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Abstract Given a database and a target attribute of interest, how can we
tell whether there exists a functional, or approximately functional dependency
of the target on any other set of attributes in the data? How can we reliably,
without bias to sample size or dimensionality, measure the strength of such a
dependency? And, how can we efficiently discover the exact or approximate
top-k dependencies? These are the questions we answer in this work.

To meaningfully measure the degree of dependency, we adopt an information-
theoretic approach and propose a non-parametric and reliable estimator for
mutual information that is well-suited for optimization in high-dimensional
data. We then systematically explore the algorithmic implications of using this
measure for optimization. We show that the problem is NP-hard, justifying
worst-case exponential-time as well as heuristic search methods. We derive
two bounding functions for the proposed estimator, enabling for the first time
the discovery of functional dependencies from data with guarantees of opti-
mality. Empirical evaluation shows that the estimator has desirable statistical
properties, the bounding functions lead to effective search algorithms, and
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when combined, qualitative experiments show that the functional dependency
framework indeed discovers meaningful dependencies.

Keywords information theory · knowledge discovery · approximate functional
dependency · pattern mining · algorithms · branch-and-bound

1 Introduction

Given data over some input attributes I = {X1, . . . , Xd} and target attribute
Y , finding those subsets X ⊆ I that jointly (approximately) determine Y is
a fundamental problem in knowledge discovery. Dependencies like these are
essential for a variety of applications, including in many scientific domains
where scientists are often concerned with finding compact sets of descriptors
that capture the underlying process of phenomena they study [1; 2].

The functional dependency discovery problem can be formulated as
finding the top-k subsets X ∗1 , . . . ,X ∗k ⊆ I with

Q(X ∗i ;Y ) = max{Q(X ;Y ) : Q(X ∗i−1;Y ) ≥ Q(X ;Y ),X ⊆ I} , (1)

where Q is some real-valued measure that quantifies the degree of dependency
of Y on X . For knowledge discovery, it is essential that Q is both an inter-
pretable and statistically robust measure, such that the analyst can understand
the results and trust them to represent aspects of the underlying process.
Moreover, solutions to Eq. (1) need to be exact, or at the very least come
with approximation guarantees, as only with such guarantees we can verify the
absence of dependencies in data.

For categorical input and output variables, the ideal choice for Q is the
information-theoretic measure fraction of information [3; 4; 5]. It is defined
as

F (X ;Y ) =
H(Y )−H(Y | X )

H(Y )
,

where H(Y ) = −
∑
y∈Y p(y) log(p(y)) denotes the Shannon entropy and

H(Y | X ) =
∑

x∈X p(x)H(Y | X = x) the conditional Shannon entropy.
The numerator is the well-known mutual information I(X ;Y ) = H(Y ) −
H(Y | X ). The entropy measures the uncertainty about Y , while the conditional
entropy measures the uncertainty after observing X . The fraction of information
then represents the proportional reduction of uncertainty about Y by knowing
X . It takes values between 0 and 1, and because these extremes have clear
meaning, scores are easily interpretable; F (X ;Y ) = 0 corresponds to statistical
independence, whereas F (X ;Y ) = 1 corresponds to functional dependency.

Estimating mutual information given empirical samples, however, is a
non-trivial task. The standard plug-in estimator Î defined using the empirical
probability induced by the data samples tends to overestimate the actual depen-
dency between X and Y—a behavior known as dependency-by-chance [6].
In the most extreme case, it can indicate a functional dependency even when
X and Y are actually independent in the population (see Figure 1 for an
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example). Since the bias of Î is a function of the domain sizes of variables [7],
the empirical estimator is fully unsuited for use in dependency discovery: during
search we have to soundly compare variable sets of varying dimensionality, and
consequently of widely varying domain sizes. Moreover, there are to the best of
our knowledge no efficient algorithms solving Eq. (1) with mutual information
that provide exact and approximate results.

To obtain a statistically reliable estimator for high-dimensional mutual
information, we propose a correction to the plug-in Î by subtracting its expected
value E0[Î(X ;Y )] under a suitable null hypothesis model. We choose the
non-parametric permutation model [10], resulting in an expected value
computed as the average over all possible sample permutations. The resulting
estimator Î0(X ;Y ) = Î(X ;Y ) − E0[Î(X ;Y )], which we term the reliable
mutual information, not only accounts for dependency-by-chance, but is
also efficiently computed. For the discovery part, we show that maximizing
Eq. (1) with Î0 is NP-hard. To enable efficient exact, approximate, and heuristic
algorithms, we derive two bounding functions for Î0 that can be used with
branch-and-bound and heuristic search to greatly prune the search space.

In this article we build upon and extend our recent work published as
Mandros et al. [8; 9]. In the first of these two papers we introduced the general
problem, a corrected estimator, and a bounding function that allows branch-
and-bound search for the strongest dependencies [8]. In the second paper, we
focused more on the discovery aspect, proved NP-hardness and proposed a
tighter bounding function, and investigated better algorithms for both exact
and heuristic search [9]. In this paper, we present these results in a unified
way that allows for more detail and insight in both the problem and proposed
solutions. In particular, we provide a more comprehensive derivation of our
estimator and formally make the link to non-parametric permutation tests.
We prove that in our setting mutual information is not submodular, which
excludes established approximation guarantees for submodular functions and
heuristic optimization. Last, we provide extensive evaluation of our estimators
to the state of the art, including one that is based on parametric statistics,
and by performing bias, variance, and precision/recall experiments.

Overall, our contributions are the following. We derive a consistent and
reliable estimator for mutual information that alleviates the dependency-by-
chance problems arising from data sparsity (Section 2). This estimator is based
on non-parametric statistics, and hence is well-suited for exploratory tasks.
We accompany the estimator with a set of useful properties that can be used
to develop efficient search algorithms. We then study the algorithmic aspects,
and in particular, show that maximizing the reliable estimator is NP-hard
(Section 3), and derive two effective bounding functions that search algorithms
can use to greatly prune the search space (Section 4). To discover the top
functional dependencies, we propose a branch-and-bound algorithm that comes
with approximation guarantees, and in addition, a fast heuristic algorithm
(Section 5). Last but not least, we perform an extensive evaluation for both
the estimator and algorithms (Section 6). Although we formally show that
the problem is not submodular, in practice the greedy algorithm performs
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Fig. 1: Dependency-by-chance. Estimated fraction of information F (X;Y )
for Y independent of X. Variables X have increasing domain size (4 to 2048),
and we consider a fixed sample size (1000). Estimated dependency increases
for plug-in estimator F̂ , while the corrected-for-chance estimator F̂0 accurately
estimates population value F (X;Y ) = 0.

surprisingly well; it is almost always able to either retrieve the exact solution,
or returns one that in terms of quality is extremely close to the optimum.

2 Reliable mutual information and properties

In this section we derive an estimator for mutual estimator that is well-suited
for functional dependency discovery, and well as provide properties to be used
for optimization. We start with preliminaries and notation.

Let us denote by [n] the set of positive integers up to n. The symbols log
and ln refer to the logarithms of base 2 and e, respectively. We assume a set
of discrete random variables I = {X1, . . . , Xd} and Y is given along with an
empirical sample Dn = {d1, . . . ,dn} of their joint distribution p. For a variable
X we denote its domain, called categories (or distinct values), by V (X) but
we also write x ∈ X instead of x ∈ V (X) whenever clear from the context. We
identify a random variable X with the labeling X : [n] → V (X) it induces
on the data sample, i.e., X(i) = di(X). Moreover, for a set S = {S1, . . . , Sl}
of labelings over [n], we define the corresponding vector-valued labeling by
S(i) = (S1(i), . . . , Sl(i)). With XQ for a subset Q ⊆ [n], we denote the map X
restricted to domain Q.

We define cX : V (X)→ Z+ to be the empirical counts of X, i.e., cX(x) =
|{i ∈ [n] : X(i) = x}|. We further denote with p̂X : V (X) → [0, 1], where
p̂X(x) = cX(x)/n, the empirical distribution of X. Given another random
variable Z, p̂Z |X=x : V (Z)→ [0, 1] is the empirical conditional distribution
of Z given X = x, with p̂Z|X=x(z) = cX∪Z(x,z)/cX(x) for z ∈ Z. However, we use
p̂(x) and p̂(z |x) respectively whenever clear from the context. These empirical
probabilities give rise to the empirical conditional entropy Ĥ(Y |X) =∑
x∈X p̂(x)Ĥ(Y |X = x), the empirical mutual information Î(X;Y ) =

Ĥ(Y )− Ĥ(Y |X), and the empirical fraction of information F̂ (X;Y ) =
Î(X;Y )/Ĥ(Y ). These estimators are also known as plug-in estimators.
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2.1 Reliable mutual information

Intuitively, the reason why Î is unreliable as an estimator for I is that it does
not take into account the confidence in the empirical estimates Ĥ(Y |X = x)
for subsets X ⊆ I. This is particularly profound for the extreme case where
the empirical count cX (x) is equal to 1. In this situation cX∪Y (x, y) = 1 exactly
for one value of y ∈ V (Y ) and, hence, Ĥ(Y |X = x) is trivially equal to 0
independent of the true distribution p. This case is likely to occur for many of
the sampled values for X if the data size n is small compared to the observed
domain of X—even when I(X ;Y ) = 0, which coincides with the highest error,
because then H(Y |X = x) = H(Y ) while Ĥ(Y |X = x) = 0.

