
Explainable Data Decompositions

Sebastian Dalleiger and Jilles Vreeken
CISPA Helmholtz Center for Information Security

{sebastian.dalleiger, jv}@cispa.de

Abstract

Our goal is to discover the components of a dataset, char-
acterize why we deem these components, explain how these
components are different from each other, as well as identify
what properties they share among each other. As is usual, we
consider regions in the data to be components if they show
significantly different distributions. What is not usual, how-
ever, is that we parameterize these distributions with patterns
that are informative for one or more components. We do so
because these patterns allow us to characterize what is going
on in our data as well as explain our decomposition.
We define the problem in terms of a regularized maximum
likelihood, in which we use the Maximum Entropy principle
to model each data component with a set of patterns. As the
search space is large and unstructured, we propose the deter-
ministic DISC algorithm to efficiently discover high-quality
decompositions via an alternating optimization approach. Em-
pirical evaluation on synthetic and real-world data shows that
DISC efficiently discovers meaningful components and accu-
rately characterises these in easily understandable terms.

Introduction
Suppose we are analysing the sales data from a supermarket.
Likely, our clientele consists of different groups of customers,
each of which have their own buying behaviour. Students, for
example, often buy pasta and ketchup, post-docs buy ready-
made sauce with their pasta, whereas professors can afford
to make the sauce themselves out of fresh ingredients. That
is, the data consists of different components, parts of the data
that show significantly different pattern distributions.

Certain patterns may be characteristic for more than just
one component; both students and post-docs often consume
pizza and beer, after all. That is, the set of patterns that char-
acterise the data can also be partitioned: each such pattern
component consists of those patterns that are characteristic
for a distinct set of data components. Together, the pattern
components give detailed yet easily interpretable insight in
why there are components, how they are different from each
other, and what properties are shared among them.

We propose to discover the pattern composition of a given
database. That is, our goal is to jointly discover the compo-
nents of the data as well as those pattern components that

Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

optimally characterise their similarities and differences—and
do so both efficiently and in a statistically well-founded man-
ner where we only have to set a significance threshold α.
To this end, we model a component given a set of patterns
using the Maximum Entropy principle (Jaynes 1982). That
is, we use a maximum likelihood estimator that satisfies the
empirically observed frequencies of the given patterns, but
otherwise makes no further assumptions. We can then for-
mulate the problem in terms of a likelihood maximization
problem, where we after that composition that achieves the
highest overall likelihood. To avoid overfitting we rely on the
BIC model selection criterion. In other words, we are after
the most succinct way to summarise the data, by partition-
ing, such that parts exhibit significantly different distributions,
and describing these distributions non-redundantly using only
small and interpretable pattern sets.

Clearly, the search space for this problem is enormous: for
a given dataset there exist an exponential number of patterns,
an exponential number of pattern sets, and an exponential
number of partitions. Moreover, this space is not structured,
barring efficient search for the optimum. We therefore in-
troduce DISC, a deterministic method that heuristically dis-
covers a good pattern composition. The main idea is that we
split the problem into two parts, and iterate between them
until convergence. That is, for a given data decomposition we
propose to approximate the pattern components using DESC,
and then given those pattern components to DISC to discover
refined data components. In both steps we rely on statistical
tests to both prune the search space, as well as make sure we
do not discover any spurious patterns or components.

Extensive experiments show that DESC and DISC work
well in practice. DESC outperforms the state of the art in
pattern set mining, highly efficiently discovering succinct
models, while DISC recovers meaningful components. Case
studies confirm that the components and their characterisa-
tions make sense: the ecological niches and commonalities
that DISC discovers correspond to the ground truth.

In sum, the contributions of this paper are as follows, (I)
defining the pattern composition problem, (II) a fast method
for discovering pattern components, (III) a fast method for
discovering pattern compositions, and (IV) extensive vali-
dation on synthetic and real data. We provide the proofs,
additional experiments, and details for reproducibility in the
supplementary material.

Preliminaries
In this work, we consider binary transaction data. Let I be a
set of items, e.g. products for sale in a supermarket. A trans-
action t ∈ Ω is a set of items, e.g. the products a customer
bought, where Ω = 2I denotes the space of all possible trans-
actions over I. A dataset D over I is then a bag of n trans-
actions, e.g. the sales transactions on a given day. We write
π(D) ∈ Π(D) for a partitioning of data D into k non-empty
subsets, π(D) = {D1, . . . , Dk} s.t.

⋃
Dj∈π(D)Dj = D.

Whenever D is clear from context, we simply write π.
As patterns we are interested in itemsets x ⊆ I. A trans-

action t ∈ D supports an itemset x ⊆ I iff x ⊆ t. The
empirical frequency of an itemset x in D is denoted by
q(x | D) = 1

n |{t ∈ D | x ⊆ t}|, using the shorthands q(x)
and qj(x) to denote the empirical frequency of x in D resp.
Dj . A pattern set S is simply a set of itemsets. Combined
with empirical frequencies, a set of patterns S defines a
probability distribution p over Ω. For any n ∈ N we write
[n] = {1, 2, . . . , n}. All logarithms are to base 2, and by
convention we use 0 log 0 = 0.

The Pattern Composition Problem
In this section we define our problem. Starting informally,
our goal is to characterize the composition of a given binary
dataset D. That is, we aim to decompose the dataset D into
disjoint components D1, . . . , Dk, such that every component
Dj has a significantly different pattern distribution pj , while
at the same time characterizing each of these distributions in
terms of informative patterns, such that we can identify the
similarities and differences between the components.

In other words, we our goal is to discover a partitioning
π of D, a succinct, non-redundant set of patterns S, and an
assignment A that associates patterns to components, such
that we maximize the regularized likelihood

`(π, S,A) = −
∑

Dj∈π(D)

log p(Dj | Sj) + r(π, S,A) .

where Sj ⊆ S is the subset of S that A indicates to be rel-
evant for Dj . Last, r(π, S,A) is a regularization term that
steers the problem away from trivial solutions, such as decom-
posing the data into singleton components, or to including
every possible pattern.

We discuss and define each of these terms in detail below,
after which we give a formal definition of the problem.

The Probability Distribution
We start by defining the probability distribution p over Ω. It
is easy to see that maximum likelihood estimator (MLE) of p
depends on the patterns in S and their empirical frequencies
in D. That is, p will only achieve maximum likelihood if
for any pattern x ∈ S the estimated frequency p(x | S) =
Ef [x | S] corresponds to the observed frequency q(x | D).
We define the set of feasible distributions as the polytope

PDS ≡ {f ∈ Ω→ [0, 1] |Ef [x | S] = q(x | D) ∀x ∈ S} ,

that contains all, infinitely many distributions consistent with
the empirical observations q of patterns x ∈ S in D.

Not all distributions in PDS suit our needs: we need a
distribution that does not introduce additional assumptions
beyond the information that S specifies. From an informa-
tion theoretic point of view, additional assumptions corre-
spond to additional information. We can measure the amount
of information in a distribution using Shannon entropy,
H(p) = −

∑
x p(x) log p(x). The lower the information

content of a distribution p, the higher its entropy. We can
uniquely identify the feasible distribution that makes the least
additional assumptions as the one with the highest entropy

f ≡ arg max
f∈P

H (f) ,

which is known as the Principle of Maximum Entropy (Jaynes
1982). In general this does not immediately provide a family
of distributions to use. In our case, however, as the constraints
of PDS are linear, we know that distribution p over transactions
t ∈ Ω takes an exponential form

f(t | S) = θ0

∏
xi∈S

θ
1[xi⊆t]
i ,

that for appropriately chosen coefficients θ ∈ R|S|+1 factor-
izes into marginals (Csiszár 1975). Conveniently, optimizing
θ is a convex problem, and hence we can employ standard
convex optimizers such as iterative scaling (Darroch and Rat-
cliff 1972). We are specifically interested in inferring the
expected frequency p(x | S) for arbitrary itemsets x ∈ Ω—
the frequencies of x ∈ S are given, after all. To infer p we
have to sum the probabilities of every possible transaction
t ∈ Ω that supports x,

p(x | S) = Ef [x | S] =
∑
t∈Ω

f(t | S)1 [x ⊆ t] ,

which is known to be PP-hard (Tatti 2006).
Usually, the assumption is that the full dataset is generated

from i.i.d. samples, however, a component Dj ∈ π(D) is
defined to be a subset of D with a unique distribution. Within
a component, samples are independently drawn. The likeli-
hood of D is the product of component likelihoods, given
sets Sj , where the likelihood of Dj is

p(Dj | Sj) =
∏
t∈Dj

p(t | Sj) .

