and Y
given only a sample of their joint distribution.

As follows from the Structural Causal Model [1], we cannot
infer the causal direction between a pair of random variables
without making assumptions on the model generating the data.
The Additive Noise Models (ANMs) are one of the most
popular techniques in causal inference [3], [4], [5]. ANMs
assume that effect is a function of cause, with additive noise
that is independent of cause. Two random variables X and Y
with a joint distribution P (X,Y ) are said to satisfy an ANM
from X to Y if there exists a function f , and a random noise
variable NY that is independent of X , i.e. NY ⊥⊥ X , such
that Y = f(X) + NY . The model is identifiable if P (X,Y )
admits an ANM from X to Y , but not in the reverse direction.
In that case, we say that, under ANM, X is likely the cause
of Y . For discrete data, Peters et al. [5] showed that ANMs
are generally identifiable.

In this work we propose ACID, an identifiable method for
causal inference on discrete data based on information theory.

In particular, we propose to use Shannon entropy to measure
the dependence between X and NY within an ANM. That is,
we infer X causes Y iff H(X)+H(NY ) < H(Y )+H(NX).
Additionally, our formulation allows us to define a natural
significance test, which allows us to weed out insignificant
inferences. Extensive evaluation shows that ACID achieves
(near) 100% accuracy on both synthetic and real-world data,
and outperforms the state of the art by a margin.

In the extended version of this paper [6], we addition-
ally show the connection between information-theoretic and
algorithmic-information-theoretic formulation of ANMs.

II. CAUSAL INFERENCE

Let X and Y be two discrete random variables with their
domains X and Y respectively. Traditional statistical analysis
of multivariate data involves inference from an observed
sample from the joint distribution. Causal reasoning, however,
requires manipulation (intervention, policy, treatment, etc.) on
the variables of interest. To reason if X causes Y , we have to
compare the distributions of Y under different manipulations
of X . In particular, X causes Y if

P (Y | manipulate X to x1) 6= P (Y | manipulate X to x1).

Note that P (Y | manipulate X to x1) is different from
P (Y | X = x); the former represents the distribution of
Y post-manipulation on X , whereas the latter is merely an
observed distribution of Y given that we observe X = x.
The do-calculus [1, Chap. 3] provides a mathematical lan-
guage for expressing such post-manipulation distributions. We
represent P (Y | manipulate X to x) using do-calculus as
P (Y | do(X = x)), shortly P (Y | do(x)).

In practice, manipulating variables (setting up an experi-
ment) is often very expensive, unethical, or simply impossible;
identifying if smoking causes lung cancer is one such exam-
ple. Therefore it is desirable to identify causal relationships
between variables from observational data. Roughly stated,
P (Y | do(x)) is identifiable if we can estimate it from the
observational data alone.

Pioneering work from Pearl [1, Thm. 3.2.5] shows that,
under certain conditions, we can identify P (Y | do(x)) from
observational data. Roughly, P (Y | do(x)) is identifiable
from the observed sample drawn from the joint distribution
P (X,Y, Z) given a causal diagram X ← Z → Y of a Marko-
vian model whenever all the common causes (confounders), Z,
of both X and Y are measured.



In practice, we often do not know the true causal diagram.
Instead, we seek to discover it from observational data. To
this end, we can use the conditional independence test to
partially identify the causal diagram of a Markovian model
on the observed data. That is, if X and Y are conditionally
independent given Z, i.e. X ⊥⊥ Y | Z, then we can infer X—
Z—Y (notice that there is no direct link between X and Y in
Z’s presence). However, we cannot draw the directed edges, as
X ← Z → Y , X → Z → Y , and X ← Z ← Y are Markov
equivalent—they encode the same conditional independence.

Suppose that we partially identify X—Z—Y as our causal
diagram from the observational data. Can we then draw the
direct edges between the variables? Answering this question
boils down to telling whether X causes Z, or the other way
around, and whether Z causes Y , or vice versa. Inspired by
this problem setting, in this work, we consider the general case
of inferring the causal direction between two variables from a
sample drawn from their joint distribution. For obvious reasons
stated above, we assume that there is no common cause.

Slightly changing the notation, we formulate our problem
statement as the following for two discrete random variables:

Problem 1 (Causal Inference from Two Discrete Variables).
Suppose we are given only a sample drawn from the joint
distribution P (X,Y ) of discrete random variables X and Y .
We would like to infer whether X causes Y , or vice versa.