The tendency for the plug-in estimator Î to overestimate is more formally
explained by the bias result of Roulston [7], where

bias(Î(X ;Y )) =
|V (X ∪ {Y })| − |V (X )| − |V (Y )|+ 1

2n
.

We see that the bias is independent of the actual distribution p, and it depends
solely on the observed domain sizes and the number of samples n. The bias
is high when X and Y combined produce a large domain compared to their
marginal domains and sample size n, and is at the highest when X and Y are
independent in the underlying distribution p, i.e., when I(X ;Y ) = 0.

These observations suggest a correction for the empirical estimator Î by
subtracting its expected value under a suitable null hypothesis model that
takes into account data sparsity. A non-parametric choice for this model is the
permutation model [10, p. 214], arriving at the expected value

E0[Î(X ;Y )] =
1

n!

∑
σ∈Sn

Î(X;Yσ) , (2)

where Sn denotes the symmetric group of [n], i.e., the set of bijections from
[n] to [n], and Yσ denotes the composition of map Y with the permutation
σ ∈ Sn, i.e., Yσ(·) = Y (σ(·)). Essentially, Eq. (2) is the average empirical
mutual information over all possible sample permutations with fixed marginal
counts. With this, the reliable mutual information is defined as

Î0(X ;Y ) = Î(X ;Y )− E0[Î(X ;Y )] ,

and the reliable fraction of information as

F̂0(X ;Y ) = Î0(X ;Y )/Ĥ(Y ) .

This correction is related to permutation tests, where instead of finding
the exact probability of observing more extreme datasets, the average value of
the score over all possible datasets is computed. Intuitively, when it appears
in a sample that F̂ (X ;Y ) is high for a X ⊆ I with a large domain, many
of the permutations will also show high dependency, and hence the bias is
corrected accordingly. From here on we use these quantities interchangeably
since Ĥ(Y ) is just a constant normalization, and we abbreviate the correction
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terms E0[Î(X;Y )] as m0(X,Y, n) and the normalized version as b0(X,Y, n) =
E0[F̂ (X;Y )] = m0(X,Y, n)/Ĥ(Y ).

Regarding the evaluation of Eq. (2), a naive approach with n! possible
permutations is computationally infeasible. However, Vinh et al. [11] show
that the complexity is dramatically reduced by reformulating it as a function
of contingency table cell values and exploiting symmetries. Let the observed
domains of X and Y be V (X ) = {x1, . . . ,xR} and V (Y ) = {y1, . . . , yC},
respectively. We define shortcuts for the observed marginal counts ai = c(X =
xi) and bj = c(Y = yj) as well as for the joint counts ci,j = c(X = xi, Y = yj).
The contingency table c for X and Y is then the complete joint count
configuration c = {ci,j : 1 ≤ i ≤ R, 1 ≤ j ≤ C}. The empirical mutual
information for X and Y can then be computed as

Î(X , Y ) = Î(c) =

R∑
i=1

C∑
j=1

cij
n

log
cijn

aibj
.

Each σ ∈ Sn results in a contingency table cσ. We denote with T = {cσ :
σ ∈ Sn} the set of all such contingency tables. Crucially, all these tables have
the same marginal counts ai, bj , i ∈ [1, R], j ∈ [1, C]. Hence, we can rewrite

m0(X , Y, n) =
∑
cσ∈T

p̂0(cσ)

R∑
i=1

C∑
j=1

cσij
n

log
cσijn

aibj
,

where p̂0(c) is the probability of contingency table c ∈ T . This allows us
to re-order the terms to have a per-cell contribution to m0, rather than per-
contingency-table c ∈ T , i.e.,

m0(X , Y, n) =

R∑
i=1

C∑
j=1

n∑
k=0

p̂0(cσij = k)
k

n
log

kn

aibj
.

Under the permutation model, the empirical counts cσij are distributed hyper-
geometrically, i.e.,

p̂0(cσij = k) =

(
bi
k

)(
n− bi
aj − k

)
/

(
n

aj

)
.

These probabilities can be computed efficiently in an incremental manner
using the support of the hypergeometric distribution, i.e., k is non-zero for
k ∈ [max(0, ai+bj−n),min(ai, bj)], and the hypergeometric recurrence formula

p̂0(k + 1) = p̂0(k)
(ai − k)(bj − k)

(k + 1)(n− ai − bj + k + 1)
.

The complexity for m0 is then O(nmax{|V (X )|, |V (Y )|}) [12]. Moreover, the
computation can be done in parallel for each individual cell.

In addition to being computationally efficient, the resulting reliable depen-
dency score F̂0(X ;Y ) = F̂ (X ;Y )− b0(X , Y, n) satisfies several other properties.
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First of all, it is indeed a consistent estimator of F . In particular, Vinh et
al. [13] show that limn→∞ m̂0(X , Y, n) = 0, and together with the consistency
of the plug-in F̂ [14], we have that limn→∞ F̂0(X ;Y ) = F (X ;Y ). Moreover,
F̂0(X ;Y ) remains upper-bounded by 1, although this value is only attainable
in the limit case n→∞ (for true functional dependencies). Most importantly,
contrary to the naive estimator, we have that F̂0 approaches zero1 as the
empirical domain V (X ) increases relative to the data size n. We show this by
proving the monotonicity of m0 with respect to the subset relation.

Theorem 1 Given two sets of variables X ,X ′ with X ⊆ X ′ ⊆ I, then
m0(X , Y, n) ≤ m0(X ′, Y, n), i.e., the expected value under the permutation
model is monotonically increasing with respect to the subset relation.

Proof Using the chain rule of information and that mutual information is
non-negative [15, Chapter 2], we have that I(X ;Y ) ≤ I(X ′;Y ). Then for
each σ ∈ Sn it holds that I(X ;Yσ) ≤ I(X ′;Yσ), and hence

∑
σ∈Sn Î(X ;Yσ) ≤∑

σ∈Sn Î(X ′;Yσ), which concludes the proof. �

Theorem 1 states that m0(X , Y, n) can indeed penalize spurious dependencies
that appear with high dimensional X ⊆ I, justifying therefore the adjective
reliable for the two estimators. In the following section, we couple the above
information-theoretic quantities with relations for empirical attributes.

2.2 Specializations and Labeling Homomorphisms

Since we identify sets of random variables with their corresponding sample-
index-to-value map, they are subject to the following general relations of maps
with common domains.

Definition 1 Let A and B be maps defined on a common domain N . We say
that A is equivalent to B, denoted as A ≡ B, if for all i, j ∈ N it holds that
A(i) = A(j) if and only if B(i) = B(j). We say that B is a specialization
of A, denoted as A � B, if for all i, j ∈ N with A(i) 6= A(j) it holds that
B(i) 6= B(j).

A special case of specializations is given by the subset relation of variable
sets, e.g., if X ⊆ X ′ ⊆ I then X � X ′. The specialization relation implies
some important properties for empirical probabilities and information-theoretic
quantities.

Proposition 1 Given variables X,Z, Y, with X � Z, the following statements
hold:

a) there is a projection π : V (Z)→ V (X), s.t. for all x ∈ V (X), it holds that
p̂X(x) =

∑
z∈π−1(x) p̂Z(z)

1 In fact, it is principally not lower bounded by 0 since m0 can be larger than Î. These
cases strongly indicate independence.
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b) Ĥ(X) ≤ Ĥ(Z)
c) Ĥ(Y |Z) ≤ Ĥ(Y |X)
d) Î(X;Y ) ≤ Î(Z;Y )

Proof Let us denote with p and q the p̂X∪Y and p̂Z∪Y distributions respectively.
Statement a) follows from the definition. For b), we define h(x) = −p(x) log p(x)
for x ∈ X, and similarly h(z) for z ∈ Z. We show that for all x ∈ X,
h(x) ≤

∑
z∈π−1(x) h(z). The statement then follows from the definition of Ĥ.