Wherever clear from context, we will write pS for p(· | S),
and pj for p(· | Sj).

Informative Patterns
Our goal is to discover that maximally succinct, maximally
non-redundant pattern set S that maximizes the likelihood of
the data, pS(D). Likelihood ` is a monotonic function: if we
insert any pattern x 6∈ S into S it almost always increases,
and at worst stays the same.

We say that a pattern x is informative for D with respect to
S if we see a significant increase in likelihood if we include
x in S. To determine whether a pattern or component is in-
formative, we use a model selection criterion. We use BIC,
as it is simple, efficiently computable, and as we will see,

works well in practice (Schwarz 1978). For a single compo-
nent, we have |S| = m degrees-of-freedom (dof) and hence
r(S) = m/2 log |D|.

It is straightforward to generalize the above to multiple
components. Given a partitioning π and a pattern set S, we
need to determine which patterns x ∈ S are informative
for which component Di ∈ π. This is what our assign-
ment matrix A ∈ {0, 1}m×k is for. It is a binary matrix
over components and patterns where Aij = 1 if pattern
xi ∈ S is informative for component Dj . The set of pat-
terns that are informative for a component Dj is defined as
Sj = {xi ∈ S | Aij = 1}. If a pattern is informative for
multiple components, we call it common or shared among
those components.

Taking assignment matrix A into account, the BIC regular-
ization cost r is

r(π, S,A) =
1

2
[k · (2m+ d) + n] log n ,

where (i) the assignment matrix for patterns is accounted for
by having m× k dof. Next, (ii), the number of coefficients,
θ used by k distributions amounts to (m+ d)× k additional
dof, where d = dimD correspond to the additional dof used
for singletons from I. Thirdly, (iii) we have additional |D|
dof that can encode any partitioning, by assigning a label to
each row. However, the latter is constant for any partitioning.

The Problem, formally
Combining the above, we can now formally state the problem.
Problem 1 (The Pattern Composition Problem) Given a
transactional dataset D over items I, our goal is to jointly
discover that (i) partitioning π ∈ Π(D) of D into fewest
parts, that (ii) smallest pattern set S ⊆ TI , and that (iii)
assignment matrix A ∈ {0, 1}|S|×|π| such that

`(π, S,A) = −
∑

Dj∈π(D)

log p(Dj | Sj) + r(π, S,A)

is minimal.

Unsurprisingly, this is a difficult problem with a very large
search space. First of all, there exist a Bell-number B|D| of
possible partitionings π. Secondly, the number of possible
pattern sets is doubly exponential in the number of unique
items in D, as S ∈ 22I . Finally, the objective function does
not exhibit any structure that we can exploit for efficient
search, i.e. it is neither (anti-)monotone, nor submodular.

Algorithms
To efficiently discover good solutions in practice, we separate
the problem into two parts and take an alternating optimiza-
tion approach. That is, starting from partitioning π0 where all
ofD is in one part, we iterate between the following two steps
until convergence. First, given a partitioning π(D) we effi-
ciently discover a high quality pattern set S and assignment
matrix A. Second, given a pattern set S, assignment matrix
A, and partitioning π we discover a refined partitioning π′
such that we minimize our objective function.

Below we discuss these two steps in turn.

Discovering Patterns given a Partitioning
The first problem we consider is that of discovering a high-
quality set of informative patterns S ∈ 2Ω and assignment
matrix A for a given partitioning π ∈ Π(D). Like our overar-
ching problem, this problem is also too hard to solve exactly;
there exist doubly exponentially many pattern sets, and our
hard-to-compute score does not show any structure we can
exploit. We are hence going to approximate the optimal result
through an iterative greedy approach.

For a single dataset, Mampaey, Vreeken, and Tatti (2012)
showed that finding the set S with minimal ` is equivalent
to finding the set that has the highest gain in likelihood in
comparison to the empty pattern set S∅. That is, minimizing

`j(S) = −
∑
t∈Dj

log pj(t) ,

is equivalent to maximizing the KL-divergence

arg max
S

KL [pS ‖ p∅] (1)

and the greedy solution to Eq. (1) is equivalent to iteratively
minimizing `j(S) directly. In fact, we can guarantee the qual-
ity of the greedy solution.
Lemma 1 Eq. (1) is a Submodular Function Maximization
problem. The greedy solution S is in the e−m/m

∗
-radius of

the optimal solution S∗, where m = |S| and m∗ = |S∗|
For conciseness, we provide the proof in the supplementary.

The greedy algorithm to minimize Eq. (1) is still pro-
hibitively slow in practice: it repeatedly evaluates KL-
divergences KL[pS ‖ pS∪{x}] to measure the information
gain of adding itemset x to S, and this computation relies
on computationally costly inference of frequencies using
p. Nonetheless, this formulation does allow us to derive a
computationally efficient admissible heuristic.

To reduce the complexity of computing KL, we want to
reduce the number of queries it makes to p. In its full compu-
tation, it both considers the frequencies of pattern x itself, as
well as that of its exponentially many subsets y ⊂ x. Ignoring
these subsets permits the following lower-bound

h(x | S) = q(x) log q(x)/pS(x) .

Due to the decomposition of the data, this admissible heuris-
tic easily generalizes to an admissible normalized lower-
bound information gain over multiple components h(x | S)
is ESj [h(x | Sj)]. In general, our pattern set discovery strat-
egy is hence as follows. In the current iteration i, the last
pattern set Si−1 is known and fixed. We use h to select that
x in candidate set F ⊆ Ω that has the highest marginal gain.
That is, until convergence of `, we iterate

Si ← Si−1 ∪ arg max
x∈F

h(x | Si−1) .

This leaves us to specify the candidate set F . Naively, we
could set F = Ω. Clearly, this is not practical: besides that
Ω is typically prohibitively large, it contains exponentially
many candidates that will be uninformative with regard to
patterns in S. We hence propose a more effective search
strategy, in which we take into account what S can already

Algorithm 1: DESC for Describing the Composition
Input: Data D, partitioning π
Output: Distributions pj , pattern set S, assignment A

1 S ← {x ∈ I}
2 A← initialize with all 1s
3 p← infer p(· | Sj) for each component Dj
4 F ← {z = x ∪ y | x, y ∈ S, r(z) < h(z)}
5 while F 6= ∅ do
6 z ← arg maxx∈F h(x | S)
7 A′ ← according Eq. (2) wrt z
8 S′ ← S ∪ {z} if z assigned to a component
9 p′ ← infer p(· | S′

j) for each component Dj
10 if `(π, S′, A′) < `j(π, S,A) then
11 A← A′; S ← S′; p← p′

12 F ← {z = x ∪ y | x, y ∈ S, r(z) < h(z | S)}
13 else
14 F ← F \ z

15 return (p, S,A)

explain well. In a nutshell, we iteratively generate candidates
by merging pairs of patterns x, y ∈ S ∪ I into a candidate
x ∪ y ∈ F . However, we only want to consider the subset
of candidates that will surely reduce our objective `. Those
are candidates z ∈ F for which h(z | S) > r(z), where
r(z) = r(π, S ∪ {x}) − r(π, S). Similarly, we assign a
candidate i to a component j if it yields a gain in `j , i.e.

Aij = 1 ⇐⇒ h(xi | Sj) < rj(xi) , (2)

where the cost rj(z) is r(π, S,A′)− r(π, S,A). Here A′ is
equivalent to A, but with Aij = 1.

Putting the above together, we have algorithm DESC, for
which we give the pseudo-code as Algorithm 1. In short,
starting with the singleton only model (line 1–3) we generate
our initial batch of candidates F (ln. 4). We consider these
candidates descending on h (ln. 6) and evaluate each z ∈ F
(ln. 7–9). If the objective improves, we keep the candidate
(11–12), and otherwise reject it (14).