Alternatively, can we identify P (Y | do(x)) given only an
observed sample drawn from the joint distribution P (X,Y )?
An algebraic counterpart to graphical modelling known as
Structural Causal Modelling not only offers a powerful con-
struct for formalising the general problem of causal infer-
ence [1, Chap. 1], but also has been instrumental in identifying
causal relationships between two observed variables [3], [4],
[5]. It also forms the basis of our causal inference framework.

III. STRUCTURAL CAUSAL MODELS

A Structural Causal Model (SCM) [1, Chap. 1] represents
the data-generating process by a set of structural assignments.
In case of two variables, given a causal diagram X → Y , a
SCM consists of two structural assignments:

X := NX , (1)
Y := f(X,NY ) ,

where f is a function, and NX and NY are statistically
independent noises, i.e. NX ⊥⊥ NY .

Note that we use an assignment operator instead of an
equality to indicate a functional dependence in SCM since
the assignment has a causal meaning; manipulating X leads
to a change in the value of Y . To represent manipulations,
such as do(x), we simply replace the assignment in Eq. (1)
by X := x. The modified SCM then entails the distribution of
Y post-manipulation on X , i.e. P (Y | do(x)).

For general SCMs without restrictions on the distribution of
noise, or the functional form, however, we cannot tell if the
sample drawn from the joint distribution P (X,Y ) is induced
by an SCM from X → Y , or Y → X as we can always

construct a suitable function and noise in both directions [7,
Prop. 4.1]. In other words, from SCMs in general, the causal
structure of two variables is not identifiable from the joint
distribution; we require additional assumptions to identify the
causal direction. A special case of SCMs, known as Additive
Noise Models, possess the identifiability that we seek.

The Additive Noise Models (ANMs) are a class of SCMs
with the constraint that the noise is additive, and independent
of the exogenous variable (variable whose value is independent
from the state of other variables in the system). Given a causal
diagram X → Y , an ANM represents the data generating
process as Y = f(X) +NY , where NY ⊥⊥ X .

With some restrictions on the functional form and the
distribution of noise, the causal direction is identifiable under
ANMs from observational data. Identifiability requires asym-
metry of some sort in the data generating process. In ANMs,
the asymmetry is observed in the independence of noise and
the exogenous variable. A causal direction X → Y induced
by an ANM is identifiable if P (X,Y ) admits an ANM from
X to Y , but not vice versa.

Shimizu et al. [3] showed that an ANM is identifiable if
the function is linear, and the noise is non-Gaussian. Hoyer
et al. [4] showed that ANMs are generally identifiable even
when the function is non-linear (without any restrictions on
the distribution of noise). Of particular interest to us is the
work by Peters et al. [5] which shows that ANMs are generally
identifiable in the discrete case. As a result, we have following
statement for the discrete case;

Definition 1 (Discrete Additive Noise Model). If a sample
drawn from the joint distribution P (X,Y ) of two discrete
random variables X and Y is induced by an ANM from X to
Y , it generally holds that
• X ∼ P (X), and there exists at least one function f such

that Y = f(X) +NY , where NY ⊥⊥ X , but
• for any function g, NX = X − g(Y ) depends on Y .

To identify the causal direction in practice, we fit ANMs in
both directions, and choose the direction with independence as
the causal direction. As a result the ANM approach hinges on
the choice of dependence measure. Most dependence measures
either assume the type of the sampling distribution of the test
statistic, or require a kernel. Alternatively information-theory
offers Shannon entropy as a very intuitive yet powerful tool
to measure dependence.

In this work, we take an information-theoretic approach
to ANMs, and use entropy as a dependence measure. As
such, we avoid explicit null hypothesis testing with p-values.
Moreover we can simply work with the empirical distribution.
Note that although (differential) entropy has been studied in
the context of ANMs on real-valued data [8], [9], seemingly
straightforward application of Shannon entropy on ANMs for
discrete data has been left out at large.

IV. INFORMATION-THEORETIC ANM

To arrive at the information-theoretic formulation of ANMs,
we have to quantify the information contained in a sample



drawn from the joint distribution P (X,Y ) under ANMs with
graphical structures X → Y and Y → X using Shannon
entropy. For a graphical structure X → Y modelled by
an ANM, we have P (Y | X) = P (NY | X) due to
the discriminative nature of ANM modelling. Thus the total
entropy of a sample assuming X → Y as an underlying
graphical structure using an ANM is H(X) + H(NY | X).
Combining this observation with the property of joint Shannon
entropy, we can prove the following result.

