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ABSTRACT

Given complex data collections, practitioners can perform non-
parametric functional dependency discovery (FDD) to uncover
relationships between variables that were previously unknown.
However, known FDD methods are applicable to nominal data,
and in practice non-nominal variables are discretized, e.g., in a
pre-processing step. This is problematic because, as soon as a mix
of discrete and continuous variables is involved, the interaction
of discretization with the various dependency measures from the
literature is poorly understood. In particular, it is unclear whether a
given discretization method even leads to a consistent dependency
estimate. In this paper, we analyze these fundamental questions and
derive formal criteria as to when a discretization process applied
to a mixed set of random variables leads to consistent estimates of
mutual information. With these insights, we derive an estimator
framework applicable to any task that involves estimating mutual
information from multivariate and mixed-type data. Last, we ex-
tend with this framework a previously proposed FDD approach
for reliable dependencies. Experimental evaluation shows that the
derived reliable estimator is both computationally and statistically
efficient, and leads to effective FDD algorithms for mixed-type data.
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1 INTRODUCTION

Scientific discovery and similar applications [10, 17] constantly pro-
duce high-dimensional data collections of mixed variable types (i.e.,
nominal, ordinal, continuous). To uncover previously unknown rela-
tionships in such complex data collections, practitioners perform ex-

ploratory data analysis (EDA) [21]. Non-parametric functional
dependency discovery (FDD) is a well-suited EDA approach, as
there are no a apriori assumptions about both the type of variables
involved and the form of the relationship (e.g., XOR, non-linear).

Formally, given data D sampled according to the joint distribu-
tion p (I,Y ) of explanatory variables I = {X1, . . . ,Xd } and target
variables Y that can be of any type, we are interested in identi-
fying those variable sets X ⊆ I with which Y can be described
most accurately via some unknown function f , i.e., Y ≈ f (X).
To effectively solve the FDD problem, we require a dependency
measure D (X;Y ) acting as a proxy for the strength of a poten-
tial relationship Y ≈ f (X), and a search algorithm that is guar-
anteed to (approximately) find those variable sets that maximize
D (X;Y ). The dependency measure D should capture any type of
relationship, and it should do so for high-dimensional X compris-
ing of any variable type. The mutual information I (X;Y ) satis-
fies this requirement: measuring the divergence between p (X,Y )
and p (X)p (Y ), it captures any type of relationship, while it nat-
urally accounts for multivariate and mixed random variable sets.
For FDD in particular, where the target Y is fixed, normalizing
with the entropyH (Y ) gives rise to the fraction of information

F (X;Y ) = I (X;Y )/H (Y ), an interpretable score in [0, 1] quantify-
ing the proportional reduction of uncertainty of Y by knowing X.

Since we lack access to the distribution p (I,Y ), in practice we
estimate mutual information from the data D. This creates a two-
fold estimation problem. First, instead of directly considering the
underlying continuous variables, we have to resort to their approxi-
mations from either data-based discretization or density estimation.
Secondly, even for discrete data, we cannot measure the underlying
mutual information but instead rely again on the data to obtain an
estimate Î (X,Y ) with some estimator Î . These two are more pro-
found for FDD, where we have to efficiently identify the strongest
and most reliable dependencies by comparing Î (X;Y ) for all pos-
sible X ⊆ I. While efficiently discovering reliable dependencies
has been principally addressed [15, 16], it remains unclear with
what quantization methods it can be combined such that the search
consistently identifies the strongest dependencies.
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Figure 1: Top dependency discovered for a case study on

nano-clusters [9]. The target variable HOMO-LUMO gap de-

termines the electro-chemical properties of a cluster. Our

proposed FDD method uncovers that structural feature “ra-

dius of gyration" and non-local dispersion energies “evdw

per atom” approximately determine the target with F̂0 score
0.43. Black lines represent the resulting partition in R2 with

a budget of up to 5 bins per axis (cOP, l = 5, c = 2).

Our main contributions are the following. First, to arrive at a
consistent mixed estimator Îmx, we recall that mutual information
for two continuous random variables can be attained as a limit
along a refining quantization sequence [3, Sec. 8.3]. We extend this
result for mixed sets of variables, as well as identify the class of
quantizations applicable that includes known techniques such as
equal-frequency. We then translate this process for an empirical
sample, and identify the requirements for consistency (Sec. 3). Sec-
ond, based on the theory developed we propose a framework for
mixed mutual information estimation and demonstrate how it can
be applied in practice for FDD (Sec. 4). Third, we combine the mixed
estimator with the framework of Mandros et al. [15, 16] for reliable
FDD. In particular, we show that the reliable mutual information
estimator is well-suited for the mixed estimator framework, and
provide effective algorithms for exact, approximate, and heuristic
search (Sec. 5, see Fig. 1 for a demo). Lastly, we perform exten-
sive evaluation on a wide range of real and synthetic data (Sec. 6).
We start with preliminaries in Sec. 2, and end with related work,
discussion, and conclusions in Sec. 7, 8, and 9, respectively.

2 PRELIMINARIES

We represent random variables with capital letters, and sets with
curly capital letters, e.g., X = {X1, . . . ,Xm }. We denote the domain
of random variables with V (.), e.g., V (X) and V (X ), and values
with x ∈ V (X ) and x ∈ V (X). Whenever clear from the context we
use x ∈ X and x ∈ X instead. We often useD,G, to indicate sets of
discrete variables, and C for sets of continuous random variables.

We consider quantization strategies for continuous random
variables which we denote with Q . Given k ∈ Z+ and a continuous
random variable C , Q produces a partition Qk = {S1, . . . , Sk } of
V (C ) ⊆ R in k consecutive intervals with ∪ki=1Si = V (C ) (upper-
bound exclusive).WithCQk we represent the quantizedC according

to Q and k . As an example, equal-frequency denoted as QEF, par-
titions C with QEF

k = {S1, . . . , Sk } such that
∫
Si

fC (c )dc = 1/k for
all i ∈ [k], where fC (c ) is the density function of C . Given Q and
k , we use δi for the corresponding length of the sub-interval Si .
In this paper, we are interested in the class of quantization strate-
gies for which maxi ∈[k] δi → 0 as k → ∞, which we refer to as
converging strategies. These notions extend to the multivariate
case C = {C1, . . . ,Cm }, with Qkm = {S1, . . . , Skm } being a parti-
tion of V (C) ⊆ Rm , produced by partitioning each C ∈ C in k
bins. We use Qk whenever clear from the context. For a Q , the set
Πl (Q ) = {Q1, . . . ,Ql } corresponds to all partitions by Q in up to l
bins, and Πml (Q ) to the set of all partitions for domains in Rm .