We have

h(x) = −p(x) log p(x)

= −

 ∑
z∈π−1(x)

q(z)

 log

 ∑
z∈π−1(x)

q(z)


= −

∑
z∈π−1(x)

q(z) log

 ∑
s∈π−1(x)

q(s)


≤ −

∑
z∈π−1(x)

q(z) log q(z) =
∑

z∈π−1(x)

h(z) ,

where the inequality follows from the monotonicity of the log function (and
the fact that q(z) is positive for all z ∈ Z).
c) Let us first recall the log-sum inequality [15, p. 31]: for non-negative numbers
a1, a2, . . . , an and b1, b2, . . . , bn,

n∑
i=1

ai log
ai
bi
≥
( n∑
i=1

ai

)∑n
i=1 ai∑n
i=1 bi

, (3)

with equality if and only if ai/bi constant. We have

Ĥ(Y |Z) =−
∑

z∈Z,y∈Y
q(z, y) log

q(z, y)

q(z)

(a)
= −

∑
x∈X,y∈Y

∑
z∈π−1(x)

q(z, y) log
q(z, y)

q(z)

(3)

≤ −
∑

x∈X,y∈Y

( ∑
z∈π−1(x)

q(z, y)
) ∑
z∈π−1(x)

q(z, y)

∑
z∈π−1(x)

q(z)

=−
∑

x∈X,y∈Y
p(x, y) log

p(x, y)

p(x)
= Ĥ(Y |X) .

d) We have Î(Z;Y ) = Ĥ(Y ) − Ĥ(Y |Z) ≤ Ĥ(Y ) − Ĥ(Y |X) = Î(X;Y )
following from (c). �
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X1 X2 X3 X4 Y

a a a b a
a b b a b
b c b b b
b c c c b

Table 1: Specialization and homomorphism examples. We have X1 � X2,
X1 - X2, X1 - X3, X1 - X4, X2 - X3. Note that X3 6- X4 as there is no
σ ∈ S4 that satisfies specialization w.r.t. X4 and Y ≡ Yσ

To analyze the monotonicity properties of the permutation model, the
following additional definition will be useful.

Definition 2 We call a labeling X homomorphic to a labeling Z (w.r.t. the
target variable Y ), denoted as X - Z, if there exists σ ∈ Sn with Y ≡ Yσ such
that X � Zσ.

See Tab. 1 for examples of both introduced relations. Importantly, the inequality
of mutual information for specializations (Prop. 1d) carries over to homomorphic
variables and in turn to their correction terms.

Proposition 2 Given variables X,Z, Y, with X - Z, the following statements
hold:

a) Î(X;Y ) ≤ Î(Z;Y )
b) m0(X,Y, n) ≤ m0(Z, Y, n)

Proof Let σ∗ ∈ Sn be a permutation for which Y ≡ Yσ∗ and X � Zσ∗ . Property
a) follows from

Î(Z;Y ) = Î(Zσ∗ ;Yσ∗) = Î(Zσ∗ ;Y ) ≥ Î(X;Y ) ,

where the inequality holds from Prop. 1d). For b), note that for every σ ∈ Sn,
it holds from Prop. 1d) that Î(Zσ◦σ∗ ;Y ) ≥ Î(Xσ;Y ). Hence

m0(Z, Y, n) =
1

n!

∑
σ∈Sn

Î(Zσ;Y )

=
1

n!

∑
σ∈Sn

Î(Zσ◦σ∗ ;Y )

≥ 1

n!

∑
σ∈Sn

Î(Xσ;Y ) = m0(X,Y, n) .

�
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u1 u2

u3 u4

u5

B1 B3

B4 B2

X1 X2 X3 X4 Y

1 1 a 1 1 a
2 a 2 2 a a

S1 3 3 a a a a
4 4 a 4 a a
5 a 5 a 5 a

6 a a a a b
7 a a a a b

S2 8 a a a a b
9 a a a a b
10 a a a a b

11 b c c c c
12 c b c c c

S3 13 c c b c c
14 c c c b c
15 c c c c c

Fig. 2: Base transformation example. Left: a set cover instance U =
{u1, . . . , u5} and B = {B1,B2, B3, B4}. Right: the resulting D15 using
τ1(U,B) (bold indicates the set cover)

3 Hardness of optimization

In this section, we prove the NP-hardness of maximizing F̂0 (and hence Î0)
by providing a reduction from the well-known NP-hard minimum set cover
problem: given a finite universe U = {u1, . . . , un} and collection of subsets
B = {B1, . . . , Bm} ⊆ 2U , find a set cover, i.e., a sub-collection C ⊆ B with⋃
B∈C B = U , that is of minimal cardinality [16, Chap. 16.1]. A partial set

cover C ⊆ B is one where
⋃
B∈C B 6= U .

The reduction consists of two parts. First, we construct a base transforma-
tion τ1(U,B) = Dl that maps a set cover instance to a dataset Dl, such that
the plug-in F̂ is monotonically increasing with coverage, and in particular, set
covers correspond to attribute sets with an empirical fraction of information
score F̂ of 1, and correction terms b0 that are a monotonically increasing
function of their cardinality. In a second step, we calibrate the b0 terms such
that all candidate set covers have a higher F̂0 value than partial set covers. The
latter is achieved by copying the dataset Dl a suitable number of times k such
that the correction terms are sufficiently small but the overall transformation,
denoted τk(U,B) = Dkl, is still of polynomial size. Combining these, we arrive
at a polynomial time reduction, where maximizing F̂0 in Dkl corresponds to
finding a minimal set cover for set cover instance (U,B).

The base transformation τ1(U,B) = Dl is defined as follows. The dataset
Dl contains m descriptive attributes I = {X1, . . . , Xm} corresponding to the
sets of the set cover instance, and a target variable Y. The sample size is
l = 2n + m + 1 with a logical partition of the sample into the three regions
S1 = [1, n], S2 = [n + 1, 2n], and S3 = [2n + 1, l]. The target attribute Y
assigns to data points one of three values corresponding to the three regions,
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i.e., Y : [l]→ {a,b, c} with

Y (j) =


a, j ∈ S1

b, j ∈ S2

c, j ∈ S3

,

and the descriptive attributes Xi assign up to n + 3 distinct values depen-
dending on the set of universe elements covered by set Bi, i.e., Xi : [l] →
{1, 2, . . . , n, a,b, c} with

Xi(j) =


j, j ∈ S1 ∧ uj ∈ Bi
a, (j ∈ S1 ∧ uj 6∈ Bi) ∨ j ∈ S2

b, j = 2n+ i

c, j ∈ S3 \ {2n+ i}

.

See Figure 2 for an illustration.
In a nutshell, the base transformation establishes a one-to-one correspon-

dence between C ⊆ B and variable sets X ⊆ I, which we denote with I(C).
We note the following two remarks. Let us use a for (a, . . . , a), and

⋃
C as a

short-cut for
⋃
B∈C B. We have that S1 and S2 couple the amount of uncovered

elements U \
⋃
C to the conditional entropy Ĥ(Y | I(C) = a) via

p̂(Y = a | I(C) = a) = |U \
⋃
C|/(n+ |U \

⋃
C|) .

In addition, part S3 links the size of C to the number of distinct values of I(C)
on S3, i.e., |C| = V (I(C)S3

)− 1. We now establish three central properties for
the base transformation.

Lemma 1 Let τ1(U,B) = Dl be the transformation of a set cover instance
(U,B), and C, C′ ⊆ B two sets. The following statements hold.

a) If |
⋃
C| ≥ |

⋃
C′|, then F̂ (I(C);Y ) ≥ F̂ (I(C′);Y ), i.e., the plug-in F̂ is

monotonically increasing with coverage, and in particular, C is a set cover
if and only if F̂ (I(C);Y ) = 1,

b) If C is a set cover and C ′ is not, then Î(I(C);Y )− Î(I(C′);Y ) ≥ 2/l.
c) If C and C′ are both set covers, then I(C) - I(C′) if and only if |C| ≤ |C′|.

Proof Statement a) follows from the definition of τ1.
To show b), since F̂ (I(C′);Y ) and thus Î(I(C′);Y ) are monotone in |

⋃
C′|,

it is sufficient to consider the case where |U \
⋃
C′| = 1, i.e., only one element

u ∈ U is uncovered. In this case we have

Î(I(C);Y )−Î(I(C′);Y ) = Ĥ(Y | I(C′))− Ĥ(Y | I(C))︸ ︷︷ ︸
=0

and, moreover, as required

Ĥ(Y | I(C′)) = −p̂(a, a) log p̂(a |a)− p̂(a,b) log p̂(b |a)

= −1

l
log

(
1

n+ 1

)
− n

l
log

(
n

n+ 1

)
≥ 2

l
.
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For c) observe that for variable set X = I(C) corresponding to set cover
C, we have for all i, j ∈ S1 that X (i) 6= X (j). Thus, XS1 ≡ X ′S1

for variable
set X ′ = I(C′) corresponding to set cover C′. Moreover, we trivially have
XS2
≡ X ′S2

. Finally, let Q,Q′ ⊆ S3 denote the indices belonging to S3 where
X and X ′ take on values different from (c, . . . , c). Note that all values in
these sets are unique. Furthermore, if |C| ≤ |C′| then |Q| ≤ |Q′| and in turn
|Q \Q′| ≤ |Q′ \Q|. This means we can find a permutation σ ∈ Sn such that for
all i ∈ Q \Q′ it holds that σ(i) = j with j ∈ Q′ \Q and σ(i) = i for i 6∈ Q∩Q′
(that is σ permutes all indices of non-(c, . . . , c) values of C in S3 to indices of
non-(c, . . . , c) values of C′). For such a permutation it holds that Yσ ≡ Y and
XS3
� X ′S3σ

. Therefore, X - X ′ as required. �

Now, although set covers C ⊆ B correspond to variable sets I(X ) with the
maximal empirical fraction of information value of 1, due to the correction
term, it can happen that F̂0(I(X ′);Y ) ≥ F̂0(I(X );Y ) for a variable set I(X ′)
corresponding to a partial set cover. To prevent this, we make use of the following
upper-bound of the expected mutual information under the permutation model.

