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Abstract
We propose a novel method for exploring how
neurons within neural networks interact. In partic-
ular, we consider activation values of a network
for given data, and propose to mine noise-robust
rules of the formX → Y , whereX and Y are sets
of neurons in different layers. We identify the best
set of rules by the Minimum Description Length
principle, as those rules that together are most de-
scriptive of the activation data.To learn good rule
sets in practice, we propose the unsupervised EX-
PLAINN algorithm. Extensive evaluation shows
that the patterns it discovers give clear insight
into how networks perceive the world: they iden-
tify shared and class-specific traits, composition-
ality, as well as locality in convolutional layers.
Moreover, they are not only easily interpretable,
but also super-charge prototyping by identifying
which neurons to consider in unison.

1. Introduction
Neural networks achieve state of the art performance in
many settings. However, how they perform their tasks, how
they perceive the world, and especially, how the neurons
within the network operate in concert, remains largely elu-
sive. While there exists a plethora of methods for explaining
neural networks, most of these focus either on the mapping
between input and output (e.g. model distillation) or only
characterize a given set of neurons, but can not identify
which set to look at in the first place (e.g. prototyping). In
this paper, we introduce a new approach to explain how the
neurons in a neural network interact. In particular, we con-
sider the activations of neurons in the network over a given
dataset, and propose to characterize these in terms of rules
X → Y , where X and Y are sets of neurons in different
layers of the network. A rule hence represents that neurons
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Y are typically active when neurons X are. For robustness
we explicitly allow for noise, and to ensure that we dis-
cover a succinct yet descriptive set of rules that captures the
regularities in the data, we formalize the problem in terms
of the Minimum Description Length principle (Grünwald
& Roos, 2019). To discover good rule sets, we propose
the unsupervised EXPLAINN algorithm and show that the
rules we discover give clear insight in how networks per-
forms their tasks. As we will see, these identify what the
network deems similar and different between classes, how
information flows within the network, and which convolu-
tional filters it expects to be active where. Our rules are
easily interpretable, give insight in the differences between
datasets, show the effects of fine-tuning, as well as super-
charge prototyping as they tell which neurons to consider in
unison.

Explaining neural networks is of widespread interest, and
especially important with the emergence of applications in
healthcare and autonomous driving. In the interest of space
we here only shortly introduce the work most relevant to
ours, while we refer to surveys for more information (Adadi
& Berrada, 2018; Ras et al., 2018; Xie et al., 2020; Gilpin
et al., 2018). There exist several proposals for investigating
how networks arrive at a decision for a given sample, with
saliency mapping techniques for CNNs among the most
prominent (Bach et al., 2015; Zhou et al., 2016; Sundarara-
jan et al., 2017; Shrikumar et al., 2017). Although these
provide insight on what parts of the image are used, they
are inherently limited to single samples, and do not reveal
structure across multiple samples or classes. For explain-
ing the inner working of a CNN, research mostly focuses
on feature visualization techniques (Olah et al., 2017) that
produce visual representations of the information captured
by neurons (Mordvintsev et al., 2015; Gatys et al., 2015).
Although these visualizations provide insight on how CNNs
perceive the world (Øygard, 2016; Olah et al., 2018) it has
been shown that concepts are often encoded over multiple
neurons, and that inspecting individual neurons does not
provide meaningful information about their role (Szegedy
et al., 2013; Bau et al., 2017). How to find such groups of
neurons, and how the information is routed between layers
in the networks, however, remains unsolved.
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An orthogonal approach is model distillation, where we
train easy-to-interpret white box models to mimic the de-
cisions of a neural network (Ribeiro et al., 2016; Frosst &
Hinton, 2017; Bastani et al., 2017; Tan et al., 2018). Rules
of the form (if–then) are easily interpretable, and hence a
popular technique for model distillation (Taha & Ghosh,
1999; Lakkaraju et al., 2017). Existing techniques (Robnik-
Šikonja & Kononenko, 2008; Özbakır et al., 2010; Barakat
& Diederich, 2005) aim for rules that directly map input to
output, rather than providing insight into how information
flows through the network. Tran & d’Avila Garcez (2018)
restrict themselves to Deep Belief Networks only, and for
these propose to mine all sufficiently strong association
rules. As such, their method suffers from the well-known
pattern explosion. In contrast, Chu et al. (2018) propose
to explain NNs by deriving decision boundaries of a net-
work using polytope theory. While this approach permits
strong guarantees, it is limited to very small (< 20 hidden
neurons) piecewise linear NNs. In sum, existing methods
either do not give insight in what happens inside a neural
network, and/or, are not applicable to the type or size of
state-of-the-art convolutional neural networks. Zhang et al.
(2018) show how we can gain insight into convolutional
layers of neural networks by building an explanatory graph
over sets of neurons. In contrast to what we propose, their
method does not elucidate the relation between such filters
and subsequent dense layers, nor to the network output.

Instead, we propose to mine sets of rules to discover groups
of neurons that act together across different layers in feed
forward networks, and so reveal how information is com-
posed and routed through the network to arrive at the output.
To discover rules over neuron activations, we need an un-
supervised approach. While many rule mining methods
exists, either based on frequency (Agrawal & Srikant, 1994;
Bayardo, 1998; Moerchen et al., 2011) or statistical test-
ing (Hämäläinen, 2012; Webb, 2010), these typically return
millions of rules even for small datasets, thus thwarting the
goal of interpretability. We therefore take a pattern set min-
ing approach similar to GRAB (Fischer & Vreeken, 2019),
where we are after that set of rules that maximizes a global
criterion, rather than treating each rule independently. Al-
though providing succinct and accurate sets of rules, GRAB
is limited to conjunctive expressions. This is too restrictive
for our setting, as we are also after rules that explain shared
patterns between classes, and are robust to the inherently
noisy activation data, which both require a more expressive
pattern language of conjunctions, approximate conjunctions,
and disjunctions. We hence present EXPLAINN, a non-
parametric and unsupervised method that learns sets of such
rules efficiently.

2. Theory
We first informally discuss how to discover association rules
between neurons. We then formally introduce the concept
of robust rules, and how to find them for arbitrary binary
datasets, last, we show how to combine these ideas to reveal
how neurons are orchestrated within feedforward networks.

2.1. Patterns of neuron co-activation

Similar to neurons in the brain, when they are active, arti-
ficial neurons send information along their outgoing edges.
To understand flow of information through the network,
it is hence essential to understand the activation patterns
of neurons between layers. Our key idea is to use recent
advances in pattern mining to discover a succinct and non-
redundant set of rules that together describe the activation
patterns found for a given dataset. For two layers Ii, Ij ,
these rules X → Y,X ⊂ Ii, Y ⊂ Ij express that the set
of neurons Y are usually co-activated when neurons X are
co-activated. That is, such a rule provides us local informa-
tion about co-activations within, as well as the dependence
of neurons between layers. Starting from the output layer,
we discover rules between consecutive layers Ij , Ij−1. Dis-
covering overlapping rules between layers X → Y and
Y → Z,X ⊂ Ij , Y ⊂ Ij−1, Z ⊂ Ij−2, allows us to trace
how information flows through the entire network.

Before we can mine rules between two sets of neurons – e.g.
layers – Ii and Ij of a network, we have to obtain its bina-
rized activations for a given data set D = {dk = (sk, ok)}.
In particular, for each sample sk and neuron set Ii, we take
the tensor of activations φi and binarize it to φbi . For net-
works with ReLU activations, which binarize naturally at
threshold 0, we might lose some information about activa-
tion strength that is eventually used by subsequent layers.
This binarization however allows us to derive crisp sym-
bolic, and directly interpretable statements on how neurons
interact. Furthermore, binarization reflects the natural on/off
state of biological neurons, also captured by smooth step
functions such as sigmoid or tanh used in artifical neural
networks. We gather the binarized activations into a dataset
D where each row tk corresponds to the concatenation of
φbi and φbj of Ii and Ij for sk, i.e., tk ∈ D is a binary vector
of length |Ii|+ |Ij |. See Fig. 1 for a toy example.