Theorem 1. If a sample drawn from the joint distribution
P (X,Y ) of two discrete random variables X and Y is induced
by an ANM with X → Y graphical structure, it holds that

H(X) +H(NY ) < H(Y ) +H(NX),

where NY = Y − f(X) such that NY ⊥⊥ X , and NX =
X − g(Y ) such that NX 6⊥⊥ Y .

Proof. The entropy of a sample under an ANM with X → Y
as its underlying graphical structure is given by

H(X) +H(Y | X) = H(X) +H(NY | X)

= H(X) +H(NY ) (NY ⊥⊥ X).

In the other direction from Y → X , we have

H(Y ) +H(X | Y ) = H(Y ) +H(NX | Y )

< H(Y ) +H(NX) (NX 6⊥⊥ Y ).

Combine the two right hand sides above.

From here onwards, we use HX→Y for H(X) + H(NY ),
defining HY→X analogue. Based on Thm. 1, we can perform
causal inference using a simple procedure:
• if HX→Y < HY→X , we infer “X causes Y ”,
• if HX→Y > HY→X , we infer “Y causes X”,
• if HX→Y = HY→X , we are undecided.

That is, we prefer the graphical structure with smaller entropy.
The larger the absolute difference between the two indicators,
i.e. ∆ = |HX→Y − HY→X |, the stronger our confidence in
the inference. In practice, we can always set a threshold τ on
∆ and treat the results smaller than τ as undecided.

V. THE ACID ALGORITHM

To use the causal inference rules for inferring the causal
direction, we require noise variables on both directions. There-
fore on each direction, we have to find a function that
minimises entropy of the residual. In other words, we need
a method for discrete regression.

Unlike for continuous regression, in the discrete case, there
is no risk of overfitting; Y may take different values for each
value of X , and hence there is no need for regularization. We
can hence simply consider all possible functions, and take the
one with the minimal value of the loss function.

As a loss function, we consider discrete Shannon entropy.
Therefore we aim to find a function that minimises the entropy
of the residual. However, even if range of the function lies
within the domain of the target variable, we are left with

exponentially many choices of functions, thereby making the
problem intractable. Hence, we resort to heuristics.

We give the pseudocode for the ACID algorithm in Algo-
rithm 1. To regress Y as a function of X , we start with a
function that maps each x value to the most frequently co-
occurring y value (line 2–3). Then we iteratively update the
function for each x value. To ensure that the algorithm is
deterministic, we do so in some canonical order (line 9). To
update the function for a x value, we temporarily map x to
other y values keeping all other mappings f(x̄) with x̄ 6= x
fixed. We use fxi→y

j−1 (X) to denote that fj−1 temporarily maps
xi to y. From all the mappings, we pick the best one as the
one that results in the least entropy of the residual (line 10). If
this residual complexity is better than the so-far best residual
complexity, we update our function (line 11-14). We keep on
iterating as long as the entropy of the residual reduces, or we
arrive at the maximum number of iterations J (line 15).

In a nutshell, ACID performs coordinate descent in discrete
space. Note that entropy is non-negative, and hence is bounded
from below. Since the search space is finite and the entropy
of the residual is strictly decreasing in every iteration, the
algorithm will converge. It could, however, converge to a local
optimum. We note that ACID bears similarity to DR [5]. Unlike
DR however, ACID is deterministic, and minimises the entropy
of the noise (residual).

The computational complexity of ACID is O(|Y||X |). For
early termination, we can set the maximum number of iter-
ations J . In our experiments, we use J = 10 000, of which
ACID requires only a handful, finishing within seconds for
pairs with reasonable domain size (roughly up till a hundred).