Proposition 3 ([13], Thm. 7) For a sample of size n of the joint distribution
of variables A and B having a, b ∈ Z+ distinct values, respectively, we have

m0(A,B, n) ≤ log

(
n+ ab− a− b

n− 1

)
.

Proposition 3 implies that we can arbitrarily shrink the correction terms if
we increase the sample size but leave the number of distinct values constant.
Thus, we define the extended transformation τi(U,B) = Dil through simply
copying Dl a number of i times, i.e., by defining dj = d(j mod l) for j ∈ [l+1, il].
With this definition, we proceed with the NP-hardness result.

Theorem 2 Given a sample of the joint distribution of variables I and Y , the
problem of maximizing F̂0( · ;Y ) over all possible subsets X ⊆ I is NP-hard.

Proof First, let us assume that there exists a number k ∈ O(l) such that w.r.t.
transformation τk, all set covers C ⊆ B and their corresponding variable sets
X = I(C) have correction terms with m0(X , Y, kl) < 2/l. Since all properties of
Lemma 1 transfer from τ1 to τk, this implies that for all variable sets X ′ = I(C′)
corresponding to partial set covers C′ ⊆ B, it holds that

F̂0(X ;Y ) = F̂ (X ;Y )−m0(X , Y, kl)/Ĥ(Y )

> F̂ (X ;Y )− 2/(lĤ(Y ))

≥ F̂ (X ;Y )− (Î(X ;Y )− Î(X ′;Y ))/Ĥ(Y )

= F̂ (X ′;Y ) ≥ F̂0(X ′;Y ) ,

where the greater-than follows from Lemma 1a) and 1b). Thus, all X cor-
responding to set covers have larger F̂0 than partial set covers. Moreover,
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we know that C must be a minimum set cover as required, because for a
smaller set cover C′, we would have I(C′) - I(C) by Lemma 1c), and thus
b0(I(C′), Y, kl) ≤ b0(I(C), Y, kl) from Proposition 2b)—therefore, I(C) would
not maximize F̂0.

Now, to find the number k that defines the final transformation τk, let
Dil = τi(U,B) and C be a set cover of (U,B). Since X = I(C) has at most l
distinct values in Dil and Y exactly 3, from Proposition 3 and the monotonicity
of ln, we have that

ln(2)m0(I(C), Y, n) ≤ ln

(
il + 3l

il − 1

)
≤ ln

(
i+ 3

i− 1

)
≤ 4

i− 1
,

where the last inequality follows from ln(x) ≤ x−1. Thus, for k > 2l/ ln 2+1 ∈
O(l) we have m0(X , Y, kl) < 2/l as required. The proof is concluded by noting
that the final transformation τk(U,B) is of size O(l2m) (where l = 2n+m+ 1),
which is polynomial in the size of the set cover instance. �

4 Admissible bounding functions for effective search algorithms

The NP-hardness established in the previous section excludes the existence of a
polynomial time algorithm for maximizing the reliable fraction of information
(unless P=NP), leaving therefore exact but exponential search and heuristics
as the two options. For both, and particularly the former, reducing the search
space can lead to more effective algorithms. For this purpose, we derive in this
section bounding functions (also called optimistic estimators) for the reliable
fraction of information F̂0 to be used for pruning.

Recall that an admissible bounding function f̄ is an upper bound to the
optimization function value f of all supersets of a candidate solution X ⊆ I.
The value f̄(X ) is called the potential of node X , and it must hold that
f̄(X ) ≥ f(X ′) for all X ′ with X ⊆ X ′ ⊆ I. With this property, all supersets X ′
of X can be pruned if f̄(X ) ≤ f(X ∗), where X ∗ is the best candidate solution
found during search. Therefore, for optimal pruning, the bounding function
has to be as tight as possible. At the same time, it needs to be efficiently
computable. For example, while the ideal bounding function for the reliable
fraction of information would be

f̄ideal(X ) = max{F̂0(X ′;Y ) : X ⊆ X ′ ⊆ I} , (4)

solving Eq. (4) is equivalent to the original optimization problem and hence
NP-hard.

A first attempt for an efficient bounding function involves the upper bound
of the fraction of information (i.e., F = 1) and the monotonicity of the b0
term with respect to the subset relation (Theorem 1). In particular, for all
X ⊆ X ′ ⊆ I, it follows that

F̂0(X ′;Y ) =
Ĥ(Y )− Ĥ(Y | X ′)

Ĥ(Y )
− b0(X ′, Y, n)

≤1− b0(X , Y, n) .
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Hence, we define

f̄mon(X ) = 1− b0(X , Y, n) (5)

to be the monotonicity-based admissible bounding function. Equation (5) is
in practice inexpensive, as one can cache the b0(X , Y, n) term while computing
F̂0(X ;Y ) during search. However, it is potentially loose as it assumes that full
information about the target can be attained, without the “penalty” of an
increased b0 term.

An alternative idea leading to a more principled admissible bounding
function, is to relax the maximum over all supersets to the maximum over all
specializations of X . We define the specialization-based bounding function
f̄spc(X ) through

f̄spc(X ) = max{F̂0(X ′;Y ) : X � X ′} (6)

≥max{F̂0(X ′;Y ) : X ⊆ X ′ ⊆ I} = f̄ideal(X ) .

While Eq. (6) constitutes an admissible bounding function, it is unclear
how it can be efficiently evaluated. To do so, let us denote by R+ the operation
of joining a labeling R with the target attribute Y , i.e., R+ = {R, Y } (see
Table 2 for an example). This definition gives rise to a simple constructive form
for computing f̄spc.

Theorem 3 The function f̄spc can be efficiently computed as f̄spc(X ) =

F̂0(X+;Y ) in time O(n|V (X )||V (Y )|).

Proof We start by showing that the (·)+ operation causes a positive gain in
F̂0, i.e., for an arbitrary labeling R it holds that F̂0(R+;Y ) ≥ F̂0(R;Y ). It is
sufficient to show that Î0(R+;Y ) ≥ Î0(R;Y ). We have

Î0(R+;Y ) =
(
Ĥ(Y ) + Ĥ(R+)− Ĥ(R+, Y )

)
− 1

n!

(∑
σ∈Sn

(Ĥ(Yσ) + Ĥ(R+)− Ĥ(R+, Yσ)

)

=
1

n!

∑
σ∈Sn

Ĥ(R+, Yσ)− Ĥ(R+, Y )

≥ 1

n!

∑
σ∈Sn

Ĥ(R, Yσ)− Ĥ(R, Y ) = Î0(R;Y ) ,

since Ĥ(R+, Y ) = Ĥ(R∪Y, Y ) = Ĥ(R, Y ), and from Proposition 1b), for every
σ ∈ Sn, Ĥ(R+, Yσ) ≥ Ĥ(R, Yσ).

To conclude, let Z be an arbitrary specialization of X . We have by definition
of Z and Z+, that X+ � Z+. Moreover, F̂ ( · ;Y ) = F̂ ({ · } ∪ {Y };Y ) = 1.
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Thus

F̂0(X+;Y ) =F̂ (X+;Y )− b0(X+, Y, n)

=1− b0(X+, Y, n)

≥1− b0(Z+, Y, n)

=F̂0(Z+;Y ) ≥ F̂0(Z;Y ) ,

as required. Here, the first inequality follows from Proposition 1b), the second
from the positive gain of Z+ over Z.

Regarding the complexity, recall that b0(X , Y, n) can be computed in
time O(nmax{|V (X )|, |V (Y )|}). The complexity follows from |V (X+)| ≤
|V (X )||V (Y )|. �

Intuitively, X+ constitutes the most efficient specialization of X in terms
of growth in F̂ and b0 (which is not necessarily attainable by a subset of input
variables). Note that the X+ operation is not computed explicitly since it is
obtained as the non-zero cell counts of the joint contingency table for X and Y
(which has to be computed for F̂0(X ;Y ) anyway). The following proposition
shows that this idea indeed leads to a superior bound compared to f̄mon.

