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Abstract

In this thesis we explore pattern mining and deep learning. Often seen as
orthogonal, we show that these fields complement each other and propose
to combine them to gain from each other’s strengths. We, first, show how to
efficiently discover succinct and non-redundant sets of patterns that provide
insight into data beyond conjunctive statements. We leverage the interpretability
of such patterns to unveil how and which information flows through neural
networks, as well as what characterizes their decisions. Conversely, we show
how to combine continuous optimization with pattern discovery, proposing a
neural network that directly encodes discrete patterns, which allows us to apply
pattern mining at a scale orders of magnitude larger than previously possible.
Large neural networks are, however, exceedingly expensive to train for which
‘lottery tickets’ – small, well-trainable sub-networks in randomly initialized
neural networks – offer a remedy. We identify theoretical limitations of strong
tickets and overcome them by equipping these tickets with the property of
universal approximation. To analyze whether limitations in ticket sparsity are
algorithmic or fundamental, we propose a framework to plant and hide lottery
tickets. With novel ticket benchmarks we then conclude that the limitation is
likely algorithmic, encouraging further developments for which our framework
offers means to measure progress.
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Zusammenfassung

In dieser Arbeit befassen wir uns mit Mustersuche und Deep Learning. Oft
als gegensätzlich betrachtet, verbinden wir diese Felder, um von den Stärken
beider zu profitieren. Wir zeigen erst, wie man effizient prägnante Mengen
von Mustern entdeckt, die Einsichten über konjunktive Aussagen hinaus geben.
Wir nutzen dann die Interpretierbarkeit solcher Muster, um zu verstehen wie
und welche Information durch neuronale Netze fließen und was ihre Entschei-
dungen charakterisiert. Umgekehrt verbinden wir kontinuierliche Optimierung
mit Mustererkennung durch ein neuronales Netz welches diskrete Muster di-
rekt abbildet, was Mustersuche in einigen Größenordnungen höher erlaubt
als bisher möglich. Das Training großer neuronaler Netze ist jedoch extrem
teuer, für das ’Lotterietickets’ – kleine, gut trainierbare Subnetzwerke in zufällig
initialisierten neuronalen Netzen – eine Lösung bieten. Wir zeigen theoretische
Einschränkungen von starken Tickets und wie man diese überwindet, indem
man die Tickets mit der Eigenschaft der universalen Approximierung ausstattet.
Um zu beantworten, ob Einschränkungen in Ticketgröße algorithmischer oder
fundamentaler Natur sind, entwickeln wir ein Rahmenwerk zum Einbetten
und Verstecken von Tickets, die als Modellfälle dienen. Basierend auf unseren
Ergebnissen schließen wir, dass die Einschränkungen algorithmische Ursachen
haben, was weitere Entwicklungen begünstigt, für die unser Rahmenwerk
Fortschrittsevaluierungen ermöglicht.
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1
INTRODUCTION

motivation
Asking the right question and forming a matching hypothesis lays at the heart
of scientific research. These hypotheses then need to be validated by thorough
testing, which requires gathering data from carefully designed experiments.
Gathering large amounts of such experimental data routinely, supported by
recent technological leaps, massively propelled research. These advances are
particularly strong in sciences such as molecular biology and medicine. With
these large amounts of data produced on a daily basis, the question extended
from whether the collected data supports or refutes a given hypothesis, but
also what else we can learn and infer by exploiting the richness of the data. For
example, gene expression measured in lung tissue could contain information
about gene interactions, which could give insight in a disease, or even its cause
and effects, and could lead to the discovery of marker genes or potential drug
targets. That is, rather than explicitly formulated by the scientist, a hypothesis –
e.g., a particular gene is a marker of the disease – is generated by exploring the
data, rather than consulting the data with a hypothesis.

This is precisely the question that data mining asks: What can we learn from
data? As part of this field, in pattern mining, the goal is to automatically discover
human-interpretable patterns that capture the main regularities observed across
the features of a given data set. These patterns thus generate insights into the
processes underlying the data and therewith allow domain experts to postulate
new hypotheses. Considering the gene expression example from above, pattern
mining can reveal interesting interaction patterns of genes, across whole popu-
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lations or differential between diseased and healthy individuals. Those patterns
can then be leveraged for further investigation by a domain expert as potential
biomarkers, drug targets, or to improve the foundational understanding of gene
regulation as a whole.

