
Knowledge and Information Systems
https://doi.org/10.1007/s10115-022-01660-1

REGULAR PAPER

Omen: discovering sequential patterns with reliable
prediction delays

Joscha Cüppers1 · Janis Kalofolias1 · Jilles Vreeken1

Received: 18 August 2021 / Revised: 18 January 2022 / Accepted: 21 January 2022
© The Author(s) 2022

Abstract
Suppose we are given a discrete-valued time series X of observed events and an equally long
binary sequence Y that indicates whether something of interest happened at that particular
point in time.We consider the problem ofmining serial episodes, sequential patterns allowing
for gaps, from X that reliably predict those interesting events.With reliablewemean patterns
that not only predict that an interesting event is likely to follow, but in particular that we
can also accurately tell how how long until that event will happen. In other words, we are
specifically interested in patterns with a highly skewed distribution of delays between pattern
occurrences and predicted events. As it is unlikely that a single pattern can explain a complex
real-world progress, we are after the smallest, least redundant set of such patterns that together
explain the interesting events well. We formally define this problem in terms of theMinimum
Description Length principle, by which we identify the best patterns as those that describe
the occurrences of interesting events Y most succinctly given the data over X . As neither
discovering the optimal explanation of Y given a set of patterns, nor the discovery of optimal
pattern set are problems that allow for straightforward optimization, we break the problem
in two and propose effective heuristics for both. Through extensive empirical evaluation, we
show that both our main method, Omen, and its fast approximation fOmen, work well in
practice and both quantitatively and qualitatively beat the state of the art.

Keywords Serial episodes · Event prediction · Time series · MDL

1 Introduction

Suppose we are given a discrete-valued time series X of observed events, and an equally long
binary sequence Y that indicates at which points in time something of interest happened that
we would like to predict—earthquakes, for example. We consider the problem of mining a
small set of interpretable and actionable patterns from X that reliably predict those interesting
events. With reliable and actionable, we mean those patterns that not only highly accurately
predict that an interesting eventwill follow, butwhich additionally can tellwith high precision

B Joscha Cüppers
joscha.cueppers@cispa.de

1 CISPA Helmholtz Center for Information Security, Saarbrücken, Germany

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10115-022-01660-1&domain=pdf
http://orcid.org/0000-0001-6628-2192
http://orcid.org/0000-0002-5842-8750
http://orcid.org/0000-0002-2310-2806

J. Cüppers et al.

how long it will be until that event will happen. That is, we are after patterns that have a
compact distribution of delays between pattern occurrences and predicted events. As real
processes are rarely trivial, it is unlikely that a single patterns will suffice to explain all
interesting events, and hence, we consider the problem of discovering a small and non-
redundant set of patterns that together reliably predict the interesting events.

Event prediction is well studied in time series analysis. Most work considers on
continuous-valued data and, if at all, focuses on tasks such as detecting abrupt distributional
changes [18] and identifying events that precede such changes [31]. As we aim to discover
patterns that explain the interesting time points, our work is closer to that of sequence classi-
fication [43] and similar to the task of learning patterns to reconstruct a labels of a sequence
[40]. Existing solutions, however, focus purely on discovering all patterns that sufficiently
accurately predict that an interesting event will follow some time after their occurrence [42],
rather than our goal of discovering a small set of patterns for which we can reliably say how
long it will take before that event occurs. As such, our work is related to information flow [32]
and Granger causality [15], in the sense that patterns are only interesting if their occurrences
provide significantly more information about Y than the history of Y does by itself.

We formalize the problem of finding a set of patterns predictive for Y , in terms of the
Minimum Description Length (MDL) principle [28], by which we identify the best patterns
in X as those that describeY most succinctly.Wemodel the data such that for every occurrence
of a pattern in X weencode the delay until the predicted associated interesting event: Themore
peaked this distribution, the cheaper it will be to encode the delays, and hence, we particularly
favor patterns that accurately predict both the occurrence of and time until an interesting
event. Discovering the optimal explanation of Y given a set of patterns, i.e., the alignment
between the pattern occurrences and the interesting events, as well as discovering the optimal
set of patterns, is both hard problems that do not permit straightforward optimization. We
therefore split the problem in two and propose effective algorithms for each. To find a good
explanation of Y given a single pattern, we propose both a general purpose solution and one
that is particularly suited for long-range predictions. To discover good pattern sets, we present
Omen, a greedy heuristic that iteratively optimizes the alignment of pattern occurrences to
interesting events, and use this alignment to discover the best refinements of the patterns.
We show a visualization of the Omen algorithm in Fig. 1 and will explain the details in
Sect. 4. We additionally introduce fOmen, a faster alternative that is robust against high time
delays. Neither Omen nor fOmen imposes restrictions on the delay distribution, both allow
for overlap between predictions, and only have one hyperparameter that allows the user to
specify to what extend gaps in patterns are allowed.

We empirically evaluate Omen on both synthetic and real-world data. We show that our
score reliably determines the predictiveness of patterns and compares favorably to state-of-
the-art information flow scores [5, 32]. We show that Omen highly accurately reconstructs
the ground truth, both in terms of discovering predictive patterns, as well as their delay
distributions, outperforming four supervised and unsupervised sequential pattern miners [12,
35, 36, 43]. On real-world data, we confirm that Omen discovers meaningful and actionable
patterns that give insight in the data generating process.

This paper builds upon and extends the work by Cüppers and Vreeken [9] that was pub-
lished and presented at IEEE ICDM’20. Besides a thorough rewrite including a running
example to explain the core concepts, the main additional contributions we make here are
as follows. First, we extend our pattern language, score, and algorithms to allow for gaps in
pattern occurrences—bywhich we can now discover patterns that we were previously unable
to find. Second, we propose an alternative, highly efficient alignment algorithm that is par-
ticular adapt at discovering long-range time dependencies. Third, we propose a significantly

123

Omen: discovering sequential patterns with reliable prediction delays

Fig. 1 Visualization of the Omen algorithm: As input we are given an event sequence X and a target sequence
Y and as output we obtain a set of patterns that together best explain Y given X . The pattern search works by
alternating between candidate generation and evaluation. We use the MDL principle to keep the pattern set
small and non-redundant

faster pattern discovery algorithm that by focusing on patterns that likely belong together
can effectively prune its search space.

Overall, our key contributions are that we

(a) Introduce the problem of discovering patterns with precise predictions,
(b) Formalize the minimal prediction problem using MDL,
(c) Give an optimistic estimator to mine beyond surface level patterns,
(d) Present two efficient alignment algorithms,
(e) Propose the Omen algorithm for mining predictive pattern sets,
(f) Give the more greedy yet significantly faster fOmen algorithm,
(g) Provide extensive evaluation under wide range of different settings incl. data with very

high noise to signal ratios,
(h) Show the real-world applicability of Omen.

This paper is structured as usual. We start with notation and preliminaries in Sect. 2,
after which we formally introduce the problem in Sect. 3. We present the Omen, as well as
fOmen, in Sect. 4. We discuss related work in Sect. 5. We empirically evaluate in Sect. 6 and
round up with discussion and conclusions in Sects. 7 and 8. We provide additional details in
‘Appendix’ and make all code and data publicly available.1

2 Preliminaries

We start by introducing the notation and preliminaries we will use throughout this work.

1 http://eda.mmci.uni-saarland.de/prj/omen/.

123

http://eda.mmci.uni-saarland.de/prj/omen/

J. Cüppers et al.

2.1 Notation

Given an alphabet Ω of events e ∈ Ω we study finite sequences X ∈ Ωn of these events,
where |X | = n is the length of the sequence. We denote X [i] to refer to the i th event in X ,
and X [i : j] to denote the subsequence X [i], . . . , X [j]. We write ||X ||a for the number of
times we see event a ∈ Ω in X .

Our data consist of two sequences X ∈ Ωn , and Y ∈ {0, 1}n , both of length n. The former
encodes an sequence of observed events, and the latter indicates the occurrence of something
‘interesting’ at every point i for which Y [i] = 1.

We consider sequential patterns s ∈ Ωm of length m = |s| < n. We say that a pattern s
occurs in a window w = X [i : j] when all events of s occur in w in the order specified by
s. We call such a window minimal iff there does not exist any subwindow w′ ≺ w in which
s occurs. By considering minimal windows, we avoid double counting of occurrences [34].
We say a pattern s matches sequence X at the j th event, X [j], iff there exists a minimal
window X [j − a : j] of maximum window length a ≤ m × g f + ga—where g f and ga are
user defined parameters that allow to control the number of gaps we permit, respectively in
terms relative to the pattern length, and absolute in number of gap events.

Given a pattern s and an event sequence X , we can trivially construct a binary sequence
Zs ∈ {0, 1}n in which Z [j] = 1 if pattern s matches X [j], and 0 otherwise. A predictive
pattern s is a sequential pattern s with an associated discrete delay distribution that specifies
the probability density Ps(δ) that something interesting will happen δ time steps after an
occurrence of the pattern.

All logarithms are base 2, and we use the convention that 0 log 0 = 0.

2.2 MinimumDescription Length

The Minimum Description Length (MDL) principle [16] is a computable and statistically
well-founded model selection criterion based on Kolmogorov Complexity [23]. For a given
model classM, it identifies the best model M ∈ M as the one that minimizes the number of
bits needed to describe both model and data, L(M) + L(D | M) where L(M) is the length
of model M in bits and L(D | M) the length of data D given M .

This is known as two-part, or crude MDL—in contrast to one-part, or refined MDL [16],
which although preferred from a theoretical perspective, is not computable for arbitrary
models. We use two-part MDL because we are particularly interested in the model: those
patterns that given X allow us to describe Y most succinctly. Note that our goal here is to
select the best model for the data at hand, and not to actually compress the data; we are hence
not concerned with materialized codes, and only care about ideal code lengths.

To use MDL, we have to define a model classM, and encodings for data and model. We
do so in the next section.

3 Theory

In this section, we introduce the problem at hand. We start with an informal definition of the
problem, after which we define a model class, show how to encode a model and data given
a model, and formally state the problem at hand.

123

Omen: discovering sequential patterns with reliable prediction delays

skip
0

0.25

0.5

1 2

X: d b a b f a a b c e f a b b a b c e

Zab: 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 1 0 0

Y : 1

0

0

1

0

2

0

3

1

4

0

5

1

6

0

7

0

8

1

9

1

10

0

11

0

12

0

13

0

14

0

15

1

16

0

17

time

Aab: +1 +2 skip +1

a b a b a b a b

Fig. 2 Toy example. On the left, we show toy data X as encoded using pattern ab. Occurrence vector Zab
encodes the four matches of ab in X . Alignment Aab maps these occurrences to interesting events in Y . We
show the resulting time delay distribution Pab on the right

3.1 The problem, informally

We are interested in discovering that set of predictive sequential patterns s that most reli-
ably predict the interesting events in Y given observed events X . Our models consist
of tuples (s, Ps) of sequential patterns s and their associated delay distributions Ps , i.e.,
M = {(s1, Ps1), (s2, Ps2), . . . , (sk, Psk)}.