Algorithm 1: ACID
Input: Two discrete i.i.d. sequences X and Y , and the

maximum number of iterations J
Output: HX→Y

1 X ,Y ← DOMAIN(X), DOMAIN(Y);
2 for xi ← X do
3 f0(xi)← arg maxy∈Y P (X = xi, Y = y);

4 r ← H(Y − f0(X));
5 j ← 0;
6 do
7 j ← j + 1;
8 c← false;
9 for xi ← CANONICALORDER(X ) do

10 t← miny∈Y H(Y − fxi→y
j−1 (X));

11 if t < r then
12 r ← t;
13 c← true;
14 fj(xi)← arg miny∈Y H(Y − fxi→y

j−1 (X));

15 while j < J or c = true;
16 HX→Y ← H(X) + r;
17 return HX→Y



VI. RELATED WORK

Existing methods for causal inference on a pair of discrete
variables are roughly based on the following two frameworks:
Structural Causal Models The structural causal models ex-
press causal relationship in terms of a function of observed and
unobserved variables. The ANMs assume that the unobserved
variable (noise) is additive. Peters et al. [5] extend ANMs
to discrete data, and propose the DR algorithm. DR uses
chi-squared test of independence, which is more expensive
to compute than Shannon entropy. Further ACID does not
require p-value testing in every iteration. Moreover ACID is
deterministic, whereas DR is non-deterministic.
Kocaoglu et al. [10] recently proposed a causal inference
framework (ECI) for two discrete variables by postulating
that the unobserved variable is simpler—in terms of the Rényi
entropy—in the true direction. In particular, it is conjectured
that if X causes Y , Hα(X)+Hα(E) < Hα(Y )+Hα(Ẽ) with
Hα being the Rényi entropy, where Y = f(X,E), X ⊥⊥ E
and X = f(Y, Ẽ), X ⊥⊥ Ẽ. Unlike ANMs which assume the
noise to be of additive type, the unobserved variable can be
of arbitrary type in ECI.
Algorithmic Independence The algorithmic independence of
Markov kernels postulates that if X causes Y , P (X) and
P (Y | X) are algorithmically independent [11], [12]. As
Kolmogorov complexity is not computable, causal inference
methods based on algorithmic independence have to define a
computable dependence measure.
CISC [13] employs refined MDL (an approximation from
above to Kolmogorov complexity w.r.t. a model class) for
causal inference from discrete data. Identifiability is a crucial
aspect of causal inference as it distinguishes probabilistic
conditioning P (Y | X = x) from causal conditioning
P (Y |do(X = x)). By the identifiability of ANM on discrete
data, ACID is identifiable, whereas CISC is not.
Liu & Chan [14] (DC) propose to use distance correlation
as a dependence measure. To infer the causal direction, DC
computes the distance correlation between empirical marginal
and conditional distributions in two directions. On account of
the performance of DC against the state-of-the-art [13], we do
not consider it for comparison.

VII. EXPERIMENTS

We implemented ACID in Python and provide the source
code for research purposes, along with the used datasets, and
synthetic dataset generator.1 All experiments were executed
single threaded on MacBook Pro with 2.5 GHz Intel Core
i7 processor and 16 GB memory. Unless specified otherwise,
we use τ = 0 for ECI, CISC and ACID. For DR, we use
the level of significance of α = 0.05 (also used by [5])
after examining its accuracy on 1000 cause-effect pairs, with
1000 outcomes each, sampled from a parameterised family of
geometric distributions (explained in detail next) for various
α values ranging from 0.05 to 0.001.

1http://eda.mmci.uni-saarland.de/crisp

Synthetic Data We generate synthetic data with the ground
truth X causes Y using ANM. Following the scheme of [5],
we sample X from following model classes:
• uniform from {1, 2, . . . , L},
• binomial with parameters (n, p),
• geometric with parameter p,
• hypergeometric with parameters (M,K,N),
• poisson with parameter λ,
• negative binomial with parameter (n, p), and
• multinomial with parameter θ.

We randomly choose the parameters for each model class.
In particular, we choose L uniformly between 2 and 10,
p uniformly between 0.1 and 0.9, n, M and K uniformly
between 1 and 40, N uniformly between 1 and min(40,M +
K − 1), λ uniformly between 1 and 10, and θ randomly s.t.∑
θ∈θ θ = 1.0. We choose f(x) uniformly between -7 and

+7 for every x, and noise N uniformly, independent of X ,
between −t and +t, where t is uniformly chosen between
1 and 7. To ensure identifiability, we use rejection sampling
such that every cause-effect pair has a non-constant function
f , and non-overlapping noise, i.e. f(x) + N are disjoint for
x ∈ X [5], where N is the domain of the noise.