In machine learning the data is instead exploited with a different goal, that
is, to learn predictive models. In the last decade artificial neural networks
stood at the forefront of machine learning, solving complex tasks in e.g. image
recognition and natural language processing often at human-like performance
or even surpassing it (He et al., 2015; Hu et al., 2018; Amodei et al., 2016; Devlin
et al., 2019). These models, furthermore, solved long-open computational
challenges in science such as predicting protein folding (Jumper et al., 2021) or
controlling nuclear fusion reactors (Degrave et al., 2022). While these models
steadily produce new sensational results and excell in predictive performance,
they are, however, opaque and do not lend themselves for easy interpretation.
At the heart of these successes lays that these models also rely on patterns in
the data, which begs the question what regularities these networks exploit to
achieve their performance, and, what we can learn from them. This task is
again exploratory in nature, but now is concerned with explaining a model, e.g.
a trained neural network, in human-interpretable terms, rather than the data.
When training a neural network to predict lung diseases, we are likely to find
that the model uses the presence of a pattern of genes to predict a disease state.
Such information can on the one hand be used to get insights about the data,
and on the other hand can provide clues about model robustness, reliability,
and generalization, which are critical factors considering for instance an AI
system in medical care.

The performance of neural networks also comes at a different cost apart
from opaqueness, they are prohibitively expensive to train and deploy. Learning
smaller networkswould not only be a remedy, but thesewould also be inherently
more interpretable. There is, hence, a huge incentive to find ways to reduce
their size, opposing the trend of ever-growing networks built to solve more and
more complex tasks. Although it should theoretically be possible and despite
tremendous research efforts, small neural networks, so far, could not reach the
performance of their larger counterparts when trained from scratch.

In this thesis we study each of these problems in turn.

challenges
Arguably the central challenge in datamining is that of discovering interpretable
patterns that capture the regularities in the data at hand. The types of data
considered for discovery include graphs, sequences, continuous, integral, and
nominal or binary data. We are here interested in binary data, both fundamen-
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tal building block, as well as naturally arising in many application domains
including biology and medicine. There, experts are for example interested to
find the patterns of genetic and epigenetic control that govern cellular regu-
lation in (healthy) individuals, and the aberrant patterns linked to diseases.
These patterns could be of genes switched on or off, epigenetic marks such as
DNAmethylation or histone modifications being set or not, or the presence of a
mutation in the genome, all of which are naturally modeled by binary variables.

More generally, we can define this instance of pattern mining as
Problem 1 (The pattern set mining problem). Given binary data D ∈ {0, 1}n,m

of n samples over m binary variables, find a set of patterns P over a language L that
captures the non-spurious and non-redundant regularities in the data.

As we will see, how we define the pattern language L is essential to the de-
scriptive power of patterns P ∈ P and consequently what types of regularities
we can capture in data. Despite a classical problem of data mining, methods
mostly consider the language of logical conjunctions, or association rules over
those conjunctive statements. One of the first fields of application for pattern
mining was shopping transaction data (Agrawal et al., 1993), e.g. the buying
history of individuals at a retailer, yet, as we will see the state-of-the-art for
pattern mining does not scale well beyond a few thousand of variables, ren-
dering it impractical for this application. More importantly, these approaches
are also not suited to take on the emerging biological applications, which come
with similarly large and high-dimensional data. Besides, many approaches find
millions of spurious or redundant results, as we also find in our experiments,
which are hardly interpretable by a human expert. There is, hence, ample room
for improvement.

Strongly related is the problem of finding patterns that describe regularities
in data partitions. For example, what are epigenetic patterns that are distinct
to healthy individuals, and what are those distinct to patients? This problem
is referred to as subgroup discovery, emerging pattern mining, or variants of
significant pattern mining, depending on considered data type, label type, and
methodology (Atzmueller, 2015; García-Vico et al., 2018; Llinares-López et al.,
2015). The overarching problem of discovering regularities describing a given
partitioning we will, here, call differential pattern mining, emphasizing the
differential descriptions that these patterns yield, detaching it from specific
data types or methodologies. Given data D along with a binary label L that
partitions the data into two parts D1, D2, we define this problem as
Problem 2 (The differential pattern mining problem). Given two partitions of
binary data D1 ∈ {0, 1}n1,m, D2 ∈ {0, 1}n2,m, find patterns P1,P2 that capture the
regularities distinct to each partition.