Given X and a pattern s, we have a binary sequence Zs that marks those time points at
which s matches X . Every occurrence of a pattern predicts (in principle) that an interesting
event is about to happen in Y . We call the mapping of occurrences of a pattern s to interesting
events in Y its alignment As . We allow for additive and destructive noise in X and Y , which
is to say, we do not require that every occurrence of a true pattern s to be followed by an
interesting event in Y , and neither require that all interesting events in Y are predictable
by true patterns. To permit the former, we allow predictions to be ‘skipped.’ Formally, an
alignment is hence a function as that maps each occurrence of pattern s to either an interesting
event in Y or to an ‘skip’ token.

A delay distribution Ps provides the probabilities of an interesting event occurring δ time
steps after an occurrence of pattern s. The higher the probability of δ, the fewer bits we will
need to encode that particular value. Overall, the fewer predictions we have to ‘skip’ and the
more peaked the delay distribution is, the more cost effective we can describe As in bits per
interesting event, and hence, the more succinctly we will be able to describe Y.

Example 1 To illustrate, we consider a running example.We show in Fig. 2 an event sequence
X of length 18, over an alphabet Ω = a, . . . , f . There are four occurrences of pattern
ab, which together define occurrence sequence Zab. The best possible alignment of these
occurrences to interesting events in Y is given as Aab, whichmaps the first, second, and fourth
occurrence to actual interesting events, resp. with delays of +1, +2, and +1 time steps, and
as there is no interesting event corresponding to the third occurrences, it maps that one to a
‘skip.’ We show the corresponding delay distribution on the right of the figure, in which we
see that in 50% of the cases an interesting event happens one time step after the occurrence
of the pattern, in 25% two time steps later, as well as that it has a 25% probability of falsely
predicting the occurrence of an interesting event (‘skip’).

Whereas in the toy example our model exists of only one pattern, M = {(ab, Pab)}, in
general we allow Y to be complex, in the sense that multiple patterns may have generated
and are hence needed to reliably predict all interesting events. In other words, we allow a
single pattern s ∈ M to predict only some of the interesting events in Y . We denote by Ŷs the

123

J. Cüppers et al.

binary sequence of interesting events in Y that are predicted by pattern s. Loosely speaking
Ŷs = As(Zs).

Ideally, together the patterns in M predict each and every interesting event in Y , i.e.,
the combination of all predictions Ŷ = ∨

s∈M Ŷs equals Y . Some interesting events may,
however, not have patterns that can explain their occurrence. To be able to fairly compare
between models, we need to ensure losslessness and will therefore additionally need to
transmit a residual sequence R that encoding all interesting events that are not predicted by
any pattern. Formally, we define R as the bit-wise XOR between the predicted Ŷ and the true
Y , R = Ŷ ⊕ Y .

3.2 MDL for predictive sequential patterns

Based on the above intuition, we now proceed to define our score. We will first discuss how
to encode sequence Y given a model M and observed events X and then detail how to encode
such a model M .

Encoding the data given a model

Given event sequence X and a pattern s ∈ M , it is straightforward to construct the corre-
sponding pattern occurrence sequences Zs . To determine Ŷs from Zs , we need alignment As

which gives us the delays and skips between pattern occurrences and predicted events.
To encode an alignment As , we have to transmit each delay δ corresponding to every

pattern occurrence of s in X . We do so using optimal prefix codes over the time delay
distribution Ps [8], which is to say, the lower the probability Ps(δ) of a delay δ, the more bits
we need. The encoded length of an alignment As for a pattern s is defined as

L(As | Ps) = −
|As |∑

i=0

log Ps(As[i]) .

Once we know alignment As , we can reconstruct Ŷs , and if we do so for all patterns s ∈ M ,
we therewith have Ŷ .

To be able to reconstruct Y from Ŷ without loss, we additionally need to encode the
residual sequence R. We have

L(R) = LN(||R||1) + log

(|X | − ||Ŷ ||1
||R||1

)

,

where we first encode the number of 1s in R using LN, the MDL-optimal encoding for
integers [29]. It is defined as

LN(z) = log∗ z + log c0

where log∗ z is defined as log z + log log z + · · · , only including the positive terms in the
sum. To obtain a valid encoding, i.e., to satisfy the Kraft inequality, we set c0 = 2.865064
[29].

As now we know the number of 1s in R, we can optimally encode the actual sequence
R via an index over a canonically ordered set of all sequences of length n with ||R||1 ones.
Since we already know the location of predicted interesting events, we know these will be 0
in the residual and we can hence ignore ||Ŷ ||1 possible locations. As the binomial coefficient

123

Omen: discovering sequential patterns with reliable prediction delays

greatly increases with every additional interesting event in R, we favor residuals that cover
fewer interesting events.

Example 1 (continued) Consider again Fig. 2. Although data X are 18 events long, pattern
ab predicts three interesting events, by which there are 15 out of 18 possible time steps at
which the 2 unexplained events can occur. As such, we have L(R) = LN(2) + log

(15
2

)
.

Putting these two parts together, we have

L(Y | M, X) =
⎛

⎝
∑

(s,Ps)∈M
L(As | Ps)

⎞

⎠ + L(R)

for the number of bits to encode Y given a model M and observed events X .

Encoding a model

Next, we formalize how we encode a model M ∈ M in bits. At a high level, we have

L(M) = LN(|M |) +
∑

(s,Ps)∈M
L(s) + L(Ps) ,

where we first encode the number of patterns in the model, and then the patterns and their
associated delay distributions.

Patterns are essentially just a sequence of k events from Ω . We use LN to encode their
length, and to avoid any bias toward events e ∈ Ω , we encode the actual events in s using an
index over Ω . Thus, the cost of one pattern is

L(s) = LN(|s|) + |s| log |Ω| .

To encode a time delay distribution, it suffices to encode which time deltas have a
probability greater zero, and then encoding how likely each of these deltas are. We write
Δs = {δ | Ps(δ) > 0} for the set of δ values with nonzero probability, and δ∗ = max(Δs)

for the highest value of delta with nonzero probability. Formally, we then have

L(Ps | X) = LN(δ∗) + log(δ∗) + log

(
δ∗ + 1

k

)

+ log

(||Zs ||1 − 1

k − 1

)

,

where we first encode interval of possible deltas, [0, δ∗], simply by encoding the value of
δ∗ using LN. As we aim for actionable patterns, we are not interested in ‘instantaneous’
predictions. This allows us to repurpose δ = 0 to mean ‘skip,’ so avoiding unnecessary
padding of the possible values that can be sent. Next we encode the number of δs with
nonzero probability mass, k = |Δs |, for which we need log δ∗ bits. We then encode those
values δ ∈ Δs through a strong number composition. The intuition is that the more deltas are
left unused, i.e., Ps(δ) = 0, the higher this cost. Finally, we have to specify the probability
mass per δ, which reduces to encoding an index over a number composition, i.e., an index
over every possible way to distribute the ||Zs ||1 occurrences (balls) over k non-empty bins.
Overall, the flatter the distribution, the more deltas we have to consider, the higher the cost
will be, and hence we prefer peaked distributions.

Example 1 (continued) To illustrate this, we continue with our running example. Consider
again Fig. 2. The delay distribution has a nonzero entries for ‘skip’, and values of delta of
1, 2. This means we first encode the maximum delta, δ∗ = 2, and then how many deltas out

123

J. Cüppers et al.

of the range [0, 2] have a probability greater zero. We then identify which, in this case three
values, out of this range have nonzero probability. As there are only three possible values,
this is trivial; the cost is 0 bits. Finally, we have to distribute the total probability mass of the
four pattern occurrences of pattern ab over our three chosen delta, requiring 1.58 bits.

This concludes the description of how we encode a model M in bits.

3.3 The problem, formally

With the above, we can now formally state the problem.
The Minimal Event Prediction Problem Given event sequence X over alphabet Ω and
binary sequence Y indicating time points of interest, find that set of predictive sequential
patterns and associated time delay distributions M = {(s1, Ps1), (s2, Ps2), . . . , (sk, Psk)}
and that alignment A of pattern occurrences to interesting events in Y, such that the total
encoded length

L(Y , M | X) = L(M) + L(Y | M, X)

is minimal.
To solve this problemexactly,wewould have to consider a rather large, triply exponentially

sized search space. As we do not wish to a priori limit the maximum length of any pattern
beforehand, patterns can be up |X | − 1 long, resulting in

∑|X |−1
i=1 |Ω|i possible patterns. Per

pattern s, there exist (||Y ||1+1)||Zs ||1 possible alignments. This leaves the final part, in which
we have to select a set of patterns-alignment tuples. We can limit the number of tuples in our
model to ||Y ||1. Combining this gives us

||Y ||1∑

j=0

(∑
s∈S(||Y ||1 + 1)||Zs ||

j

)

possible solutions, where S is the set of all patterns. Although we are not necessarily afraid
of large search spaces, unfortunately this particular search space does not exhibit structure
such as (weak) monotonicity, convexity, or submodularity that we could exploit to guide our
search.

Hence, we resort to heuristics.

4 Algorithm

In this section we present the Omen algorithm for heuristically solving the Minimal Event
Prediction Problem. Rather than solving it at once, we split the problem in two parts and
propose effective solutions for both. First, given a pattern we aim to find its delay distribution
by optimizing the alignment between pattern occurrences and interesting events. Second, we
consider the problem of discovering good pattern sets.

We first introduce notation that will ease the exposition below. Whenever clear from
context, we will write Ls(Y) rather than L(Y , {(s, Ps)} | X) to denote the encoded length of
Y under amodelM that consists of a single pattern s. Analogue, wewrite L0(Y) to denote the
length of Y using the empty, or null model M0, which encodes all interesting events through
the residual R. Finally, we overload the notation of an alignment As , allowing ourselves to
represent an alignment as a set of tuples (i, j) where i is the location of the pattern match in
X , and j the location of the aligned interesting event (or ‘skip’) in Y .

123

Omen: discovering sequential patterns with reliable prediction delays

Fig. 3 Alignment optimization
process. Given an initial time
delay distribution, our goal is it to
simplify the distribution to that
version that minimizes the
number of bits needed to describe
Y , essentially we trade of number
of events explained by pattern s
against the number of deltas in
the delay distribution Ps . To
simplify the given distribution,
we first drop all least frequent
deltas from the distribution.
Secondly, reassign the
corresponding pattern
occurrences to other IE or, if not
possible, to ‘skip’. Thirdly, we
update the delay distribution to
match the new assignment. We
repeat these steps until no deltas
are left in our distribution, while
keeping track of how many bits
each alignment does need to
encode Y . Finally, we return that
alignment with min Ls (Y)

initial time delay distribution

remove least frequent deltas

realign pattern occurrences

update distribution

As with minLs(Y)

sk
ip

0

0.5

1 2 3 4

sk
ip

0

0.5

1 2 3 4

sk
ip

0

0.5

1 2 3 4

Zs: 0 1 0 0 1 0 1 0 0

Y : 0

0

0

1

0

2

0

3

1

4

0

5

1

6

1

7

1

8

time

skip

4.1 Discovering alignments and delay distributions

We start by discussing how to optimize an alignment As for a given pattern s. Solving
Ls(Y) exactly would require us to consider all possible alignments, which is computationally
unfeasible. We will therefore instead minimize Ls(Y) heuristically. The overall strategy is
as follows. Given an initial alignment As , and a corresponding delay distribution Ps , we
iteratively optimize Ls(Y) by taking all pattern occurrence with the lowest Ps(δ) and either
reassigning it to an interesting event such that we obtain a higher Ps(δ′), or if no such
interesting event exists, we map this pattern occurrence to ‘skip’ instead. We repeat this
process for all δ �= ‘skip’ and finally return that alignment As with the lowest Ls(Y). We
show a visualization of this process in Fig. 3. In the worst case, we will have to consider
all possible δ ∈ Ps for each pattern occurrence that we reassign, by which we have a time
complexity of O(||Zs ||1|Δs |).