We define the following relation for two partitions: Q ′v is a re-
finement of Qu , denoted as Qu ⪯ Q ′v , if v ≥ u and there ex-
ists a map r : [u] → 2[v], such that for every i ∈ [u], we have
Si = ∪j ∈r (i )S ′j . For example, we have that QEF

2 = {S1, S2} ⪯ QEF
4 =

{S ′1, S ′2, S ′3, S ′4}, since S1 = S ′1 ∪ S ′2 and S2 = S ′3 ∪ S ′4.
We identify then i.i.d samples of a random variable setX with the

mapX : [n]→ V (X), or simplyX whenever clear from the context.
Given samples, a quantization strategyQ translates to a discretiza-
tion strategy, denoted as Q̂ , that corresponds to the same strategy
to partition the n sample points Xs in k bins, where Xs is X sorted
in ascending order. For example, let us consider random variable
X ∼ U(−1, 1), and a sorted sample X = [−0.5,−0.3, 0, 0.6, 0.9, 1].
For k = 3 and equal-frequency, π̂ = Q̂EF can be seen as a map
π̂ : R→ [k] that splits the data sample in three bins of two points
each, to create discrete variable Xπ̂ = [1, 1, 2, 2, 3, 3] with domain
V (Xπ̂ ) = {1, 2, 3}. With Πl,n , we denote the set of all possible par-
titions of n data points in up to l ≤ n bins, and for a Q̂ , we have
Πl,n (Q̂ ) = {Q̂1, . . . , Q̂l }. Note that we also considerXπ for π = QEF

k ,
meaning that X is discetized according to the equal-frequency
quantization of the population domain V (X ) = [−1, 1], that is, for
π = QEF

3 = {[−1,−1/3), [−1/3, 1/3), [1/3, 1]}, Xπ = [1, 2, 2, 3, 3, 3].
For n samples of a discrete random variable set G, we define

nG : V (G) → Z to be the empirical counts of G, i.e., nG (g) =
|{i ∈ [n] : G (i ) = g}|. However, we use ng whenever clear from
the context. We further denote with p̂G : V (G) → [0, 1], where
p̂G (g) = nG (g)/n is the empirical probability distribution of G.

Finally, recall the notion of dominated convergence: let amn
be a sequence such that for allm the limit a∗m = limn→∞ amn exists.
Further, let pm ≥ 0 be another sequence and let um ≥ |amn | for all
m,n such that∑m pmum < ∞. Then the limit limn→∞

∑
m pmamn

exists and is equal to ∑m pma∗m .

3 CONSISTENCY OF MIXED MUTUAL

INFORMATION ESTIMATION

In this section we introduce the information-theoretic notions of
multivariate entropy and mutual information for mixtures of dis-
crete (both nominal and ordinal) and continuous random variables.
We demonstrate how the sequence of finer-grain quantizations of
continuous random variables leads to the actual (i.e., unquantized)
mutual information. Finally, we show how this process translates
to empirical samples, enabling estimation from mixed-type data.

Given sets D and C of discrete and continuous random vari-
ables, respectively, the entropy of D ∪ C with joint probability
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distribution f (d, c) = fC | d (c | d)p (d), is defined as

H (D,C) = −
∑
d∈D

∫
C
f (d, c) log f (d, c)dc

= −
∑
d∈D

p (d)

∫
C
fC | d (c | d) log fC | d (c | d)dc

−
∑
d∈D

p (d) logp (d)
∫
C
fC | d (c | d)dc

=H (C | D) + H (D) .

Let us consider a converging Q and Qk = {S1, . . . , Skm } anm-
dimensional partition of the domain V (C) ⊆ Rm . Let us assume
that fC | d (c | d) is continuous within each hypercube for all d ∈ D.
Then, using the mean value theorem for integrals, there exists
a value ci within each hypercube i such that fC | d (ci | d)δi =∫
Si

fC | d (c | d)dc. The quantized C is defined as CQk = ci for
C ∈ Si , and has conditional probability pi | d = δi fC | d (ci | d)
that CQk = ci when D = d. The following Lemma demonstrates
how H (D,CQk ) converges to H (D,C).

Lemma 3.1. Given random variables D of finite domain V (D),
random variables C, and converging Q , if the conditional density
fC | d (c | d) is Riemann integrable for all d ∈ D, then

lim
k→∞

H (D,CQk ) + βQk (D) = H (D,C) ,

where βQk (D) =
∑
d∈D p (d)

∑
i δi fC (ci | d) logδi . Further, if for

all d ∈ D, k , we have hk (d) =
���
∑k
i=1 δi f (ci | d) log f (ci | d)

��� ≤
a(d) such that

∑
d p (d)a(d)<∞, the result also holds for infiniteV (D).

Proof. We write fC (ci | d) instead of fC | d (ci | d). We have

H (D,CQk ) = −
∑
d∈D

p (d)
k∑
i=1

δi fC (ci | d) log
(
δi fC (ci | d)

)
+ H (D)

= −
∑
d∈D

p (d)
k∑
i=1

δi fC (ci | d) log fC (ci | d)

−
∑
d∈D

p (d)
k∑
i=1

δi fC (ci | d) logδi︸                                    ︷︷                                    ︸
βQk (D)

+H (D) .

Since fC | d (c | d) is Riemann integrable, the inner sum of the
first term converges to its integral as k → ∞. For finite V (D), the
first sum then converges to H (C | D). For infinite V (D), the sum
also converges to H (C | D) as∑

d
p (d)a(d) < ∞ is the assumption

required for dominated convergence. □

Lemma 3.1 states that for convergence a sequence of finer-grained
quantizations and a correction by β are required. In addition, hk (d)
have to be bounded for convergence with infinite V (D). An exam-
ple in the Appendix shows how it can fail otherwise. Note that the
correction βQk (D) is necessary due to the infinite quantization
error as k → ∞. That is, as the partitions get finer, H (D,CQk ) di-
verges. We also note that the entropy H (D,C), unlike the discrete
case H (D), can be negative, e.g., for C ∼ U(0,a),a < 1 [3, Sec. 8.1].
These, however, do not extend to mutual information.

Themutual information forX = {D,C} andY = {D ′,C′}, is
defined as I (X;Y ) = H (D,C)+H (D ′,C′)−H (D,C,D ′,C′), and
it holds that I (X;Y ) ≥ 0. We proceed with the following Theorem
about the convergence of I (X;Y ) w.r.t. the quantization process.

Theorem 3.2. Given random variablesX = {D,C},Y = {D ′,C′},
with Riemann integrable conditional density fC,C′ | d,d′ (c, c′ | d,d′)
for all d ∈ D,d′ ∈ D ′, as well as converging Q,Q ′, then

I (X;Y ) = lim
k→∞

I (D,CQk ;D ′,C′Q ′k ) .

Proof. For readability, we drop k , as well as use fC (ci | d) in-
stead of fC | d (ci | d), whenever clear from the context. We have:
I (D,CQ ;D ′,C′Q ′ ) = H (D,CQ )+H (D ′,C′Q ′ )−H (D,CQ ,D ′,C′Q ′ )
= −
∑
d∈D

p (d)
∑
i
δi fC (ci | d) log fC (ci | d) + βQ (D) + H (D)

−
∑

d
′∈D′

p (d′)
∑
j
δ ′j fC′ (cj | d′) log fC′ (cj | d′) + βQ ′ (D ′) + H (D ′)

+
∑

d∈D,d′∈D′
p (d,d′)

∑
i, j

δiδ
′
j fC,C′ (ci , cj | d,d′) log fC,C′ (ci , cj | d,d′)

− βQ,Q ′ (D,D ′) − H (D,D ′) .
Weknow fromLemma 3.1 that the sums converge toH (C | D),H (C′ |
D ′), andH (C,C′ | D,D ′). It remains to show that βQ,Q ′ (D,D ′) =
βQ (D) + βQ ′ (D ′), which we postpone for the Appendix. □

Theorem 3.2 states that the unquantized I (X;Y ) is attained
for converging Q . We now proceed to translate this quantization
process for samples of p (X,Y ), enabling the estimation frommixed
data in practice. For this, we use consistent discrete estimators Ĥ
for entropy H and their corresponding sampling complexities SĤ .

Recall that an estimator Ĥ is called consistent if Ĥ
p−→ H asn →

∞. For entropy, the sample complexity, i.e., the minimum sample
size that achieves a certain concentration (ϵ-δ -PAC guarantee), is
usually expressed as a function of the domain size. For example, the
plug-in estimator Ĥpl defined for the empirical p̂, i.e., Ĥpl (G) =
−∑

g∈G p̂ (g) log(p̂ (g)), has sampling complexity SĤpl
(k ) ∈ O (k )

where k = |V (G) |. The main idea of the following Theorem is to
use consistent estimators for H and upper-bound the number of
partitions per n w.r.t. their sample complexity.