The computational complexity of DESC depends on the
number of candidates in F , which is quadratic in the number
of patterns in S and in the worst case can grows up to |Ω|.
In practice, however, the properties of the maximum entropy
distribution together with the BIC regularizer keep the size
of S small, in the order of tens to hundreds of patterns, say
Smax. The worst case complexity of DESC is dominated
by the inference of the distributions pj , and hence in PP.
The average complexity, γ, of p is much lower (Mampaey,
Vreeken, and Tatti 2012), however, and hence the average
complexity of DESC is O(γ · |Smax|2).

Discovering the Composition
Next, we consider the orthogonal problem of discovering
a high-quality partitioning π(D) given a pattern set S and
assignment matrix A. As there is no effective exact search
for the optimal partitioning, we again rely on heuristics. In
particular, we take a top-down approach where we iteratively
refine the current partitioning π using the patterns in S.

Our strategy is based on the idea that a significantly differ-
ent distributions of patterns are an indicator for the presence
of latent factors of unknown components. In other words,
we say that a component was generated using a latent data
source that left a distinctly distributed trail of patterns in the
data. By narrowing down a given component to a subset with
a distribution that stands out from the rest of the data, we can
refine the current partitioning to identify these latent parts
as separate components. We can also use this observation
also in reverse: when we narrow down a component and find
that the pattern distribution we so obtain is not significantly
different from the remainder or the other components, we do
not want this candidate component to be part of our solution.

We write pxj for the pattern distribution we infer on that
part of component Dj where pattern x occurs. Likewise, we
consider p6xj over that part of Dj where x does not occur. We
measure the divergence between two distributions with same
support using the Jensen-Shannon divergence JS (P,Q) =
KL [P ‖M] + KL [Q ‖M], where M = (P + Q)/2. The
scaled JS (pxj , p

6x
j) statistics is asymptotically χ2 distributed

with |S| − 1 dof (Menéndez et al. 1997). From this we get
a p-value for a single test. However, as we test many hy-
potheses, i.e. candidate refinements, we hence correct for the
familywise error-rate (FWER) by adjusting the significance
level α using Bonferroni correction (Bonferroni 1936).

For a given S and for any partitioning π ∈ Π(D), we
write A(π, S) as the assignment matrix that characterizes the
partitioning π with S by minimizes our objective function
with respect to Eq. (2). Formally, for a given S, the problem
of discovering components is as follows

arg min
π∈Π(D)

`(π, S,A(π, S))

subject to pi, pj significantly JS-divergent ∀i 6= j

This is, again, a hard problem, and again, the search space
is large and unstructured. We therefore employ a greedy top-
down approach. Starting with a single component Dj ∈ π,
we decomposeDj into two sub-componentsD1

j andD2
j such

that these are significantly differently distributed from each
other, as well as from the rest of other components in π.
Following the notion that latent factors are identifiable by
distinct pattern distributions, we start the refinement process
of a given component Dj ∈ π with a pattern x ∈ S × I by
separating a component into two children Dx

j ≡ {t ∈ Dj |
x ⊆ t} and D 6xj ≡ Dj \Dx

j . The corresponding refinement
of π is written as

refineπ(x, j) ≡ {π′, A(π′)} ,
where the new partitioning π′ is π \ {Dj} ∪ {Dx

j , D
6x
j }.

As real data is noisy and distributions are complex, it is
unlikely that an individual pattern x perfectly identifies a
latent component. That is, after splitting a component it may
be that the overall assignment of transactions to components
may be suboptimal with regard to likelihood. Just like in the
EM algorithm we therefore iteratively reassign transactions
that components where they achieve the highest likelihood.
That is, in each iteration we ensure for every t ∈ D that

t ∈ Dı̂ ⇐⇒ ı̂ = arg max
j∈[k]

p(t | Sj) , (3)

Algorithm 2: DISC for Discovering the Composition
Input: Data D, significance threshold α
Output: Partitioning π, pattern set S, assignment A

1 π ← {D}
2 S,A← DESC(D,π)
3 G← according Eq. (4)
4 while G 6= ∅ and ` has not converged do
5 S,A← DESC(D,π)
6 c← arg minc∈G `(refineπ(c), S) cf. Eq. (5)
7 π′, A′ ← refineπ(c)
8 while ` has not converged do
9 let π′ satisfy Eq. (3)

10 A′ ← A(π′) according to Eq. (2)
11 p← infer p(· | Sj) for each component Dj
12 if `(π′, S,A′) < `(π, S,A) then
13 π ← π′, A← A′

14 G← according Eq. (4)
15 else
16 G← G \ c

17 return (π, S,A)

re-estimate the distribution p, re-compute A(π, S) and repeat
until convergence. Starting with π = {D}, we iteratively
refine the current partitioning by selecting the JS-significance
refinement of π with highest marginal gain, until convergence
of `. Formally, out of the set G of candidates

{(j, x) ∈ [k]× Sj ∪ I | refineπ(x, j) significant} , (4)

we select the refinement candidate that reduces ` most

arg min
x,j∈G

`(refineπ(x, j), S) . (5)

Putting all the above together, we have the DISC algorithm.
We give the pseudo-code as Algorithm 2. In a nutshell, start-
ing from the trivial partitioning π(D) = {D}, we iteratively
use DESC to discover the pattern components, use these pat-
terns to find the best refinement of π, reassign the rows to
optimize the likelihood, and only accept this refinement if it
is significant. We repeat this until convergence. Disregard-
ing the complexity of querying our distribution, DISC scales
linearly with the size of G. In the worst case this means
|Ω| × |D|. However, since in practice both S and π tend to
be small, DISC is feasible on real world data.

Related Work
The vast majority of literature has been devoted on either
finding clusters of transactions or finding patterns that char-
acterise a dataset. Surprisingly, there exist no technique to
discover the pattern composition of the data.

Our problem obviously relates to mixture mod-
elling (Dempster, Laird, and Rubin 1977) where data is mod-
elled as a mixture of several probability distributions. Mixture
modelling, however, requires us to assume a probability dis-
tribution, whereas the true distribution is unknown. Similarly,
clustering (MacQueen 1967) is related, as it groups data
points, but relies on an assumed distance measure. Addition-
ally in contrast to our approach, many of these approaches

are stochastic, require us to choose the number of compo-
nents up front, and none characterise the commonalities and
differences between the components in interpretable terms.

In this sense, co-clustering, also known as bi-clustering,
is more closely aligned to our goal. In co-clustering we si-
multaneously cluster rows and columns and can interpret
the column-clustering as an implicit characterisation of the
row-cluster. Moreover, there exist parameter-free methods
like Information Co-clustering (Dhillon, Mallela, and Modha
2003), Cross-associations (Chakrabarti et al. 2004). These
techniques, only discover non-overlapping rectangles in the
data that are exceptionally dense or sparse, rather than data
components with significantly different pattern distributions.

There also exist methods that can provide post-hoc expla-
nations, for example using a consistent set of decision rules,
which lead to a prediction (Lakkaraju, Bach, and Leskovec
2016) or a clustering (Kim, Shah, and Doshi-Velez 2015;
Chen et al. 2016). These rules together characterise the deci-
sion boundary for a cluster, whereas we are interested those
patterns that characterise the similarities and differences be-
tween components. In other words, rather than explaining
the clustering after the fact, our models directly explain why
there is a clustering.

Pattern mining methods are obviously strongly related to
DISC. Frequent pattern mining (Agrawal and Srikant 1994;
Nijssen, Guns, and De Raedt 2009) is well-known to dis-
cover far too many patterns for the result to be inter-
pretable. OPUS (Webb and Vreeken 2014; Webb 2010)
curbs the pattern explosion through the use of statistical tests.
SLIM (Smets and Vreeken 2012), IIM (Fowkes and Sut-
ton 2016) and MTV (Mampaey, Vreeken, and Tatti 2012)
are examples of techniques that discover concise and non-
redundant pattern sets. These methods all only provide a
single pattern set for a single database. DIFFNORM (Bud-
hathoki and Vreeken 2015) is the only method we know that
for a given data partitioning can characterise differences and
similarities between the pattern distributions.