Next, given binary activation data D, our goal is to find that
set of rules that together succinctly describe the observed
activations. The Minimum Description Length (MDL) prin-
ciple lends itself as an objective to find such sets. MDL
is a statistically well-founded and computable approxi-
mation of Kolmogorov Complexity (Li & Vitányi, 1993).
First introduced by Rissanen (1978), the essential idea is
that the model M∗ ∈ M that best describes data D is
the model that losslessly encodes D using the fewest bits
M∗ = arg minM∈M L (D,M). Here, our model classM
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Figure 1: Overview. For a given network (left), binarized activations are gathered for the layers Ii, Ij for each sample, and
summarized in the binary database D (right). Rules are discovered over D, where a good rule set M is given with at the
bottom right, with rules X → Y , X ∈ Ii, Y ∈ Ij .

is the superset of all possible rules over D, and by MDL we
identify the best model M∗ as the one that compresses the
data best. Traditionally, rule mining is restricted to conjunc-
tions over items, which is not sufficient for our application;
neuron activations tend to be noisy, labels are inherently
mutually exclusive, and hence we consider an extended lan-
guage that allows for partial disjunctions of items (neurons,
labels) and introduce a codelength function L(D,M) to
instantiate MDL for our model class of rule sets.

2.2. MDL for Robust Rules

Our goal is to find a set of rules M that, in terms of de-
scription length L(D,M), best describes a binary database
D = {t | t ⊂ I} that consists of transactions t that are sub-
sets of items I . Each rule is of the formX → Y, X, Y ⊂ I ,
and indicates that Y is strongly associated with, i.e. occurs
mostly in transactions where X is present. We say a rule
X → Y applies to a transaction t iff X ⊂ t and say a rule
holds for t if additionally Y ⊂ t. We indicate these trans-
actions sets as TX = {i | ti ∈ D, X ⊂ ti}, respectively
TY |X = {i | ti ∈ TX , Y ⊂ ti}. Based on these definitions
of rule transaction sets, we can now formally introduce our
codelength function L(D,M).

Baseline model Our base model Mind = {∅ → I |
∀I ∈ I} consists of singleton rules only, i.e. it models
that all items I are generated independently. To send the
n transactions of D using Mind, we simply send for each
item I in which out of all transactions in the database it
appears. We can do so optimally using a log binomial
code, which is given by log

( |T∅|
|TI|∅|

)
= log

(
n
|TI |
)
. To un-

ambiguously decode, the recipient needs to know each
|TI |, which we can optimally encode via the paramet-
ric complexities of the binomials, which are defined as
Lpc (n) = log

(∑n
k=0

n!
(n−k)!k!

(
k
n

)k (n−k
n

)n−k)
, and can

be computed in linear time (Kontkanen & Myllymäki, 2007).
We thus have L(D,Mind) =

∑
I∈I

(
log
(

n
|TI |
)

+ Lpc(n)
)
.

Mind serves as our baseline model, and its singleton rules
are a required part of any more complex model as they
ensure we can always send any data over I.

Non-trivial models A non-trivial model M contains rules
of the form X → Y, X, Y ⊂ I that are not part of Mind.
The idea is that we first transmit the data for where these
non-trivial rules hold, and then send the remaining data
using Mind. To determine where such a rule applies, the
receiver needs to know where X holds, and hence the data
over X needs to be transmitted first. To ensure that we can
decode the data, we only consider models M for which
the directed graph G = (I, E) is acyclic, in which there
exists an edge between two items i1, i2 iff they occur in the
head and tail of a rule, that is E = {(i1, i2) | ∃X → Y ∈
M. i1 ∈ X ∧ i2 ∈ Y }. We thus get a codelength

L(D |M ∪Mind) =

( ∑
X→Y ∈M

log

(
|TX |
|TY |X |

))
+

∑
∅→I∈Mind

log

(
n

|T ′I |

)
,

where T ′I = {t ∈ D | (I ∈ t) ∧ (∀X → Y ∈ M. I ∈
Y =⇒ t 6∈ TY |X)} is a modified transaction set containing
transactions with item I not covered by any non-trivial rule.

In addition to the parametric complexities of the binomial
codes, the model cost of a non-trivial model also includes
the cost of transmitting the non-trivial rules. To transmit a
rule X → Y , we first send the cardinalities of X resp. Y
using the universal code for integers LN (Rissanen, 1983).
For n ≥ 1, this is defined as LN (z) = log∗ z + log c0 with
log∗(z) = log z + log log z + . . . , summing only over the
positive components (Rissanen, 1983). To satisfy the Kraft
inequality up to equality we set c0 = 2.865064. Knowing
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the cardinalities, we can then send the items of X resp. Y
one by one using an optimal prefix code given by L(X) =

−
∑

x∈X log |Tx|∑
I∈I |TI | . For a particular rule X → Y ∈M ,

the model costs for a rule, respectively the full model thus
amount to

L(X → Y ) =LN(|X|) + LN(|Y |)
+ L(X) + L(Y ) + Lpc(|TX |) ,

L(M ∪Mind) =|I| × Lpc(n) + LN(|M |)

+
∑

X→Y ∈M
L(X → Y ) .

We provide an example calculation in Supp. A.1. With these
definitions, we have an MDL score that identifies the best
rule set M∗ for data D as

M∗ = arg min
M∈M

(
L(M ∪Mind) + L(D |M ∪Mind)

)
,

whereM contains all possible rule sets over the items in D.

Robust Rules In real world applications, we need a score
that is robust against noise.The key problem with noisy
data is that a single missing item in a transaction can cause
a whole rule not to hold or apply. To discover rules that
generalize well, we need to explicitly account for noise. The
idea is to let rules apply, and hold, also when some items
of head respectively tail are missing. Specifying how many
items l, and k, out of all items in the rule head, respectively
tail, need to be part of a transaction, we relax the original
rule definition to account for missing items, or in other
words, noise.

Furthermore, as output neurons – the classes – are only
active mutually exclusively, rules need to be able to model
disjunctions. Setting l = 1 and k = 1 means that only one
of the items of head respectively tail need to be present,
thus coincidentally corresponding to a disjunction of items
in the head and tail of the rule X → Y , thus allowing to
model output neurons correctly, and l = |X| and k = |Y |
correspond to the original stringent rule definition. Varying
between the two extremes accounts for varying levels of
noise. The optimal l and k are those that minimize the
MDL score.

To ensure a lossless encoding, we need to make sure that
the receiver can reconstruct the original data. Thus, for
the previously introduced relaxed definition of when rules
hold and apply, we send for each rule the corresponding
number of items l that need to be present for it to apply using
LN(l) bits. Knowing each l, the receiver can reconstruct
where each rule applies. Sending where a rule holds now
leaves the receiver with an approximation of the data. To
be able to reconstruct the actual data, Fischer & Vreeken
(2019) introduced error matrices that when XORed with the
approximation yield the original data. These two matrices

X+
X→Y , and X−X→Y correct for the errors made in the part

where the rule applies and holds, respectively applies but
does not hold. These error matrices are part of the model M
and have to be transmitted with an adapted L(D,M). We
provide examples and a short review how how to adapt the
codelength function in Supp. A.