To optimize our alignment, we need an initial alignment that can be optimized. We will
introduce two such methods. We give a general purpose approach below and discuss an
approach particular adapt at long-range prediction in Sect. 4.4.

123

J. Cüppers et al.

Our general purpose alignment initialization algorithm, AlignNext, consists of three
main steps, each updating the alignment. First, based on the assumption that each pattern
occurrence predicts the directly following interesting event, we simply align every occurrence
X [i] = s of pattern s in X to that interesting event in Y that is closest in time but at least
one time step into the future, i.e., As = {(i, j) | X [i] = s ∧ argmin j>i Y [j] = 1}, and
then determine the corresponding delay distribution Ps from this alignment. As by naively
mapping occurrences to the earliest interesting event, multiple pattern occurrences may map
to the same interesting event, while leaving other interesting events unexplained. We hence
next realign all such pattern occurrences to ‘skip’, except for the one with maximal Ps(j− i),
and re-infer the delay distribution. Last, we nowuse the new distribution to align every pattern
occurrence mapped to ‘skip’ to that interesting event Y [j] = 1 that maximizes Ps(j − i).
If there is no interesting event with nonzero probability under Ps , we map it to ‘skip’.
Reassigning a ‘skip’ requires us to consider all possible δ ∈ Ps in the worst case, resulting
in a complexity ofO((||Zs ||1)2). We can now, given a pattern, find an alignment between Zs

and Y .
As wewill see in the experiments, this approachworks well in practice. However, it is easy

to see that it has a bias toward alignments where interesting events are close in time to the
pattern occurrences. Differently put, if we would increase the mean of the delay distribution,
this approach will give a more and more undefined delay distribution. To obtain good initial
alignments for such cases, we introduce an alternative initialization algorithm in Sect. 4.4.

With the above, we know how to find an alignment As for a given pattern s and can hence
compute our score. Next, we discuss how to find good patterns.

4.2 Discovering a good set of patterns

There exist exponentially many patterns, and exponentially more sets of patterns. Evaluating
these exhaustively is not feasible, and as there is also no structure that we can exploit, exact
search for the best set of patterns is not an option. Instead, we propose a heuristic to find a
good set of patterns. In particular, we take a greedy bottom-up approach, where we iteratively
add and refine patterns in the model. Because of the complexity of X and sparsity of Y , it
will often be the case, however, that only (large parts of) a true pattern s will lead to a gain
in compression, while all small fragments of s do not improve over the null model. That is,
we cannot directly use the score defined above to identify whether a pattern is ‘promising,’
and as only in trivial cases singleton events in X will help to compress Y , we cannot start by
adding ‘good’ singletons and then refine them.

Rather than resorting to exhaustively scoring every possible pattern s under some arbitrary
constraints, we define an optimistic estimator L̄s(Y) by which we bound the length Ls′(Y)

of the theoretically best possible extension s′ of s. The key idea is that by extending s to s′,
the number of occurrences will monotonically decrease. We hence aim to estimate the score
of the theoretically best possible extension (refinement) s′ of s that exactly obtains the subset
of occurrences of s that align best with Y . Interestingly, this is equivalent to only aligning the
‘best’ occurrences of s to interesting events in Y , and treating the remaining pattern matches
as if they do not exist—i.e., play-pretending that the (unknown) s′ simply does not match
those occurrences of s. We can straightforwardly achieve this by mapping the non-matching
occurrences of s to ‘skip’, and treating the encoding cost for such skipped pattern occurrences
as zero. Hence, L̄s(Y) gives the length of Y where we set Ps(skip) = 1 for the encoding of
As and Ps(skip) = 0 for the encoding of Ps , as if only the pattern occurrences aligned to
interesting events exist.

123

Omen: discovering sequential patterns with reliable prediction delays

Algorithm 1: Omen
input : event sequence X and binary sequence Y
output : model M

1 M ← ∅; R ← Y
2 C ← Ω; C ′ ← ∅; S ← ∅
3 while C is not empty do
4 foreach s ∈ C do
5 if L̄s (R) < L0(R) then
6 C ′ ← C ′ ∪ {s + e, e + s | ∀e ∈ Ω}
7 if Ls (R) < L0(R) then
8 add s to S

9 foreach s ∈ S ordered by Ls (R) do
10 if Ls (R) < L0(R) then
11 s′, Ps′ ← Refine(s)
12 add (s′, Ps′) to M

13 Ŷ ← compute from M

14 R ← Ŷ ⊕ Y

15 C ← C ′; C ′ ← ∅; S ← ∅
16 return M

Exactly optimizing the subset of occurrences of s, i.e., finding those that together compress
Y best, is infeasible as it requires us to find the best alignment for every possible subset of
occurrences. We therefore instead start by inferring an initial alignment using either the
algorithm described above or the one in Sec. 4.4, optimize that alignment as described in
Sect. 4.1, but setting the cost of ‘skip’ to zero, and so obtain L̄s(Y). With L̄s(Y) we know,
if a gain is found, whether there exists a subset of occurrences of s that would improve our
model and the next task is hence to find whether there indeed exists an extension s′ of s that
does improve our score.

With the optimistic estimator in place, we can now introduce the Omen algorithm for
mining sets of predictive patterns. We give the pseudo-code as Algorithm 1. Omen starts
with an empty model where all interesting events are unexplained by patterns, i.e., encoded
via residual R (line 1). The main idea is to iteratively add patterns to the model M that predict
interesting events in R, by which we focus the search on those interesting events that are
currently not yet predicted (explained).

Starting from the singletons as candidate set C , we take a breadth-first search approach
where we extend all candidates that are promising with regard to our optimistic estimate (l.
4–6) and identify those that help to better compress Y (l. 7–8). As extensions of promising
patterns, we consider all patterns s′ where we add any single symbol from alphabet Ω at
either the end or beginning of s (l. 6). Next, we iteratively consider adding those candidates
s ∈ S that passed the compression-check into the model (l. 9–14). We do so in order of how
much they help to compress (l. 9) and to avoid redundancy only consider those that indeed
improve the score (l. 10)—for example, if abcd is the true pattern and ab ∈ S and cd ∈ S,
then both (probably) explain the same interesting events. Once we added one, the other does
not offer any additional information. When adding a pattern to our model we search for the
best possible refinement, that is we greedly extend our pattern to that version that gives us
the highest gain in bits saved, we refer the reader to ‘Appendix A.1’ where we provide a
more detailed explanation. After adding a pattern, we re-compute the residual (l. 13–14). We

123

J. Cüppers et al.

repeat these steps until we have no further candidates (l. 3) and then return the final model
M . In Fig. 1, we show a visualization of this algorithm.

In the worst case,Omen considers every possible sequential pattern overΩ , which means
a complexity of O(|Ω||X |−1).

4.3 FasterOMEN

As we will see in the experiments,Omenworks very well in practice. At the same time, it is a
bit naive: It considers as candidates extended patterns es and se, without taking into account
whether these extensions e predict any of the same interesting events as s. As this information
is readily available, an alternate and more targeted search strategy presents itself. We call
this, much faster, procedure fOmen. We give the pseudo-code of fOmen as Algorithm 2.
We first describe the algorithm in general and then detail the special case of singletons.

The main idea is to greedily combine those patterns in our candidate set that have the
largest intersection of predicted events (l. 4). When combining two such patterns, a and b,
we choose that ordering ab or ba that results in the most pattern matches in X (l. 6). If the
optimistic estimator indicates that the new pattern is potentially compressing, we mark the
events in X for each used pattern occurrence as used2 (l. 12), for reasons that will become
apparent when we study the singletons. We add all pairs between patterns already in our
candidate set and the newly created pattern to our candidate set (l. 19). Unless the new
pattern predicts previously unexplained events, i.e., those in the residual, then we greedily
refine it to its best version (l. 14) and add the refined version to our model and compute a new
partial prediction and update our residual accordingly (l. 15 to 17). We repeat this process
until no candidates are left. To prune candidates that are very unlikely to lead to improvement,
we permit the user to set a threshold on the minimum overlap in predicted events. Per default
we set this threshold to 0.01 × ||Y ||1.

The refinement of an already compressing pattern works similar to the mining approach.
We simply keep combining those patternswith the highest intersection of predicted interesting
events, up until the optimistic estimator indicates no better extension exists.We then return the
refinedpatternwith lowest Ls(R).Wegive the pseudo-code asAlgorithm4 in ‘AppendixA.2.’

We now consider the special case of candidates (a, b) where a and b are singletons. If
we were to treat such candidates the same as we do above and, for example, find that ba is
the most promising instantiation of (a, b), we would remove (a, b) and add any combination
(ba, s) where s is a pattern in C to the candidate set. For non-singleton patterns this is fine,
as long as we can re-build them from scratch if needs be, which is even desirable from a
run-time perspective. However, to be able to re-build patterns we do need to ensure that the
singletons, the most elementary building blocks, are always present as candidates. To make
sure they are, we hence should not simply remove singleton pairs (a, b) after exploring (and
possibly accepting into the model) their refinement. At the same time, we should not just put
(a, b) back just like that, as the just-extended pattern will already explain some or even many
of the interesting events. If we do not account for this, we would hence be too optimistic in
our estimate L̄s(·) of the potential gain of any new pattern that is based on the re-added (a, b).
To this end, we mark those events that the just-extended candidate pattern uses and update
the intersection counts of the singleton pair with un-used interesting events. If the optimistic
estimate of (a, b), L̄(a,b)(R), indicates a gain, we add (a, b) back into the candidate set and
otherwise discard it.