Experiments
In the experiments, we evaluate DISC on synthetic, as well
as 17 real-world datasets that together span a wide variety of
domains, sizes, and dimensionalities. We implemented DISC
in C++ , ran experiments on a 12-Core Intel Xeon E5-2643
CPU, and report wall-clock time. We provide the source
code, datasets, synthetic dataset generator, and additional
information needed for reproducibility.1

In many of the following experiments we compare like-
lihood ` of the estimated model with the likelihood `∅ of
the initial model, that is S∅ = I for a single component
π(D) = {D}. We measure the likelihood ratio `/`∅, in per-
cent, where a lower values corresponds to a higher regularized
likelihood of the data under the model. In all experiments we
have used the same significance level α = 0.01.

Describing Components In this section, we study our pat-
tern set miner DESC on real-world datasets. Before we char-
acterize datasets for a given partitioning, we start with the

1https://eda.mmci.uni-saarland.de/disc/

special case of discovering a pattern set for a given com-
position. In this set-up, we compare against SLIM (Smets
and Vreeken 2012), MTV (Mampaey, Vreeken, and Tatti
2012) and DIFFNORM (Budhathoki and Vreeken 2015). For
efficiency reasons they only consider frequent patterns, i.e.
for which q(z) > κ according to a user defined minimum
frequency threshold κ. It is trivial to constraint DESC to con-
sider frequent patters only and to compare fairly, we use the
same thresholds for all methods in the following experiments.

DIFFNORM characterizes a pre-partitioning dataset π(D).
To this end we consider 9 labeled datasets, which we partition
based on their class labels. Neither SLIM, MTV make use
of any partitioning and can only be applied on the complete
dataset, while DESC can do both and is applied to partitioned
data where available and otherwise to the complete data.

In Fig. 1a we show that SLIM discovers pattern sets that
consist of hundreds up to thousands of patterns, the results
of MTV and DESC are in the order of tens of patterns. The
pattern sets discovered by DISC, DESC and MTV are much
more concise than the results from SLIM for a single compo-
nent or DIFFNORM for a given composition.

We give the wall-clock runtime of the three methods in
Fig. 1b. We see that DESC achieves these results in an order of
magnitude faster than MTV and surpasses SLIM. On average
DESC requires less than a quarter (16%) of the runtime of
SLIM, just 13% of DIFFNORM and only 0.24% of the runtime
of MTV. As MTV and DESC optimize the same score, we
can fairly compare them. In Fig. 1c we show that DESC
outperforms MTV in almost all cases.

Discovering the Composition Now, we study the full al-
gorithm: simultaneously discover both the pattern sets and
the partitioning of the dataset using DISC. First, we test and
verify DISC on synthetic data with 128 items in I. For this,
we generate synthetic datasets such that we have access to
the ground-truth. In each trial, we randomly sample a dataset
D, containing 1, 2, 4, 8 components. For each component
Dj ∈ π we randomly generate and insert 5 characteristic
patterns into Sj . For any disjoint pair Di, Dj , we generate
3 shared patterns with probability of 20%, that are inserted
into both Si and Sj . Every pattern has a randomly chosen
frequency associated with it. Each component Dj consists of
256 rows. In each row, we uniformly at random insert each
pattern from Sj with its corresponding frequency. Lastly,
we introduce additive noise, by randomly insert items into
each row independently with probability of 5%. For each k∗,
we sample 20 datasets and compare the ground-truth with
DISC and DESC. On average, DISC reaches a likelihood `DISC

within 2% of the ground-truth, i.e. `DESCπ∗ ± 2% and always
recovers the ground-truth number of components k∗.

Now after we have verified that DISC works on synthetic
examples, we study DISC on the real-world datasets. To do
so, we measure how similar data within a component is, using
`, and measure how differently distributed the components
are, using the pairwise symmetric KL-divergence (PSKL)

1

2
(
k
2

) ∑
ij∈([k]

2)

KL [pi‖pj] + KL [pj‖pi] ,

which averages the divergence between pairs of distributions.

Next, we compare DISC to clustering. While options in-
clude k-means, and Expectation-Maximization, these are not
a good fit for our case as they are stochastic, require a num-
ber of clusters, and neither is the concept of a centroid well
defined for discrete spaces, nor is it clear what efficiently
queryable distribution to use. DBSCAN (Ester et al. 1996)
relies on a distance measure, that we define as

d(s, t) = 1− |s ∩ t| /max(|s| , |t|) .

Our approach is as follows: First, we cluster the dataset using
DBSCAN and get π ∈ Π(D). Next, we use DESC to de-
scribe the clusters π post-hoc by means of S, p and A(π, S).
Since DBSCAN relies on hyper-parameter, we optimize `
using a grid-search over 7 ε-candidates and we do not con-
straint cluster-sizes. We call this algorithm DBDESC. Sim-
ilarly, we define DBDESC2 that uses a different distance
measure d′(s, t) = d(c(s), c(t)), where c(t) contains pat-
terns from S that are subsets of t, i.e. {s ∈ S | s ⊆ t}.

We apply DISC, DBDESC and DBDESC2 on all 17 datasets
without using any class-labels and summarize results in Fig. 2.
First of all, we compare the composition of DISC, DBDESC
and DBDESC2 with a class-based composition discovered by
DESC on 9 labeled datasets. Almost always, we observed a
significantly lower PSKL-divergence between classes than
between components, which we show in Fig. 2b. Noticeable
is the PSKL-divergence of Pumsb Star, as with only 10 com-
ponents, the divergence is very high compared to DBDESC
and DBDESC2.

Additionally, DISCs model usually has a significantly
lower objective function ` than the class-based result from
DESC. This suggest that classes are not always good indicator
for components. We see a higher likelihood for decomposed
data in comparison to DESC without decomposing the data
on class labels, in Fig. 2c. We note the much higher likeli-
hood of the DISCs composition in comparison to DBDESC
and DBDESC2. Overall we see that DISC discovers diverging
components that have higher in likelihood in comparison to
the cluster based composition from DBSCAN.

Qualitative Study Now, we study the interpretability and
qualitative evaluation of the composition discovered by DISC,
by manually inspecting the composition on two datasets. In
supplementary material, we discuss the interpretability of the
composition of ArXiv-abstracts.

First, we consider the Mammals dataset provided by the
European Mammal Society. This dataset consists of presence
records of 124 European mammals within areas of 50-by-50
kilometres. Additional geographical information were not
used during the experiments.

DISC discovers 9 components with 64 patterns in total.
We geographically depict the components DISC discovers in
Fig. 3. Although it did not know the spatial locations of the
data points, it discovers (almost complete) contiguous areas
in Europe that correspond to ground truth habitats. Moreover,
the patterns it discovers for these components are meaning-
ful: for example, although the combination of species as
Wolverine and Norway Lemming are highly characteristic for
both “Scandinavian” components, their distribution differs
between these components. For the Iberian Peninsula the

Pa
ge

B
lo

ck
s

Le
d

7
C

he
ss

B
ig

A
nn

ea
l

A
du

lt
W

av
ef

or
m

C
he

ss
Le

t.
R

ec
og

.
M

us
hr

oo
m

100
101
102
103
104
105 SLIM DIFFNORM

MTV DESC

B
M

S
W

V
1

D
N

A
A

m
p.

D
Q

Pu
m

sb
St

ar
M

C
A

D
D

M
am

m
al

s
IC

D
M

Pl
an

ts

(a) Number of Patterns

Pa
ge

B
lo

ck
s

Le
d

7
C

he
ss

B
ig

A
nn

ea
l

A
du

lt
W

av
ef

or
m

C
he

ss
Le

t.
R

ec
og

.
M

us
hr

oo
m

100

101

102

103

104 SLIM DIFFNORM

MTV DESC

B
M

S
W

V
1

D
N

A
A

m
p.

D
Q

Pu
m

sb
St

ar
M

C
A

D
D

M
am

m
al

s
IC

D
M

Pl
an

ts

(b) Runtime [s]

Pa
ge

B
lo

ck
s

Le
d

7
C

he
ss

B
ig

A
nn

ea
l

A
du

lt
W

av
ef

or
m

C
he

ss
Le

t.
R

ec
og

.
M

us
hr

oo
m

10

50

100 MTV DESC

B
M

S
W

V
1

D
N

A
A

m
p.