Complexity of the search To discover rules over the acti-
vations of layers Ii, Ij , we have to explore all rules formed
by subsets of neurons in Ii for the head, combined with any
subset of neurons of Ij for the tail. There exist 2|Ii| × 2|Ij |

such rules, and hence 22
|Ii|+|Ij | distinct models would need

to be explored. Fischer & Vreeken (2019) showed that the
rule set search space does not lend itself to efficient search
as it is neither monotone nor submodular, the counterex-
amples also holding for our model definition. In fact, for
robust rules, we additionally have to consider where rules
should apply respectively hold – optimizing k and l – which
results in approximately 2|Ii|×|Ij |×2

|Ii|+|Ij | models (details
in Supp. A.4). Exhaustive search is therewith infeasible,
which is why we present EXPLAINN, a heuristic algorithm
to efficiently discover good sets of rules.

2.3. Discovering good rule sets with EXPLAINN

EXPLAINN is based on the idea of iteratively refining the
current model by merging and refining already selected rules.
The key insight of the algorithm is that for a rule X → Y to
summarize the data well, also rules X → Y ′ with only part
of the tail, Y ′ ⊂ Y , should summarize well, as all tail items
should be similarly co-occuring with head X . Starting from
the baseline model Mind we iteratively and greedily search
for better models until we can no longer improve the MDL
score. As search steps we consider either introducing a new
rule to M , by taking a good set of items X ⊂ Ii for the
head and a single item A ∈ Ij for the tail and refine the
model to M ′ = M ⊕ {X → A}, seeing if it decreases the
overall MDL costs (Eq. 2.2). Or, we merge two existing
rules r1 = X → Y1 ∈ M and r2 = X → Y2 ∈ M , to
form a new rule r′ = X → Y1 ∪ Y2 and refine the model
to M ′ = M ⊕ {r′} = (M \ {r1, r2}) ∪ {r′}. For a rule r′,
the refinement operator ⊕ is adding the rule r′ = X → Y
to M , and removes the merged rules that led to r′, if any.
Moreover, it updates the singleton transaction lists TA for
all items A ∈ Y , removing all transactions where r′ holds.

To permit scaling up to the size of a typical neural net, we
next discuss how to efficiently search for candidate rules
with heads that can express anything from conjunctions to
disjunctions. Immediately after, we present the full algo-
rithm EXPLAINN for mining high quality rule sets for two
arbitrary sets of neurons (e.g. layers) of a network.
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Searching for candidates A key component of EX-
PLAINN is the candidate generation process, which imple-
ments the two possible steps of generating new and merging
existing rules. Given two layers Ii, Ij , to efficiently discover
rules that are both robust to noise, and may include disjunc-
tively active neurons in the head, we can not enumerate all
possible rule heads for each individual tail neuron, as this
would result in |Ij | × 2|Ii| many rules. Instead, we keep a
listHy for each item y ∈ Ij , storing all head neurons x ∈ Ii
for which y is frequently active when x is active, that is
σx,y =

|Tx∩Ty|
|Tx| > θ, where θ is a confidence threshold. We

consider a rule X → Y to be good, if when neurons X are
active, the neurons Y are also likely to be active, which is
directly represented by the confidence θ. With parameter
µ we account for early decisions on rule merging that later
hinder us to see a more general trend. The lists are sorted
decreasing on σ. We search in each Hy for the rule with
highest gain over all unions of first t = 1 . . . |Hy| neurons
in the list. We add that rule X → y with highest gain to the
candidate list. To compute the gain, we consider all possible
values k = 1 . . . |X| to determine for which transactions
T k
X = {t ∈ D | |X ∩ t| ≥ k} the rule should robustly apply,

where k = 1 corresponds to disjunction and k = |X| to
conjunction of neurons.

For an individual neuron y, such a rule would be optimal,
but, our goal is to discover groups of neurons that act in con-
cert. To this end we hence iteratively merge rules with simi-
lar heads – similar, rather than same, as this gives robustness
both against noise in the data, as well as earlier merging de-
cisions of the algorithm. For two rulesX1 → Y1, X2 → Y2
with symmetric differenceX1	X2 = (X1\X2)∪(X2\X1),
we consider possible candidate rules X1 ∪X2 → Y1 ∪ Y2
and X1 ∩ X2 → Y1 ∪ Y2, iff |X1 	 X2| ≤ µ for some
threshold µ ∈ N. For example, µ = 1 corresponds to the
case that one head has one label more than the other, all
other labels are the same.

Both parameters θ and µ are simple, yet effective runtime
optimizations. The best results with respect to MDL will
always be obtained with the largest search space, i.e. with
θ and µ set to 0, respectively |X1| + |X2|. Besides im-
pacting run-time, many of those rules may be uninteresting
from a user-perspective, µ and θ allow to directly instruct
EXPLAINN to ignore such rules.

EXPLAINN Assembling the above, we have EXPLAINN,
which given two sets of neurons Ii, Ij and a database of
activations of these neurons, yields a heuristic approxima-
tion to the MDL optimal model M∗. By first introducing all
relevant single neuron rules, it then proceeds by iteratively
merging existing rules using the approach described above,
until it can achieve no more gain. For efficiency, we separate
the generation of the new rules from the merging of existing
rules. In practice, this does not harm performance, as we al-

low merging of similar heads and can thus revert too greedy
decisions introduced earlier. Furthermore, by observing that
independent rulesX1 → Y1, X2 → Y2, Y1∪Y2 = ∅ do not
influence each others impact on codelength, we can add all
independent rules with the highest respective gain at once.
We provide pseudocode for candidate generation and the
EXPLAINN algorithm in Supp. A.5.

Complexity of EXPLAINN The generation of new rules
results in time O(n × |Ij | × |Ii|3), by iterating over each
neuron in Ij , and considering each subset of the most
overlapping neurons in Ii, and considering each threshold
k = 1 . . . |Ii| for when the rule should apply, and the factor
n from intersecting transaction lists T to compute the gain.
We can have at most |Ij | generated rules before considering
rule merges, and in every iteration of merging we combine
two rules, reducing the rule set size by 1. In each such step,
we consider |Ij |2 merges, for each of which we compute the
gain considering noisy head and tail. We thus have a worst
case runtime of O(n× |Ij |4 × |Ii|). As MDL ensures we
consider models that tend to be succinct and hence capture
only relevant structure in the data, EXPLAINN is in prac-
tice much faster and easily scales to several thousands of
neurons.

3. Experiments
In this section we empirically evaluate EXPLAINN on syn-
thetic data with known ground truth and real world data to
explore how CNNs perceive the world. Other approaches
to discover patterns based on e.g. frequency measures or
statistical testing have already been shown to yield millions
or billions of rules or patterns, most spurious and redundant,
and many more than anyone would be willing to investi-
gate, see e.g. (Fischer & Vreeken, 2019), we hence focus
on evaluating our method for the task of finding activation
patterns. Here, we look at CNNs as they count towards the
most widespread use of feedforward networks and naturally
lend themselves for visualization, which helps us to interpret
the discovered rules. We compare to traditional prototyp-
ing and activation map approaches on MNIST (LeCun &
Cortes, 2010), and examine which information is used how
to arrive at classification for ImageNet (Russakovsky et al.,
2015). Finally, we investigate the effect of fine-tuning in
transfer learning on the Oxford Flower data (Nilsback &
Zisserman, 2008). The implementation of EXPLAINN is
publicly available.1 For the below experiments, running on
commodity hardware EXPLAINN took minutes for MNIST
and Flower, and up to 6 hours for ImageNet— yielding from
a few hundred up to 3000 rules, for the smaller, respectively
larger networks, and earlier, respectively later layers.