Several methods have been proposed that find interesting differential pat-
terns, yet, as we will see, often have issues partially shared with the traditional
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pattern mining methods. For example, some findmostly redundant or spurious
results, suffer from multiple hypothesis testing, or have difficulties with highly
imbalanced data partitions. What all of them have in common is that they
barely scale to a few thousand features.

Both the presented pattern mining problems lay at the heart of data mining
and are formulated general enough to be fitted to a wide range of applica-
tions. In this thesis, we also consider the problems of explaining – in human-
interpretable terms – the decision process of machine learning models, and
what data makes them err. This is especially important for opaque neural net-
work models acting in a safety-critical environment, but also might generate
new insights into the regularities underlying the data. Finding patterns in a
neural network that explain its decision process is an instance of Problem 1,
where the data D consists of the neuron activations observed for each sample.
To describe associations of neuron activations across, for example, network lay-
ers, however, requires a rich pattern language L. Similarly, to understand what
patterns in the data make a network err, we can define data partitions D1, D2 to
be that input data which lead to correct respectively incorrect prediction for the
given network, which makes the problem of understanding misclassifications
an instance of Problem 2.

Lastly, we turn to the problem of finding small but well performing neural
networks. Neural networks are widely celebrated for their successful applica-
tion to challenging tasks, but are immensely over-parameterized and, hence,
expensive to train and hard to interpret. Instead of training a small network
from scratch, which commonly fails to reach the desired performance, recent
proposals suggested to identify a small sub-network θ ′ of an initialized large
network θ, where θ ′ has orders of magnitude fewer parameters but can be
trained with equal success, referred to as lottery ticket.
Problem 3 (Identifying lottery tickets). Given an initialized neural network with
parameters θ, identify a small sub-network θ ′ ⊂ θ with |θ ′| ≪ |θ|, that trains to equal
performance as the full network.

Recent theoretical and empirical results confirmed that these sub-networks
or lottery tickets indeed exist, andmost successful approaches to identify lottery
tickets rely on pruning of a large network. Such pruning approaches, if efficient
enough, bear the promise to overcome the issues of overparametrization, being
inherently more interpretable and saving a significant amount of resources. We
next discuss the contributions we make to each of the three problems.

contributions
The main focus of this work in the context of pattern mining is two-fold. First,
we want to be able to find richer structures that better capture the regularities
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of the given data. In the previous section we intentionally left the definition
of a pattern language L vague and will briefly discuss the importance of it
and its impact on the results here. Second, we want approaches that scale well
with increasing number of samples n as well as features – or items – m in the
data. This allows to handle the interesting emerging applications in biology
and medicine, as well as to cope with the ever-growing data collections for the
classical exploratory problems, such as transactional retail data.

Contribution 1. The first contribution that we make is that of discovering
sets of robust rules X → Y which express dependencies of a set of co-occurring
features Y on a set of co-occurring features X. We show that, in contrast to the
state-of-the-art, our rule sets are robust to noise in the data, and can express
conjunctive statements of arbitrary length in both heads X and tails Y. The
discovery of such rules is an instance of Problem 1, where the pattern language
L is that of rules of the form described above. We approach this problem
with a pattern set mining approach and identify a good rule set in terms of
the Minimum Description Length (MDL) principle. We further propose an
efficient bottom-up heuristic that allows to find succinct, non-redundant, and
non-spurious sets of rules that capture important regularities in the data, which
we show on both synthetic as well as real world data. In our experiments we
further confirm that our approach scales to thousands of rows and columns in
the data, which makes it well suited for the emerging biological applications
such as gene expression data.

Contribution 2. Rules capture important interpretable dependencies in data.
Biological and medical data, however, also contain relationships of mutual
exclusivity, such as genes acting as antagonists in pathways, or replacable sub-
components in protein complexes. The existing works are usually not able to
capture those relationships to their full extent, despite the importance of such
patterns for drug discovery, discovery of biomarkers, and the foundational
understanding of gene regulation. In our second contribution, we reconsider
Problem 1 by proposing an expressive pattern language of co-occurrences and
mutual exclusivity, and mixtures of those. Formulated as a pattern set mining
problem, we identify descriptive pattern sets in terms of MDL, and propose an
approximation that allows to scale to tens of thousands of features, showing its
exceptional power in a novel application to single-cell gene expression data.