2 We say an event is used if it is part of pattern that is aligned to an interesting event.

123

Omen: discovering sequential patterns with reliable prediction delays

Algorithm 2: fOmen
input : event sequence X and binary sequence Y
output : model M

1 M ← ∅; R ← Y
2 C ← {{a, b} | a, b ∈ Ω, a �= b}
3 do
4 {a, b} ← argmax{a,b}∈C ||Ŷa ∧ Ŷb||1 // Ignore used events for singleton pairs.
5 C ← C \ {a, b}
6 s ← argmaxs∈{ab,ba} ||Zs ||1
7 if L̄s (R) < L0(R) then
8 foreach s̃ ∈ {a, b} where |s̃| = 1 do
9 C ← C ∪ {{s̃, s′} | s′ ∈ ⋃

C }
10 As ← from L̄s (R)

11 foreach (i, j) ∈ As where j �= ‘skip′ do
12 mark those events belonging to i as used

13 if Ls (R) < L0(R) then
14 s∗, Ps∗ ← fRefine(s)
15 M ← M ∪ (s∗, Ps∗)

16 Ŷ ← compute from M

17 R ← Ŷ ⊕ Y
18 else
19 C ← C ∪ {{s, s′} | s′ ∈ ⋃

C }
20 while |C | > 0
21 return M

Y : 0

0

0

1

0

2

0

3

0

4

0

5

0

6

1

7

0

8

1

9

0

10

0

11

1

12

0

13

1

14

0

15

1

16

0

17

0

18

0

19

1

20

0

21

time

Zs: 0 1 0 1 0 0 1 0 1 0 1 0 0 0 1 0 0 0 0 0 0 0

Fig. 4 Toy example for time-overlapping predictions. Zs shows the pattern occurrences of pattern s. The
arrows show the ground truth alignment to the interesting events in Y . The second (and third) pattern match
occurs before the interesting event predicted by the first pattern. To find good alignments in settings like this,
we give a specialized alignment approach in Sect. 4.4

4.4 Alignment with overlapping predictions

As the final technical contribution, we propose a fast alignment strategy that is particularly
suited for cases where there is long delay between patterns and interesting events, and hence
a high chance of overlap of occurrence-prediction intervals. As an example of why such
an algorithm is necessary in addition to the general purpose one described above, consider
Fig. 4. It is easy to see that the vanilla strategy, where we initially map a pattern occurrence
to the earliest interesting event, would fail to discover a sensible (let alone, the ground truth)
initial alignment; because the third, fourth, and fifth occurrence would all be mapped to an
interesting event at the next time step, they would amass as much probability density as the
true delay of 6 time steps and so create a local minimum out of which the optimization cannot
escape.

123

J. Cüppers et al.

0 0 0 0 1 1 0 0 0 0 0 1 1Y :

0 1 2 3 4 5 6 7 8 9 10 11 12

time

0 0 0 1 0 0 1 0 1 0 0 0 0Zs:

1 2 8 9 5 6 3 4

1
2
3
4
5
6

8
9

optima
delay offsets
midpoints

global
optimum

µ∗

Fig. 5 Toy example showing three pattern matches with all possible alignments (left) and the resulting mid-
points (right) that define the intervals with local optimum to be tested in the AlignFar alignment algorithm.
The global optimum lies between 3 and 4 as it has the smallest distance to all candidate pattern matches

We therefore present an alternative alignment algorithm, AlignFar, which is unaffected
by such overlapping predictions. At a glance, it first computes the mean of our delay distri-
bution and then assigns to each pattern the interesting event that is closest to this mean. More
specifically, we seek this delayμ for which each pattern occurrence delayed byμ lies as close
as possible to an interesting event occurrence following the pattern occurrence. We propose
an algorithm that computes this optimal delay within O(‖Zs‖1‖Y‖1 log ‖Zs‖1) time.

For convenience, we define the set of occurrence indices for the patterns, Is = {i | Zs[i] =
1}, and the set of occurrences for the interesting events, IY = {i | Y [i] = 1}. Given a pattern
occurrence is ∈ Is , we can now express its candidate interesting event occurrences as the set
I isY = {iY |iY ∈ IY ∧ iY > is}; this set consists of all event occurrences that follow the pattern
occurrence. Intuitively, we seek to find the delay μ that minimizes the total distance between
every pattern is—delayed by μ, and the event occurrence within I isY that lies nearest to is .
As a distance between these two occurrence indices, we adopt the quadratic one, after which
we can formally express our problem as:

μ∗ = argmin
μ∈R

∑

is∈Is
min
iY∈I isY

(is + μ − iY)2 . (1)

To demonstrate the intuition of this, we consider the toy setting of Fig. 5, in which the
pattern matches Is = {3, 6, 8} can each be aligned to any of the interesting events IY =
{4, 5, 11, 12}. Out of the latter, the candidate interesting event occurrences for the each pattern
match are the sets I 3Y = {4, 5, 11, 12}, I 6Y = {11, 12}, and I 8Y = {11, 12}, respectively.

We can optimize Equation 1 by the following procedure. We first create the union of all
event candidate offsets I∪

Y = ⋃
is∈Is I

is
Y , sorted in ascending order.

Lemma 1 Let I∪
Y be the sorted (multi-set) union of all possible interesting event candidates

and denote U the midpoints between each 2 consecutive elements of I∪
Y . Then, the candidate

within I∪
Y that lies closest to a pattern occurrence changes only when μ crosses a midpoint

in U. This change affects exactly those pattern occurrences that contributes an elements in
I∪
Y adjacent to the crossed midpoint in U.

Using Lemma 1, we can partition the real line in exactly |I∪
Y |+1 segments,3 within which

the configuration of closest events remains constant, and therefore also the objective value of
Eq. (1). For each segment, we can compute this value, as well as its optimizer, by carefully
keeping track of the updates induced to the optimizer and optimal of the preceding segment,
and in fact in constant time. By using appropriate data structures and a mutatis mutandis

3 Equal elements in the set are gracefully treated, but they still contribute to the complexity of the algorithm.

123

Omen: discovering sequential patterns with reliable prediction delays

MergeSort algorithm, we can perform the search for the next midpoint in O
(
log ‖Zs‖1

)

time. Overall, this gives our algorithm a computational complexity of O(|I∪
Y | log ‖Zs‖1).

Returning to the example of Fig. 5, the delay offsets is − iY in Eq. (1) for each pattern
match lie in the sequences (1, 2, 8, 9), (5, 6), and (3, 4), respectively, as shown in Fig. 5 (right).
Importantly, the union of all midpoints between every two consecutive elements in each of the
above sequences gives the set I∪

Y = {1.5, 3.5, 5, 5.5, 8.5}. Due to Lemma 1, for each interval
between consecutive midpoints the best offset is − iY for each pattern remains constant and
yields one single minimizer of μ for the specific interval (which need not necessarily lie
within the interval itself). Thus, the global optimizer can be retrieved as the minimum over
all these per-interval minimizers, which here is μ∗ = min{3, 10

3 , 11
3 , 17

3 , 6, 19
3 } = 10

3 .
Once we have computed our optimizerμ∗ of Eq. (1), we can simply select for each pattern

occurrence is the interesting event closest to is +μ from its candidate set I isY . If the candidate
set is empty, we align that pattern occurrence to a ‘skip’. This gives us an alignment for all
pattern occurrences without a bias toward closer interesting events.

5 Related work

Ourwork is related both to prediction and information flow in time series, as well as to pattern
mining.

At its core, the Omen score aims to measure how the occurrences of a pattern s in X help
to reliably predict the occurrences of interesting events in Y. As such, it is strongly related to
Granger causality [15]. Granger causality is based on the idea that if the past of a time series
Z does help to predict Y, given the past of Y, it ‘Granger-causes’ Y. Linear [15] and nonlinear
[6] scores have been proposed, whereas others studied the effects of events on time series
[31]. Transfer entropy (Tent) [32] and Cute [5] are both information-theoretic instantiations
of Granger causality for discrete data, where the one measures information flow in terms of
entropy, and the other in terms of MDL. In the experiments, we will compare our score to
both.

Prediction and forecasting in time series [7, 22, 30, 38, 39, 41, 42] are a classic research
topic to which Omen is related. A prototypical example is failure prediction, where the goal
is to predict upcoming failures with sufficient time to act on the prediction. By far most,
work focuses on the case where X is continuous valued and the goal is to discover time
points where the distribution of X changes [18, 37]. Another popular task is the prediction
of upcoming events based on social media activities and text [14, 27]. Related to prediction
which is the task studied by Yeh et al. [40], they considered the problem of reconstructing a
Boolean annotation sequence given a real-valued time series.

Discovering interpretable sequential patterns has been extensively studied [1]. We can
differentiate between two settings, based on the notion of support of a pattern. The first,
where we have a database of sequences and support is defined by the number of instances
containing a pattern [36], and the second where we have one or multiple sequences where
support is defined as the number of occurrences within a sequence, measured using either a
sliding window [25] or counting the number of minimal windows [21]. Both settings have
been studied in detail, especially for the goal of mining all (closed) frequent patterns [36].

Recently, research in pattern mining focused instead on discovering small, non-redundant
sets of patterns that together generalize the data, for which MDL based approaches, such as
Sqs [35], Squish [4], and Ditto [3] have been shown to be highly effective. The general
idea of these approaches is similar to ours, but inherently different as they are unsupervised.

123

J. Cüppers et al.

The goal is to find that set of patterns that together describe the given sequence database
most concisely. All use greedy search algorithms, iteratively adding patterns to a model until
convergence. Galbrun et al. [13] studied the problem of discovering sequential patterns with
reliably periodically appear. Instead of taking a descriptive approach, Fowkes and Sutton [12]
proposed amethod to discover small sets of informative patterns based on a generativemodel.
More precisely, they define a probabilistic generating model that given a set of sequences
generates the input sequence database. The goal is to infer set of subsequences which is
most likely to generate the input sequence database under the generating model. Although
all related to Omen in the sense that they also discover small sets of patterns, these methods
are all strictly unsupervised. In the experiments, we will compare to appropriately modified
versions of both Sqs [35] and Ism [12].

Identifying patterns that predict the occurrence of events can be approached as a supervised
sequence classification problem, where given a labeled sequence database the goal is to find
those sequential patterns that allow a classification [2, 11, 43]. Scis [43], a recently proposed
rule-based sequence classifier, is trained by mining rules above a set interesting threshold,
where interestingness is the product of cohesion (average proximity of items that make up
that rule) and frequency. A unseen sequence is classified by taking the top-k best fitting rules.
We consider a different setting, where instead of a sequence database, we only have two
sequences X and Y, where Y can be interpreted as our labels. We include a comparison to
Scis in the experiments.

6 Experiments

In this section, we will empirically evaluate on synthetic and real-world data. To determine
howwell our score andmethods can tell predictive from non-predictive patterns, we compare
to Tent [32] and Cute [5], and to determine how well they discover predictive patterns from
data we compare to Sqs [35], Bide+ [36], Ism [12], and Scis [43].

We implemented Omen in C++ and provide the source code for research purposes, along
with all datasets, experiment specifications, and generators.4 All experiments were executed
single-threaded on machines with two Intel Xeon CPU E5-2643 processors and 256 GB of
memory, running Linux. We report wall-clock running times.