1http://eda.mmci.uni-saarland.de/
explainn/
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Figure 2: Evaluation of rule quality. Top: Performance of EXPLAINN as precision and recall on data with varying number
of planted rules with mutual exclusive head items (left) and co-occurring head items with varying noise (right). 10%
noise corresponds to more noise than signal in the data. We provide the average (bar) and distribution (boxplot) across 10
repetitions. Bottom: Accuracy per class of VGG-S before (yellow) and after (blue) intervention on weights connecting
neurons to class given by a rule, and 90% quantile of accuracies obtained for randomized intervention (red).

3.1. Recovering ground truth

To evaluate how well EXPLAINN can recover the
ground truth from data, we first generate synthetic
binary data sets of 10000 samples and introduce
{10, 50, 100, 200, 300, 500} rules with up to 5 items in
head and tail, respectively. For each rule, the frequency
is drawn from U(.02, .08), the confidence is drawn from
U(.5, 1). We introduce noise by flipping 0.1% of the en-
tries chosen uniformly at random, and add 5 noise features
with frequency equal to those of rules. Fischer & Vreeken
(2019) showed that a similar MDL model works for con-
junctive rules, hence we will focus on investigating perfor-
mance for mutually exclusive rule heads and noise. In the
first set of experiments, we set head items mutual exclu-
sively, in line of finding rules over the NN output labels.
EXPLAINN achieves high recall and precision (see Fig-
ure 2) in terms of retrieving exact ground truth rules, and
does not retrieve any redundant rules. Next, we investi-
gate the impact of noise on the performance, generating
data of 10000 samples and 100 rules similar to above, with
head items now set co-occuring, varying the level of noise
in {0.1%, 0.5%, 1%, 3%, 5%, 10%} bitflips in the matrix,
where 10% noise means more noise than actual signal. EX-
PLAINN is robust to noise, even when facing almost the
same amount of noise and signal (see Fig. 2).

3.2. How neural networks perceive the world

How information is filtered We first consider the MNIST
data of handwritten digits. We train a simple CNN of 2 con-
volutional and one fully connected layer using Keras, achiev-
ing 99% classification accuracy on test data (see Supp. B.1
for details). We are interested in what the individual filters
learn about the digits, and how EXPLAINN reveals shared

features across several classes. We compare to average ac-
tivation maps and single neuron prototypes. Whereas the
average activation maps per class do not reveal the purpose
of a filter, we see that the rules learned by EXPLAINN,
clearly identify which pixels together trigger a filter. For
example, in filter 2 in layer 1 the prototype looks like a maze
and does not reveal any insight, and average activation maps
just show the number given by the class, whereas the dis-
covered rules identify shared structure, such as curvatures
shared between digits. For filter 36 in layer 2, the discovered
rules show that it detects horizontal edges in a class specific
manner, whereas prototyping and activation maps again fail
to reveal this information. Interestingly, the discovered rules
indicate that certain filters learn a negative, with activated
areas corresponding to the imprint of the digit. We provide
images visualizing rules, prototypes, and average activations
in Supp. B.1.

How information flows To understand the inner life of
neural networks in a more complex setting, we examine the
activations for the ImageNet data set of pretrained VGG-
S and GoogLeNet architectures (Chatfield et al., 2014;
Szegedy et al., 2015). We focus on analyzing the VGG-S re-
sults for which an optimized and highly interpretable proto-
typing method to visualize multiple neurons exists (Øygard,
2016), and provide results for GoogLeNet in Supp. B.2.1.
Here, we focus on particular rules, and provide a larger and
more diverse set of results in Supp. Fig. 16, 17. We see
that rule-derived prototypes generally show highly inter-
pretable features for the corresponding classes. Mining for
rules from the output to the last layer, EXPLAINN yields
rules with individual heads spanning multiple labels and
tails spanning multiple neurons, which together encode the
information shared between labels. Examples include the
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(a) Visualization for the whole tail

(b) Visualization for the units in the tail individually

Figure 3: Characteristic faces. From the data for all
dog breed categories, EXPLAINN discovered the rule be-
tween the labels {Japanese spaniel, Pekinese,
Shih-Tzu, Lhasa, Affenpinscher, Pug,
Brabancon griffon}, and 5 units from the FC7 layer,
for which a prototype is given in the top image. The units
together capture the characteristic face of these breeds,
wherease individual units (bottom) give only little insight
about the encapsulated information.

faces of certain dog breeds, for which, if we visualize these
neurons individually (Fig. 3), it is hard to extract anything
meaningful from the images: the information is really en-
coded in the set of neurons that act together.

We also observe cases where rules describe how the network
discriminates between similar classes. We give an example
in Fig. 4 for the neurons EXPLAINN discovers to be asso-
ciated with just huskies, just malamutes, and both of these
classes together. These dog breeds are visually similar, shar-
ing a black–white fur pattern, as well as head and ear shapes.
These traits are reflected by the neurons corresponding to the
rule for both breeds. Looking closer, we can see that distinct
traits, the more pointy ears of the husky, respectively the
fluffy fur of the malamute, are picked up by the neurons dis-

covered for the individual classes. Beside discovering what
shared and distinct traits the network has learned for classes,
we also find out when it learns differences across samples
of the same class. As one example, for the dog breed Great
Danes, we discover three rules that upon visualization each
correspond to visually very different sub-breeds, whereas a
simple class prototype does not reveal any such information
(Supp. Fig. 15).

Next we investigate the information flow within the network,
by iteratively finding rules between adjacent layers, starting
with rules X → Y from output layer to last fully connected
layer FC7. Based on this set of rules, we then apply EX-
PLAINN to discover rules Y → Z between FC7 and FC6,
where heads Y are groups of neurons found as tails in the
previous iteration. We recursively apply this process until
we arrive at a convolutional layer. This gives us traces of
neuronal activity by chaining rules X → Y → Z → · · ·
discovered in the iterative runs. We visualize two such traces
in Fig. 5, which give insight in how the network perceives
different classes, passing on information from layer to layer.

One example of a discovered trace is for the class totem
pole (Fig. 5a). We observe that the set of neurons discov-
ered for FC7 and FC6 each yield prototypes that clearly
resemble the animalistic ornaments of such totem poles,
which can also be found in the training data. Interestingly,
we see that the neuron sets found for different filters of the
last convolutional layer CONV5 together detect parts of
the object, including the vertical pole, and the rooftop-like
structure, decorated with animalistic shapes with eyes, that
is typically found at the top of a totem. These filters act in
a highly specific manner, detecting only specific parts of
the image, such as thinner or wider vertical structures in the
center, or objects at the top center of the image.

We also find signs of overfitting, e.g. when considering the
information trace for a set of dog breeds (Fig. 5b). Note that
due to space, we here only show a subset of the discovered
rules. We observe that the prototypes for FC7 and FC6 both
show side-views of animals. The networks seems to learn
features that are specific to side photos of dogs, which are
prevalent in the training data, also indicated by the filter
prototypes. For the filters, we see that the network acts
on very specific parts of the image, detecting structures
at the bottom that resemble paws and pairs of front and
hind legs, and at the top of the image, which resemble
dog faces and clouds. We also find more abstract features
with groups of filters detecting horizontal edges, which
reminds of the back of the dog in side-view. While there is
room for interpretation of prototypes, the discovered traces
provide evidence on how the network perceives the world, as
information from prototypes can be interpreted across layers,
and in combination with the spatial location of activations
in the filters.
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(a) Top: Malamute,
Bottom: Siberian Husky

Siberian husky

AND NOT Malamute

Siberian husky

AND Malamute

Malamute AND NOT
Siberian husky

(b) Rule prototypes for FC7

Figure 4: Neurons discriminating Huskies and Malamutes. a) Huskies and Malamutes are very similar looking dog breeds.
b) Prototypes for rules X → Y discovered for classes X , Siberian husky (red frame), class Malamute (yellow
frame), resp. both (orange frame) and neurons Y in FC7. The neurons associated with both classes represent typical features
shared between the two classes, those associated only with Siberian huskies show their slightly sharper, more defined
head, while those associated only with Malamutes capture their more fluffy fur.