Theorem 3.3. Let X = {D,C}, Y = {D ′,C′} be i.i.d. samples

from p (X,Y ), with finiteV (D),V (D ′) and Riemann integrable con-

ditional densities f (c, c′ | d,d′). Further, let Q,Q ′ be two converging
strategies, Ĥ a consistent estimator for discrete entropy, and д(n) a
strictly increasing function such that д(n) ≤ S−1

Ĥ
(n). Then

lim
n→∞ Î (D,CQд (n ) ;D ′,C′Q ′д (n ) ) = I (X,Y ) .

Further, if p̂ (d,d′) L1−→ p (d,d′) and Ĥ (CQk | d,d′) + Ĥ (C′Q ′k |
d,d′) ≤ α uniformly for all d ∈ V (D),d′ ∈ V (D ′) and k ∈ Z+, the
result also holds for countably infinite V (D),V (D ′).

Proof. We drop subscripts from Q,Q ′ for readability. Note that
the latter two assumptions are implied for finiteV (D),V (D ′), and
hence, we prove the more general statement. We have

Î (X;Y ) = Ĥ (D,CQ ) + Ĥ (D ′,C′Q ′ ) − Ĥ (D,CQ ,D ′,C′Q ′ ) .
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Now, let us focus on the first term, i.e., Ĥ (D,CQ ) = Ĥ (CQ | D) +

Ĥ (D). For Ĥ (D), we know it converges due to the consistency of
Ĥ . For Ĥ (CQ | D), we have

Ĥ (CQ | D) =
∑
d∈D

p̂ (d)Ĥ (CQ | D = d)

=
∑
d∈D

(
p̂ (d) − p (d)

)
Ĥ (CQ | D = d)

+
∑
d∈D

p (d)Ĥ (CQ | D = d) .

Since all Ĥ (CQ̂ | D = d) ≤ α are bounded and p̂
L1−→ p, the

first sum converges to zero. For the second sum, we have that
limn→∞ Ĥ (CQ̂ | D = d) = H (C | D = d) due to the additional
assumption for Ĥ . Hence, the complete sum converges toH (C | D)
as the conditions for dominated convergence apply. Analogous
arguments for the remaining entropy terms establish the result. □

Theorem 3.3 states the two requirements for convergence to
I (X;Y ) given i.i.d. samples: converging quantization strategies and
consistent discrete estimators for entropy. To end this section, we
make the following two remarks. In exploratory scenarios with
no access to p, aQ that partitions the variable domain is not directly
applicable. Instead, we use the empirical Q̂ . Note, however, that for
EF we have Q̂k

n→∞−→ Qk . In the remainder of this paper we remove
hat symbols for Q̂ . For the second remark, while the necessary
and sufficient requirements for consistent entropy estimation is
SĤ (k ) ∈ Ω(k/ log(k )) (see [11] for an excellent review on the topic),
in this paper we study “slower" estimators of the form Îpl + b (n),
with b (n)

n→∞−→ 0. The reason is that these estimators are more
flexible w.r.t. the FDD task, e.g., b (n) directly penalizes data sparsity
and optimization algorithms have been provided. In the next section,
we derive a mutual information estimator for mixed variables.

4 MIXED DATA ESTIMATOR FOR FDD

We start by noting that attaining the population value I (X;Y ) via
quantization, can be equivalently formulated as a supremum over
all finite partitions of the domainsV (C),V (C′), regardless ofQ and
k . Translating this to a sample, is an estimator of the form

max
π ∈Π |C|l,n,π

′∈Π |C′ |l,n

Î (D,Cπ ;D ′,C′π ′ ) ,

i.e., the optimization problem of maximizing a discrete consistent
estimator Î over the set of all possible partitions Π |C |l,n and Π |C

′ |
l,n ,

with l ∈ Z+ being the maximum number of bins. For our FDD
purposes, we consider the mutual information I (X;Y ) between
X = {D,C} and a univariate discrete target Y , i.e., the case

Îmx (X,Y ) = max
π ∈Π |C|l,n

Î (D,Cπ ;Y ) .

This optimization problem, however, is infeasible in practice: the
search space is prohibitively large with |C|∑li=0 (n−1i ) possible |C|-
dimensional partitions π in up to l bins. Moreover, while estimators
Î are consistent, they can be statistically inefficient for limited
data samples and almost trivially produce arbitrary partitions and

estimates due to data sparsity in the |X|-dimensional space [15, 22].
We present solutions for both problems, starting with the former.

4.1 Optimization

First, let us assume |C| =m, and reformulate the problem. Instead
of directly searching for high-dimensional partitions π ∈ Πml,n , we
can equivalently search form univariate partitions, i.e.,

max
π1, ...,πm ∈Πl,n

Î (D, {C1π1 , . . . ,Cmπm };Y ) .

This approach allows us to consider the abundant research on
partitioning the real line R. Here, we provide two solutions from
prior work on dependency estimation. The first has been used for
an exact solution, while the second for an approximate. Let us focus
for now on the univariate continuous case, i.e., X = {C}.

For an exact solution, note that a naive algorithm would per-
form exhaustive search through all ∑li=0 (n−1i ) partitions for C .
However, Reshef et al. in seminal work on dependency estimation
for pairs of continuous variables [21], give a polynomial time al-
gorithm for the plug-in Îpl, exploiting the optimal substructure of
maxπ ∈Πl,n Îpl (Cπ ;Y ): the best partition in up to l bins is comprised
of the best partition in up to l − 1 bins. The dynamic programming
(DP) algorithm has complexity O (ln2). For efficiency, the authors
propose a relaxation where C is partitioned in l equal-frequency
bins, and DP finds the best partition from {π : π ⪯ QEF

l }. For more
candidate partitions, a parameter c ∈ Z+ controls the number of
initial bins via cl (see [21, Sup. material, Sec. 3.2.2]). The complexity
now is O (c2l3), and we refer to this partitioning scheme as con-
strained optimal-partition (cOP), with Πl,n (Q

cOP) = {π : π ⪯
QEF
cl , |π | ≤ l } for parameter c . For cl = n, cOP becomes optimal. The

approximate technique is based on equal-frequency. To find an
appropriate partition for estimating mutual information from pairs
of discrete/continuous random variables, Suzuki suggests to pick
the equal-frequency partition that maximizes mutual information in
up to l = 0.5 log2 (n) bins, i.e., maxk ∈[l ] Î (CQEF

k
;Y ) [26]. Sugiyama

and Borgwardt perform the same process in order to estimate the in-
formation dimension of a continuous variable, with l = log2 (n) [25].
For QEF, we have Πl,n (Q

EF) = {π : π = QEF
k ,k ∈ [l]}. Regarding

the two techniques, cOP has a clear advantage: a larger space of
candidate partitions controlled by parameters based on the avail-
ability of resources. However, EF has the negligible complexity of
O (l ). In addition, EF is applicable to any estimator Î , while cOP
requires optimal substructure for the polynomial DP algorithm.