6.1 Synthetic data

To assess performance against known ground truth, we consider synthetic data, which we
generate as follows. We first generate event sequence X of length n = 300 000 by uniformly
at random drawing n events from an alphabet Ω of length 50, i.e., X ∈ Ωn , and initialize
Y = {0}n . We add structure by planting 20 predictive and 10 non-predictive patterns. Every
pattern is generated independently, where we first draw its length l from [3, 6], its events
s = {e1, . . . , el} from Ω , and its frequency f from [5, 50], again all uniformly at random.
We plant patterns into X by sampling u.a.r. f insertion positions i ∈ [0, n], where we simply
overwrite the existing values in X , i.e., X [i : i + l] = s. To ensure the ground truth holds, we
do not overwrite previously planted patterns. For the predictive patterns s, we additionally
generate interesting events in Y by, per insertion position i , sampling a delay δ u.a.r. from
[8, 12] and setting Y [i + l + δ] = 1. Finally, we add noise to the data by flipping values in
Y . We consider both destructive noise, where we flip 1s to 0, as well as additive noise, where

4 http://eda.mmci.uni-saarland.de/prj/omen/.

123

http://eda.mmci.uni-saarland.de/prj/omen/

Omen: discovering sequential patterns with reliable prediction delays

0 10 20 30 40 50 60 70 80 90
0.5

0.75

1

destructive noise in %

w
ei
gh

te
d

ac
cu

ra
cy

Omen Cute Tent Cute+Omen Tent+Omen

(a) Accuracy under destructive noise.

0 10 20 30 40 50 60 70 80 90
0.5

0.75

1

additive noise in %

w
ei
gh

te
d

ac
cu

ra
cy

(b) Accuracy under additive noise.

Fig. 6 Higher is better. Omen reliably determines predictiveness of patterns, both for a destructive and
b additive noise, meaning that in Y we flip 1s to 0s, resp. 0s to 1s. Stand-alone, neither Cute nor Tent
differentiate at all between predictive and non-predictive patterns. When applied on the Ŷs discovered by
Omen and AlignNext, they do achieve reasonable performance (Cute+Omen, resp. Tent+Omen, dashed
lines). Omen beats all methods by a large margin

we flip 0s to 1. Unless specified otherwise, all results on synthetic data are averaged over 10
independently generated datasets.

6.2 Evaluating the score

We first evaluate how well Omen can tell predictive from non-predictive patterns. For
Omen, we consider a pattern to be predictive if it helps to compress Y. We compare Omen
to Tent [32] and Cute [5], two state-of-the-art methods based on Granger causality that
measure how much information Zs provides toward Y. For both, we say Zs predicts Y if they
conclude that Zs Granger-causes Y. We optimize the lag-parameter of Tent over [1, 15] per
experiment.

We generate data with varying amounts and type of noise as described above, and for every
planted pattern in every dataset test whether the score considers it predictive or not. We give
the average weighted accuracies, where weighted accuracy is defined as 1

2 (
tn

tn+ f p + tp
tp+ f n) 5

in Fig. 6. We see that Omen is able to identify predictive patterns with high accuracies even
for large amounts of noise, whereas Tent and Cute applied on Zs and Y reduce to a coin flip
as they expect all (most) interesting events to be explained by Zs . When we apply Tent and
Cute not on the raw data Y but rather on that Ŷs that Omen discovers as the best explanation
of Y given s (Cute+Omen and Tent+Omen), we see that their accuracies increase up to
90%, yet remain much worse than those of Omen.

6.3 Evaluating the discovered patterns

Next, we evaluate how well Omen discovers predictive patterns from synthetic data. We
compare Omen to Bide+ [36], Scis [43], Sqs [35], and Ism [12].

Scis discovers predictive patterns (rules) given a labeled sequence database as input. As
positive samples, we consider the window of w events in X that lead up to each interesting

5 tp = true positives, f p = false positives, tn = true negatives, f n = false negatives.

123

J. Cüppers et al.

event in Y. As negative samples, we then split the remaining data into non-overlapping
windows of length w, which avoids skew (in positive and negative samples) as well as bias
(non-intersecting with positive samples). We ensure Scis can discover all planted patterns
by setting w = 20. From all reported rules, we consider those who predict the positive class.

Bide+, Sqs, and Ism are all unsupervised by nature, but we can use them to discover
predictive patterns as follows. First, we split X at the location of the interesting events in
Y—so creating a database of sequences leading up to the next interesting event. We then run
the respective method on the created sequence database—and subsequently use the Omen

alignment and score to identify, out of all reported patterns, those who are predictive. As
in Sect. 6.2, we consider a pattern to be predictive if it does compress Y . Bide+ tends to
discover far too many patterns, i.e., millions more than planted, and hence, we only consider
the top-200 of its results. Sqs and Ism discover reasonable number of results, and those we
consider all.

As metric to evaluate success, we compute recall = tp
|{planted patterns}| and precision =

tp
|{received patterns}| over a pair-wise mapping between planted and discovered patterns. We map
each reported pattern to at most one planted pattern and to each planted pattern at most
one reported pattern. We allow a mapping between two patterns if the found pattern is a
subsequence of the planted one or vice versa. We choose that mapping that results in the
maximum number of pairs. This also allows us to rewards partial discoveries. As the number
of true positives, i.e., correctly received pattern, we consider the number of pairs in the
mapping, consequently the false positives are |{received patterns}|− true positives. We refer
the reader to ‘Appendix B.1’ for more details on how we compute the mapping.

We first consider a setting which favors unsupervised pattern mining methods like Sqs,
Ism and Bide+ by planting predictive patterns that are frequent in X , sampling the number
of pattern occurrences from [25 : 500]. As we find that Ism reports only singletons and
Bide+ does not return any predictive patterns, we omit them from further analysis. For the
remaining methods we report the F1 scores, F1 = 2∗precision∗recall

precision+recall , in Fig. 7. We see that

Omen and fOmen both outperform Scis and Sqs by a wide margin. Quantitatively, Sqs is
a good second, but Scis returns very many patterns that do not match the planted ones and
hence obtains very low precision and recall scores. fOmen, and especially Omen, has close
to perfect F1 scores for nearly all noise levels.

For the next analysis, we hence consider a more challenging setting where we sample
the frequency of the planted predictive patterns instead from the range [5 : 50]. We report
the F1 scores on the left-hand side of Figs. 8, 9 and 10 and provide the precision and recall
plots in ‘Appendix B.2.’ We see that in this more sparse setting, Sqs and Scis do no longer
discover any predictive patterns; Omen and fOmen, on the other hand, still discover most
up to all. We additionally see that Omen is especially robust against additive noise, while for
destructive resp. combined noise it performs well up to 60% noise. fOmen performs slightly
worse, but obtains these results in only a fraction of the time that Omen takes; on average
over these experiments it needs only 8 instead of 81 seconds.

6.4 Evaluating the discoveredmodels

In addition to measuring performance in recall and precision, we evaluate how close the
models that we discover get to the ground truth. We start with a sanity check, considering
data where Y is independent from X . We do so by generating data without noise and then
destroying any dependence between X and Y by randomly permuting Y. When we run either
Omen or fOmen on this data, both correctly report no patterns.

123

Omen: discovering sequential patterns with reliable prediction delays

0 10 20 30 40 50 60 70 80 90
0

0.2

0.4

0.6

0.8

1

destructive noise in %

F
1

Omen fOmen Sqs Scis

(a) F1 scores under destructive noise

0 10 20 30 40 50 60 70 80 90
0

0.2

0.4

0.6

0.8

1

additive noise in %

F
1

(b) F1 scores under additive noise

Fig. 7 Higher is better. F1 score results for Omen, fOmen, Sqs, and Scis, on synthetic data with ‘frequently’
occurring patterns and a destructive resp. b additive noise in Y . Scis fails to report any meaningful patterns.
Sqs, with our score to filter out non-predictive patterns, recovers a large fraction of the ground truth patterns.
fOmen outperform both by a large margin, except for high levels of additive noise. Omen is the best method
overall

0 10 20 30 40 50 60 70 80 90
0

0.2

0.4

0.6

0.8

1

destructive noise in %

F
1

Omen fOmen Sqs Scis

(a) F1 scores under destructive noise

0 10 20 30 40 50 60 70 80 90
0

2

4

6
·103

destructive noise in %

L
(Y

,
M

| X
)

Ground Truth
Omen
fOmen
Null Model

(b) Encoded size under destructive noise

Fig. 8 F1 score results (a, higher is better), and number of bits needed to encode Y given different models (b,
lower is better) on data with destructive noise. As models we consider the empty null model, the ground truth
model, and the models discovered by Omen and fOmen, respectively. Omen and fOmen report most of the
planted patterns up to 60% of noise. Sqs and Scis do not report any predictive patterns. We observe that the
reported models match the ground truth closely

Using the same data generating scheme as above, we now compare the number of bits that
Omen resp. fOmen require to describe the data, to the encoded length using either the ground
truth model, and the null model where Y is described without any patterns. We describe in
Sect. 3 how the number of bits needed to encode Y and M , under the respective models, is
computed. We report the average over all experiment per noise level. We give the results on
the right-hand side of Figs. 8, 9 and 10. In addition, we give the worst-case performance per
noise level in ‘Appendix B.2.’

Overall, we see that bothOmen and fOmen return high qualitymodels and are both highly
robust against noise. We see that the results of Omen in particular are always very close to
the ground truth, and far from the null model—except for when the null model is the most

123

J. Cüppers et al.

0 10 20 30 40 50 60 70 80 90
0

0.2

0.4

0.6

0.8

1

additive noise in %

F
1

Omen fOmen Sqs Scis

(a) F1 scores under additive noise

0 10 20 30 40 50 60 70 80 90
0

1

2

3

4
·104

additive noise in %

L
(Y

,
M

|X
)

Ground Truth
Omen
fOmen
Null Model

(b) Encoded size under additive noise

Fig. 9 F1 score results (a higher is better) and number of bits needed to encode Y given the null model, the
ground truth model and discovered model by Omen and fOmen respectively (b lower is better) on data with
‘unfrequent’ patterns and additive noise. Omen is especially robust against additive noise. We observe that
the reported models match the ground truth near exactly, especially Omen

0 10 20 30 40 50 60 70 80 90
0

0.2

0.4

0.6

0.8

1

combined noise in %

F
1

Omen fOmen Sqs Scis

(a) F1 scores under additive and destruc-
tive noise.

0 10 20 30 40 50 60 70 80 90
0

2

4

6

8
·103

combined noise in %

L
(Y

,
M

|X
)

Ground Truth
Omen
fOmen
Null Model

(b) Encoded size under additive and de-
structive noise.

Fig. 10 F1 score results (a higher is better) and number of bits needed to encode Y given the null model, the
ground truth model and discovered model by Omen and fOmen respectively (b lower is better) on data with
‘unfrequent’ patterns, destructive and additive noise. Omen and fOmen report most of the planted patterns
up to 50% of noise. Sqs and Scis do not report any predictive patterns. We observe that the reported models
match the ground truth closely

succinct description of the data, after which it correctly returns the null model as the best
(simplest) description of the data.

In some cases, we discover a shorter description then the ground truth, which can be
explained by the fact that due to noise, the ground truth pattern set and alignment does
not necessarily have to be the shortest description of the data at hand. If we consider, for
example, the case of destructive noise where, with increasing noise, pattern will predict fewer
and fewer interesting events. At some point, it requires less bits to describe these events using
the residual than using patterns. This also explains the drop in F1 that we observed above
for when there is destructive noise; above 80%, the data simply do no longer exhibit any
significant structure.