Rules carry class information To quantitatively assess
the rules that EXPLAINN discovers, we here consider the
VGG-S network for ImageNet and intervene on those neu-
rons in the last fully connected layer that EXPLAINN finds
to be class-associated. For each class c, we set incoming
weights from neurons y to 0, for which we have discovered
a rule X → Y, c ∈ X, y ∈ Y , comparing classification
rate before and after intervention. As baseline, we addi-
tionally intervene on an equally sized random subset of all
weights leading to class c, again measuring classification
rate after intervention. We see that for all classes, perfor-
mance drops much more strongly for the actual interven-
tions than for the random ones, in most cases even to 0 (see
Fig. 2 bottom). This gives evidence that the discovered
rules capture information necessary for classification. We
further observe that under intervention the model often pre-
dicts closely related classes, e.g. Fire Salamander to
Spotted Salamander, Barbell to Dumbbell, or
Palace to Monastery, which gives insight towards sim-
ilarity of classes, robustness of predictions, and therewith
sensitivity to adversarial attacks.

The effect of fine tuning Finally, we show that EX-
PLAINN provides insight into the effect of fine-tuning in
transfer learning. For this we consider Oxford Flower
data (Nilsback & Zisserman, 2008), which consists of 8k
images of flowers of 102 classes. For investigation, we con-
sider both the vanilla VGG-S network trained on ImageNet
from above, and a fine-tuned version from the Caffee model
zoo.2 We run EXPLAINN to obtain rules between the output
and the final layer of both networks. We provide examples
in Supp. Fig. 18. The visualizations show, as expected, a
strong emphasis on colour and shape of the corresponding
flower. Interestingly, the visualizations of the same neurons

2https://github.com/jimgoo/caffe-oxford102

for the original VGG-S show almost identical shapes and
pattern, but with less intense colour, and in both observe
prototypes with animal-like features such as eyes or beaks.

4. Discussion and Conclusion
The experiments show that EXPLAINN is able to discover
distinct groups of neurons that together capture traits shared
and distinct between classes, within-class heterogeneity, and
how filters are used to detect shared features, segment back-
ground, or detect edges locally. Neither of these are revealed
by activation maps, which miss the local information that
patterns provide, nor by saliency maps, which investigate
network attention for an individual image alone. Proto-
typing is a great tool for visualizing neuron information
content, but, by itself is limited by the massive number of
possible combinations of neurons, requiring thousands of
hours to painstakingly handpick and connect the information
of just individual neurons (Olah et al., 2020). Combining
EXPLAINN with prototyping permits exploring networks
beyond single neurons, by automatically discovering which
neurons act in concert, which information they encode, and
how information flows through the network.

In particular, we discover distinct groups of neurons in fully
connected layers that capture shared respectively distinct
traits across classes, which helps in understanding how the
network learns generality but still can discriminate between
classes. Due to the local information that our rules provide,
we can also detect differences in the perception across sam-
ples of a single class, where for example different groups of
neurons describe visually different sub-breeds of a class of
dogs. By connecting rules that we find across several layers,
we trace how information is gathered and combined to ar-
rive at a classification, from filters that detect typical class
specific features in the image, through fully connected lay-
ers where multiple neurons together encode the combined
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Labels FC7 FC6
CONV5

(a) Information flow for class Totem Pole.

D
o
g
s

*

Labels FC7 FC6
CONV5

(b) Part of an information flow for *{Black-and-tan coonhound, english foxhound, borzoi, ibizan hound,
saluki, scottish deerhound, curly-coated retriever, entle bucher, mexican hairless}.

Figure 5: Information flow. Example rule cascades discovered for ImageNet. For each rule X → Y , the group of neurons
of tail Y are used to generate a prototype (images in colored frames). To discover these rule cascades, we first mine rules
between output and FC7. We use the tails of these rules (neurons of FC7) as heads to mine rules to the next layer (FC6).
Finally, we use the tails of those rules to mine rules between FC6 and CONV5.

information, up to the final classification output. Apply-
ing EXPLAINN to investigate the impact of fine-tuning in
transfer learning, we found that for groups of neurons in the
given fine-tuned CNN, surprisingly, the contained informa-
tion is almost identical to the original CNN, but capturing
the traits of the new classes almost perfectly. For the given
task, fine-tuning thus mostly resulted in routing information
differently, rather than learning to detect new features.

Overall, EXPLAINN performs well and finds surprising re-
sults that help to understand how CNNs perceive the world.
While many important tasks are solved by such networks,
attention based architectures play an important role in e.g.
language processing. Although rules can likely also help to
understand what these models learn, these networks encode
an entirely different type of information that is inherently
hard to understand and visualize, and hence an exciting
challenge for future work. Here, our main interest was char-
acterizing information flow through neural networks, and
hence, we focused on subsequent layers. EXPLAINN, how-
ever, operates on arbitrary sets of neurons, thus naturally
allows investigating e.g. residual networks, where the previ-
ous two layers contribute information. Currently scaling to
thousands of neurons, it will make for engaging future work
to scale to entire networks at once.
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A. MDL for robust rules
In this section we will give extended examples on how to
compute the MDL score for a given database and set of
rules, elaborate on the error encoding for the rule tails, and
give a visual toy example on the impact of the extended
pattern language for the rule head.

A.1. Computing MDL for rules

For the given example in Fig. 6, we will now compute the
codelength L(D,M) = L(M)+L(D |M) of transmitting
the whole database D using M ∪Mind. Here, we will stick
with the simple encoding without error matrices, to make the
process of computation more understandable. For reference,
we first compute the baseline model, which is given by

L(D,Mind) =|I| × Lpc(|D|) +
∑
I∈I

log

(
|D|
|TI |

)
=4× Lpc(100) + log

(
100

40

)
+ 2 log

(
100

35

)
+ log

(
100

33

)
≈14.88 + 93.47 + 179.64 + 87.93 = 375.92.

Thus, sending the data with just the baseline model costs
375.92 bits. Now, we will compute L(D,M ∪Mind), we
will start with the costs of sending the data L(D | M ∪
Mind)

L(D |M ∪Mind) =

( ∑
X→Y ∈M

log

(
|TX |
|TY |X |

))

+

(∑
I∈I

log

(
|D|
|T ′I |

))

= log

(
40

30

)
+ log

(
100

40

)
+ log

(
100

5

)

+ log

(
100

3

)
+ log

(
100

35

)
≈29.66 + 93.47 + 26.17 + 17.30 + 89.82

=256.42.

The model costs are composed of the parametric complexi-
ties for the (adapted) baseline rules, plus the costs of trans-
mitting what the rule is composed of along with its paramet-

ric complexity. We thus get

L(M ∪Mind) =|I| × Lpc(|D|) +

( ∑
X→Y ∈M

LN(|X|)

+ LN(|Y |) + L(X) + L(Y ) + Lpc(TX)

)

=4× Lpc(100) + LN(1) + LN(2)

− log
40

143
− log

35

143
− log

33

143
+ Lpc(40)

≈14.88 + 1.52 + 2.52 + 1.84

+ 2.03 + 2.12 + 3.11

=28.02.

Hence, the model with the complex rule has a smaller code-
lengh than the baseline, with L(D,M ∪Mind) = 284.44
bits.