Contribution 3. Existing work on pattern mining, including our previous
contributions, usually explore the discrete space of all patterns or pattern sets
by combinatorial optimization techniques. While we are able to consider an
order of magnitude more features by more efficient pruning and approxima-
tions as well as optimized code, we slowly reach a limit of the considerable
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data with respect to size. This limitation is largely due to the enumeration of
the search space. To be able to scale to hundred thousands or even millions of
features, typically encountered for example at large online retailers or in genetic
variation studies, we, hence, need to rethink how we model pattern mining
problems. In our third contribution, we revisit Problem 1, and present a novel
type of binarized autoencoder, which is able to discover human-interpretable
sets of conjunctive patterns through gradient based optimization. It thus pro-
vides a link between learning of discrete patterns and continuous optimization,
overcoming the issues of traditional combinatorial search in pattern mining.
Putting these models into practice, we consider the large 1000 Genomes dataset,
which captures genomic variations of a human population, and show that our
models are able to retrieve insightful biological patterns across several hundred
thousands of mutations present in this data.

Contribution 4. With the exceptional performance of neural networks (NNs)
there is a strong research drive to understand what these models learn to
succeed in their task. In our fourth contribution, we turn to the problem of
understanding these black box models through the lense of pattern mining.
Building on Contribution 1, we next turn to a variation of Problem 1, where we
consider binarized activations of NNs as data D and are interested in finding
rules that give insights into the inner workings of NNs. Contemporary work
on explaining NNs mostly focuses on local explanations, on input-output rela-
tionships, or aims to find interpretable models that mimic the NNs’ decision.
Also classical rule mining fails as it is neither expressive enough nor finds
crisp descriptions of the activation patterns, which are necessary for human
interpretation. We here fill this gap by extending the language of rules further
to express disjunctive statements in both heads and tails in a set mining frame-
work. We are thus able to capture regularities across e.g. class labels, which are
inherently disjunct, and the noisy co-activations observed in real-world NNs.
In applications to convolutional neural networks (CNNs) trained on real-world
data, we get a glimpse into how networks learn to generalize across classes,
distinguish between them, and how information flows through the network.

Contribution 5. Analyzing how NNs arrive at a decision is crucial to un-
derstand how they ’reason’, but also whether their reasoning is robust and
reliable. What is even more important is to understand where they fail, both
to understand their shortcomings as well as to improve them. Proposing a
solution to Problem 2, we then turn towards analyzing misclassification of NNs
on complex language tasks using our proposal, comparing it to a wide range of
approaches from rule mining, subgroup discovery, statistical pattern mining,
and classical machine learning on both synthetic and real world data. While
existing work shows to struggle with the amounts of noise and the high imbal-
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ance of data of misclassified and classified samples, our approach discovers
patterns of mutually excluvise and co-occuring words that differentiate cor-
rectly from incorrectly predicted instances. We show that these patterns not
only provide interesting insights in what a network deems challenging, but are
also actionable.

The success of neural networks not only comes at the cost of black box models,
but is usually also overshadowed by the often prohibitively expensive training
process. The research efforts to overcome these issues through smaller, yet
equallywell performing neural networks, captured by Problem 3, recently gained
traction by the conjecture and formal proof of the lottery ticket hypothesis
(LTH). We consider two types of tickets, weak lottery tickets, which are sub-
networks that can be trained to the same performance as their dense counterpart,
and strong lottery tickets, which are sub-networks that, at initialization, perform
as good as their dense counterpart. Identifying the latter can be seen as the holy
grail in the quest for resource-efficient networks, as these tickets are efficient at
inference and save training entirely, but are inherently difficult to find. While
not as resource-saving, substantial progress regarding Problem 3 has been made
by discovering weak tickets, which found wide-spread application in computer
vision (Frankle et al., 2020), natural language processing (Yu et al., 2020), and
adversarial robustness (Fu et al., 2021). Our contributions discuss and answer
several fundamental questions pertaining to lottery tickets.