Last, we consider the robustness of Omen and fOmen against patterns with noisy delay
distributions. To this end, we generate synthetic data as above, but, to keep the results inter-

123

Omen: discovering sequential patterns with reliable prediction delays

0 10 20 30 40 50 60
0.5

1

1.5

2
·104

standard deviation

L
(Y

,
M

|X
)

Ground Truth
Omen
fOmen
Null Model

Fig. 11 Lower is better. For data with Gaussian-distributed time delays of mean 50,Omen and fOmen recover
high-quality models up to a standard deviation of 20

pretable, we now plant only a single pattern of length 6 that predicts 2 000 events. As time
delay distribution, we consider a Normal distribution with mean 50 and vary the standard
deviation from 2 to 60 in steps of 2. We record the number of bits L(Y , M | X) needed
by resp. the null model, the ground truth model, and the model discovered by our meth-
ods. We give the average results per standard deviation, out of 10 experiments, as shown in
Fig. 11. We see that both Omen and fOmen are robust to patterns with wide delay distri-
butions, discovering models that compress better than the null—and hence, discovering the
true pattern—consistently up to a delay distribution with a standard deviation of 24. From a
standard deviation of 44 onward, the null model beats the planted model.

6.5 Evaluating on data with gaps

Until now, we have only looked at synthetic data with strict subsequences as patterns. Next,
we evaluate on synthetic data where the planted patterns do have gaps. We keep the data
generating process the same except we plant a pattern by sampling u.a.r. f insertion points
i ∈ [0, n] and for each sampled i we select a window X [i : i + lk] where l is the length of
the pattern to be planted and k is a factor, specifying how large the window is. To plant the
pattern, we sample l insertions points from the window and plant the pattern accordingly.
For predictive patterns, we set Y [max sample + δ] = 1

To evaluate how well our methods recover patterns with gaps, we consider a setting where
we increase k in the experiment generation from 1 (no gaps) to 5 (window 5 times longer
than the actual pattern). We present the results in Fig. 12. Our base setup is to either not allow
any gaps (g = 1) and allowing for a minimal window lengths of up to twice the length of the
discovered pattern (g = 2). By its efficiency, we also consider fOmen with windows of up
to 5 times the pattern length.6

We observe that if do not allow for gaps, yet plant patterns with increasing window length,
performance quickly converges to 0. When we do allow for gaps up to factor of twice the
pattern length, we see that Omen recovers (close to) all patterns and does so up to a planted
window length of k = 3, after which performance deteriorates. fOmen shows the same
performance for g = 1, and somewhat worse results for g = 2. As it is much more efficient
than Omen, we can also run it with a much higher gap factor of 5, which coincides with a
much larger search space. We see that for this large gap factor the results are reasonable at

6 Technically we allow for window of length g × l + 1 where g is the gap factor and l the pattern length,
except for no gaps case (g = 1).

123

J. Cüppers et al.

1 1.3 1.7 2 2.5 3 4 5
0

0.2

0.4

0.6

0.8

1

k — window factor

F
1

Omen

(a) F1 scores for Omen under increasing
window sizes, i.e. more gaps.

1 1.3 1.7 2 2.5 3 4 5
0

0.2

0.4

0.6

0.8

1

k — window factor

F
1

fOmen

g = 1 g = 2 g = 5

(b) F1 scores for fOmen under increasing
window sizes, i.e. more gaps.

Fig. 12 F1 score results on synthetic data where predictive patterns include gaps (higher is better). Omen (a)
and fOmen (b) without allowing for gaps (i.e., by setting a maximum–minimumwindow length factor g = 1)
do unsurprisingly poorly on data with gaps (i.e., data generated with a window factor k > 1). Omen performs
surprisingly well until we plant patterns with significantly larger windows than we allow it to model. fOmen
is much faster, allowing us to consider mine at a much larger gap factor (g = 5), but overall performs worse
than Omen as it is more susceptible to randomly generated (not planted) pattern occurrences

best—by allowing for such large windows, it gets confused by random ‘patterns’ that are
only due to chance.

6.6 Evaluating on data with large time delays

In our final experiment in synthetic data, we evaluate how well our methods deals with over-
lapping predictions, as shown in Fig. 4. In particular, we aim to compare our two alignment
approaches. To this extend ,we generate data where we slowly increase the expected overlap.
We start with our usual experimental setup of 20 predictive and 10 frequent patterns, except
that we now set the median of our planted delay distribution to 350, and slowly increase the
number of pattern occurrences. We start by sampling from the range [10, 50] and shift it up
to [100, 500]. This slowly increases the number of pattern and therefore the likelihood that
pattern predictions will overlap. We report the result in Fig. 13.

For low overlap, we observe that AlignFar does significantly worse than AlignNext,
which is explained by the small number of pattern occurrences; given the small pattern
occurrences relative to the sequence length it is very likely that there exists a better alignment
for pattern generated by chance. The bias of AlignNext toward interesting events that
happen closer to the pattern occurrences here helps it to discover the correct patterns. Once
we increase the overlap, however, we see that AlignFar-based methods quickly start to
perform on par with AlignNext, and for an expected frequency of 120 and up it overtakes
it. We further see that for particularly high expected frequencies, fOmen with AlignFar

consistently performs best.

6.7 Evaluating on real data

Last, we evaluate our methods on real-world data. We consider three datasets, electrocar-
diograms (ECG) of an exercise stress test, a daily activities log (Lifelog) and water levels

123

Omen: discovering sequential patterns with reliable prediction delays

Fig. 13 Higher is better. F1
scores for synthetic data with
increasing overlap. We observe
that Omen with AlignNext does
well for lower frequencies, but
performance decreases when
frequency (and therewith the
overlap) increase. With
AlignFar, Omen is unaffected
by the increasingly overlapping
predictions

30 60 90 120 150 180 210 240 270 300
0

0.2

0.4

0.6

0.8

1

Expected frequency per pattern
F
1

Omen AlignNext
Omen AlignFar
fOmen AlignFar

combined with precipitation records (Saar). We give the basic statistics in Table 1. Since
fOmen and AlignFar essential reported the same patterns, analog performance relative to
Omen as for the synthetic data, we present the results reported by Omen with the Align-
Next; we compare to Sqs and Scis. As Sqs allows for gaps, and real-world patterns might
show these, we interpret its results as minimal windows for which we again use the Omen
score and alignment to determine which ones are predictive.

On the ECG dataset, the goal is to find patterns that predict the occurrence of a heartbeat.
Our dataset is based on the first record (id 300.1) of the MIT-BIH ST Change Database.7 We
subsampled the record, replacing each 5 subsequent values with their average, transformed
the result into a relative sequence by replacing each value with the difference to the previous
value. Finally, using SAX [24] we discretize the sequence to 3 symbols. The heartbeats are
annotated in the data. As we do not permit instantaneous predictions, we shift the annotation
slightly forward such that they are strictly before the heartbeat.

When we run it on this data, Sqs discovers 12 patterns out of which only one is predictive:
It corresponds to the previous heartbeat. Scis requires a window length, which we set to
the approximate length of one cardiac cycle, excluding the heartbeat (w = 40), for which
it then returns 41 318 patterns. Omen needs 1.9 seconds to discover two predictive patterns
that together compress Y to only 65% of the number of bits needed by the null model.
The first pattern corresponds to the previous heartbeat, the discovered time delay distribution
exhibits structure of a bimodal normal distribution.We visualize this pattern in Fig. 14. Closer
inspection of the data shows that the data are indeed composed of two different modes, high
and low intensity exercises.

Next we consider Lifelog, which is based on the life of Sacha Chuawho logs and publishes
all her daily activities.8 We considered the data over 2017, removing any activitieswith having
the same start and stop timestamp. As this dataset provides many events that are potentially
interesting, we consider every e ∈ Ω as target and have 40 target sequences with Y [i] = 1
iff X [i] = e. In addition, we consider a Y where we marked all business related activities as
interesting.

Over all these targets,Scis discovers on average 695 patterns,many ofwhich are redundant
and not all make intuitive sense. While Sqs only discovers 3 predictive patterns, these do
make sense: Cook, Dinner→Clean the Kitchen and Subway, Social→Subway. Omen takes

7 https://physionet.org/content/stdb/1.0.0/.
8 http://quantifiedawesome.com/records.

123

https://physionet.org/content/stdb/1.0.0/
http://quantifiedawesome.com/records

J. Cüppers et al.

0 20 40 60 80 100 120
Timesteps

X

Y

skip
0

0.05

0.1

0.15

30 32 34 36 38 40 42 44

Fig. 14 Window of ECG record with pattern ccc overlaid (left) and the reported time delay distribution (right)

Table 1 Results on real data

Dataset |X | |Ω| ||Y ||1 Scis Sqs Omen

|S| |S| |S| L% t

ECG 107,397 3 2558 41318 1 2 64.6 1.9

Saar-Rise 4018 17 278 419 0 7 71.3 0.08

Saar-Fall 4018 17 278 442 0 3 97.3 0.08

Lifelog 5970 40 153 695 0.07 0.7 93.7 1.0

We give data sequence length, alphabet size, number of interesting events in Y , and the number of reported
patterns for Sqs +Omen and Scis. For Omen, we additional report compression rate relative to the null model
in percent, %L and runtime in seconds. For Lifelog, we report the average over 41 independent runs, with
different target events

between 0.005 and 5.9 seconds per dataset and overall discovers 32 patterns. Many of these,
such as Sleep→Childcare, Cook→Dinner, and Dinner→Clean the Kitchen, predict the
next action, i.e., a time delay distribution with a peak at 1. A more interesting pattern is
Subway→Subway which has its peak at δ = 2, and for which a natural interpretation is that
Sacha takes the subway, logs on average one activity, and then takes the subway back.

Finally, we consider the Saar dataset [5], where the goal is to use daily precipitation
records9 to explain the rise (Saar-Rise) or fall (Saar-Fall) of the Saar river10 by 10cm or
more over one day. We considered the timespan from 2007 to 2018. We discretize the values
to 17 symbols using �log1.25 1 + x� where we accumulate all values ≥ 15 into one symbol.

With Scis (w = 10), we discover more than 400 patterns from either dataset. Most make
little to no sense, such as that two successive dayswithout rain predict a rise inwater level.Sqs
does not discover any descriptive nor predictive patterns. For both datasets,Omen terminates
within 0.08 seconds and only reports singleton patterns. It finds, for example, that the more
it rains, the more likely it is for the Saar to have risen by 10cm or more, either by the next
day, or even two days later. For Saar-Fall, we find an interesting pattern that expresses that
approximately three days after heavy rain the water levels quickly drop—which indeed is
likely as the water levels first rose due to rain.

9 https://www.dwd.de/DE/leistungen/klimadatendeutschland/klarchivtagmonat.html (Ensheim weather sta-
tion).
10 Measured at Sankt Arnual by the German Federal Institute of Hydrology (BfG).