Proposition 4 Let X ⊆ I and ∆ = f̄mon(X )− f̄spc(X ). The following state-
ments hold:

a) ∆ ≥ 0 for all datasets, i.e., f̄spc(X ) ≤ f̄mon(X )
b) there are datasets D4l for all l ≥ 1 s.t. ∆ ∈ Ω(1− 1

log 2l )

Proof a)

f̄spc(X ) =1− b0(X+, Y, n)

≤1− b0(X , Y, n) = f̄mon(X ) ,

where the inequality holds from Proposition 1b) and X � X+.
b) For l ≥ 1 we construct a dataset D4l with two variables X : [4l]→ {a,b}

and Y : [4l]→ [2l], with

X(i) =

{
a, i mod 2 = 1

b, i mod 2 = 0

and Y (i) = di/2e respectively (see Table 2). We have

∆ = 1− b0(X,Y, 4l)− 1 + b0(X+, Y, 4l)︸ ︷︷ ︸
=Ĥ(Y |X+

σ )/Ĥ(Y )=0

=
1

n!

∑
σ∈Sn

Ĥ(Y |Xσ)/Ĥ(Y )

≥ min
σ∈Sn

Ĥ(Y |Xσ)/Ĥ(Y ) .
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X Y X+ Xσ∗

a 1 (a,1) a
b 1 (b,1) a
a 2 (a,2) a
b 2 (b,2) a

...

X Y X+ Xσ∗

...
a 2l-1 (a,2l-1) b
b 2l-1 (b,2l-1) b
a 2l (a,2l) b
b 2l (b,2l) b

Table 2: Construction showing the advantage of bound f̄spc ver-
sus f̄mon. We have f̄spc(X) = 1 − b0(X+, Y, n) = 0 while f̄mon(X) =
1− b0(X,Y, n) ≥ 1− 1/ log(n/2), i.e., all specializations of X that contain full
information about Y are injective (key) maps (see Proposition 4).

One can show that the minimum of the last step is attained by the permutation
σ∗ ∈ Sn with

σ∗(i) =

{
2i− 1, i ∈ [1, 2l]

4l − 2(4l − i), i ∈ [2l + 1, 4l]
,

which corresponds to sorting the a and b values of X (see Table 2). For this
permutation the normalized conditional entropy evaluates to 1− 1/ log(2l) as
required. �

Thus, we have established that f̄spc is tighter than f̄mon, and even that the
difference can be arbitrary close to 1. Put differently, their ratio, and thus the
potential for additional pruning, is unbounded.

Computationally, f̄spc(X ) is more expensive than f̄mon(X ) by a factor of
|V (Y )|. In order to partially alleviate this increase, note that one can first check
the pruning condition w.r.t. f̄mon and only compute f̄spc if that first check
fails. That is, whenever f̄mon(X ) is sufficient to prune a candidate X we can
still do so with the same computational complexity. However, the additional
evaluation of f̄spc(X ) can be a disadvantage in case it still does not allow to
prune. This trade-off is evaluated in Sec. 6.3.

5 Algorithms

In this section we provide two search algorithms, one exponential and one
heuristic, for maximizing the reliable fraction of information. Both make use of
the bounding functions proposed. For simplicity, we solve the top-1 problem,
but both algorithms can be trivially extended to a top-k formulation.

5.1 Exponential search

Branch-and-bound, as the name suggests, consists of two main ingredients,
a strategy to explore the search space and a bound for the optimization
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Algorithm 1 OPUS: Given a set of input variables I, function f , bounding
function f̄ , and α ∈ (0, 1], the algorithm returns the X ∗ ⊆ I satisfying
f(X ∗) ≥ αmax{f(X ′) : X ′ ⊆ I}
1: function OPUS(Q,S)
2: if Q is empty then
3: return S
4: else
5: (X ,Z) = pop(Q)
6: R = {(X ∪ {Z}, Z) : Z ∈ Z}
7: X ∗ = arg max{f(X ′) : X ′ ∈ R ∪ {S}}
8: R′ = {(X ′, Z) ∈ R : αf̄(X ′) > f(X ∗)}
9: Z′ = {Z : (X ′, Z) ∈ R′}

10: [(X1, Z1), . . . , (Xk, Zk)] = sort(R′)
11: Q′ = Q ∪ {(Xi,Z′ \ {Z1, . . . , Zi}) : i ∈ [k])}
12: return OPUS(Q′,X ∗)
13: X ∗ = OPUS({(∅, I)}, ∅)

function at hand (see, e.g., [17, Chap. 12.4]). Besides being very effective in
practice for hard problems, this style of optimization also provides the option
of relaxing the required result guarantee to that of an α-approximation for
accuracy parameter α ∈ (0, 1]. Hence, using α-values of less than 1 allows to
trade accuracy for computation time in a principled manner. Here, we consider
optimized pruning for unordered search (OPUS), an advanced variant
of branch-and-bound that effectively propagates pruning information to siblings
in the search tree [18]. Algorithm 1 shows the details of this approach.

In addition to keeping track of the best solution X ∗ explored so far, the
algorithm maintains a priority queue Q of pairs (X ,Z), where X ⊆ I is
a candidate solution and Z ⊆ I constitutes the variables that can still be
used to refine X , e.g., X ′ = X ∪ {Z} for a Z ∈ Z. The top element is the
one with the smallest cardinality and the highest f̄ value (a combination of
breadth-first and best-first order). Starting with Q = {(∅, I)}, X ∗ = ∅, and a
desired approximation guarantee α ∈ (0, 1], in every iteration OPUS creates
all refinements of the top element of Q and updates X ∗ accordingly (lines 5-7).
Next the refinements are pruned using f̄ and α (line 8). Following, the pruned
list is sorted according to decreasing potential (a “trick” to propagate the
most refinement elements to the least promising candidates [18]), the possible
refinement elements Z ′ are non-redundantly propagated to the refinements
of the top element, and finally the priority queue is updated with the new
candidates (lines 9-11).

5.2 Heuristic search

A commonly used alternative to exponential search for optimizing dependency
measures is the standard greedy algorithm (see [19; 20]). This algorithm only
refines the best candidate in a given iteration. Moreover, bounding functions
can be incorporated as an early termination criterion. For the reliable fraction
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Algorithm 2 GRD: Given a set of input variables I, function f , and
bounding function f̄ , the algorithm returns the X ∗ ⊆ I approximating
f(X ∗) = max{f(X ′) : X ′ ⊆ I}
1: function GRD(C,S)
2: if I \ C is empty or f̄(C) ≤ f(S) then
3: return S
4: else
5: R = {C ∪ {Z} : Z ∈ I \ C}
6: C∗ = arg max{f(X ′) : X ′ ∈ R}
7: X ∗ = arg max{f(X ′) : X ′ ∈ {S, C∗}}
8: return GRD(C∗,X ∗)
9: X ∗ = GRD(∅, ∅)

of information in particular, there is potential to prune many of the higher
levels of the search space. The algorithm is presented in Algorithm 2.

The algorithm keeps track of the best solution X ∗ explored, as well as
the best candidate for refinement C∗. Starting with X ∗ = ∅ and C∗ = ∅, the
algorithm in each iteration (i.e., search space level) checks whether C∗ can be
refined further, i.e., if I \ C∗ is not empty, or if C∗ has potential (the early
termination criterion). If not, the algorithm terminates returning X ∗ (lines
2-3). Otherwise C∗ is refined to all possible refinements, and the best one is
selected as a candidate to update X ∗ (lines 5-7).

Concerning the approximation ratio of the greedy algorithm, there exists a
large amount of research focused on submodular and/or monotone functions,
e.g., [21; 22; 23]. Recall that for a set I = {X1, . . . , Xd}, a function f : 2I → R
is called submodular if for every X ⊆ X ′ ⊆ I and Xi ∈ I \ X ′, it holds that

f(X ′ ∪ {Xi})− f(X ′) ≤ f(X ∪ {Xi})− f(X ) ,

i.e., it satisfies the diminishing returns property. The following proposition
establishes that I, Î, and Î0, are all violating this property.

Proposition 5 Given I = {X1, . . . , Xd} and target variable Y , the mutual
information I, the plug-in Î, and corrected Î0 are not submodular.

Proof We prove it via an intuitive counter example. Let us consider the data
of Table 3 and the corresponding induced empirical distribution p̂. Here B and
C are connected to Y via a XOR function, where Y is marginally independent
of B and C, but functionally dependent on {B,C}. For sets {A}, {A,B}, and
element C, we have that

Î({A,B,C};Y )− Î({A,B};Y ) =0.5

>Î({A,C};Y )− Î({A};Y ) = 0.19 ,

i.e., there is a violation of the diminishing returns property, and hence Î is
not submodular. By considering a distribution p for which we have p = p̂, it is
straightforward to show that I is also not submodular.
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A B C Y

a a a a
a a b b
a b b a
b b a b

Table 3: Example data for non-submodularity of I, Î, Î0.

Regarding Î0, we have that

Î0({A,B,C};Y )− Î0({A,B};Y ) =0.17

>Î0({A,C};Y )− Î0({A};Y ) = −0.17 ,

and hence Î0 is not submodular. Also note that while both Î and I are monotone
functions with respect to the subset relation (Theorem 1), Î0 is not. �

While approximation results for submodular and/or monotone functions are
not applicable to Î0, we empirically evaluate the quality of solutions in Sec. 6.3.2.