D
Q

Pu
m

sb
St

ar
M

C
A

D
D

M
am

m
al

s
IC

D
M

Pl
an

ts

(c) Likelihood Ratio [%]

Figure 1: DESC Efficiently Discovers Concise Pattern Sets. From left to right, in Fig. 1a the number of discovered patterns
(log-scale), in Fig. 1b the runtime (seconds, log-scale), and in Fig. 1c the likelihood ratio `/`∅ (lower is better). Each figure
consists of two groups for labeled (first group) and unlabeled (second group) data.

Pa
ge

B
lo

ck
s

Le
d

7
C

he
ss

B
ig

A
nn

ea
l

A
du

lt
W

av
ef

or
m

C
he

ss
Le

t.
R

ec
og

.
M

us
hr

oo
m

101

102102

DBDESC DBDESC2 DISC

B
M

S
W

V
1

D
N

A
A

m
p.

D
Q

Pu
m

sb
St

ar
M

C
A

D
D

M
am

m
al

s
IC

D
M

Pl
an

ts

(a) Number of Components

Pa
ge

B
lo

ck
s

Le
d

7
C

he
ss

B
ig

A
nn

ea
l

A
du

lt
W

av
ef

or
m

C
he

ss
Le

t.
R

ec
og

.
M

us
hr

oo
m

100

101

102
DBDESC DBDESC2 DISC

B
M

S
W

V
1

D
N

A
A

m
p.

D
Q

Pu
m

sb
St

ar
M

C
A

D
D

M
am

m
al

s
IC

D
M

Pl
an

ts

(b) PSKL

Pa
ge

B
lo

ck
s

Le
d

7
A

nn
ea

l
A

du
lt

Le
t.

R
ec

og
.

M
us

hr
oo

m
C

he
ss

B
ig

W
av

ef
or

m
C

he
ss

10

50

100 DBDESC DBDESC2 DISC

B
M

S
W

V
1

D
N

A
A

m
p.

D
Q

Pu
m

sb
St

ar
M

C
A

D
D

M
am

m
al

s
IC

D
M

Pl
an

ts

(c) Likelihood Ratio [%]

Figure 2: DISC Discovers Informative and Interpretable Compositions. The number of components and the in Fig. 2a the
number of discovered components (log-scale), in Fig. 2b PSKL (higher is better), and in Fig. 2c the likelihood ratio `/`∅ (lower
is better) of MTV and DESC. Each figure consists of two groups for labeled (first group) and unlabeled (second group) data.

Common Genet and Mediterranean Pine Vole are discovered
to be very characteristic. The habitation zone of the latter
spreads to southern France, and this is reflected by this pat-
tern being shared between these two components. Further,
DISC discovers that the co-occurrence of Eurasian beaver,
Red squirrel are descriptive across Europe. Last, but not least,
DISC finds that the Eurasian Harvest Mouse, European Mole,
Eurasian Water and Pygmy Shrew, Stoat, Field Vole are all
very common across Europe, and include them in a single
pattern shared amongst most components stretching Europe.

●

●
●

●

●

●
●

●
●

●
● ●

●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●

●

●
●
●

●

●

●
●

●
●

●

●
●

●
●

●
●

●

●
●

●
●

●
●

●

●

● ●

●
●

●
●

●
●

●
●

●
● ●

● ●
●

●
●

●
●

●
● ●

●

●

● ●

●
●

●
●

● ●

●
●

● ●
●

● ●

●

●

●
●

●

● ●
●

●

● ●
●

● ●
●

●
●
●

●

●
●

●
●

●

●
●

●

●
●

●
●

● ●

●
●

●
●

●

●

●
●

●
●

●

● ●

●
●

●

●

●

● ●
● ●

●
●

●
●

●

●
●

● ●
●

●

●
●

●
●

●

● ●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●
●

●
●

●
●
●

●

●
●

●

●
●

●
●

●
●

●

●
●

●

●
●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

● ●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●
●

●
●

● ●
●

●
●
●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●

●
●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●

●

●
●

●

●
●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

● ●

●

● ●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●
●

●
●

●

●

●

● ●

●

●
●

●
●

●

●

● ●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

● ●

●

● ●

● ●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

● ●

●
●

●
●

●
●

●
●

●
●

●
●

●
●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●
●

● ●
●

●

●
●

●
●

●
●

●
●

● ●

●
●

●

●
●

●

●
●

●
●

●
●

●
●

● ●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
● ●

●
●

●

● ●

●

●
●
●

●
●

●
●

●
●

● ●

●
●

●
●

●
●

●
●

●
●

●
●

●
● ●

●
●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●
●
●

●

● ●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●
●

●
●
●

●

●

●

●

●

●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

● ●

●
●

●
●

●
●

●
●

●
●

●
●

● ●

●
●

●
●

●
●

●

●
●

● ●

●
●

●
●

●
●

●
●

●
●

●
●

●

● ●

●
●

●
●

●
●

●
●

●
●

●
●

● ●

●

●

●
●

●
●

●

●

●
●

●
●

●
●

●
●

●

●
●

●

●
●

●
●

●
●

●
●

●
●

●

● ●
●

●
●

●
●

●
●

●
●

●
● ●

● ●

●
●

●
●

●
●

●

●

●
●

● ●
●

● ●

●
●

●
●

●
●

●
●

●
●

●
●

●

● ●

●
●

● ●
●

●
●

●
●

●

● ●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●
● ●

●
●

●
●

●
●

●
●

●

● ●

●
●

●
●

●
●

●
●

●
●

●
●

●
● ●

●
●

●
●

●
●
●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●

●
●

●
●

● ●

●
● ●

● ●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
● ●

●
●

●
● ●

●
●

●

●
●

●

●
●

● ●

● ●
●

●
●

●
●

●

●
●

●
●

● ●
●

●
●

●
●

●
●

●
●

● ●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

● ●

●
●

●

●
●

●
●

●
●

●

●
●

●

●

● ●
●
● ●

●
●

●
●

●

●

●
●
● ●

●
●

●
●

●
●

●

●
●

●
●

●
●
●

● ●
●

●
●

●
●

●
●
●

● ●
●

●
●

● ●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

● ●
●

●
●

●
● ●

●
●

●
●

●
●

●
●

●
● ●

●

● ●

●
●

●

● ●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

● ●
●

● ●

●

●
●

●
●

●
●

●
●

●

●
● ●

●
●

●
●

●
●

●
●

●
●
●

●

●
●

●
●

●
●

●
●

● ●

●
● ●

●
●

●
●

●
●

●
● ●

●
●
●

● ●

● ●

● ●

●
●

●

●
●

●
●

●

● ●

●
●

●
●

●
●

●
●

●
● ●

● ●
●

●
●

●
●

●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
● ●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●
●

●

●
●

● ●
● ●

●
●

●

●

● ●
●

●
●

●
●

●

● ●
●

● ●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●
●

●
●

●

●
●

●
●

● ●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●
●

●
●

●

●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●
●

●
●

●
● ●

●
●
●

●
●

●
●

●
●
●

● ●

●
●

●

●

●
●

●
●

●
●

●

●
● ●

●

●

●
●

●
●

●
●

●
● ●

●

●

●
●

●
●
●

●
●

●
●

● ●
●

●
●

●
●

●

●

● ●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●
●

● ●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
● ●

●

●
● ●

●
●
●

●

●
●

●
●
●

●
●

●
●
●

●

●
●

●
● ●

●
●

●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

● ●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

● ●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

● ●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

● ●

●

●
●

●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
● ●

●

●
●

●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●

● ●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●

●

●

● ●

●
● ●

●

● ●

●

●

●

●
●

●
●

●
●

●
●
●

●
●

●
●

● ●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●

● ●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

● ●

●
●

●
●

●
●

●
●

●
●

●
●

● ●

● ●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
● ●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●