123

https://www.dwd.de/DE/leistungen/klimadatendeutschland/klarchivtagmonat.html

Omen: discovering sequential patterns with reliable prediction delays

7 Discussion

The experiments showed that both Omen and fOmen work well in practice. We saw that the
Omen score is very good at telling predictive from spurious patterns, and that the mining
algorithms are able to reconstructs the ground truth without picking up spurious or redundant
patterns. In experiments on synthetic data, we observed that it is highly robust against noise
and can handle patterns with large gaps and high time delays, whereas the state of the art fails
to report meaningful patterns. On real-world data, we showed that it discovers easily inter-
pretable patterns that reliably explain our target events. The results of the ECG experiment
demonstrate that Omen finds interesting patterns and time delay distribution that represent
the real-world data well. In summary, on all considered settings it discovers small, easily
interpretable, and non-redundant sets of reliable patterns that together predict the interesting
events well.

We do observe that when we planting particularly long patterns with high occurrences,
Omen tends to report partial rather than complete patterns. That is, if we plant pattern abcdef ,
Omen is likely to report abcd whenever that is already sufficient to accurately predict all
interesting events that abcdef matches. It is easy to see why this is the case, as our score is
only concerned with describing Y as succinctly as possible and hence does not provide any
incentive to extend patterns further than strictly necessary. As in certain cases it is important
to retrieve the entire predictive pattern, we plan to extend Omen to report longer patterns
when possible. One possible approach, to this end, is to additional encode X along with Y
creating an incentive for longer patterns.

Although Omen is effective at discovering meaningful patterns, it currently considers a
relatively simple pattern language. At the expense of additional computation, it is straight-
forward to extend our score and search to sequences with complex multivariate patterns [3].
In a similar line of thought, we currently model time delay distributions nonparametrically.
While this comes with the advantage of not being restricted to any specific distribution, it
does increase the sample complexity of our method—we may miss certain patterns or fail to
predict certain events, simply because we have too little data to model the delay distribution
well. It hence makes sense to contemplate an extension of Omen where we model the delay
distributions parametrically, e.g., using domain knowledge to choose it as a Gaussian or
Poisson distribution, as this will permit discovering more subtle patterns. A challenge with
such an approach will be to find truly significant patterns.

We consider mining predictive rather than causal patterns. We do note, however, the close
kinship between the two, in the sense that the discovered pattern could cause our interesting
event. We share at least one common assumption: A cause needs to precede the effect in time
[15, 26]. It will be interesting to explore under which additional conditions (assumptions)
our patterns are indeed causal. By encoding Y using delay distributions that are independent
of the actual pattern occurrences in X , our framework naturally fits the algorithmic model
of causality [20], which could explain why our score performs so well in comparison with
Cute [5] and Tent [32]. By explicitly maximizing this independence, we could possibly
adapt Omen to discover sequential patterns that are causal under the additive noise model
[19, 33], which is an interesting direction for future work.

123

J. Cüppers et al.

8 Conclusion

We considered the problem of discovering small sets of sequential patterns that not only
predict that something interesting will happen, but for which it is additionally easy to tell
how long it will be until the predicted event. We formulated the problem in information-
theoretic terms using the Minimum Description Length principle. As the resulting problem
does not lend itself to efficient exact optimization, we propose the Omen and fOmen to
heuristically discover good pattern sets. Both rely on a method to infer an initial alignment
between pattern occurrences and interesting events, for which we propose two algorithms
one general purpose one and an alternative approach which is particular adapt at long-range
predictions. Extensive evaluation on synthetic and real-world data showed that Omen and
fOmen compare favorably to the state of the art. In particular, our score performs very well
in telling predictive from associative patterns, even under large quantities of noise. Omen
efficiently discovers high-quality sets of predictive patterns which give clear insight into the
data generating process. In future work, we will focus on generalizing the pattern language,
as well as investigating under which conditions we can discover sequential patterns that are
causal.

Funding Open Access funding enabled and organized by Projekt DEAL.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

A Refinement algorithms

A.1 OMEN refinement

When adding a pattern to our model we fist refine, i.e., extend it, to the best version we
can find, we do so in a greedy fashion. We give the pseudo-code for refining a pattern as
Algorithm 3. We start with a pattern s (l. 1) and consider the extensions es and se, where
e ∈ Ω , and choose the one with maximal frequency. To do so efficiently, we only consider
events e that are adjacent to pattern occurrences that are currently aligned to an interesting
event (l. 3–4). The key idea is that extending a pattern makes it more specific and hence
reduce recall—while, by maintaining the current predictions, we maximize precision. We
repeat this process until our optimistic estimator no longer gives a better estimation than the
best seen pattern up to this point. We then return that pattern with lowest Ls(R).

A.2 FOMEN refinement

When we find a compressing pattern, we greedily refine it to its most compressing form.
We do this by combining our compressing pattern with the candidate pattern that has the
highest intersection of predicted interesting events.We repeat this process until our optimistic
estimator no longer estimates a better refinement. From the chain of created patterns,we return

123

http://creativecommons.org/licenses/by/4.0/

Omen: discovering sequential patterns with reliable prediction delays

Algorithm 3: Refine Pattern
input : predictive pattern s,
output : greedy refinement of pattern s with associated delay distribution Ps

1 s∗ ← s s′ ← s
2 while L̄s′ (R) < Ls′ (R) do
3 H ← {(i, j) ∈ As′ | j �= skip, X [i + 1] = s′e}
4 T ← {(i, j) ∈ As′ | j �= skip, X [i] = es′}
5 if maxe∈Ω |T | > maxe∈Ω |H | then
6 s′ ← s′ + argmaxe∈Ω |T |
7 else
8 s′ ← argmaxe∈Ω |H | + s′

9 if Ls∗ (R) > Ls′ (R) then
10 s∗ ← s′

11 return (s∗, Ps∗)

Algorithm 4: fRefine
input : predictive pattern s,
output : refinement of pattern s and delay distribution Ps

1 s∗ ← s; s′ ← s
2 do
3 s̃ ← argmax ||Ŷs̃ ∧ Ŷs′ ||1 // Ignore used events for singleton patterns.
4 C ← (C \ {s̃, s′}) ∪ Ω

5 s′ ← argmaxs∈{s̃s′,s′ s̃} ||Zs ||1
6 if Ls∗(R) < Ls′ (R) then
7 s∗ ← s′

8 while L̄s′ (R) < Ls′ (R)

9 return (s∗, Ps∗)

the most compressing version. As Algorithm 4, we give the pseudo-code of the refinement
procedure.

B Experiments

B.1 Evaluationmetric

As metric to evaluate success, we consider a mapping between planted and discovered pat-
terns. Where we map each reported pattern to at most one planted pattern and to each planted
pattern at most one reported pattern, we allow a mapping between two patterns if the found
pattern is a subsequence of the planted one or vice versa. We choose the mapping that results
in the maximum number of pairs. To find the maximum number of pairs, we reformulate
the problem as a flow network optimization problem. And compute the maximum flow. We
connect each planed pattern to our source and each found pattern to the sink. We connect
a planted to a found pattern if the found is a subsequence of the planted one or vice versa.
The capacity of all links is set to one. We then compute the maximum flow of the created
flow network which maximizes the number of planted, found pairs. This setup ensures that
we match at most one found pattern to a planted pattern and vice versa. We maximize the

123

J. Cüppers et al.

s

source

abcd

abe

fcd

fgh

planted

fd

ab

gh

found

t

sink

Fig. 15 Toy example of howwematch discovered to planted patterns. A discovered pattern abwill be matched
to either abcd or abe, but not both; maximizing the flow gives us the number of recovered patterns

0 10 20 30 40 50 60 70 80 90
0

0.2

0.4

0.6

0.8

1

destructive noise in %

pr
ec

is
io
n

Omen fOmen Sqs Scis

(a) Precision under destructive noise.

0 10 20 30 40 50 60 70 80 90
0

0.2

0.4

0.6

0.8

1

destructive noise in %

re
ca

ll

(b) Recall under destructive noise.

Fig. 16 Higher is better. Precision and recall score result on synthetic data for destructive noise. We see that
Omen and fOmen only return true positives and recall most patterns even under high noise

flow using the Edmonds–Karp Algorithm [10] implemented by Hagberg et al. [17]. In Fig.
15, we give a toy example of such a flow network.

While there might exist multiple equivalent pairing solutions, this is not a problem for
us, as we are not interested in the actual pairing. In the example shown in Fig. 15, we find
pattern ab with just the pattern we do not know if it is a partial pattern of the planted pattern
abcd or abe or both and hence count it as one correctly found pattern, which means we did
not find, according to our evaluation metric, either pattern abcd or abe.

B.2 Additional experiment results

In Sect. 6, we show the F1 results for synthetic data. Here, we provide the recall and
precision results for destructive noise in Fig. 16, additive noise in Fig. 17, and for both
additive and destructive (combined) noise in Fig. 18. For all three settings, we see that Omen
and fOmen have near perfect precision, whereas the recall scores reflect the F1 scores. From
this, we can conclude as the signal-to-noise ratio increases, it becomes more difficult to find

123

Omen: discovering sequential patterns with reliable prediction delays

0 10 20 30 40 50 60 70 80 90
0

0.2

0.4

0.6

0.8

1

additive noise in %

pr
ec

is
io
n

Omen fOmen Sqs Scis

(a) Precision under additive noise.

0 10 20 30 40 50 60 70 80 90
0

0.2

0.4

0.6

0.8

1

additive noise in %

r
e
c
a
ll

(b) Recall under additive noise.

Fig. 17 Higher is better. Precision and recall score result on synthetic data for additive noise. We see that
Omen and fOmen only return true positives and Omen recalls most patterns even when 90% of interesting
events are noise

0 10 20 30 40 50 60 70 80 90
0

0.2

0.4

0.6

0.8

1

combined noise in %

pr
ec

is
io
n

Omen fOmen Sqs Scis

(a) Precision under destructive and addi-
tive noise.

0 10 20 30 40 50 60 70 80 90
0

0.2

0.4

0.6

0.8

1

combined noise in %

re
ca

ll

(b) Recall under destructive and additive
noise.

Fig. 18 Higher is better. Precision and recall score result on synthetic data for combined destructive and
additive noise. We see that Omen and fOmen only return true positives and recall most patterns even under
high noise

the planted patterns but our scores correctly filters non-predictive patterns even under high
noise.

In Figs. 19 and 20, we report the worst model discovered by Omen and fOmen, respec-
tively. The worst model is the one that has the largest difference between the number of
bits needed to encode Y compared to the ground truth model. We see that there are no big
differences between the average and the worst case showing that Omen and fOmen return
consistently good models.