Contribution 6. Current initialization schemes for NNs initialize bias terms to
zero. Considering NNs with ReLU activations, which are standard in modern
architectures, we formally show that zero-initialized biases prevent strong
lottery tickets from obtaining the universal approximation property. Based on
this insight, we extend multiple initialization schemes to non-zero biases, show
that these initializations are well trainable, and prove the existence of strong
lottery tickets in this setting. On benchmark data, we show the practical benefits
of these initializations, which equip the tickets with the ability for universal
approximation, leading to tickets of greater sparsity. We additionally use a
theoretical insight on parameter rescaling during the pruning process to further
improve the sparsity of discovered strong tickets.

Contribution 7. The state-of-the-art lottery ticket pruners successfully retrieve
well performing sub-networks for a variety of tasks. However, their sparsity
and, hence, their ability to save resources, is limited. Furthermore, due to
missing benchmarks these methods were only evaluated against their dense
counterpart and existing pruning methods. This issue brings up the following
essential question: Is the lack of sparse solutions fundamental, i.e. sparser
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tickets do not exist, or of algorithmic nature, i.e. the current algorithms can not
identify an existing sparser solution?

To discuss this problem, we first provide a lower bound on the probability
of existence for strong lottery tickets, and derive a framework to plant and hide
lottery tickets in target networks. Generating hand-crafted ground truth tickets
for three challenging problems, which we hide in large randomly initialized
networks, we then set on to test the state-of-the-art’s ability to retrieve them,
providing for the first time a ticket pruning benchmark. We identify several
shortcomings of existing work and highlight their potential for improvement
and can answer that the lack of sparse solutions is due to an algorithmic limi-
tation of current methods rather than a fundamental limitation. Furthermore,
the observed trends are consistent with results on real world image data, which
shows that our benchmarks, while artificial in nature, reflect realistic conditions,
serving as a measure of progress in the quest for ticket pruning.

The list of publications corresponding to all contributions can be found in
Tab. 1.1. In each of the publications the author of this thesis was involved as
first author, contributing to the main ideas, theoretical work, implementation,
experiments, and writing of the manuscript. For contribution 5 and 6 there was
a shared first authorship, where both authors contributed equally to the work,
taking part in each of the previously mentioned steps.

organization
This thesis is organized into nine chapters, with Chapters 2-8 each dedicated to
one contribution (see Tab. 1.1) and the last chapter containing a conclusion of
the work. For a better read, the chapters are ordered thematically rather than by
problem statements. That is, we first discuss how to discover sets of robust rules
in Chapter 2 and how to leverage rule set mining to explain neural networks
in Chapter 3. We then extend the classical conjunctive pattern language to
combinations of conjunctive and mutual exclusivity statements in Chapter 4,
and propose to identify label-descriptive patterns over such a richer language in
Chapter 5, where we apply it to better understand the systematic errors made by
neural networks in natural language processing. In Chapter 6 we then discuss
how to overcome scalability issues of current pattern mining approaches by
introducing a novel type of binarized autoencoder that allows to explore the
discrete search space of patterns through efficient continuous optimization. In
Chapter 7 we extend the strong lottery tickets to neural network initialization
schemes with nonzero biases to equip these tickets with the universal approxi-
mation property. We then propose a framework to plant and hide lottery tickets
in randomly initialized neural networks in Chapter 8 and generate extremely
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sparse lottery ticket benchmarks to challenge the state-of-the-art pruners, for
the first time allowing to quantify the (in)efficiency of these algorithms with
respect to the sparsity of the discovered tickets.

Each of these chapters is organized into a general introduction to the spe-
cific topic, discussion of the related work and necessary notation, followed by
theoretical, methodological, and experimental contributions, and ended with a
discussion and conclusion section. We lay out the main related work of pattern
mining in the first chapter, and discuss the additional work relevant to each
contribution in the corresponding chapters. At the end of this thesis, in Chapter
9, we will conclude the work and discuss its relevance within data mining and
machine learning.



2
SETS OF ROBUST RULES ,
AND HOW TO F IND THEM

2.1 introduction
Association rules are among the most important primitives in data mining.
Rules of the form X → Y are not only simple to understand, but they are
also simple to act upon, and, most importantly, can express important local
structure in the data. The problem is, however, that there are so many of
them, and that telling the interesting from the uninteresting rules has so far
proven extremely difficult. Both traditional algorithms based on support and
confidence (Agrawal and Srikant, 1994), as well as modern approaches based
on statistical tests (Hämäläinen, 2012), typically discover orders of magnitude
more rules than the data has rows – even when the data consists of nothing but
noise. In this paper we show how to discover a small, non-redundant set of
noise-resistant rules that together describe the data well.