Accuracy We sample 1000 different models from each
model class. For each model, we sample 1000 outcomes. In
Fig. 1, for different model classes we compare the accuracy
(percentage of correctly inferred cause-effect pairs) between
ACID, DR, and CISC. The results show that unlike the other
methods, ACID obtains 99 to 100% accuracy in all cases.

Whereas CISC performs consistently well across all model
classes, it performs very poorly in the negative binomial
model class. Note that CISC defines conditional stochastic
complexity of Y given X as the expected stochastic com-
plexity of Y conditional on the value of X . As a result,
S(Y | X) � S(Y ), and S(X | Y ) � S(X). The
inference process of CISC is hence largely dominated by the
marginal stochastic complexities S(X), and S(Y ), which in
turn are dependent on the domain sizes X and Y respectively.
Therefore CISC favours causal direction from the variable
with smaller domain size towards the variable with larger
domain size. The quintessential example of this bias is seen
in the negative binomial model class. For this model class,
unlike for the others, the domain size (|X |) of the cause (X)
is typically larger than the domain size (|Y|) of the effect (Y ),
and hence CISC performs very poorly. Instead, by optimising
the mapping between cause and effect, and evaluating the
dependence measure over residual noise, both DR and ACID
are able to avoid this bias.

The performance of ECI can be attributed to the difference
in our data generating model, and the modelling assumption
of ECI. Whereas ANMs assume that the noise is additive in
nature, ECI assumes that the noise can be of arbitrary type.

Sample Size Next we study the effect of sample size on
inference accuracy. For a fixed sample size, we compute the
accuracy over 1000 models sampled from the geometric model
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Figure 1: Accuracy on synthetic cause-effect pairs. The ac-
curacy is reported over 1000 models from each model class.
For each model, we sample 1000 data points. The dashed gray
lines indicate the 95% confidence interval for a random coin
flip in 1000 cause-effect pairs.
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Figure 2: Effect of sample size on the accuracy on synthetic
cause-effect pairs. For a fixed sample size, we sample 1000
models from the geometric model class. The dashed gray lines
indicate the 95% confidence interval for a random coin flip in
1000 cause-effect pairs.

class. In Fig. 2, we compare for various sample sizes the
accuracy of ACID against that of ECI, DR and CISC. We
observe that ACID achieves 98% to 100% accuracy in all
cases. DR performs poorly on small sample sizes, with its
performance gradually improving for larger samples. CISC
performs consistently around 94% accuracy, whereas ECI
performs only slightly better than a random coin flip.

Significance Test The problem of differentiating between
X → Y and Y → X can be cast as an identity testing
problem. As our method is based on compression, we can use
the compression based identity testing framework proposed by
Ryabko & Astola [15] to assess the significance of inferred
results. The framework can be roughly described as follows:

Definition 2 (Compression-based Identity Testing [15]). Let
xn be a sequence over an alphabet Σ. Let H0 be the null
hypothesis that the source of xn has a distribution P , and
h1 be the alternative hypothesis that the source of xn has a
distribution Q. We reject the null hypothesis H0 if

− logP (xn)− {− logQ(xn)} > − logα ,

where α is the level of significance.
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Figure 3: Synthetic cause-effect pairs sampled from a pa-
rameterized family of geometric distributions sorted by their
corresponding difference in compression in two directions.
We apply Benjamini-Hochberg correction to control the false
discovery rate at a significance level of α = 0.01.

The test statistic of the framework is given by δ =
− logP (xn) + logQ(xn). The p-value of the test statistic
is 2−δ due to the no-hypercompression-inequality [16, Chap
3.3] which gives an upper bound on the probability of an
arbitrary distribution Q compressing the data better by δ bits
than distribution P on the data.

From a cause-effect pair (X,Y ) where ACID makes a deci-
sion (say X → Y ), we want to assess whether the decision is
significant. To this end, our null hypothesisH0 will be the joint
distribution under the alternative direction (Y → X). Then
the alternative hypothesis H1 will be that under the inferred
direction. Since entropy gives the average number of bits per
outcome in the sample, the compressed size of the sample
using ANM from X → Y is given by CX→Y = nHX→Y ,
and that from Y → X is CY→X = nHY→X . Our test
statistic would then be δ = CY→X − CX→Y . We reject H0

if δ > − logα.
To control the false discovery rate for multiple hypothe-

sis testing, we use the Benjamini-Hochberg procedure [17].
Let H1

0,H2
0, . . . ,Hm0 be the null hypotheses tested, and

p1, p2, . . . , pm their corresponding p-values. We sort the p-
values in ascending order. For significance level of α, we find
the largest k such that pk ≤ k

mα. We reject the null hypothesis
for all hi, where i = 1, . . . , k.