Now given set X = {D,C}, in order to perform a multidimen-
sional discretization in practice, we adopt a greedy approach of
iteratively discretizing one C ∈ C at a time. Note that while this
approach is greedy in nature, the choice for a partition is done
jointly with all the already discrete and discretized variables. In
addition, the consistency is not violated for k,n → ∞. Since the re-
sult now depends on the order, we first sort the variables in X ∈ X
in decreasing order of marginal mutual information Î (X ;Y );
variables C ∈ C are discretized according to Q and l . That way, we
let the most informative continuous variables discretize first, jointly
with the already discrete. The details of our proposed mixed esti-

mator framework are shown in Alg. 1. Given set of mixed random
variables X = {D,C}, discrete target Y , partitioning strategy Q ,
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Algorithm1 Îmx: Given set of mixed random variablesX = {D,C},
discrete target Y , partitioning strategy Q , consistent discrete esti-
mator Î , and maximum number of bins l , the algorithm returns an
estimate of I (X;Y )
1: function Îmx(X,Y ,Q, Î , l )
2: X′ = sortMarginally(X,Y ,Q, Î , l )
3: G = ∅
4: for X ∈ X′ do
5: if X ∈ C then

6: π∗ = argmax{π : Î (G,Xπ ;Y ),π ∈ Πl,n (Q )}
7: G = G ∪ {Xπ ∗ }
8: else

9: G = G ∪ {X }
10: return Î (G;Y )

consistent discrete estimator Î , and maximum number of bins l ,
the estimation process starts by marginally sorting the X ∈ X ac-
cording to Q, l , Î (Q, l , are used for X ∈ C), and create the empty
set G for discrete variables. Then, continuous variables X ∈ C are
discretized jointly with G and added to G, while the discreteX ∈ D
are added to G. The mixed estimator result is Î (G;Y ). If TQ is the
cost for optimization based on Q , TÎ the cost of estimator Î , and
|C| =m, the algorithm complexity is dominated by O (mTQTÎ ). For
the remainder, we refer to a specific instantiation of Alg. 1 with the
estimator and partitioning technique choices, e.g.„ Îpl with EF.

4.2 Statistical efficiency

Now that an optimization framework is established, we shift our at-
tention to a brief discussion regarding appropriate qualities discrete
consistent estimators should possess for the task of FDD.

We are mainly after estimators that allow for efficient discov-
ery, i.e., come with the means for high-dimensional exhaustive
and heuristic search. An optional, yet important requirement, is
admitting optimal substructure for applying DP and giving access
to a large set of candidate partitions in polynomial time. The third
dimension, is that of statistical efficiency: the estimator should give
robust estimation from limited data samples for both the partition-
ing process, as well as the discovery process. Let us mainly focus
on the last requirement, and demonstrate how the consistency of
an estimator, alone, does not satisfy it. As an example, we consider
the plug-in estimator Îpl and start with the following Lemma.

Lemma 4.1. Given continuous variable C , discrete set G, discrete
target Y , and maximum number of bins l , we have that

(1) Îpl (G,Cπ ;Y )≤ Îpl (G,Cπ ′ ;Y ), for allπ ,π ′⊆ Πl,n withπ ⪯ π ′
(2) Îpl (G,CQEF

k
;Y ) ≤ Îpl (G,CQEF

2k
;Y ) for k = 1, . . . , ⌊l/2⌋

(3) Îpl (G,Cπ ;Y ) ≤ Îpl (G,CQEF

l
;Y ), for all π ∈ Πl,n (Q

cOP)

Proof. Recall the specialization relation [16, Def. 1]: for two
discrete variablesA,B, we say that B is a specialization ofA, denoted
as A ⪯ B, if for all i, j ∈ [n] with A(i ) , A(j ), it holds B (i ) , B (j ).
It is clear that a refinement relation for π ⪯ π ′, corresponds to
a specialization relation for Cπ ⪯ Cπ ′ . Finally, we have that for
three variables A,B,C with A ⪯ B, that Îpl (A;C ) ≤ Îpl (B;C ) [16,
Prop. 2].
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Figure 2: Resulting partitions on a clustering dataset for

plug-in Îpl combined with two versions of OP (Example 4.2)

For (1), we have that Cπ ⪯ Cπ ′ for any π ⪯ π ′, and hence
Îpl (G,Cπ ;Y ) ≤ Îpl (G,Cπ ′ ;Y ). For (2) and (3), we have that QEF

k ⪯
QEF
2k for k = 1, . . . , ⌊l/2⌋, and π ⪯ QEF

l for all π ∈ Πl,n (Q
cOP),

respectively. The two statements then follow from (1). □

Lemma 4.1 states that Îpl considers refinements to be at least as
good of a choice. However, unlike the quantization process in the
population, refined partitions on a sample do not necessarily lead
to a better estimation error, but rather to over-fitting. For Îpl in
particular, the over-fitting is controlled by the statistical bias that
is a function of the domain sizes V ({G,Cπ }) and V (Y ) [23]. In a
nutshell, larger |π | implies more bias for Îpl (G,Cπ ;Y ), and hence
Îpl tends to trivially select the most refined partition for a Q and l .
We demonstrate this with the following example.

Example 4.2. In this example we investigate the resulting parti-
tions from estimating mutual information on a clustering dataset
in R2, where the target variable Y is the cluster assignment. The
dataset has 600 data points and 15 clusters [5], and we use C1,C2,
to refer to x and y-axis, respectively. We are after an estimate of
Îpl (C1,C2;Y ), and consider two versions of cOP. For the first, we
use a fixed l = 30 for both Ci , while for the second we use l =
д(n,b,G,Y ) per Ci that is proposed in [21], where д(n,b,G,Y ) =⌈
nb/(
∏

G ∈G V (G )V (Y ))
⌉
. We set b = 0.6 that is suggested by the

authors, and refer to the resulting estimator as ÎMIC. For both we use
c = 3. We present the results in Fig. 2. On the left, we observe that
Îpl indeed selects forC1 the most refined partition possible, i.e.,QEF

30 ,
as the Lemma suggested. For C2, there are 8 bins, but only because
there is a perfect cluster separation already for a total of 240 bins in
R2. On the right, ÎMIC has a maximum l = 4 forC1, and l = 2 forC2
(for C2, G already contains the discrete C1). Again, Îpl selects the
maximum number of bins for both variables, but here we actually
observe under-fitting caused by the criterion l = д(n,b,G,Y ).

We see that Îpl can easily under/over fit the data during the
partition process, even with more elaborate criteria for l , e.g., the
д(n,b,G,Y ) used inMIC. Note that ÎMIC is an inherent part ofMIC,
as it identifies the best partition for each k = 1, . . . , l = д(n, ∅,Y ).
The best partitions are afterwards penalized by their size k , which
is not a statistical adjustment accounting for the biased estimates.
It is demonstrated that MIC over-fits on noisy data [12].

In addition to the partition process, we consider the task of FDD,
i.e., finding the X∗ ⊆ I maximizing F (X∗;Y ). Translating this to
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our example, it would mean to identify the top clustered data out
of a potentially huge candidate space of varying dimensionalities.
For FDD, the F̂pl fails by trivially considering X∗ = I to be a maxi-
mizer [15]. As we see, choosing an estimator for FDD is non-trivial:
besides being “optimizable" for efficient algorithms and exhibiting
optimal substructure, estimators need to be statistically efficient
and robust against choices for l ,Q , and varying dimensionalities.
In Section. 6 we evaluate different choices for Î and Q .

5 RELIABLE FDD FROMMIXED DATA

In this section, we recall the reliable mutual information estimator,
show it exhibits optimal substructure, and give algorithms for FDD.

To perform FDD in high-dimensional data, Mandros et al. [15]
propose a correction for the plug-in by subtracting its expected
value over all possible sample permutations. Given G and Y , the
reliable mutual information is defined as Î0 (G;Y ) = Îpl (G;Y )−
E0 (Îpl (G;Y )). Here, E0 (Îpl (G;Y )) is the expected value under the
permutation model [14, p. 214], a non-parametric independence
model for contingency tables assuming fixed marginal counts. The
expected value is equal to E0 (Îpl (G;Y )) = ∑σ ∈Sn Îpl (G;Yσ )/n!, where
Sn denotes the symmetric group forn, i.e., the set of all permutations
of [n], and Yσ denotes the Y samples permuted according to a
σ ∈ Sn . Exploiting symmetries, this value can be computed in
O (nmax{V (G),V (Y )}) (see [16, 29] for the computation).