●
●

●

●

●

●

●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●

●
●

● ●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

● ●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

● ●

● ●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●

●
●

●
●

●

●

●

●
● ●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●
● ● ●

●

●

●
●

● ●

●

●

●

● ●

●

●
●

●

●
●

●
●

●
●

●

●

●

●

●
●

●

●
●

●

●

● ●
●

● ●
●

● ●

●

●
●

●
●

●
●

●

●
●

●

●

●
●

●

●
●

●

●
●

●

●

●

●
●

●
●

●

●

●
●

●

●

●
●

●

●

● ●

●
● ●

●

●

●

●

●

●
●
●

●
●

●

●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

● ●

●
●

●
●

●
●

●
●

●
●

●
●

● ●

●
●

●
●

●
●

●

●
●

● ●

●
●

●
●

●
●

●
●

●
●

●
●

●

● ●

●
●

●
●

●
●

●
●

●
●

●
●

● ●

●

●

●
●

●
●

●

●

●
●

●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●

●

● ●
●

●
●

●
●

●
●

●
●

●
● ●

● ●

●
● ●

●
●

●

●

●
●

● ●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●

● ●

●
●

● ●

●
●

●
●

● ●

● ●

●
●

●
●

●
●

●
●

●
●

●
●

●

● ●
●

●
● ●

●
●

●
●

●
●

●
●

●

●

●
●

●
●

● ●

● ●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

● ●
●

●

●

●
●

●
●

●
●

● ●

●
●

●
●

●
●

●
●

●
●

●
●

● ●

● ●
●

●
●

●
●

●
●

●
●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
● ●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

● ●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

● ●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

● ●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●
●

●
●

● ●
●

●
●

●
●

●
●

●
●

●
●

●
●

● ●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
● ●

●

●
●

●

●
●

●
●

●
●

●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
● ●

●
●

●
●

●
● ●

●
●

● ●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●

●
●

●

●

●
●

●
●

●

●

●
●

●
●

●
●

●

●
●

●
●

●
●

● ●

●
●

●
●

●
● ●

●
● ●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
● ●

●

● ●

●
●

●
●

●
●

●
●

●
●

●
●

● ●

● ●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

● ●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

● ●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

● ●
●

●
●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

● ●
● ●

● ●
●

●
●

● ●

●
●

●

● ●

●

●

●
●

●

●
●

●

●
●

●
●

●
●

●
●
●

● ●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

● ●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
● ●

●
●

●
●

●
●

●
●

● ●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●

●
●

●
●

● ●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
● ●

● ●
●

●
●

● ●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
● ●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

● ●

●
●

●

●
●

●

●
●

●
●

● ●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

● ●

●
●

●
●

●
●

●
●

●
●

●
●

●
●
●

●
●

●
●

●
●

●
●

● ●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●

●

●

●
●

●
●

●
●

● ●
●

●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
● ●

● ●
●

●
●

●

●
●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
● ●

●
●

● ●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

● ●

●
●

●
●

●
●

●
●

●
●

●
●

● ●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

● ●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●

●
●

●

●

●

●
●

●
●

●
●

●
●
●

●
●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●
●

●

●
●

●
●

●
●

●
●

●
●

●

Figure 3: Discovers Meaningful Partitions. Results of
DISC (left) on the Mammals dataset. The 9 components rep-
resent contiguous areas that correspond to known habitats.
DBSCAN (right) essentially only discovers Ireland

Discussion

DISC discovers meaningful, easily interpretable composition.
The components are described concisely, by characteristic
and shared patterns. DISC explains why there are compo-
nents, what makes them special and what is common among
them. Our manual inspection show that the results are easy to
interpret and informative. In addition, DESC is a highly effi-
cient pattern miner for single and multiple datasets and beats
state-of-the-art in descriptiveness, conciseness and runtime.
Furthermore we showed how DESC can be used to describe
the result of a clustering algorithm. Furthermore, we observe
that jointly optimizing for interpretability and likelihood is
doable in practice and can outperform clustering algorithms
like DBSCAN with a post-hoc explanation.

We studied the novel problem of discovering the compo-
sition, that is a partitioning of the dataset and its description
using locally characteristic patterns, or patterns shared across
sets of components. We formalized this problem in terms of
the family of maximum entropy distributions over itemsets
and defined the best composition as the one that gives the
most succinct description of the data. We introduced an effi-
cient pattern miner DESC for succinctly describing a single or
multiple data components. Using this, we described an algo-
rithm to discover the partitioning of a dataset. Both together
discover the composition. Experimental evaluation showed
that DISC efficiently discovers interesting and meaningful
composition of the data.

References
Agrawal, R., and Srikant, R. 1994. Fast algorithms for mining
association rules. In VLDB, 487–499.
Bonferroni, C. E. 1936. Teoria statistica delle classi e calcolo
delle probabilita. Pubblicazioni del R Istituto Superiore di
Scienze Economiche e Commericiali di Firenze 8:3–62.
Budhathoki, K., and Vreeken, J. 2015. The difference and the
norm – characterising similarities and differences between
databases. In ECML PKDD. Springer.
Chakrabarti, D.; Papadimitriou, S.; Modha, D. S.; and Falout-
sos, C. 2004. Fully automatic cross-associations. In KDD,
79–88.
Chen, J.; Chang, Y.; Hobbs, B.; Castaldi, P.; Cho, M.; Sil-
verman, E.; and Dy, J. 2016. Interpretable Clustering via
Discriminative Rectangle Mixture Model. In ICDM, 823–
828.
Csiszár, I. 1975. I-divergence geometry of probability distri-
butions and minimization problems. Annals Prob. 3(1):146–
158.
Darroch, J., and Ratcliff, D. 1972. Generalized iterative
scaling for log-linear models. Annals Math. Stat. 43(5):1470–
1480.
Dempster, A.; Laird, N.; and Rubin, D. 1977. Maximum
likelihood from incomplete data via the EM algorithm. J. R.
Statist. Soc. B 39(1):1–38.
Dhillon, I. S.; Mallela, S.; and Modha, D. S. 2003.
Information-theoretic co-clustering. In KDD, 89–98.
Ester, M.; Kriegel, H.; S, J.; and Xu, X. 1996. A density-
based algorithm for discovering clusters in large spatial
databases with noise. 226–231. AAAI Press.
Fowkes, J., and Sutton, C. 2016. A Bayesian Network Model
for Interesting Itemsets. In ECML PKDD, 410–425. Springer.
Jaynes, E. 1982. On the rationale of maximum-entropy
methods. Proc. IEEE 70(9):939–952.
Kim, B.; Shah, J. A.; and Doshi-Velez, F. 2015. Mind the Gap:
A Generative Approach to Interpretable Feature Selection
and Extraction. In NIPS. Curran Associates, Inc. 2260–2268.
Krause, A., and Golovin, D. 2012. Submodular function
maximization. Tractability: Practical Approaches to Hard
Problems 3.
Lakkaraju, H.; Bach, S. H.; and Leskovec, J. 2016. Inter-
pretable Decision Sets: A Joint Framework for Description
and Prediction. In KDD, 1675–1684.
MacQueen, J. 1967. Some methods for classification and
analysis of multivariate observations. In Berkeley Symp. Math.
Stat. Prob. Vol. I: Statistics, pp. 281–297.
Mampaey, M.; Vreeken, J.; and Tatti, N. 2012. Summarizing
data succinctly with the most informative itemsets. ACM
TKDD 6:1–44.
Menéndez, M. L.; Pardo, J. A.; Pardo, L.; and Pardo, M. C.
1997. The Jensen-Shannon divergence. J Franklin Inst
334(2):307–318.
Nijssen, S.; Guns, T.; and De Raedt, L. 2009. Correlated
itemset mining in ROC space: a constraint programming
approach. In KDD, 647–656. Springer.

Schwarz, G. 1978. Estimating the dimension of a model.
Annals Stat. 6(2):461–464.
Smets, K., and Vreeken, J. 2012. SLIM: Directly mining
descriptive patterns. In SDM, 236–247. SIAM.
Tatti, N. 2006. Computational complexity of queries based
on itemsets. Inf. Process. Lett. 98(5):183–187.
Webb, G., and Vreeken, J. 2014. Efficient discovery of the
most interesting associations. ACM TKDD 8(3):1–31.
Webb, G. I. 2010. Self-sufficient itemsets: An approach to
screening potentially interesting associations between items.
ACM TKDD 4(1):1–20.