A.2. The error encoding for tails

For the error encoding for tails, which allow to discover
rules in noisy settings (compare Fig. 7a,b), we send where
a rule X → Y approximately holds according to some
parameter k, which defines the number of items of the tail
that have to be present in the transaction. The errors made by
this approximation are then accounted for by sending error
correcting matrices X−X→Y and X+

X→Y , which account for
the destructive, respectively additive noise in the are where
the rule applies (compare Fig. 7c).

Let us first assume we are given a k, we will later show
how we can optimize for k. We redefine the transaction
sets TY |X = {t ∈ D | (X ⊂ t) ∧ (|Y ∩ t| ≥ k)},
which corresponds to the transactions where the rule ap-
proximately holds. We will now slightly abuse notation
and indicate the binary input matrix that correspond to D
by D, and we subset this matrix using the transaction id
lists and item subsets. Both of these are sets of indices that
indicate which rows, respectively columns to use of the ma-
trix. For example, the submatrix where X holds is given by
D[TX , X]. We can now define the error correcting matrices
to be X−X→Y = D[TY |X , Y ] ×©1|TY |X |×|Y |, and X−X→Y =
D[TX \ TY |X , Y ], where ×© is the element-wise XOR oper-
ator and 1i×j is a matrix of size i× j filled with ones. The
receiver, knowing TX and TY |X , can then reconstruct the
original data D[TY |X , Y ] = 1|TY |X |×|Y | ×©X−X→Y , respec-
tively D[TX \ TY |X , Y ] = X+

X→Y .

While this explains the concept of how error correcting
matrices can be used to reconstruct the original input, which
hence define a lossless encoding, we are mainly interested
in the codelength functions. To adapt the data costs, we now
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Figure 6: Example database and model. A toy database D with blocks indicating where the items A,B,C,D occur in D,
margins and relevant joint counts are given on the right. A sensible rule set M ∪Mind = A→ BC ∪Mind is given on the
right, the part of the database where the rule applies and holds is indicated by a light respectively dark orange area.

additionally send the two error matrices, which we can do
using binomial codes. Hence, we get

L(D |M) =

( ∑
X→Y ∈M

log

(
|TX |
|TY |X |

))

+

(∑
I∈I

log

(
|D|
|T ′I |

))

+ log

(|TY |X | × |Y |
|X−X→Y |

)
+ log

(|TX \ TY |X | × |Y |
|X+

X→Y |

)
,

with the second line providing the codelength of the error
matrices, and |X | indicating the number of ones in X .

Our model M now not only consists of rules M ∪Mind, but
also of the set of error correcting matrices. As the submatrix
to which we need to apply the matrix is fully defined by
TX , TY |X , and Y of the corresponding rule, also defining
its size, the only adaptation we need for the model costs
is the parametric complexities induced by the codes for
transmitting the data. This yields

L(M) =|I| × Lpc(|D|) +

( ∑
X→Y ∈M

L(X → Y )

+ Lpc(|TY |X | × |Y |) + Lpc(|TX \ TY |X | × |Y |)

)
.

This completes the MDL costs for rules robust to noise in
the tail for a given k. To optimize k, the crucial insight is that
the codelength of individual complex rules are independent,

as is the data cost. That means we can optimize a k for
each rule separately. Thus, for a given rule X → Y we can
enumerate all |Y | many models for the different thresholds
k and let MDL decide which one fits the data best.

A.3. The impact of the extended pattern language

Extending the pattern language for rule heads is crucial to
be applicable for tracing activation patterns through a neural
network. First of all, we need to start from labels, which
are inherently activated mutually exclusive, as we only have
a single label as classification. To find shared features of
labels, it is essential to be able to express disjunctions with
rule heads. Furthermore, the data as well as activation
patterns across the data are very noisy. Thus, determining
where a rule applies just based on conjunctions of features
can give a very twisted look of the data at hand, as visualized
in Fig. 8. That is the reason to introduce a more flexible
language similar to approximate rule tails, which solves
these issues.

A.4. Search complexity

The size of the search space implied by our model class
M is in O(2|Ii|×|Ij |×2

|Ii|+|Ij |
). For two layers Ii, Ij , we
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Figure 7: Example of tail error encoding. For a given database D given in a, where blocks indicate the occurrence of items,
a good rule is given byA→ BCDE. The part of the database where the rule applies is indicated by the orange area. In
b we show the part of the transaction were the rule holds for varying number k of tail items that have to be present in a
transaction, from all items on the left – corresponding to a conjunction – towards just a single item on the right, which
corresponds to a disjunction. In c we visualize the error encoding used to transmit the data for k = 3. We first transmit the
data where the rule holds, resulting in the area that is indicated by the gray block. XORing the error matrix X− with this
block, it is possible to reconstruct the original data for the part where the rule holds. Using X+, we reconstruct the original
data in the area where the rule applies but does not hold.

enumerate all possible rules by

( |Ii|∑
k=0

k ×
(
|Ii|
k

))
︸ ︷︷ ︸

Possibilities for head

×
( |Ij |∑

l=0

l ×
(
|Ij |
l

))
︸ ︷︷ ︸

Possibilities for tail

≤ |Ii|
( |Ii|∑

k=0

(
|Ii|
k

))
× |Ij |

( |Ij |∑
l=0

(
|Ij |
l

))
= |Ii| 2|Ii| × |Ij | 2|Ij | = |Ij | |Ii| 2|Ii|+|Ij |,

where the first sum enumerates all heads of size k, the bi-
nomial coefficient describes the ways of drawing heads of
such size, and the term k is the number of models given by
the robust head encoding. Similarly, the second sum enu-
merates all tails of size l, the binomial coefficient describes
the drawing of such tails, and the term l is the number of
ways to place the error correcting matrices for the robust tail

encoding. As in theory we can have any subset of these rules
as a model, we thus get approximately 2(|Ij |×|Ii|×2

|Ii|+|Ij |)

many different models.

A.5. Algorithm Pseudocode

EXPLAINN explores the search space of rule sets in an itera-
tive fashion, either generating new rules with a single item in
the tail, or merging two existing rules, thus generating more
complex rules with multiple items in the tail. Using these
two steps, we can generate all potential candidate rules to
add to the model, and evaluate their respective gain in terms
of MDL. For a rule r′, we will say model M ′ = M ⊕ r′ is
the refined model, with the refinement operator ⊕ adding
the rule r′ = X → Y to M , removing the merged rules that
led to r′, if any, and updating the singleton transaction lists
TA for all items in the tail A ∈ Y . Here, we will provide
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Figure 8: Example of the impact of noise. For a given database D given in a, where blocks indicate the occurrence of items, a
good rule is given byABC → D. Due to high noise, the simple conjunctive pattern language results in a bad representation
on where the rule should apply, visualized on the left of b. More relaxed definitions towards disjunctions, where we only
require l items of the head to be present in the transaction, result in much more stable representation on where the rule
applies.

the pseudocode for the two candidate generation functions
for new rules and for merging rules in the general setting
alongside the complete algorithm of EXPLAINN.

For generating a new rule with a head using the extended
pattern language we use the approach described in the main
paper, gathering all confidence values for a given neuron A
in Ij for all potential head neurons Ii. We keep all potential
head neurons with confidence value beyond θ in a list HA

sorted descending on confidence and merge the first t neu-
rons in the list to form the head. Going over all t = 1..|HA|
allows us to greedily optimize for the best of all relevant
heads for the given item. We give pseudocode for generating
new candidate rules in Alg. 1.

The key component is hidden in the gain estimate in line
10, which for the given rule X → A determines the best
value k of items in the head needed for a rule to apply. That
is, we test all for all transactions sets determining where
the rule applies T k

X = {t ∈ D | |X ∪ t| ≥ k} which one
gives the best gain. To generate new rules going from the
output layer to a hidden layer, we want to mine rules with
disjunctive heads, which means we only have to consider
T 1
X – corresponding to a disjunction – in the search process.