To use Î0 for FDD and give access to a large space of candidate
partitions in polynomial time, we show optimal substructure.

Theorem 5.1. Given discrete variables G, continuous X , discrete
Y , and maximum number of bins l , the optimization problem

max
π ∈Πl,n (QcOP )

Î0 (G,Xπ ;Y )

exhibits for 1 < l ≤ m ≤ n the optimal substructure

f (l ,m) = max
1≤i<m{

i

m
f (l−1, i ) + m−i

m
Î0 (G ;Y | i + 1,m)} ,

where f (l ,m) = maxπ ∈Πl,m Î0 (G,Xπ ;Y | 1,m), and Î0 (. ;Y |u,v ) =
Î (. ;Y |u,v ) + ∑σ ∈Sn Î (. ;Yσ |u,v )/n!, with Î (. ; . |u,v ) and u,v ∈
[n],v ≥ u, the empirical mutual information restricted to data sam-

ples {i ∈ [n] |Xs (u) ≤ X (i ) ≤ Xs (v )}.
Proof. We postpone the proof for the Appendix. □

Now that optimal substructure has been established, we shift our
attention to search algorithms for FDD. That is, given a mixed set
I = {X1, . . . ,Xd } of d input variables and a discrete target variable
Y , we are interested in the optimization problem

Î0 (X∗;Y ) = max{Î0 (X;Y ) : X ⊆ I} ,
given a partitioning strategy Q . For discrete data, Mandros et al.
show it is NP-Hard to solve, and propose two algorithms: exhaustive
search based on branch-and-bound that comes with approximation
guarantees, and heuristic search based on the standard bottom-up
greedy algorithm [16]. Let us recall the two basic ingredients of
these algorithms, and extend them for mixed data.

The first is the refinement operator, a function r : P(I) →
P(I), withP(I) the powerset ofI, which is used to non-redundantly
enumerate the entire search space of candidate solutions X ⊆ I.
For example, the operator corresponding to alphabetic order would

be r (X) = {X ∪ {Xi } : i > max{j : X j ∈ X}, i ≤ d }. The second
ingredient is the bounding function. A function f̄ is called an ad-

missible bounding function for an optimization function f , if
it holds that f̄ (X) ≥ f (X′) for all X′ with X ⊆ X′ ⊆ I. The
bounding function proposed for the reliable mutual information is
f̄spc (X,Y ) = Î0 (X∪{Y };Y ) = Ĥpl (Y )−∑σ ∈Sn Îpl (X∪{Y };Yσ )/(n!).
With these, the branch-and-bound algorithm enumerates starting
from ∅, tracks the best solution, and prunes expanding elements
with f̄spc that cannot yield an improvement over the best solution.
In addition, the framework provides the option of relaxing the re-
quired result guarantee to that of an α-approximation for accuracy
parameter α ∈ (0, 1]. An α ≤ 1 trades accuracy for efficiency in a
principled manner. The greedy algorithm uses level-wise search
where only the best candidate is refined, coupled with f̄spc for
pruning. The specific details of the algorithms are found in [16].

For mixed data, first note the problem is still NP-Hard. Second,
f̄spc (X,Y ) remains admissible as it is independent of “future" parti-
tions for X′ with X ⊆ X′. However, unlike the discrete case, here
evaluating Î0 (X;Y ) for a candidateX = {D,C} is more expensive—
Alg. 1 sorts in decreasing order of marginal Î0, and performs |C|
discretizations. For efficiency, we first remove the repetitive sort-
ing by sorting I initially instead. Then the alphabetic refinement
operator only refines with variables of smaller marginal mutual in-
formation. Second, we apply the following heuristic: once a variable
C ∈ C has been discretized, it remains discretized for the remaining
of the search branch. We refer to the resulting branch-and-bound
and greedy algorithms with BnB and Greedy, respectively.

6 EVALUATION

In this section, we perform an evaluation on the different aspects
of our FDD solution for mixed data. In particular, we investigate
the statistical performance of various estimators coupled with par-
titioning techniques on synthetic data, we evaluate the proposed
discovery algorithms on real-world benchmark data, and finally,
we qualitatively analyze the partitions selected from estimation.

6.1 Estimator performance

First, we focus on the statistical performance of mixed estimator
configurations. We are interested in their consistency with regards
to the FDD process. For this, we generate data from models gov-
erning functional relationships for which we know the population
values for mutual information, perform FDDwith exhaustive search
to obtain the estimated value of the maximizer variable set, and
then plot curves corresponding to absolute estimation error.

In this experiment, we model our functional relationships with
the class of generalized linear models. We consider a set of four
continuous random variables I = {X1,X2,X3,X4}, and one cat-
egorical variable Y , and distinguish two cases of functional rela-
tionship: E(Y | I) = f −1 (α0 +

∑4
j=1 α jX j ) and E(Y | I) = f −1 (β0 +∑3

i=1 βi
∑
j=1 α j,iдi (X j )), where f is an appropriate link function

and д1 (X ) = log(X + 2),д2 (X ) = X 2,д3 (X ) = cos(2X ) are non-
linear variable transformations. We use h ∈ {lin, nlin} to indicate
the former and latter cases respectively. The coefficients α , β , fol-
low a bimodal Gaussian distribution that uniformly selects one of
N (− log(10), 1) andN (log(10), 1). The means log(10) and -log(10)
are chosen such that the respective classes for binary Y (positive
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for log(10) and negative for − log(10)), are 10 times more likely.
To cover a wider range of scenarios, we further parametrize these
models in two ways: we consider a varying number e ∈ {1, 2, 3} of
explanatory variables, with the remaining 4 − e receiving weights
α = 0, and, we use three different domain sizes d ∈ {2, 5, 10} for Y .

For our generative models pα,β (I,Y ), variables X j follow a
uniform U(−1, 1) and Y a multinomial with expectations as above.
We omit α , β from notation for readability. Given parameters d ∈
{2, 5, 10}, e ∈ {1, 2, 3}, and h ∈ {lin, nlin}, we denote the resulting
models with ple,d (I,Y ). For the conditional phe,2 (Y | I) we use the
the sigmoid function (i.e., logit link function), and the softmax for
phe, {5,10} (Y | I) (i.e., multinomial logit). The analytic expressions
are found in Table 2 in the Appendix. With these, for any set of coef-
ficients α , β ,we can compute the population value I (I;Y ). To sam-

ple data from the models, we first randomly and uniformly sample
90 conditional probability distributionsp (i ) , i = 1, . . . , 90, 5 for each
combination of e,d,h. To make the results comparable, we ensure
for each p (i ) the population value F (p (i ) ) lies in (0, 0.5]. We denote
with Ple,d the sets of p (i ) corresponding to specific e,d, l . For exam-
ple, Plin

2,2 is the set of the 5p
(i ) corresponding tod = 2, e = 2,h = lin.

We consider data sizes n = {20, 40, 80, 160, 320, 640, 1280, 2560}, and
for each p (i ) and n, we sample 50 datasets D(i )

n, j , j ∈ [1, 50]. Two
sampled datasets are illustrated in Fig. 6 in the Appendix.