To succinctly express subtly different structures in data, we allow multiple
items in the consequent of a rule. To illustrate, while rule sets R1 = {A →
B, A→ C} and R3 = {A→ BC} both express that B and C appear frequently
in the context of A, the former states they do so independently, while the latter
expresses a dependency between B and C. We additionally allow for patterns,
which are simply rules like R4 = {∅ → ABC} and express unconditional
dependencies. Real data is often noisy, and hence we can allow rules to hold
approximately. That is, for a transaction t = ABC, our models may infer that

This chapter is based on Fischer and Vreeken (2019).

11



2.2. Related Work 12
D
at
a

R
ul
es
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{A→ B,

A→ C}

2. ABC

{A→ B,

B→ C}

3. ABC

{A→ BC}

4. ABC

{∅→ ABC}

5. ABCD

{A→ BCD}

Figure 2.1: Five toy databases with corresponding rule sets. 1) B and C occur in the
context of A but independently of each other, 2) C occurs in the context of B, which in
turn occurs in the context of A, 3) B and C show strong joint dependence in the context
of A, 4) A, B, C show strong unconditional dependence, and 5) a rule with noise, BCD
occuring jointly in the context of A.

rule R5 = {A→ BCD} holds, even though item D is not present in t. We call
these noise-resistant, or robust rules. To determine the quality of a rule set for
given data, we rely on information theory.

In particular, we define the rule set mining problem in terms of the Mini-
mumDescription Length (MDL)principle (Grünwald, 2007). Loosely speaking,
this means we identify the best rule set as that one that compresses the data
best. This set is naturally non-redundant, and neither under- nor over-fitting,
as we have to pay for every additional rule we use, as well as for every error we
make. We formally show that the resulting problem is neither submodular, nor
monotone, and as the search space is enormous, we propose Grab, an efficient
any-time algorithm to heuristically discover good rule sets directly from data.
Starting from a singleton-only model, we iteratively refine our model by consid-
ering combinations of rules in the current model. Using efficiently computable
tight estimates we minimize the number of candidate evaluations, and as the
experiments show, Grab is both fast in practice, and yields high quality rule
sets. On synthetic data, Grab recovers the ground truth, and on real-world
data it recovers succinct models of meaningful rules. In comparison, state of
the art methods discover up to several millions of rules for the same data, and
are hence hardly useful.

2.2 related work
Pattern mining is arguably one of the most important and well-studied topics
in data mining. We aim to give a succinct overview of the work most relevant
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to ours. The first, and perhaps most relevant proposal is that of association
rule mining (Agrawal and Srikant, 1994), where in an unsupervised manner
the goal is to find all rules of the form X → Y from the data that have high
frequency and high confidence. As it turns out to be straightforward to distill
the high-confidence rules from a given frequent itemset, research attention
shifted to discovering frequent itemsets more efficiently (Mannila et al., 1994;
Zaki et al., 1997; Han et al., 2000) and in settings of distributed (Otey et al.,
2003) or evolving databases (Veloso et al., 2002). While all these approaches
indeed efficiently mine all rules, they suffer from the pattern explosion problem
– where millions of itemsets or rules are found even for small data sets. To
tackle this issue, Webb and Zhang (2005) suggested a top-k approach that
efficiently mines the k most interesting rules using efficient branch and bound
search (Webb, 1995). In a related line of work, research focused instead on
eliminating redundancy in the discovered rule sets based on the concepts of
maximal frequent itemsets and closedness properties (Bayardo, 1998; Pasquier
et al., 1999; Calders and Goethals, 2007; Moerchen et al., 2011). Wang and
Parthasarathy (2006) instead propose to summarize itemsets through markov
random fields, modeling items as random variables.