To generate candidates from existing rules in M , we use an
extended search scheme that allows to merge pairs of rules
with approximately equal heads, having up to µ dissimilar
items, measured by the symmetric set differences 	. We
provide pseudocode for this process in Alg. 2.

Algorithm 1 GenCandNew

Input: dataset D over layers Ii, Ij , Model M , tail item
A, threshold θ
Output: best refinement M ′

HA ← ∅ {head items, in decreasing order of confidence}
for x ∈ Ii do
σx,A ← |Tx∩TA|

|Tx| {Compute conditional frequency}
if σx,A > θ then

insert (x, σx,A) into HA{Add neuron x to list}
end if

end for
M ′ ← ∅
∆min ← 0{gain estimate in bits}
for t = 1... |HA| do
M ′ = M ⊕ {HA[: t] → A}{Refine model with rule
using first t labels}
∆t ← L(D,M)− L(D,M ′)
if ∆t < ∆min then

∆min ← ∆t

M ′ ←M ⊕ {HA[: t]→ A}{Update best rule set}
end if

end for
return M ′

Using the candidate generation methods, we can now write
down EXPLAINN as given in Alg. 3, which iteratively
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Algorithm 2 GenCandMerges

Input: dataset D, Model M , overlap threshold µ
Output: candidates C sorted by gain ∆
C ← ∅ {Candidate rule merges}
for r1 = X1 → Y1 ∈M, r2 = X2 → Y2 ∈M do

if |X1 	X2| ≤ µ then
∆∩ ← L(D,M ⊕ {X1 ∩ X2 → Y1 ∪ Y2}) −
L(D,M){Gain of adding conjunction of heads}
if ∆∩ < 0 then

insert (X1 ∩X2 → Y1 ∪ Y2, ∆∩) into C {Add
to candidates}

end if
∆∪ ← L(D,M ⊕ {X1 ∪ X2 → Y1 ∪ Y2}) −
L(D,M){Gain of adding disjunction of heads}
if ∆∪ < 0 then

insert (X1 ∪X2 → Y1 ∪ Y2, ∆∪) into C{Add
to candidates}

end if
end if

end for
return C

generates candidates and commits to the candidate with
highest gain, until there is no more candidate that yields any
gain in terms of MDL.

Algorithm 3 EXPLAINN

Input: dataset D over layers Ii, Ij , frequency threshold
θ, overlap threshold µ
Output: best model M∗

M ← {∅ → A | A ∈ Ij} {Initialize model with baseline
rule set}
for A ∈ Ij do
R′ ← GENCANDNEW(D,M,A, θ){App. Alg. 1}
M ′ ←M ⊕R′
if L(D,M ′) < L(D,M) then
M ←M ′

end if
end for
repeat
M̂ ←M
C ← GENCANDMERGES(D,M,µ){App. Alg. 2}
Y ← ∅{Keep track of independence of merged rules}
for X → Y ∈ C. Y 6⊂ Y do
M ′ ←M ⊕ {X → Y }{Refine model, test gain}
if L(D,M ′) < L(D,M) then
M̂ ←M ′

Y ← Y
end if

end for
until M = M̂
return C
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B. Experiments and Data
Here, we detail the setup and training of the individual
networks, and provide further experimental results. In par-
ticular, we first discuss the training setup for MNIST and
highlight key results in App. Sec. B.1, and then provide
additional insights into ImageNet prototypes. For ImageNet,
we first shortly discuss prototypes obtained for GoogLeNet
– a different network architecture than VGG – in App. Sec.
B.2.1 and then proceed to show additional results on VGG-S
for ImageNet in App. Sec. B.2.2-B.3. Finally, we show pro-
totypes obtained for the study on fine-tuning for the Oxford
Flower data that reflect the general trend observed for this
data set in App. Sec. B.4.

B.1. MNIST training

We trained a CNN on MNIST using the Keras framework,
using 60000 images for training and 10000 images as hold
out test set for evaluation. The network consists of 2 con-
volutional layers, with 20 filters in the first layer and 40
filters in the second layer, each using 3x3 kernels and 2x2
maxpooling. The convolutional layers are followed by a
Dropout layer with dropout rate .25, and the flattened out-
puts are passed on to a fully connected layer with 64 nodes
with ReLU activations. Then follows a dropout layer with
rate .5 and the output layer of size 10 with softmax activa-
tions. The network was trained using AdaDelta with default
parameters based on categorical cross entropy loss over 12
epochs using a batch size of 128. We gathered binarized
activations across all filters and applied EXPLAINN to build
rules from the output layer to the first respectively second
convolutional layer.

In Fig. 9, we show the average activation maps as back-
ground, and neurons found in a tail of a rule containing
the corresponding label in its head for filter 2 in the first
convolutional layer. We observe that EXPLAINN discovers
individual rules spanning multiple classes that describes
pixel groups that detect common areas of a set of numbers,
such as the top left stroke in 4s and 9s. The average acti-
vation maps as visualized in the same figure cannot reveal
such fine-grained information, neither can do a prototype
for the filter (see Fig. 10).

Another example is given in Fig. 11, where we visualize
the 36th filter in the second convolutional layer. We observe
that the discovered rules indicate the role of the filter to
be a horizontal edge detector, with shared features, such
as the top stroke of 0,2,3,5,8, and 9, being captured by the
same part of the filter. Neither average activation maps,
nor prototypes – both visualized in the same figure – are
able to detect this behaviour, as they can only capture the
global behaviour of the filter across all pixels, rather than
localized pixel areas. Furthermore, without proper learning
it is unclear which label combinations should be considered

in unison for these two methods, whereas EXPLAINN au-
tomatically detects labels that share neuron activations by
rule heads. Finally, we provide the discovered rules for filter
12 in convolutional layer 1 in Fig. 12. We observe that this
filter acts as a negative, “carving” out the surroundings of
the digits.

B.2. ImageNet further results

Here, we present additional results on the ImageNet data set.
If not specified directly, pretrained models were obtained
from the references indicated in the main manuscript.

B.2.1. GOOGLENET RESULTS

To examine if rule mining also works on different network
architectures and prototyping methods, we ran GoogLeNet
pretrained on ImageNet and gathered activation values
across the network. Here, we only focus on rules from
output to last hidden layer for brevity. Similar to VGG-S,
we find expressive rules that span multiple classes and mul-
tiple neurons in the last layer, capturing typical structures
of the classes (see Fig. 13). We observe, however, that
this particular prototyping method yields harder to interpret
images, which is known to be an issue and not due to the
rules.

B.2.2. VGG SHARED NEURONS

One key result for the VGG-S network for ImageNet is that,
similar to the previous MNIST network, traits that are shared
between classes are encoded by the same set of neurons.
We discovered many such shared traits that the network is
able to pick up across classes, which are encapsulated in
groups of neurons in the last layer. For example, there are
neurons that capture the red beaks of different birds, arch
like structures of buildings, tusks of elephants, and the ugly
face of a whole group of different dog breeds (see App. Fig.
14). So far, it is common practice to only visualize class
prototypes, which can be very misleading, as shown in the
next section.

B.2.3. RESOLVING THE MEANING OF CLASS
PROTOTYPES

A standard technique to capture traits that a neural network
learns about a class is prototyping the given class label.
These can offer hints on what the network learns globally
about the class, but very often lead to uninterpretable results.
We provide one such example prototype for the Great
Dane class in ImageNet of the VGG-S network in Fig. 15,
which does not provide any clue what the network learns.
The rules discovered by EXPLAINN however show, that
different groups of neurons in the last layer lead to the
Great Dane classification, each encoding a distinct type
of fur colour and pattern that appear with this breed. The
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Figure 9: MNIST Average activation of neurons for digit classes for filter 2 in the first convolutional layer. Overlayed are the
EXPLAINN rules, where pixel groups of the same colour (e.g. purple pixels top left for classes 2, 3) belong to a single rule
spanning multiple classes.