Now, given these data, we perform the FDD task with input vari-
ables I and target Y , considering different estimator/partitioning
configurations combined with exhaustive search. In addition to
the estimators discussed so far, i.e., plug-in Îpl (Sec. 3), reliable Î0
(Sec. 4), and ÎMIC (Example 4.2), we consider two additional es-

timators: the Vinh et al. estimator [28], defined as Îχ,α (X;Y ) =
Îpl (X;Y ) − χα,l (X,Y )/(2n), where χα,l (X,Y ) is the critical value of
the χ2 distribution corresponding to a significance level 1 − α and
degrees of freedom l (X,Y ) = (

∏
X ∈X V (X ) − 1) (V (Y ) − 1), and

the Suzuki estimator based on theMDL principle [26], defined as
ÎMDL (X;Y ) = Îpl (X;Y ) − l (X,Y ) log(n)/(2n).

To evaluate the performance, we use the absolute estimation

error tailored for FDD, defined as rn (F̂mx,p (i ) ) = E( |F (p (i ) ) −
F̂mx (X∗i, j,n ;Y ) |), where F (p (i ) ) is the population fraction of infor-
mation value for model p (i ) , and X∗i, j,n ⊆ I is the maximizer on
D(i )
n, j for a configuration F̂mx. We use the fraction of information

instead in order to have the error in [0, 1]. The expected value is
with respect to j ∈ [1, 50]. We average the absolute errors across
different p (i ) to obtain averages of the form rn (F̂mx,P {lin,hlin}[a,b], {2,5,10} ).

For example, rn (F̂mx,P {lin,hlin}[1,3], {2,5,10} ) corresponds to the average ab-
solute error across all 90 models p (i ) , while the rn (F̂mx,Phlin

[1,3],2)

would be the average for p (i ) ∈ Phlin
1,2 ∪ Phlin

2,2 ∪ Phlin
3,2 .

We start with Fig. 3 and plot the average error curves across
all p (i ) , for F̂0 with cOP and EF, F̂pl with cOP, F̂MIC, and F̂χ,α ,
FMDL with EF. For F̂χ,α , we tested both α = 0.95 and 0.99, and
show the latter that has better performance. For cOP and EF we
use maximum number of bins l = 5, and for cOP c = 2. In addition,
we consider F̂pl with pre-discretized data in 5 equal-frequency bins
as a baseline, which we refer to as PeF. Let us focus first on the
three uncorrected configurations, i.e., Îpl with cOP, PeF, and F̂MIC.
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Figure 3: Absolute estimation error averaged across all p (i )

All under-perform, with the highest errors and slower convergence
rates. Interestingly, we see that PeF performs better than cOP,
despite both having l = 5. This behavior is attributed to the I being
uniform and independent, and while PeF is well-suited for this, F̂pl
with cOP overfits by finding joint effects. For F̂MIC, the convergence
is better, but only because the maximum number l = д(n, 0.6,G,Y )
decreases per X ∈ X, and the subsequent “coarser" X exchange
overfitting for underfitting (as in Example. 4.2). Moving on to the
three corrected estimators F̂0, F̂χ,99, F̂MIC combined with EF, we
observe lower errors and faster convergence, with F̂0 showing the
best performance, and F̂MIC being “faster" than F̂χ,99. Lastly, the
reliable F̂0 combined with cOP has higher error for smaller number
of samples, but performs well in terms of convergence speed and
“catches" up. Note that X ∈ I are uniform, and EF meets this
requirement. The cOP with c = 5, c = 2, considers only one equal-
frequency partition, that of QEF

5 , which cannot be supported for
small n due to the correction.

Now let us briefly focus on averages over different configura-
tions. Note that all p (i ) , i ∈ [90], are different models and for the
following figures, one should focus mainly on the convergence
speed comparison between two plots. In Fig. 4 we show the results
averaged over the 45p (i ) corresponding to the additional non-linear
layer in the functional relationship, i.e., h = nlin (right), and over
the 45 p (i ) with h = lin (left). Between the two, we observe that con-
vergence speeds are better for the case h = lin, as expected. We also
see that EF performs well in both cases. Surprisingly, FMDL does
not monotonically converge for h = hlin. Moving on, we average
over the 30 p (i ) where there is only one explanatory variable, i.e.,
e = 1, and the 30 p (i ) with e = 3. Additionally, we average over the
30 p (i ) with target domain size V (Y ) = 2, i.e., d = 2, and the 30 p (i )
with d = 10. Due to limited space, Fig. 7 and Fig. 8 corresponding
to the former and latter, are found in the Appendix. We report that
methods are robust against number of explanatory variables, but
there is over fitting for V (Y ) = 2. Here, the dependency is “easier"
to infer and estimators select supersets X′ of X∗, and although
F (X∗;Y ) = F (X′;Y ), on the sample there is overestimation.

Overall, we see that correction for FDD is necessary, improving
the performance over the plug-in. The reliable F̂0 shows the best
performance with EF that accurately fits the uniform data I. Com-
bined with cOP that for l = 5, c = 2, considers mostly non-uniform
partitions, the error is higher for small n, but the convergence is
fast. The EF should be preferred when assumptions are met, e.g,
uniform independent input, and cOP for exploratory scenarios.
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Figure 4: Absolute estimation error averaged across all p (i )

with (right) and without (left) the non-linear layer

6.2 Discovery performance

Here, we perform FDD on benchmark data from the KEEL data
repository [1]. In particular, we use all classification datasets with
mixed and continuous input attributes I and no missing values,
resulting in 29 datasets with 25000 and 30 rows and columns on
average, respectively. There are 12, 6, and 2, continuous, ordinal dis-
crete, and nominal attributes, respectively, on average per dataset,
all summarized in Tab. 1 in the Appendix. We employ the two algo-
rithms BnB andGreedy (Sec. 5) to retrieve the top solutionX∗ ⊆ I,
both combined with EF and cOP for l = 5, c = 2. To increase the
difficulty, the ordinal discreteD ∈ I per dataset are also partitioned
when V (D) ≥ l . For BnB, and for each of EF and cOP, we set α
to be the highest possible in increments of 0.05, such that they
terminate in less than 1 hour. For BnB, we report in Tab. 1 the α
values, the runtime, the size |X∗ | of the solution, and the value
F̂0 (X∗;Y ). Similarly for Greedy, we report runtime and F̂0 (X∗;Y ).
The runtimes are averaged over 3 independent executions. This
experiment is executed on an Intel Xeon E5-2643 v3 with 256 GB
memory. Our Java code is online for research purposes.1

We start withBnB andα values. For both EF and cOP, the average
α value for BnB to complete in ≤ 1 hour is 0.81. There are 14
datasets for EF and 15 for cOP with α = 1, which corresponds
to an exact solution, while there are 6 datasets for both with α ∈
[0.8, 1). Here, we see that both methods offer good guarantees with
a budget of 1 hour. Regarding the cardinality |X∗ | of the solutions,
for EF they have size 3.8 on average, while for cOP 3.5. Again,
the two partitioning techniques show similar performance, with
cOP returning slightly smaller sets. We hypothesize this is due to
the ability of cOP to better adapt on data, and hence extract more
information with fewer attributes. Time-wise, EF and cOP require
599 and 743 seconds on average. The cOP is slower, as expected.
Finally, the average quality of the solution is 0.52 and 0.53 for EF
and cOP, respectively, with cOP recovering 1% more information
by considering more candidate partitions. The greedy algorithm
is efficient, with EF requiring 51 seconds on average and cOP 43.
Interestingly, the quality of the solutions are higher than BnB, with
0.53 and 0.55 on average for EF and cOP, respectively. In fact, the
solutions of Greedy have roughly the same quality as those of BnB
for high α values, while for smaller α Greedy has better quality.