Frequency alone, however, turned out to be a badmeasure of interestingness,
as it leads to spurious patterns (Webb, 2007; Vreeken and Tatti, 2014). To allevi-
ate this, statistically soundmeasures were proposed tomine individual patterns
based on margins (Pellegrina and Vandin, 2018; Pellegrina et al., 2019; Papaxan-
thos et al., 2016) or based on richer background knowledge (Jaroszewicz and
Simovici, 2004; Tatti, 2008; De Bie, 2011), or to use well-founded information
theoretic approaches tomine sets of patterns as a whole, based on theMinimum
Description Length Principle (Vreeken et al., 2011; Smets and Vreeken, 2012)
or maximum entropy modeling (Mampaey et al., 2012; Dalleiger and Vreeken,
2020). Perhaps because it is already difficult enough to determine the inter-
estingness of a pattern, let alone a rule, most proposals restrict themselves to
patterns. Key exceptions are Kingfisher (Hämäläinen, 2012), which proposes
an upper bound for Fisher’s exact test that allows to efficiently mine significant
dependency rules, yet suffers from the multiple test correction problem, and an
extension of Magnum Opus, a frequency based pattern and rule mining frame-
work refined with statistically sound testing of discovered patterns (Webb, 2007,
2011). Notably, however, both these proposals can only discover exact rules
with a single item consequent.

Less directly related to our problem setting, but still relevant, are supervised
descriptive rule discovery approaches (Wang and Rudin, 2015; Papaxanthos
et al., 2016), emerging pattern mining (Dong and Li, 1999), contrast sets (Bay
and Pazzani, 2001), and subgroup discovery (Wrobel, 1997). For a general
overview we refer to Zimmermann and Nijssen (2014) respectively Novak et al.
(2009). We will further discuss this line of research in Chapter 5. For now,



2.3. Preliminaries 14

however, we are not interested in rules that explain a certain target, but rather
aim for a set of rules that together explains all of the data well.

Our approach is a clear example of pattern set mining (Vreeken and Tatti,
2014). That is, rather than measuring the quality of individual patterns – or
rules – we measure quality over a set of patterns (Vreeken et al., 2011; Fowkes
and Sutton, 2016). Information theoretic approaches, such as MDL and the
Maximum Entropy principle, have proven particularly successful for measuring
the quality of sets of patterns (Vreeken et al., 2011; Mampaey et al., 2012). Most
pattern set approaches do not account for noise in the data, withAsso (Miettinen
and Vreeken, 2014),Hyper+ (Xiang et al., 2008), and Panda (Lucchese et al.,
2010) as notable exceptions. However, extending any of the above from patterns
to rules turns out to be far from trivial, because rules have different semantics
than patterns. Pack (Tatti andVreeken, 2008) usesMDL tomine a small decision
tree per item in the data, and while not technically a rule-mining method, we
can interpret the paths of these trees as rules. In our experiments we will
compare to Kingfisher as the state-of-the-art significance based rule miner,
Hyper+ as a representative of noise resilient, frequency based pattern miner,
and Pack as an MDL based pattern miner, which output can be translated into
rules. WhileMagnum Opus suits our goal, it is only commercially available and
hence excluded from our experiments.

2.3 preliminaries
In this section we discuss preliminaries and introduce notation.

2.3.1 notation
We consider binary transaction data D of size n-by-m, with n = |D| transactions
over an alphabet I of m = |I| items. In general, we denote sets of items as
X ⊆ I . A transaction t is an itemset, e.g. the products bought by a customer.
We write πX(D) := {t ∩ X | t ∈ D} for the projection of D on itemset X. The
transaction set, or selection, T of itemset X is the set of all transactions t ∈ D
that contain X, i.e. TX = {t ∈ D | X ⊆ t}. We write nX = |TX | to denote the
cardinality of a transaction set. The support of an itemset X is then simply the
number of transactions in D that contain X, i.e. support(X) = |TX |.

An association rule X → Y consists of two non-intersecting itemsets, the
antecedent or head X, and consequent or tail Y. A rule makes a statement about
the conditional occurrence of Y in the data where X holds. If X = ∅, we can
interpret a rule as a pattern, as it makes a statement on where in the whole data
the consequent holds. Throughout this manuscript, we will use A, B, C to refer
to sets of single items and X, Y, Z for itemsets of larger cardinality.
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2.3.2 minimum description length
The MinimumDescription Length (MDL) principle (Rissanen, 1978; Grünwald
and Roos, 2019) is a computable and statistically well-founded approximation
of Kolmogorov Complexity (Li and Vitányi, 1993). For given data D, MDL
identifies the best model M∗ in a given model classM as that model that
yields the best lossless compression. In one-part, or, refined MDL we consider
the length in bits of describing data D using the entire model class, L(D |
M), which gives strong optimality guarantees (Grünwald, 2007) but is only
attainable for certain model classes. In practice we hence often use two-part,
or, crude MDL, which is defined as L(M) + L(D | M). Here the length of the
description of the model L(M), and the length in bits of the description of the
data L(D | M) using M are computed separately. We will use two-part codes
where we have to, and one-part codes where we can. Note that in MDL we
are only concerned with code lengths, not materialized codes. Also, as we are
interested in measuring lengths in bits, all logarithms are to base 2, and we
follow the convention 0 log 0 = 0.