Figure 10: MNIST prototype. Prototype image for filter 2
from the first convolutional layer.

class prototype is a mixture of these different types, which
explains the difficulty to interpret that prototype.

B.3. Additional results on VGG-S

In App. Fig. 16, 17, we provide additional results based on
prototyping for rules found for ImageNet data and the VGG-
S network. We focus on rules with multiple neurons in the
tail, as such class and multiclass prototypes can hardly be
found by hand. Overall, we observed that the larger the num-
ber of neurons in the tail, the sharper and more interesting
the resulting protoype. Furthermore, we found that for many
prototypes spanning multiple classes, we discover multiple
rules for some of these classes (e.g. Black Grouse) and
the protoypes indicate that only a fraction of information,
such as patterns, a colored leg or beak, or a color patch, is
used from each group of neurons such that together they
arrive at the class prediction.

In App. Fig. 16, the first row of the panel are exam-
ples of neuron groups that learn typical shapes of objects,
such as Sombrero or Gondola. The second row contain
groups of neurons capturing typical patterns and colors for
individual classes, such as yellow patches on black skin
of the Fire Salamander, red caps with white dots of

the Agaric mushroom, the typical leaf with red veins of
Sorrel or the wings of a Monarch butterfly. The third
row contains common features between two classes that
are together captured by the same group of neurons, like
the arch-like structures and round rooftops found for cer-
tain Triumphal Archs and Mosques, the layered and
intertwined worm-like shapes of many Fur Coats and
the Gyromira mushroom, or the characteristic traditional
covering of yurts and the front part of dogsleds.

In App. Fig. 17, groups of neurons that are shared between
multiple classes are visualized both revealing surprising
similarities, as well as confirming that the network learns
similarities that we also use as a human. In the first row,
the neurons described by the first two images capture the
typical shape and red color of the ears shared between the
Red Fox and the Lesser Panda, respectively the in-
sect legs and shiny turquoise color of the body of Tiger
Beetles and Damselflies. Intriguingly, the network
also learns a roundish shape and distinct pattern between
the Jackfruit and the Squirrel Monkey. At this
point, we would like to invite the reader to look up how
the top of the head of such a monkey looks like, it resem-
bles surprisingly well the size, color, shape, and texture
of a Jackfruit. For the last picture in the first row of this
panel, we see dotted wings that clearly are related with the
associated labels Cabbage Butterfly, and Sulphut
Butterfly. But opposed to visualizations related to other
Butterflies (given in both panels), the wings are all ori-
ented in a distinct way, which resemble the cap of a dotted
mushroom, which might explain the association with the
Agaric mushroom. In the second row, we observe that the
network captures common features shared between similar
classes - in this case closely related animals - with the same
set of neurons, which matches human intuition.
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(a) MNIST Average activations. Average activation maps across a class for filter 32.

(b) MNIST Prototype. Prototype image for filter 32.
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(c) Horizontal edge detector. Discovered rules, feature groups found across classes share the same colour.

Figure 11: Filter visualizations. Activation maps (a) for the classes, the prototype of the filter (b), and discovered rules (c),
over the whole dataset for filter 36 in the second convolutional layer.

B.4. Oxford Flower data

One common approach to tackle the issue of learning net-
works for problems with scarce training data is fine-tuning.
There, networks (pre-)trained on larger, usually more gen-
eral data sets, are refined on the task-specific training data,
often freezing weights in earlier layers of the network and
training the last layers for a few rounds, assuming that the
earlier layers detect abstract features that are similar in the
specific task. For example, in the earlier MNIST experi-
ments, we saw filters detecting horizontal edges or certain

strokes. For a data set on e.g. handwritten letters, such
features would be similarly useful, but have to be puzzled
together in a different way, which is supposedly achieved
by the later layers.

Here, we look at the vanilla VGG-S network trained on
ImageNet, and compare it to the VGG-S network fine-tuned
on Oxford Flower data (see main paper for references). The
Oxford Flower data consists of 8000 images of 102 flow-
ers. We again look at rules from output to last hidden layer
and report a representative set of prototypes in Fig. 18. In-
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Figure 12: The negative of a digit. Visualizations for filter 12 in the first convolutional layer. This filter seems to capture the
’negatives’ of the handwritten digits.

triguingly, we observe that when visualizing the same set of
neurons of rules for the fine-tuned network also for the orig-
inal network, we do find almost the same prototypes which
capture the key traits of the flowers. Only minor differences
can be seen with slightly more pronounced shapes and more
intense colors. This is a strong indication that information
about these specific flowers is already in the vanilla network
hidden in some specific combination of neurons, although
the network never had to classify those, nor has it probably
seen these flowers in the original ImageNet data.
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Irish Water Spaniel
Poodle Peacock Obelisk

(a) Prototypes for rules from output label to last hidden layer.

(b) Samples for curly haired dog breeds. From left: Curly Coated Retriever, Chesapeake Bay Retriever, Irish
Water Spaniel, Poodle

Figure 13: GoogLeNet results on ImageNet. (a)Visualizations for the rules found between the labels and the last hidden
layer in GoogLeNet. The labels in the rule heads are written above the prototype images of the tail unit groups. Each rule
tail captures some interesting features of the corresponding classes: In the first rule the characteristic curly hair of different
dog breeds is captured, the second group encapsulates information about the typical colourful plumage of peacocks, the
third captures the shape of obelisks. We provide example images of the curly haired dog breeds in (b).
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Japanese spaniel
Pekinese
Shih-Tzu
Lhasa

Affenpinscher
Pug

Brabancon griffon
Viaduct

Triumphal arch

Red-breasted merg.
Redshank

Oystercatcher
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Indian elephant
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Figure 14: Shared information across labels. Visualizations for the rules found between the labels and the last fully
connected layer (FC7). The labels in the rule heads are written above the prototype images of the tail unit groups. Each
rule tail captures some interesting features of the corresponding classes: In the first rule the characteristic face of different
dog breeds is captured, the second group encodes information about the arch structures present for both Viaduct and
Triumphal arch, the third captures the red beaks surrounded by blackish feather that are shared between different birds,
and the fourth shows typical heads and tusks of elephants.

Class prototype for Great Danes Row 1: Example images from the class
Row 2: Rules in association with Great Danes

Figure 15: The left image shows the visualization for the whole class Great Danes. This visualization could not highlight
many characteristic features, since there is a large diversity within the class. On the right side 3 images from the dataset are
shown, along with 3 rules that EXPLAINN finds in connection with the class label. We are able to pick up trends, that are
not characteristic to the whole class, but only a subset.
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Figure 16: Diverse prototypes. Visualized are prototypes for rules found in the VGG-S network for ImageNet data between
the output and last hidden layer. The class labels corresponding to the output are given above each image, the size of the
group of neurons that this picture was generated from is given in the bottom right.
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Figure 17: More prototypes. Visualized are prototypes for rules found in the VGG-S network for ImageNet data between the
output and last hidden layer. The class labels corresponding to the output are given above each image, the size of the group
of neurons that this picture was generated from is given in the bottom right.



Exploring the Inner Life of Neural Networks with Robust Rules

Figure 18: Flower visualizations. For rules found between output and last fully connected layer, we visualize the neurons in
the tail of the rule for the fine-tuned VGG-S network (first), the original VGG-S network (second), and example images for
the flower classes (right).