Overall, we observe that both algorithms BnB and Greedy, with
both partitioning techniques EF and cOP, are very effective in
practice. For truly exploratory scenarios, cOP should be preferable
1https://github.com/pmandros/fodiscovery
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Figure 5: Partitions on two clustering datasets in R2. The tar-
get Y is the cluster assignment (colored). (Sec. 6.3)

over EF, unless the assumptions on the data distributions are met
by EF. The branch-and-bound algorithm should be used whenever
solution guarantees are required. The greedy algorithm, however,
is very efficient and hence a better candidate for larger datasets. In
addition, it shows good performance in terms of solution quality.

6.3 Qualitative analysis

Here, we present the resulting partitions from estimating mutual
information on clustering datasets in R2, where the target Y is the
cluster assignment [5]. We denote the variables corresponding to x
and y-axis with C1 and C2, respectively. We use the reliable Î0 with
optimal (cOP) and equal frequency (EF) partitioning, and ÎMDL with
EF. For both cOP and EF we set the maximum number of bins l to
10, and use c = 3 in order to have 30 initial equal-frequency bins for
cOP. This allows to investigate whether Î0 overfits by having access
to more candidate partitions. For all methods, C1 is discretized first
for better comparison. We present the results in Fig. 5.

The first dataset has 15 clusters. The Î0 with both cOP and EF
results in the same partition in 40 bins, while ÎMDL in 16. Here, Î0
performs well at separating the clusters, but ÎMDL underfits with
bins corresponding in the upper-middle area having points from
3 and 4 different clusters. The second dataset has 2 clusters. The
Î0, cOP, configuration with 20 bins in R2 perfectly separates the
clusters, while with EF there are 45 bins. The ÎMDL has good perfor-
mance with 15 cells and one non-pure region. In addition to these,
we used Îχ,99 with EF, Îpl with cOP, and ÎMIC. Due to limited space
we do not show the results. We report that Îχ,99 has identical results
with Î0 and EF, Îpl partitions with the maximum number of bins,
while ÎMIC selects an overly refined partition for C1, and mostly 2
bins for C2. Overall, we see that Î0 results in good partitions for
both EF and cOP. For the latter in particular, there is better class
separation with less bins. This indicates that Î0 with cOP selects
good partitions, without overfitting on larger spaces of candidates,
and can better adapt on more “exotic" distributions. For EF, both Î0
and Îχ,99 select finer-grained partitions, while ÎMDL is conservative.
The Îpl with cOP and ÎMIC under-perform, as expected.

https://github.com/pmandros/fodiscovery
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7 RELATEDWORK

Variants to our FDD problem include functional dependencies for
datamanagement [19] andMarkov blanket discovery [27]. However,
unlike the former here we aim to identify dependencies that hold
on the level of the data generating distribution p (I,Y ), and not
with regards to the particular dataset D [8]. Moreover, we are not
limited in distributions that can be faithfully represented by a DAG,
making our variant more general than standard Markov blanket
approaches and well-suited for EDA. However, our results on mixed
data estimation are of interest to both communities.

Regarding mutual information estimation, proposed estimators
consider mainly the purely discrete and continuous cases. The dif-
ferent families include the discrete [11, 15, 28], while for continuous
there is adaptive partitioning [4, 24], k-NN [2, 13], and kernel den-
sity estimation [6, 18]. For mixed data, the state-of-the-art k-NN [7]
based on the Radon-Nikodym derivative is applicable for multivari-
ate mixtures. None of the above, however, fits to our mixed data
FDD scenario. The continuous estimators are defined for Euclidean
spaces, where nominal attributes cannot be trivially embedded.
Moreover, given purely discrete data, the Radon-Nikodym method
recovers the plug-in estimator which trivially fails the FDD task.

Regarding exact algorithms for FDD, Vinh et al. [28] propose an
algorithm for Îχ,α that bounds the maximum level of the search
space, but unlike branch pruning, all candidates up to that level
are evaluated and is hence infeasible for large I. Pennerath [20]
proposes an efficient algorithm for top-k search with large k .

8 DISCUSSION

We focus on the maximum number of partitions l . The various sub-
linear to n criteria discussed in this paper, e.g. log2 (n), correspond
to methods that consider univariate pairs. On the one hand, naively
extending these for each C ∈ C can lead to an exponential increase
of partitions in the |C|-dimensional space with each data point
falling in one hypercube, violating therefore consistency even for
optimal estimators (Thm. 3.3). For example, let us assume n = 10000.
We have l ≈ 13, and we can already for |C| = 4 arrive one point
per hypercube. On the other hand, a more appropriate way would
be to set log2 (n) as the maximum number of hypercubes allowed
in R |C | , but this can be very conservative–in our example, it would
mean to place 10000 data points in 13 hypercubes, regardless of |C|.
Note that these calculations are done independently ofD that only
exacerbates this behavior. For our purposes, we instead considered
a fixed l , e.g., 5. This way, and combined with a corrected estimator,
we better control for the aforementioned problems.While one could
potentially derive a joint criterion accounting for both |X| and n,
we did not consider this investigation here.

9 CONCLUSION

We considered the task of reliable functional dependency discovery
from mixed data. We proposed a mixed mutual information estima-
tor framework based on the theoretical process of random variable
quantization. We demonstrated how it can be applied for the task
of FDD, and instantiated it with the reliable fraction of information.
Lastly, we gave algorithms for exact, approximate, and heuristic
search. For future work, it would be interesting to consider gen-
eralized linear models with correlated explanatory variables, e.g.,

Gaussian with non-diagonal covariance matrix. That would high-
light the importance of the joint discretization our framework con-
siders. Moreover, adaptive partitioning could be applicable, which
would allow to consider a different class of candidate partitions.
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Table 1: Datasets used in Sec. 6.2. Number of attributes is subdivided in to real, integer, and nominal. With / we separate the

results for EF (left) and OP (right). The α column corresponds to the highest possible α value such that BnB terminates ≤ 1
hour. The cardinality of the solution is column |X∗ |. Last two columns is the score for X∗ by BnB and Greedy, respectively.

time(s) F̂0 (X∗;Y )