To evaluate, we sample 100 models from parameterized
family of geometric distributions. For each model, we sample
350 outcomes. In Fig. 3, we sort the cause-effect pairs by their
corresponding difference in compression in two directions (δ).
That also corresponds to sorting the pairs by their p-values in
ascending manner. At a significance threshold of α = 0.01,
after applying Benjamini-Hochberg correction, five inferences
are insignificant, amongst which the two incorrect inferences.
We observe similar behaviour with other model classes as well.

Real Data To investigate whether ACID discovers mean-
ingful direction in real-world data, we consider three datasets.

Abalone This dataset is available from the UCI machine
learning repository,2 and contains physical measurements of
4 177 abalones (large, edible sea snails). We consider sex (X)

2http://archive.ics.uci.edu/ml/



Table I: Results on the Abalone dataset. For each pair with the
ground truth, we report total compressed sizes using ACID in
two directions, and the results of ACID, CISC, DR, and ECI
respectively (X for correct, and ≈ for indecisive).

Truth CX→Y CY→X ACID CISC DR ECI

sex → length 33713.74 34087.40 X X X X
sex → diameter 32326.59 32886.51 X X X X
sex → height 27046.16 27344.63 X X ≈ X

of the abalone against length (Y1), diameter (Y2), and height
(Y3). The sex of the abalone is nominal (male, female, or
infant), whereas length, diameter, and height are all measured
in millimeters, and have 70, 57 and 28 unique values, re-
spectively. Following [5], we treat the data as discrete. Since
sex causes the size of the abalone and not the other way
around, we regard X → Y1, X → Y2, and X → Y3 as the
ground truth. We report the results in Table I. ACID infers
correct direction in all three pairs with a large score difference
between two directions. Both CISC and ECI also identify the
correct directions in all three pairs. DR, on the other hand,
remains indecisive in the third case.

Horse Colic This dataset is also available from the UCI
machine learning repository, and contains the medical records
of horses with 28 attributes, and 368 instances. Of particular
interest to us are the two attributes: abdomen status (X) with
5 possible values, and surgical lesion (Y ) with 2 possible
values indicating whether the lesion (problem) was surgical.
We remove the instances with missing values, ending up with
a total of 225 instances. According to the domain experts,
two abdomen statuses, namely distended large intestine, and
distended small intestine indicate a surgical lesion. Therefore
it is plausible to consider abdomen status as one of the causes
of surgical lesion. Hence we regard X → Y as the ground
truth. Both ACID and ECI recover the ground truth. Whereas
DR remains indecisive, CISC infers the wrong direction with
a very high confidence (δ = 85.73 bits).

NLSchools This dataset is the 99-th pair in the Tübingen
cause-effect benchmark pairs.3 It contains the language test
score (X), and socio-economic status of pupil’s family (Y )
of 2287 eighth-grade pupils from 132 classes in 131 schools in
the Netherlands. The language test score has 47 unique values,
and the socio-economic status of pupil’s family has 21 unique
values. We regard Y → X as the ground truth as the socio-
economic status of pupil’s family is one of the causes of the
language test score. All methods recover the ground truth.

VIII. CONCLUSIONS

We proposed an information-theoretic framework for causal
inference on discrete data using ANMs. The experiments show
that the proposed algorithm, ACID, is highly accurate on
synthetic data, obtaining at or near 100% accuracy for a
wide range of source distributions and sample sizes, while
qualitative case studies confirm that the results are sensible.

3https://webdav.tuebingen.mpg.de/cause-effect/

ACID took few iterations to converge, and finished within
seconds in our experiments. Moreover, the results of ACID can
be assessed for statistical significance using the compression-
based hypothesis testing framework.

The results suggest that Shannon entropy is a reasonably
good choice as a dependence measure for causal inference us-
ing ANM from discrete data. First, marginal Shannon entropy
is cheaper to compute. Further we do not have to explicitly test
for the null hypothesis using p-values in every iteration unlike
with the other statistical independence testing frameworks. If
desired, one can always assess the significance of the final
result using compression-based identity testing framework.
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