6 Evaluation

In this section, we investigate the empirical performance of discovering depen-
dencies with the reliable fraction of information F̂0, including the estimated bias
and variance of F̂0 as an estimator, the consistency of correctly retrieving the
top minimal dependency on synthetic data, the performance of the bounding
functions for both branch-and-bound and greedy search, and two concrete
examples of functional dependencies in real-world datasets.

6.1 Empirical bias and standard deviation

Here, we evaluate the estimated bias and variance of F̂0 for various degrees
of dependency. We do so by creating synthetic data from various models for
which we know the true F . Let us denote by P the set of all joint probability
mass functions over two random variables X and Y with |V (X)| = |V (Y )| = 3,
and by P[a,b] all such probability mass functions for which we have a score of
Fp(X;Y ) ∈ [a, b]. We consider four different dependency score regions: “weak”
P[0,0.25), “low” P[0.25,0.5), “high” P[0.5,0.75), and “strong” P[0.75,1].

Let τ(Dn) be the result of estimator τ computed on data Dn. We denote
with bn(p, τ) and stdn(p, τ) the bias and standard deviation of τ when fixing
the underlying pmf to p ∈ P, i.e., bn(p, τ) = EDn∼p[τ(Dn)] − Fp(X;Y ) and

stdn(p, τ) =
√
EDn∼p[(τ(Dn)− EDn∼p[τ(Dn)])2]. We sample uniformly 100

pmfs p(1), . . . , p(100), 25 from each dependency region. For every p(i) we calculate
the true Fp(i) value and compute the expectation terms by sampling per pmf

p(i) a total of 1000 datasets Dn ∼ p(i) of size n. We average over P[a,b] regions
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Fig. 3: Empirical bias and standard deviation of estimators averaged
over p ∈ P[0,1]. Average bias µn(τ,P[0,1]) (left) and standard deviation

σn(τ,P[0,1]) (right) of estimators τ ∈ {F̂0, F̂adj, F̂ , F̂χ,95, F̂χ,99} for all 100

sampled pmfs p(i) ∈ P[0,1] across different data sizes n.

and end up with estimates µn(τ,P[a,b]) and σn(τ,P[a,b]) for the average bias
and standard deviation of estimator τ and sample size n.

In addition to the plug-in F̂ , we consider two additional estimators.
The first is based on the same correction principle but with a parametric model
and asymptotic values, and particular the χ2 distribution, proposed by Vinh
et al. [24]. This corrected estimator, which we denote as F̂χ,α, is defined as

F̂χ,α(X ;Y ) =
Î(X , Y )− 1

2nχα,l(X ,Y )

Ĥ(Y )
,

where χα,l(X ,Y ) is the critical value corresponding to a significance level 1− α
and degrees of freedom l(X , Y ) = (

∏
X∈X V (X)−1)(V (Y )−1). Here, α can be

thought as a parameter regulating the amount of penalty. The second follows
an alternative correction resulting from the application of the quantification
adjustment framework proposed by Romano et al. [6]. We denote this estimator
by F̂adj, which is defined as

F̂adj(X ;Y ) =
Î(X , Y )− E0[Î(X , Y )]

Ĥ(Y )− E0[Î(X , Y )]
.

For this experiment we consider τ = {F̂0, F̂adj, F̂ , F̂χ,95, F̂χ,99} and n ∈
{5, 10, 20, 30, 40, 50, 60}.2 We expect the small sample sizes for the small domain
size |V (X)| = 3 to behave similar to larger data sizes combined with the
potentially huge domains V (X ) for X ⊆ I occurring during search.

We first focus on the general behavior of the bias and standard deviation
for each estimator τ , and plot in Figure 3 the average bias µn(τ,P[0,1]) and
standard deviation σn(τ,P[0,1]) across different data sizes n. We observe that

the corrected estimator F̂0 exchanges the positive bias of F̂ for a smaller,
negative bias, and has the tendency to underestimate the true dependency for
small n, as desired. Additionally, it converges very fast to 0 with respect to

2 the α values in F̂χ,α are chosen according to Vinh et al. [24]
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Fig. 4: Bias of estimators averaged over p ∈ P[0,0.25) and p ∈ P[0.75,1].
Average bias µn(τ,P[0,0.25)) (left) and µn(τ,P[0.75,1]) (right) of estimators

τ ∈ {F̂0, F̂adj, F̂ , F̂χ,95, F̂χ,99} across different data sizes n.

n. The F̂adj has a very small positive bias, while the F̂χ,α has a large negative
bias and slow convergence that become more profound for increased α.

Regarding the standard deviation, the right plot show that the F̂adj has by
far the largest, which is to be expected as it also has the smallest bias. The plug-
in F̂ also has a large standard deviation that in combination with the relatively
high bias, show that F̂ is not a suitable estimator for functional dependency
discovery. The F̂χ,95, F̂χ,99, and F̂0, have similar standard deviations, with F̂0

being slightly higher for n = 5. In general, estimators achieve better bias by
trading variance, and from Figure 3 we see that in comparison to all estimators,
F̂0 has the best bias for variance trade-off.

It is also interesting to consider the bias behavior not on average for P[0,1],
but specifically for weak and strong dependencies, i.e., the cases where F is
closer to independence and functional dependency respectively, and plot in
Figure 4 the average biases µn(τ,P[0,0.25)) (left) and µn(τ,P[0.75,1]) (right).

Looking at the left plot we see that the reliable fraction of information F̂0 has
a very small negative bias, and F̂ has the largest positive bias and very slow
convergence. Both F̂χ,95 and F̂χ,99 have a large negative bias, particularly F̂χ,99,

while F̂adj is practically unbiased. Regarding strong dependencies, the right

plot shows that both F̂ , F̂adj have a small positive bias, while the rest have

large negative biases for n = 5. For both F̂χ,95 and F̂χ,99 the bias is particularly

high and does not converge fast to 0, unlike F̂0 that does after only n = 10
data samples. From a bias perspective, F̂0 shows the best reliable behavior,
with small and “fast” negative bias across the whole range of dependencies.

With these observations, we can conclude that F̂0 is a suitable estimator
for F , and particularly for exploratory tasks, as it does not require parameters
and parametric assumptions in order to produce results. The F̂adj, although

practically unbiased, has a very large standard deviation. The F̂χ,α has the
ability of regulating the amount of penalty with α, but that requires prior
knowledge about the data. For example, α = 0.99 and α = 0.95 heavily penalize
and can miss dependencies in higher levels. Smaller α values will cause F̂χ,α
to start behaving more like F̂ and overestimate dependencies. The reliable F̂0

does that automatically with the data-dependent quantity E0[Î].
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Fig. 5: Precision, recall, and F1 score for retrieving the minimal
top dependency. Top: Probability tables for a Bayesian network with 5
variables X1, X2, X3, X4, Y, and only one edge X → Y . The fraction of
information for this dependency is 0.25. Middle: Precision and recall of
estimators τ ∈ {F̂0, F̂adj, F̂ , F̂χ,95, F̂χ,99} for retrieving X4 as the top min-
imal dependency, averaged over 1000 sampled data for each sample size
n = {5, 10, 20, 30, 40, 50, 60}. Bottom: The corresponding F1 score.

6.2 Precision, recall, and F1

Next we evaluate the performance of F̂0 in correctly retrieving the minimal
top dependency on synthetic data.

We create a random variable network with input variables I = {X1, X2, X3, X4}
of domain size 3 and a binary target variable Y . The only edge is X4 → Y
with the corresponding probability tables shown in Figure 5. Variables X ∈ I
are uniformly distributed. The minimal top dependency in this network has
score F (X4;Y ) = 0.25, with all other subsets of I, excluding the supersets
of X4, having a score of 0. We are interested in the problem of retrieving
X ∗ = {X4} from sampled data as the top dependency. That is, we want the
solutions sets to contain X4, and at the same time be as small in cardinality
as possible. An appropriate metric to quantify this is the F1 score, which is a
weighted combination of both precision and recall. For example, the top result
X ∗ = {X1, X4} of estimator τ has a recall of 1, precision 0.5, and recall 0.66.
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Like before, we consider τ ∈ {F̂0, F̂adj, F̂ , F̂χ,95, F̂χ,99} and samples sizes
n = {5, 10, 20, 30, 40, 50, 60}, and for each n we sample 1000 datasets according
to the network. Since the number of attributes is small, we use level-wise
exhaustive search. We randomize the order of which candidates are explored in
each level to remove any bias introduced from the deterministic order3. We plot
the average precision, recall, and F1 score, over 1000 data for each estimator
and n in Figure 5.