dataset #attr. (r/i/n) #rows #classes α |X∗ | BnB Greedy BnB Greedy

australian 14 (3/5/6) 690 2 1.00/1.00 5/5 26/25 1/2 0.57/0.56 0.57/0.55
coil2000 85 (0/85/0) 9822 2 0.05/0.05 1/1 1/1 75/38 0.06/0.06 0.14/0.14
fars 29 (5/0/24) 100968 8 0.65/0.65 2/2 4/2 49/43 0.66/0.66 0.68/0.68
german 20 (0/7/13) 1000 2 0.80/1.00 7/6 3040/3065 5/5 0.22/0.21 0.21/0.21
heart 13 (1/12/0) 270 2 1.00/1.00 4/4 8/9 1/2 0.42/0.42 0.43/0.42
ionosphere 33 (32/1/0) 351 2 1.00/1.00 3/3 549/962 1/5 0.61/0.64 0.59/0.66
kddcup 41 (26/0/15) 494020 23 0.95/0.95 2/2 159/122 706/412 0.96/0.97 0.99/0.99
letter 16 (0/16/0) 20000 26 0.95/0.95 5/4 1220/1914 204/122 0.61/0.61 0.62/0.61
lymph. 18 (0/13/5) 148 4 1.00/1.00 4/5 63/85 1/1 0.49/0.48 0.49/0.48
magic 10 (10/0/0) 19020 2 1.00/1.00 5/4 118/435 7/35 0.43/0.43 0.43/0.43
move_libras 90 (90/0/0) 360 15 0.85/0.90 3/2 2043/3183 66/90 0.36/0.36 0.38/0.36
optdigits 64 (0/64/0) 5620 10 0.35/0.45 2/3 16/132 128/122 0.36/0.46 0.59/0.54
page_blocks 10 (4/6/0) 5472 5 1.00/1.00 4/5 58/70 3/8 0.65/0.73 0.65/0.73
penbased 16 (0/16/0) 10992 10 1.00/1.00 5/4 1228/1784 17/28 0.78/0.76 0.78/0.77
ring 20 (20/0/0) 7400 2 0.45/0.35 5/6 1819/777 27/18 0.30/0.35 0.30/0.48
satimage 36 (0/36/0) 6435 7 0.80/0.80 4/4 988/1861 69/104 0.74/0.75 0.73/0.74
segment 19 (19/0/0) 2310 7 1.00/1.00 3/3 153/197 6/9 0.86/0.86 0.86/0.87
sonar 60 (60/0/0) 208 2 0.70/0.70 4/3 435/1808 3/10 0.45/0.41 0.45/0.40
spambase 57 (57/0/0) 4597 2 0.50/0.30 4/3 383/180 15/38 0.50/0.33 0.66/0.57
spectfheart 44 (0/44/0) 267 2 0.65/0.65 3/3 938/1747 4/14 0.34/0.37 0.34/0.33
texture 40 (40/0/0) 5500 11 0.80/0.80 4/4 409/765 46/50 0.76/0.75 0.73/0.77
thyroid 21 (6/15/0) 7200 3 0.55/0.85 3/4 18/24 4/4 0.55/0.85 0.55/0.85
twonorm 20 (20/0/0) 7400 2 0.60/0.20 6/5 1414/200 26/24 0.46/0.20 0.46/0.41
vehicle 18 (0/18/0) 846 4 1.00/1.00 4/3 1275/872 4/10 0.48/0.50 0.49/0.49
vowel 13 (10/3/0) 990 11 1.00/1.00 3/3 12/19 5/5 0.45/0.49 0.47/0.49
wdbc 30 (30/0/0) 569 2 1.00/1.00 5/2 373/286 2/8 0.81/0.82 0.82/0.82
wine 13 (13/0/0) 178 3 1.00/1.00 2/2 1/1 1/1 0.76/0.79 0.74/0.79
wine_red 11 (11/0/0) 1599 11 1.00/1.00 5/4 158/256 12/16 0.21/0.22 0.22/0.23
wine_white 11 (11/0/0) 4898 11 1.00/1.00 5/4 481/779 11/24 0.20/0.19 0.19/0.19
avg. 30 (12/6/2) 25000 7 0.81/0.81 3.8/3.5 599/743 51/43 0.52/0.53 0.53/0.55

APPENDIX

Optimal substructure proof (Theorem 6.1)

Proof. Let us assume w.l.o.g. that f (m, l ) corresponds to parti-
tion π∗ = {S1, . . . , Sl } of l bins, and V (Xπ ∗ ) = {x1, . . . ,xl }. We use
c j =

∑j
i=1 nxi for j ∈ [l], and nσ denotes the empirical count after

a permutation σ ∈ Sn for Y . We have f (l ,m) =

− 1
n!
∑
σ ∈Sn

∑
y∈Y

∑
д∈G

l∑
i=1

nσyдxi
m

log
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nyдxi
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−
∑
y∈Y

∑
д∈G

l−1∑
i=1

nyдxi
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log
nyдxi
nдxi

)

− m−cl−1
mn!
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σ ∈Sn

∑
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∑
д∈G

nσyдxl
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−
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m

Î0 (G,Xπ ∗\{Sl } ;Y | 1, cl−1)

+
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m
Î0 (G ;Y | cl−1 + 1,m)

=
cl−1
m

f (l−1, cl−1) +
m−cl−1

m
Î0 (G ;Y | cl−1 + 1,m) ,

where the last equality holds, otherwise we could increase f (l ,m)
with a different partition for the first cl−1 points. Hence, for l ,m > 1
we arrive at the following optimal substructure recursive relation

f (l ,m) = max
1≤i<m{

i

m
f (l−1, i ) + m−i

m
Î0 (G ;Y | i + 1,m)} .

□

Table 2: Analytic expressions of phe,d (Y | I) (Sec. 6.1)

Parameters Analytic expressions
h = lin,d = 2,Y = 1 1

1+e−(α0+
∑4
j=1 αj Xj )

h = nlin,d = 2,Y = 1 1
1+e−(β0+

∑3
i=1 βi

∑4
j=1 αj,iдi (Xj )

h = lin,d ∈ {5, 10},Y = q e
α0,q+

∑4
j=1 αj,qXj∑d

z=1 e
α0,z+

∑4
j=1 αj,zXj

h = nlin,d ∈ {5, 10},Y = q e
β0,q+

∑3
i=1 βi,q

∑4
j=1 αj,iдi (Xj )∑d

z=1 e
β0,z+

∑3
i=1 βi,z

∑4
j=1 αj,iдi (Xj )
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Figure 6: Example data sampled for experiment of Sec. 6.1,

with 10 classes, 2 explanatory variables, n = 2560 data points

Estimator performance additional material

Table 2 shows the analytic expressions of phe,d (Y | I) for the p (i )
used in Section 6.1. By sampling α , β , one can compute F (I;Y )
by integrating. Fig. 6 shows two data sampled for this experiment.
In Fig. 7 and Fig. 8 we show the curves averaged for different
configurations. In Fig. 8 and for d = 2 (left), we do not show F̂MIC
as it could not terminate due to the scale of the experiment.
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Figure 7: Absolute estimation error averaged across all p (i )

with one (left) and three (right) explanatory variables
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Figure 8: Absolute estimation error averaged across all p (i )

with target domain size V (Y ) = 2 (left), and 10 (right)

Dominated convergence for infinite V (D) (Sec. 3)
Following is a counterexample where hk (d ) is not bounded by
such a a(d ), but H (C | D = d ) is uniformly bounded. Let V (D) =
Z+,V (C ) = [0, 1] and consider the conditional density f (c | d ) =
γ1c<[d−1,d−1+e−d ) + (ed − e2d (c − d−1))/d1c ∈[d−1,d−1+e−d ) where
γ makes it a valid pdf. We pick the left end-point for the Rie-
mann approximations. Then, for k = d we have that hk (d ) =
(d−1)/dγ log(γ ) + 1/d (ed/d ) log(ed/d ) ≈ ed/d . However, H (C | D =
d ) = 1

1−e−d γ log(γ )+
∫ e−d
0 e2d = 1

1−e−d a log(a)−
1
4d −

loд (d )
2d . If we

pick p (d ) ∝ 1/d2, there is no upper bound a(d ) ≥ maxk hk (d ) ≥
ed/d such that ∑d p (d )a(d ) < ∞. In particular, ∑p (d )hk (d ) ≥
p (k )hk (k ) = ek/k3 so that limk

∑
d p (d )hk (d ) does not exist.

Additional proof required for Theorem 4.2

We have βQ,Q ′ (D,D ′)
=
∑
d∈D

∑
d
′∈D′

p (d,d′)
∑
i=1

∑
j=1

δiδ
′
j fC,C′ (ci , cj | d,d′) log(δiδ ′j )

=
∑
d∈D

∑
d
′∈D′

p (d,d′)
∑
i=1

δi fC (ci | d,d′) log(δi )

+
∑
d∈D

∑
d
′∈D′

p (d,d′)
∑
j=1

δ ′j fC′ (cj | d,d′) log(δ ′j ) .

Let us focus on the first term, for which we have∑
d∈D

p (d)
∑
i=1

δi log(δi )
∑

d
′∈D′

p (d′ | d) fC (ci | d,d′)

=
∑
d∈D

p (d)
∑
i=1

δi log(δi ) fC (ci | d) ,

which is the βQ (D). Similarly, the second term is βQ ′ (D ′), and
therefore βQ,Q ′ (D,D ′) = βQ (D)+βQ ′ (D ′), concluding the proof.
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