Appendix
Submodularity
We want to minimize `, which we do by via a greedy algo-
rithm that iteratively selects the highest marginal gain candi-
date x ∈ F from the set of candidates F . In particular, we are
interested in bounding the error of the greedy solution with
respect to the optimal solution. We start this proof by repeat-
ing Theorem 6.1 from Mampaey, Vreeken, and Tatti (2012),
that states

arg min
x∈Ω

`({D}, Si ∪ {x},1)) = arg max
x∈Ω

KL(pSi∪x, q) ,

where q is a consistent distribution with the same support
than pS . In other words, for solution Si in iteration i, the
candidates x with highest marginal gain of ` or the candi-
date x′ for KL, respectively, are identical. This means that
greedy algorithms for both scores are interchangeable. Greed-
ily minimizing ` results in the same estimator than greedily
maximizing KL. As a shorthand we write

f(S) = KL(pS ; q) .

and in order to derive the error-bound to f , we proof mono-
tonicity and submodularity of f first.

Proof 1 (monotonicity) We write the polytope of feasible
distributions p as

PS ≡ {p ∈ Ω→ [0, 1]|
∑
p = 1, px = qx∀x ∈ S} .

By consistency of q we know that PS∪{x} ⊆ PS . By tightening
the constraints around p for any x ∈ 2T we are reducing
the radius between any p ∈ PS and q and hence f(S) ≥
f(S ∪ {x}).

Note, that f is not necessarily strictly monotonic, since
x might not carry additional information at all and hence
PS∪{x} = PS . This is however not a problem and addi-
tionally, in practice, we would not consider adding these
uninformative candidates into our solution anyway.

A function f is a submodular set function if for ∀S ⊆ T ⊆
2T it holds that

f(S ∪ {x})− f(S) ≥ f(T ∪ {x})− f(T) .

Equivalently ∀S, T ⊆ 2T , it has to hold that

f(S ∩ T) + f(S ∪ T) ≤ f(S) + f(T)

in order to be submodular (Krause and Golovin 2012).

Proof 2 (submodularity of f)

f(S ∪ T) + f(S ∩ T) = KL(pS∪T ‖ q) + KL(pS∩T ‖ q)
≤ KL(pS ‖ q) + KL(pT ‖ q)
−KL(pS∩T ‖ q) + KL(pS∩T ‖ q)

= KL(pS ‖ q) + KL(pT ‖ q)
= f(S) + f(T)

Here, we factorized the divergence between pS∪T and q into
the divergences of pS and pT and subtracted the divergence
to the distribution pS∩T concerned with the intersection.

Proof 3 (Approximation Bound of Greedy Algorithm)
First, we observe that we will not increase the information
gain

f(S∗) ≤ f(S∗ ∪ Si) ,

by inserting patterns into the optimal sufficient statistics S∗.
Lets unravel f(S∗ ∪ Si) into the sum of residuals:

= f(S∗ ∪ Si)
+ f(Si ∪ S∗ \ {x∗k})− f(Si ∪ S∗ \ {x∗k})

= f(S∗ ∪ Si)
+ f(Si ∪ S∗ \ {x∗k−1, x

∗
k})− f(Si ∪ S∗ \ {x∗k})

+ f(Si ∪ S∗ \ {x∗k})− f(Si ∪ S∗ \ {x∗k−1, x
∗
k})

= . . .

By continuing this process we have iteratively reduced the
terms in S∗

f(S∗ ∪ Si) = f(S∗ ∪ Si)

+ f(Si) +
∑
j∈[k]

f(Si ∪ S∗ \ {x∗1 . . . x∗j})

− f(Si ∪ S∗ \ {x∗1 . . . x∗j−1})

First, we subtract f(S∗ ∪ Si) from both sides and use the
bound in Eq. (3). Now we use the sub-modularity of d to
bound the residuals of the unravelled sum:

f(S∗) ≤ f(Si) +
∑
j∈[k]

f(Si ∪ S∗ \ {x∗1 . . . x∗j})

− f(Si ∪ S∗ \ {x∗1 . . . x∗j−1})

≤ f(Si) +
∑
j∈[k]

f(Si ∪ {x∗j})− f(Si)

where we have used that f(Si ∪ S∗ \ {x∗1 . . . x∗j−1}) ≤
f(Si) and f(Si ∪ S∗ \ {x∗1 . . . x∗j}) ≤ f(Si ∪ {x∗j}).

In the i-th iteration, we denote x̂i for the candidate with
highest marginal gain and by definition let Si+1 = Si∪{x̂i}.
We can observe the trivial bound f(Si ∪ {x∗j}) ≤ f(Si+1),
which we use in the following

f(S∗) ≤ f(Si) +
∑
j∈[k]

f(Si ∪ {x∗j})− f(Si)

≤ f(Si) +
∑
j∈[k]

f(Si+1)− f(Si)

= f(Si) + k · (f(Si+1)− f(Si))

Now, by together left and right hand side we get the following
simple bound to the optimal solution.

f(S∗) ≤ f(Si) + k · (f(Si+1)− f(Si)) ,

for which the following list of equivalent forms lead step-by-

step to the bound.

1/k (f(S∗)− f(Si)) ≤ f(Si+1)− f(Si)

⇔1/kf(S∗) + (1− 1/k)f(Si) ≤ f(Si+1)

⇔(1− 1/k)f(Si) ≤ f(Si+1)− 1/kf(S∗)

⇔(1− 1/k)f(Si) ≤ f(Si+1)− f(S∗) + (1− 1/k)f(S∗)

⇔0 ≤ f(Si+1)− f(S∗) + (1− 1/k)(f(S∗)− f(Si))

⇔f(S∗)− f(Si+1) ≤ (1− 1/k)(f(S∗)− f(Si))

⇔gi+1 ≤ (1− 1/k)gi

By induction we have for step l: gl ≤ (1− 1/k)lg0. Now,
we use the fact that (1+x) ≤ ex and get gl ≤ e−l/kg0. Since
g0 ≤ f(S∗) we finally get

f(S∗)− f(Sl) ≤ e−l/kf(S∗)

The solution Sl lies within the e−l/k radius of f(S∗). Set
l = k then the radius is 1/e ≈ 0.368 but setting l = 2k
our solution lies within the 0.135 radius. For our practical
purposes this bound is sufficiently good. �

We conclude that maximizing KL is a Submodular Func-
tion Maximization problem which has approximation guaran-
tees and furthermore, we know that the estimates of greedily
optimizing ` and KL are equivalent.

Experiments
All datasets we have used in our experiments are publicly
available. We have taken BMS VW, Adult, Page Blocks, DNA
Ampl., Letter Recog. Anneal, MCADD, Led 7, Mammals,
ICDM Abstracts, Waveform, Plants from the UCI Machine
Learning Repository and Chess, Mushroom, Pumsb Star
from the Mining Dataset Repository.2 The DQ dataset of
lemmatized Deep-Learning and Quantum-Theory ArXiv ab-
stracts can be found in the supplementary material.3. In Ta-
ble 1, we provide basic information about the datasets and
the minimal support we have used in our experiments.

Qualitative Study Next, we study the composition of the
DQ dataset. This is a dataset that consists of 10 000 abstracts
crawled from arXiv. Half the abstracts are from papers on
Deep Learning, and half from papers on Quantum Theory.

From these abstracts we remove stop words, extract and
lemmatize nouns and verbs, erase words with a frequency
lower than 0.05, and remove the class labels. Overall, we
have a dataset over 433 items. The composition that DISC
discovers on this data consists of 5 components and 224
patterns. The “Deep Learning” class is covered by 3 compo-
nents, spanning resp. 36%, 53% and 10% of the papers on
deep learning. The “Quantum” class consist of 2 components
which cover 39.9% and 59.9% of the quantum papers. Over-
all, the components have a total purity of more than 99.5%.
In Table 2 we give a number of exemplary patterns that DISC
discovers. Common patterns across all papers include exper-
imental results, lower bound, and Hilbert space, whereas
a pattern such as reinforcement agent environment is only
characteristic for one component of the deep learning papers.

2https://archive.ics.uci.edu/ml, http://fimi.ua.ac.be/data/
3https://eda.mmci.uni-saarland.de/disc/

Dataset |D| dimD kc Min Support

BMS WV 1 59,602 497 1 32
Mushroom 8,124 23 2 10

Adult 48,842 15 2 5
Page Blocks 5,473 11 5 1

DNA Amp. 4,590 392 1 5

Chess Big 3,196 37 18 319
Let. Recog. 20,000 17 26 1

DQ 9,993 433 1 99

Anneal 898 71 5 1
Pumsb Star 49,046 7,116 1 12,500

MCADD 31,924 198 2 50
Chess 28,056 7 2 5

Led 7 3,200 8 10 40

Mammals 2,183 121 1 5
ICDM 859 3,932 1 10

Waveform 5,000 22 3 5
Plants 34,781 68 1 5

Table 1: Datasets The sizes, dimensionality, number of
classes, and the minimal support of patterns for datasets we
have used in the experiments in Sec. 17 that compare DESC
and DISC with MTV, SLIM and DIFFNORM.