We see that the F̂0, F̂χ,95, and F̂χ,99, have much better F1 curves than F̂

and F̂adj, with those of F̂0 and F̂χ,99 being the best. The plug-in estimator F̂
almost always retrieves {X1, X2, X3, X4} as a solution for n ≥ 20, and hence
has very high recall but very small precision. For n = 5, 10, the estimate
is already 1 before the last level of the search, and hence F̂ returns proper
subsets of I resulting in slightly higher precision. In other words, F̂ returns
arbitrary solutions. The adjusted F̂adj performs much better than F̂ , but the
large variance does not allow it to compete in terms of precision with the
corrected estimators, and hence has much lower F1 across all n.

We observe again that F̂0 shows good performance. In fact, it has a similar
F1 curve to that of F̂χ,99 that corresponds to a significance level of 1%. At the

same time, Figure 3 suggests that smaller α values for F̂χ,α can lead to better
bias and variance trade-off, but that would harm the F1 score as we can see
for F̂χ,95 at 5%. The reliable F̂0 achieves both high F1 and good bias-variance
trade-off, without the need of any parameter, and hence is much more suitable
for exploratory tasks.

6.3 Optimization performance

We next investigate the optimization performance of the algorithms and bound-
ing functions proposed on real-word data. Our code is available online.4

We consider datasets from the KEEL data repository [25]. In particular, we
use all classification datasets with d ∈ [10, 90] and no missing values, resulting
in 35 datasets with 52000 and 30 rows and columns on average, respectively.
All metric attributes are discretized in 5 equal-frequency bins. The datasets
are summarized in Table 4. The runtimes are averaged over 3 runs.

We use two metrics for evaluation, the relative runtime difference and
the relative difference in number of explored nodes. For methods A and
B, the relative runtime difference on a particular dataset is computed as

rrd(A,B) =
(τA − τB)

max(τA, τB)
,

3 For example, let us assume that the top score for the first level of the search space, i.e.,
all singletons, is < 1. The first candidate from the second level is {X1, X2}. It might be that
for an estimator τ that τ({X1, X2};Y ) = τ({X3, X4};Y ) = 1, and hence the algorithm will
return as a solution {X1, X2} and not {X3, X4} that contains X4, resulting in 0 precision
and recall instead of 0.5 and 1 respectively. Randomization alleviates this issue.

4 https://github.com/pmandros/fodiscovery

https://github.com/pmandros/fodiscovery
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Fig. 6: Evaluating the branch-and-bound optimization. Relative nodes
explored difference (top) and relative runtime difference (bottom) between
methods OPUSspc and OPUSmon. Positive (negative) numbers indicate that
OPUSspc (OPUSmon) is proportionally “better”. The datasets are sorted in
decreasing number of attributes.

where τA and τB are the run times for A and B respectively. The rrd score lies
in [−1, 1], where positive (negative) values indicate that B is proportionally
faster (slower). For example, a rrd score of 0.5 corresponds to a factor of 2
speed-up, 0.66 to a factor of 3, 0.75 to 4 etc. The relative nodes explored
difference rnd is defined similarly. For both scores, we consider (−0.5, 0.5) to be
a region of practical equivalence, i.e., a factor of 2 of improvement is required
to consider a method “better”.

6.3.1 Branch-and-bound

We first investigate the performance of the exponential algorithm by comparing
OPUSspc and OPUSmon, i.e., Algorithm 1 with f̄spc and f̄mon as bounding
functions respectively. For a fair comparison, we set a common α value for
both methods on each dataset by determining the largest α value in increments
of 0.05 such that they terminate in less than 90 minutes. The results can be
found in Table 4.

In Figure 6 we present the comparison between OPUSspc and OPUSmon.
The top plot demonstrates that f̄spc can lead to a considerable reduction of
nodes explored over f̄mon. In particular, 15 cases have at least a factor of 2
reduction, 7 have 4, and there is one 1 with 760. For 20 cases there is no
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Fig. 7: Evaluating f̄spc for heuristic optimization. Relative time difference
between methods GRDspc and GRD. Positive (negative) numbers indicate
that GRDspc (GRD) is proportionally “better”. The datasets are sorted in
decreasing number of attributes.

practical difference. The plot validates that the potential for additional pruning
is indeed unbounded (Sec. 4). In terms of runtime efficiency (bottom plot),
OPUSspc is “faster” in 70% of the datasets. In more detail, and considering
practical improvements, 12 datasets have at least a factor of 2 speedup, 6 have
4, 1 has 266, while only 2 have a factor of 2 slowdown. Moreover, we observe
from the plot (since datasets are sorted in decreasing number of attributes) a
clear correlation between number of attributes and efficiency: the 6 out of 10
datasets with the slowdown are also the ones with the lowest number of features.
We observe in general that both bounding functions, and particularly the f̄spc,
make the branch-and-bound search very effective in practice, requiring a couple
of minutes on average for termination with good approximation guarantees.

In Table 4 we also show the maximum depth and solution depth for
OPUSspc, i.e., how far in the search space the algorithm had to go and

in which level the solution was found. We see that indeed the F̂0 retrieves
solutions small in cardinality, 3.6 on average, which is a reasonable number for
the size of the data considered. The f̄spc on the other hand, with 5.9 maximum
depth level on average, prunes many of the higher levels of the search space,
which explains to a large extend its effectiveness.

6.3.2 Greedy

We now proceed with the evaluation for the heuristic search. We present the
relative runtime differences of GRD and GRDspc, i.e., Algorithm 2 with and
without f̄spc, in Figure 7 (results in Table 4). While the greedy algorithm is
fast, the plot shows that f̄spc indeed improves the efficiency of the heuristic
search, as we find that for 12 datasets there is a speedup of at least a factor of
2, and 8 of at least a factor of 4.

Next, we investigate the quality of the greedy results. Note that this is
possible as we have access to the branch-and-bound results. In Figure 8 we
plot the differences between the F̂0 score of the results obtained by greedy
and branch-and-bound on each dataset. Note that branch-and-bound uses the
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Fig. 8: Evaluating the heuristic algorithm for result quality. Left: dif-
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Algorithm 2 retrieves better solutions when Algorithm 1 uses guarantees α < 1.
Data are sorted in increasing α values.

same α values as with the experiments in Sec 6.3.1, and that we only plot the
non-zero differences in the two plots, left for α = 1, i.e, optimal solutions, and
right for α < 1, i.e., approximate solutions with guarantees.

At a first glance, we observe that there is no difference in 21 out of 35
cases considered, 7 where greedy is better (this of course on the datasets
where α < 1), and 7 for branch-and-bound. Out of the 21 cases where the two
algorithms have equal F̂0, 16 of them have α = 1, i.e., the greedy algorithm is
optimal roughly 45% of the time. Moreover, the cases where branch-and-bound
is better is only by a small margin, 0.03 on average, while greedy “wins” by
0.1 on average. Another observation from the right plot of Figure 8 is that the
largest differences between the two algorithms is for the 3 datasets where the
lowest α values where used, i.e., 0.05, 0.1, and 0.35.

In Figure 9 we consider the relative runtime difference between greedy
and branch-and-bound, i.e., GRDspc and OPUSspc. As expected, the greedy
algorithm is significantly faster in the majority of cases. There are, however, 4
cases where branch-and-bound terminates much faster, which also happen to
coincide with more aggressive α values for branch-and-bound.

6.4 Case studies

We close this section with examples of concrete dependencies discovered in two
different applications: determining the winner of a tic-tac-toe configuration and
predicting the preferred crystal structure of octet binary semi-conductors. Both
settings are examples of problems where elementary input features are available,
but to correctly represent the input/output relation either non-linear models
have to be used or—if interpretable models are sought—complex auxiliary
features have to be constructed from the given elementary features.
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Fig. 9: Evaluating the heuristic algorithm in terms of running time.
Relative time difference between methods GRDspc and OPUSspc. Positive
(negative) numbers indicate that GRDspc (OPUSspc) is proportionally “bet-
ter”. Datasets are ordered in decreasing number of attributes.
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Fig. 10: Tic-tac-toe example. Left: Tic-tac-toe board with input variables
in corresponding board positions, and variables contained in top dependency
marked in red. Right: Number of winning combinations each position is
involved in.

The game of tic-tac-toe [26] is one of the earliest examples of this complex
feature construction problem. Tic-tac-toe is a game of two players where each
player picks a symbol from {x, o} and, taking turns, marks his symbol in an
unoccupied cell of a 3× 3 game board. A player wins the game if he marks 3
consecutive cells in a row, column, or diagonal. A game can end in draw, if the
board configuration does not allow for any winning move. The dataset consists
of 958 end game winning configurations (i.e., there are no draws). The 9 input
variables I = {X1, . . . , X9} represent the cells of the board, and can have 3
values {x, o, b}, where b denotes an empty cell (see Figure 10). The output
variable Y with V (Y ) = {win, loss} is the outcome of the game for player x.