123

J. Cüppers et al.

0 30 60 90
0

2

4

6
·103

destructive noise in %

L
(Y

,
M

|X
)

Ground Truth Omen Null Model

(a)

0 30 60 90
0

1

2

3

4
·104

additive noise in %

L
(Y

,
M

|X
)

(b)

0 30 60 90
0

2

4

6

8
·103

combined noise in %

L
(Y

,
M

|X
)

(c)

Fig. 19 Lower is better. fOmen discovers models close to the ground truth for destructive (a), additive (b),
and combined (c) noise. Plots show bits needed to encode Y given the null, planted, and discovered model.
We show for each noise level the experiment with the worst performance, i.e., where the difference, in bits,
between discovered and planted model is greatest

0 30 60 90
0

2

4

6
·103

destructive noise in %

L
(Y

,
M

|X
)

Ground Truth fOmen Null Model

(a)

0 30 60 90
0

2

4

·104

additive noise in %

L
(Y

,
M

|X
)

(b)

0 30 60 90
0

2

4

6

8
·103

combined noise in %

L
(Y

,
M

|X
)

(c)

Fig. 20 Lower is better. Omen discovers models close to the ground truth for destructive (a), additive (b),
and combined (c) noise. Plots show bits needed to encode Y given the null, planted, and discovered model.
We show for each noise level the experiment with the worst performance, i.e., where the difference, in bits,
between discovered and planted model is greatest

References

1. Aggarwal CC, Han J (eds) (2004) Frequent pattern mining. Springer
2. Batal I, Cooper GF, Fradkin D, Harrison J, Moerchen F, Hauskrecht M (2016) An efficient pattern mining

approach for event detection in multivariate temporal data. Knowl Inf Syst 46(1):115–150
3. Bertens R,Vreeken J, SiebesA (2016)Keeping it short and simple: summarising complex event sequences

with multivariate patterns. In: Proceedings of the 22nd ACM international conference on knowledge
discovery and data mining (SIGKDD), San Francisco, CA, pp 735–744

4. Bhattacharyya A, Vreeken J (2017) Efficiently summarising event sequences with rich interleaving pat-
terns. In: Proceedings of the SIAM international conference on data mining (SDM), Houston, TX, SIAM,
pp 795–803

5. Budhathoki K, Vreeken J (2018) Causal inference on event sequences. In: Proceedings of the SIAM
international conference on data mining (SDM), San Diego, CA, SIAM, pp 55–63

6. Chen Y, Rangarajan G, Feng J, Ding M (2004) Analyzing multiple nonlinear time series with extended
granger causality. Phys Lett A 324(1):26–35

7. Corbière C, Thome N, Bar-Hen A, Cord M, Pérez P (2019) Addressing failure prediction by learning
model confidence. pp 2898–2909

8. Cover TM, Thomas JA (2006) Elements of information theory. Wiley, New York
9. Cüppers J, Vreeken J (2020) Just wait for it... mining sequential patternswith reliable prediction delays. In:

Proceedings of the 20th IEEE international conference on data mining (ICDM), Virtual Event, Sorrento,
Italy

123

Omen: discovering sequential patterns with reliable prediction delays

10. Edmonds J, Karp RM (1972) Theoretical improvements in algorithmic efficiency for network flow prob-
lems. J ACM 19(2):248–264

11. Egho E, Gay D, Boullé M, Voisine N, Clérot F (2017) A user parameter-free approach for mining robust
sequential classification rules. Knowl Inf Syst 52(1):53–81

12. Fowkes J, Sutton C (2016) A subsequence interleaving model for sequential pattern mining. In: Proceed-
ings of the 22nd ACM international conference on knowledge discovery and data mining (SIGKDD), San
Francisco, CA, pp 835–844

13. Galbrun E, Cellier P, Tatti N, Termier A, Crémilleux B (2018) Mining periodic patterns with a mdl
criterion. In: Proceedings of the European conference on machine learning and principles and practice of
knowledge discovery in databases (ECML PKDD), Dublin, Ireland, Springer, pp 535–551

14. Gerber MS (2014) Predicting crime using twitter and kernel density estimation. Decis Supp Syst 61:115–
125

15. Granger CW (1969) Investigating causal relations by econometric models and cross-spectral methods.
Econometrica: 424–438

16. Grünwald PD, Grunwald A (2007) The minimum description length principle. MIT press
17. Hagberg AA, Schult DA, Swart PJ (2008) Exploring network structure, dynamics, and function using net-

workx. In: Varoquaux G, Vaught T, Millman J (eds) Proceedings of the 7th Python in Science conference,
Pasadena, CA USA, pp 11 – 15

18. Hooi B, Faloutsos C (2019) Branch and border: partition-based change detection in multivariate time
series. In: Proceedings of the SIAM international conference on data mining (SDM), Alberta, Canada,
SIAM, pp 504–512

19. Hoyer P, Janzing D, Mooij J, Peters J, Schölkopf B (2009) Nonlinear causal discovery with additive noise
models. pp 689–696

20. Janzing D, Scholkopf B (2010) Causal inference using the algorithmic markov condition. IEEE Trans Inf
Technol 56(10):5168–5194

21. Laxman S, Sastry PS, Unnikrishnan KP (2007) A fast algorithm for finding frequent episodes in event
streams. In: Proceedings of the 13th ACM international conference on knowledge discovery and data
mining (SIGKDD), San Jose, CA, ACM, pp 410–419

22. Laxman S, Tankasali V, White RW (2008) Stream prediction using a generative model based on frequent
episodes in event sequences. In: Proceedings of the 14th ACM international conference on knowledge
discovery and data mining (SIGKDD), Las Vegas, NV, pp 453–461

23. Li M, Vitányi P (1993) An introduction to kolmogorov complexity and its applications. Springer
24. Lin J, Keogh E,Wei L, Lonardi S (2007) Experiencing sax: a novel symbolic representation of time series.

Data Min Knowl Discov 15(2):107–144
25. Mannila H, Toivonen H, Verkamo AI (1997) Discovery of frequent episodes in event sequences. Data

Min Knowl Discov 1(3):259–289
26. Pearl J (2009) Causality: models, reasoning and inference, 2nd edn. Cambridge University Press
27. Radinsky K, Horvitz E (2013) Mining the web to predict future events. In: WSDM, pp 255–264
28. Rissanen J (1978) Modeling by shortest data description. Automatica 14(5):465–471
29. Rissanen J (1983) A universal prior for integers and estimation by minimum description length. Ann Stat

11(2):416–431
30. Saadallah A, Jakobs M, Morik K (2021) Explainable online deep neural network selection using adaptive

saliencymaps for time series forecasting. In: Proceedings of the European conference onmachine learning
and principles and practice of knowledge discovery in databases (ECML PKDD), Virtual

31. Scharwächter E, Müller E (2020) Two-sample testing for event impacts in time series. In: Proceedings of
the SIAM international conference on data mining (SDM), SIAM, pp 10–18

32. Schreiber T (2000) Measuring information transfer. Phys Rev Lett 85(2):461
33. Shimizu S, Hoyer PO, Hyvärinen A, Kerminen A (2006) A linear non-gaussian acyclic model for causal

discovery. J Mach Learn Res 7:2003–2030
34. Tatti N (2014) Discovering episodes with compact minimal windows. Data Min Knowl Discov

28(4):1046–1077
35. Tatti N, Vreeken J (2012) The long and the short of it: summarising event sequences with serial episodes.

In: Proceedings of the 18th ACM international conference on knowledge discovery and data mining
(SIGKDD), Beijing, China, pp 462–470

36. Wang J, Han J, Li C (2007) Frequent closed sequence mining without candidate maintenance. IEEE Trans
Knowl Data Eng 19(8):1042–1056

37. Weiss GM, Hirsh H (1998) Learning to predict rare events in event sequences. Proc ACM Int Conf Knowl
Discov Data Min (SIGKDD) 98:359–363

123

J. Cüppers et al.

38. Wu Q, Gao Y, Gao X, Weng P, Chen G (2019) Dual sequential prediction models linking sequential
recommendation and information dissemination. In: Proceedings of the ACM international conference
on knowledge discovery and data mining (SIGKDD), pp 447–457

39. WuZ, Pan S, LongG, Jiang J, ChangX, ZhangC (2020) Connecting the dots:multivariate time series fore-
casting with graph neural networks. In: Proceedings of the ACM international conference on knowledge
discovery and data mining (SIGKDD), ACM, Virtual Event CA USA, pp 753–763

40. Yeh CCM, Kavantzas N, Keogh E (2017) Matrix profile IV: using weakly labeled time series to predict
outcomes. Proc VLDB Endow 10(12):1802–1812

41. Zhao L, Ye J, Chen F, Lu CT, Ramakrishnan N (2016) Hierarchical incomplete multi-source feature
learning for spatiotemporal event forecasting. In: Proceedings of the ACM international conference on
knowledge discovery and data mining (SIGKDD), pp 2085–2094

42. Zhou C, Cule B, Goethals B (2015) A pattern based predictor for event streams. Expert Syst Appl
42(23):9294–9306

43. Zhou C, Cule B, Goethals B (2016) Pattern based sequence classification. IEEE Trans Knowl Data Eng
28(5):1285–1298

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Joscha Cüppers is a PhD student at the CISPA Helmholtz Center for
Information Security and the University of Saarland. He obtained his
Bachelor in 2016 from Ulm University and his Masters in 2019 from
Saarland University. He is working on pattern mining in temporal set-
tings, and particularly, he is interested in developing methods to find
interactions between time series. In his free time, you probably find
him riding a bike.

Janis Kalofolias received his Diploma of Engineering from the Univer-
sity of Patras, Greece, and his Master’s degree from the Max Planck
Institute of Informatics, Germany. He is currently a PhD student at
CISPA Helmholtz center for Information Security. He is interested in
exploring the theoretical foundations underlying the Exploration of
Data, to propose exact, efficient methods. His recent work includes the
study of a special case of the random walk positive definite kernel for
graphs, when node alignment information is available, and the gen-
eralization of the problem of Subgroup Discovery to accept arbitrary
positive definite kernels.

123

Omen: discovering sequential patterns with reliable prediction delays

Jilles Vreeken is tenured faculty at the CISPA Helmholtz Center for
Information Security, where he leads the Exploratory Data Analysis
group. In addition, he is Honorary Professor at Saarland University
and Senior Researcher at the Max Planck Institute for Informatics.
His research interests include virtually all topics in data mining and
machine learning. He authored over 100 conference and journal papers,
and 3 book chapters. He was awarded the 2018 IEEE ICDM Tao Li
Award, and the 2010 ACM SIGKDD Doctoral Dissertation Runner-Up
Award, as well as won three best paper awards. He likes to travel, to
think, and to think while traveling.

123

	Omen: discovering sequential patterns with reliable prediction delays
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Notation
	2.2 Minimum Description Length
	3 Theory
	3.1 The problem, informally
	3.2 MDL for predictive sequential patterns
	Encoding the data given a model
	Encoding a model

	3.3 The problem, formally

	4 Algorithm
	4.1 Discovering alignments and delay distributions
	4.2 Discovering a good set of patterns
	4.3 Faster Omen
	4.4 Alignment with overlapping predictions

	5 Related work

	6 Experiments
	6.1 Synthetic data
	6.2 Evaluating the score
	6.3 Evaluating the discovered patterns
	6.4 Evaluating the discovered models
	6.5 Evaluating on data with gaps
	6.6 Evaluating on data with large time delays
	6.7 Evaluating on real data

	7 Discussion
	8 Conclusion
	A Refinement algorithms
	A.1 Omen refinement
	A.2 fOmen refinement

	B Experiments
	B.1 Evaluation metric
	B.2 Additional experiment results
	References