0 25 50 75 100

Adult
Anneal

BMS WV 1
Chess

Chess Big
DNA Amp.

ICDM
Led 7

Let. Recog.
Mammals
MCADD

Mushroom
Page Blocks

Plants
Pumsb Star
Waveform

DQ

Size of Components [%]

Figure 4: Distribution of Component Sizes Shown are the
relative sizes |Dj | / |D| of the components that DISC discov-
ers

Pa
ge

B
lo

ck
s

Le
d

7
C

he
ss

B
ig

A
nn

ea
l

A
du

lt
W

av
ef

or
m

C
he

ss
Le

t.
R

ec
og

.
M

us
hr

oo
m

0.2

0.4

0.6

0.8

1

Pu
ri

ty

DBDESC

DBDESC2
DISC

Figure 5: Purity of the Partitioning For 9 labeled datasets,
we report purity of the partitionings result from DBDESC,
DBDESC2 and DISC

Pattern Set “Quantum” Patterns
S1,2 local entanglement, Bell inequality, standard model
S1 standard approach, learn data, research paper
S2 computer computation, search algorithm

Pattern Set “Deep” Patterns
S3,4,5 neural networks, hidden layer, computer vision
S3,4 information prediction, space representation
S3 neural processing, reinforcement environment agent
S4 feature representation, training optimization

Pattern Set “Common” Patterns
S1,2,3,4,5 experimental results, lower bound, Hilbert space

Table 2: DISC Discovers Interpretable Compositions
Shown is a selection from the pattern composition that DISC
discovers on the Deep Quantum dataset. Overall it discovers
223 characteristic and common patterns and 5 components,
two of which consist of mostly “quantum” papers, and three
of which of “deep learning” papers.

Pa
ge

B
lo

ck
s

Le
d

7
C

he
ss

B
ig

A
nn

ea
l

A
du

lt
W

av
ef

or
m

C
he

ss
Le

t.
R

ec
og

.
M

us
hr

oo
m

100

101

102

103103

R
un

tim
e

[m
] DBDESC

DBDESC2
DISC

B
M

S
W

V
1

D
N

A
A

m
p.

D
Q

Pu
m

sb
St

ar
M

C
A

D
D

M
am

m
al

s
IC

D
M

Pl
an

ts

Figure 6: Runtime in Minutes of DBDESC, DBDESC2 and
DISC on all 17 datasets

|S| `/`∅ [%] Purity PSKL Time

Dataset kc k̂ DIFFNORM DESC DESCπ DISC DESC DESCπ DISC DISC DESCπ DISC DESC DISC

Adult 2 56 719 28 28 29 88.9 83.1 56.5 0.8 8.3 63.3 899ms 11h36m20s
Anneal 5 4 95 17 17 17 91 83.9 78.5 0.8 31.1 30.1 101ms 17s
Chess 2 10 192 44 44 44 88.1 84.7 71.6 0.6 5.6 53.7 278ms 18m39s
Chess Big 18 68 869 13 13 13 98 91.4 69.3 0.3 9.2 26.9 55ms 52m19s
Led 7 10 20 30 10 10 10 89.6 65.5 54.2 0.7 17 30.6 45ms 1m54s
Let. Recog. 26 50 1398 47 47 49 88.9 79 67.6 0.3 20.5 65.5 710ms 15h52m2s
Mushroom 2 17 424 66 79 70 82 77 48.7 1 59.6 133.6 660ms 32m24s
Page Blocks 5 4 30 10 10 10 98.2 68 63.2 0.9 4.9 18.6 95ms 14s
Waveform 3 14 535 35 35 36 89.1 82.2 74.2 0.7 31.6 57.7 309ms 1h45m

Table 3: DESC Discovers Informative Patterns, DISC Discovers Informative Components For 9 datasets with class labels
we compare DIFFNORM, DESC on the full data, DESCπgiven the class-label decomposition, and DISC. We give the true number
of classes (kc), the number of components that DISC discovers (k̂), the number of patterns discovered (|S|), the likelihood ratio
(`/`∅, lower is better), the class-label purity of the components discovered by DISC (higher is better), the divergence (PSKL,
higher is better) between the ground truth resp. discovered components, and the runtime (s, lower is better)

DESC DISC

Dataset |S| `/`∅ k̂ |S| `/`∅ PSKL Time

BMS WV 1 16 97.1 25 28 84.3 14.8 3h21m49s
DNA Amp. 76 73.1 3 84 73.6 50 1m6s
DQ 43 96.9 5 55 91.3 51.4 11m45s
ICDM 16 99.5 1 16 99.5 0 2m
MCADD 95 94 18 104 91.2 41.2 1h13m21s
Mammals 59 80.4 9 64 66.1 78.1 7m34s
Plants 58 61.2 52 60 42.4 125.3 13h5m3s
Pumsb Star 53 84.9 10 53 64.6 268.4 1h34m22s

Table 4: DESC and DISC on Unlabelled Data For 8 dataset
without class labels, for DESC and DISC we report the num-
ber of patterns (|S|), runtime (s), and for DISC we addition-
ally report the number of components discovered (k̂),the gain
in likelihood (`/`∅) in percent, and the PSKL-divergence
between the discovered components

DBDESC DBDESC2 DISC

Dataset k |S| `/`0[%] PSKL run time k |S| `/`0[%] PSKL run time k |S| `/`0[%] PSKL run time

BMS WV 1 7 16 97.8 50.1 6m2s 2 16 96.6 14.9 13m33s 25 28 84.3 14.8 3h21m49s
Mushroom 23 66 47.7 123.4 7s 11 66 55.2 127.7 36s 17 70 48.7 133.6 32m24s
Adult 8 28 79.1 39.4 4m1s 154 28 80.5 47.6 4m41s 56 29 56.5 63.3 11h36m20s
Page Blocks 16 10 67.1 21.5 4s 7 10 63.4 27 5s 4 10 63.2 18.6 14s
DNA Amp. 27 76 109.2 64.3 15s 5 76 81.3 36.3 12s 3 84 73.6 50 1m6s
Chess Big 1 14 98.7 0 10s 42 13 78.7 33.5 38s 68 13 69.3 26.9 52m19s
Let. Recog. 2 48 88.2 16.5 2m27s 2 48 88.4 13.9 4m12s 50 49 67.6 65.5 15h52m2s
DQ 2 43 97.9 62.4 5s 2 43 93.7 64.6 1m5s 5 55 91.3 51.4 11m45s
Anneal 3 17 89 34.8 532ms 2 17 86.3 30.9 783ms 4 17 78.5 30.1 17s
Pumsb Star 23 53 77 303.6 6m54s 45 53 79.5 288.1 3h17m38s 10 53 64.6 268.4 1h34m22s
MCADD 1 118 95.3 0 19s 2 95 95.8 12.3 4m10s 18 104 91.2 41.2 1h13m21s
Chess 2 46 86.5 29.3 3s 9 44 86.7 82.1 16s 10 44 71.6 53.7 18m39s
Led 7 75 10 62.3 29.4 1s 47 10 58.7 28.7 1s 20 10 54.2 30.6 1m54s
Mammals 3 59 82.6 57.5 3s 3 59 84.7 54.2 4s 9 64 66.1 78.1 7m34s
ICDM 1 16 99.6 0 1s 2 16 105.6 36.5 52s 1 16 99.5 0 2m
Waveform 6 35 83.9 84.5 3s 4 36 88.5 38.2 14s 14 36 74.2 57.7 1h45m
Plants 61 58 64.9 10.3 1m17s 49 58 61.4 24.2 5m29s 52 60 42.4 125.3 13h5m3s

Table 5: DBDESC, DBDESC2 and DISC For all datasets in this experiment, we report the number of patterns (|S|), runtime, the
number of components discovered (k), the gain in likelihood (`/`∅) in percent, and the PSKL-divergence between the discovered
components