Searching for dependencies reveals as top pattern with empirical fraction of
information F̂ = 0.61 and corrected score F̂0 = 0.45 the variable set

X = {X1, X3, X5, X7, X9}

i.e., the four corner cells and the middle one. This is a sensible discovery
as these cells correspond exactly to those involved in the highest number
of winning combinations (see Figure 10). Knowing the state of these cells
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Fig. 11: Materials Science example. Binary semiconductors that crystalize
as zinkblende (boxes) and rocksalt (circles). Blue and green materials are
correctly classified by subgroup-based prediction model—the involved rules
(annotated) use elements of the top dependency discovered. (source: [1])

provides, therefore, a high amount of information about the outcome of the
game. Moreover, removing a variable results in a loss of a considerable amount
of information, while adding a variable would provide more information, but
also redundancy. That is, the increase of fraction of information would not be
higher than the increase of b̂0.

Our second example is a classical problem from Materials Science [27],
which has meanwhile become a canonical example for the challenge of the
automatic discovery of interpretable and “physically meaningful” prediction
models of material properties [2; 1]. The task is to predict the symmetry or
crystal structure in which a given binary compound semi-conductor material
will crystalize. That is, each of the 82 material involved consist of two atom
types (A and B) and the output variable Y = {rocksalt, zincblende} describes
the crystal structure it prefers energy-wise. The input variables are 14 electro-
chemical features of the two atom types considered in isolation: the radii of the
three different electron orbitals shapes s, p, and d of atom type A denoted as
rs(A), rp(A), rd(A), as well as four important energy quantities that determine
its chemical properties (electron affinity, ionization potential, HOMO and
LUMO energy levels); the same variables are defined for component B.

For this dataset the top dependency with F̂0 = 0.707 and uncorrected
empirical fraction of information F̂ = 0.735 is

X = {rs(A), rp(A)}

i.e., the atomical s and p radii of component A. Again, this is a sensible
finding, since these two variables constitute two out of three variables contained
in the best structure prediction model that can be identified using the non-
linear subgroup discovery approach [1]. Also both features are involved in
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the best linear LASSO model based on systematically constructed non-linear
combinations of the elementary input variables [2]. The fact that not all
variables of those models are identified can likely be explained by the facts that
(a) the continuous input variables had to be discretized and (b) the dataset is
extremely small with only 82 entries, which renders the discovery of reliable
patterns with more than two variables very challenging.

7 Discussion and Conclusions

We considered the problem of measuring and efficiently discovering functional
dependencies from data. We adopted an information theoretic approach, and
proposed a consistent estimator for mutual information suitable for optimization
in high-dimensional data. We proved NP-hardness, and derived two bounding
functions for the estimator to be used for pruning. With these, we can efficiently
discover the optimal, or α-approximate top-k dependencies for the first time
with branch-and-bound. The experimental evaluation shows that the estimator
is well-suited for measuring dependencies in exploratory tasks, the bounding
functions are very effective for both exhaustive and heuristic algorithms, and
that the greedy algorithm provides solutions that are nearly optimal.

While the given reduction from set cover can be extended to show that,
unless P=NP, no fully polynomial time approximation scheme exists, the
possibility for weaker approximation guarantees remains. In particular, the
strong empirical performance of the greedy algorithm hints that F̂0 might have
a certain structure favored by the greedy algorithm, e.g., some weaker form of
submodularity. For instance, it seems worthwhile to explore ideas from Horel
and Singer [28] where a monotone function is e-approximately submodular if
it can be bounded by a submodular function within 1 ± e. Another idea is
that of restricted submodularity for monotone functions [29], where a function
is submodular over a subset of the search space. It might be that the greedy
algorithm only considers candidates where F̂0 is submodular.

For future work, the proposed bounding functions are likely to be applicable
to a larger selection of corrected-for-chance dependency measures, and a general
framework for maximizing reliable measures could be established. Additionally,
it is also of interest to discover functional dependencies from continuous real-
valued data. As entropy has been defined for such data, e.g. differential and
cumulative entropy [30], it is possible to instantiate fraction of information
scores. The question is, whether we can efficiently correct these scores for
chance, and whether optimistic estimators exist that allow for effective search.

References

1. B. R. Goldsmith, M. Boley, J. Vreeken, M. Scheffler, and L. M. Ghiringhelli, “Uncovering
structure-property relationships of materials by subgroup discovery,” New Journal of
Physics, vol. 19, 2017.



30 Panagiotis Mandros et al.

2. L. M. Ghiringhelli, J. Vybiral, S. V. Levchenko, C. Draxl, and M. Scheffler, “Big data
of materials science: Critical role of the descriptor,” Physical review letters, vol. 114,
no. 10, p. 105503, 2015.

3. R. Cavallo and M. Pittarelli, “The theory of probabilistic databases,” in Proceedings of
the 13th International Conference on Very Large Data Bases (VLDB), Brighton, UK,
pp. 71–81, 1987.

4. C. Giannella and E. L. Robertson, “On approximation measures for functional depen-
dencies,” Information Systems, vol. 29, no. 6, pp. 483–507, 2004.

5. M. Reimherr and D. L. Nicolae, “On quantifying dependence: A framework for developing
interpretable measures,” Statistical Science, vol. 28, no. 1, pp. 116–130, 2013.

6. S. Romano, N. X. Vinh, J. Bailey, and K. Verspoor, “A framework to adjust dependency
measure estimates for chance,” in Proceedings of the SIAM International Conference on
Data Mining (SDM), Miami, FL, SIAM, 2016.

7. M. S. Roulston, “Estimating the errors on measured entropy and mutual information,”
Physica D: Nonlinear Phenomena, vol. 125, no. 3, pp. 285–294, 1999.

8. P. Mandros, M. Boley, and J. Vreeken, “Discovering reliable approximate functional
dependencies,” in Proceedings of the 23rd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD ’17, ACM, 2017.

9. P. Mandros, M. Boley, and J. Vreeken, “Discovering reliable dependencies from data:
Hardness and improved algorithms,” in 2018 IEEE International Conference on Data
Mining (ICDM), pp. 317–326, IEEE, 2018.

10. H. Lancaster, The chi-squared distribution. Wiley series in probability and mathematical
statistics. Probability and mathematical statistics, Wiley, 1969.

11. N. X. Vinh, J. Epps, and J. Bailey, “Information theoretic measures for clusterings com-
parison: is a correction for chance necessary?,” in Proceedings of the 26th International
Conference on International Conference on Machine Learning, pp. 1073–1080, ACM,
2009.

12. S. Romano, J. Bailey, N. X. Vinh, and K. Verspoor, “Standardized mutual information
for clustering comparisons: One step further in adjustment for chance.,” in Proceedings
of the 31st International Conference on Machine Learning (ICML), Beijing, China,
pp. 1143–1151, 2014.

13. N. X. Vinh, J. Epps, and J. Bailey, “Information theoretic measures for clusterings
comparison: Variants, properties, normalization and correction for chance,” Journal of
Machine Learning Research, vol. 11, no. Oct, pp. 2837–2854, 2010.

14. A. Antos and I. Kontoyiannis, “Convergence properties of functional estimates for
discrete distributions,” Random Structures & Algorithms, vol. 19, no. 3-4, pp. 163–193,
2001.

15. T. M. Cover and J. A. Thomas, Elements of Information Theory. New York, NY, USA:
Wiley-Interscience, 1991.

16. B. Korte and J. Vygen, Combinatorial Optimization: Theory and Algorithms. Springer
Publishing Company, Incorporated, 5th ed., 2012.

17. K. Mehlhorn and P. Sanders, Algorithms and data structures: The basic toolbox. Springer
Science & Business Media, 2008.

18. G. I. Webb, “Opus: An efficient admissible algorithm for unordered search,” Journal of
Artificial Intelligence Research, vol. 3, pp. 431–465, 1995.

19. I. Guyon and A. Elisseeff, “An introduction to variable and feature selection,” J. Mach.
Learn. Res., vol. 3, pp. 1157–1182, Mar. 2003.

20. G. Brown, A. Pocock, M.-J. Zhao, and M. Luján, “Conditional likelihood maximisation:
A unifying framework for information theoretic feature selection,” J. Mach. Learn. Res.,
vol. 13, pp. 27–66, Jan. 2012.

21. U. Feige, V. S. Mirrokni, and J. Vondrak, “Maximizing non-monotone submodular
functions,” SIAM Journal on Computing, vol. 40, no. 4, pp. 1133–1153, 2011.

22. A. Das and D. Kempe, “Submodular meets spectral: Greedy algorithms for subset
selection, sparse approximation and dictionary selection,” in Proceedings of the 28th
International Conference on International Conference on Machine Learning, ICML’11,
pp. 1057–1064, 2011.

23. A. A. Bian, J. M. Buhmann, A. Krause, and S. Tschiatschek, “Guarantees for greedy max-
imization of non-submodular functions with applications,” in International Conference



Discovering Dependencies with Reliable Mutual Information 31

on Machine Learning (ICML), 2017.
24. N. X. Vinh, J. Chan, and J. Bailey, “Reconsidering mutual information based feature

selection: A statistical significance view,” in Proceedings of the 28th AAAI Conference
on Artificial Intelligence, 2014.
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Table 4: Datasets and results from Section 6
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