2.4 theory
To use MDL in practice, we first need to define our model classM, how to
describe amodel M in bits, and how to describe data D using amodel M. Before
we do so formally, we first give the intuitions.

2.4.1 the problem, informally
Our goal is to find a set of rules that together succinctly describe the given data.
Our models M hence correspond to sets R of rules X → Y. A pattern ABC is
simply a rule with an empty head, i.e. ∅→ ABC. A rule applies to a transaction
t ∈ D if the transaction supports its head, i.e. X ⊆ t. For each transaction to
which the rule applies, the model specifies whether the rule holds, i.e. whether
Y is present according to the model. We can either be strict, and require that
rules only hold when Y ⊆ t, or, be more robust to noise and allow the rule to
hold even when not all items of Y are part of t, i.e. Y \ t ̸= ∅. In this setting,
the model may state that rule A→ BCD holds for transaction t = ABC, even
though D /∈ t (see Fig. 2.1.5). A model M hence needs to specify for every rule
X → Y ∈ R a set of transactions TM

Y|X where it asserts that Y holds in the context
of X, and, implicitly also TM

̸Y|X, the set of transactions where it asserts Y does
not hold. Last, for both these we have to transmit which items of Y are actually
in the data; the fewer errors we make here, the cheaper it will be to transmit. To
ensure that we encode any data D over I , we require that a model M contains
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at least singleton rules, i.e. ∅→ A for all A ∈ I . Cyclic dependencies would
prevent us from decoding the data without loss. Any valid model M can hence
be represented as a directed acyclic graph (DAG), in which the vertices of the
graph correspond to rules in R, where vertex r = X → Y has incoming edges
from all vertices r ′ = X ′ → Y ′ for which X ∩Y ′ is non-empty.

We explicitly allow for rules with non-singleton tails, as this allows us
to succinctly describe subtly different types of structure. When B happens
independently of C in TA (Fig. 2.1.1), rule set R1 = {A → B, A → C} is a
good description of this phenomenon. In turn, when C occurs often – but
not always – in TB, which in turn happens often in TA (Fig. 2.1.2) rule set
R2 = {A → B, B → C} is a good description. To succinctly describe that B
and C are statistically dependent in TA (Fig. 2.1.3) we need rules with multiple
items in its tail, i.e. R3 = {A → BC}. Finally, if A, B, and C frequently occur
jointly, but conditionally independent of any other variable, we need patterns
to express this, which are just consequents in the context of the whole database
R4 = ∅→ ABC.

2.4.2 mdl for rule sets
Next, we formalize an MDL score for the above intuition. We start by defining
the cost of the data given a model, and then define the cost of a model.

Cost of the data We start with the cost of the data described by an individual
rule X → Y. For now, assume we know πX(D) and TX . We transmit the data
over Y in the context of X, i.e. DY|X = πY(TX), in three parts. First, we transmit
the transaction ids where model M specifies that both X and Y hold, TM

Y|X,
which implicitly gives TM

̸Y|X = TX \ TM
Y|X . We now, in turn transmit that part of

DY|X corresponding to the transactions in TM
Y|X , resp. that part corresponding to

TM
̸Y|X . We do so using optimal data-to-model codes, i.e. indices over canonically

ordered enumerations,

L(DY|X | M) = log
( |TX |
|TM

Y|X |

)
+ log

(|TM
Y|X | × |Y|
1(TM

Y|X)

)
+ log

(|TM
̸Y|X | × |Y|
1(TM

̸Y|X)

)
,

where we write 1(TM
Y|X) for the number of 1s in TM

Y|X , i.e.

1(TM
Y|X) = ∑

t∈TM
Y|X

|t ∩Y| ≤ |TM
Y|X | × |Y| .

We define 1(T̸Y|X) analogue.
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When the model makes exact assertions on Y holding when X is present,
i.e. when TM

Y|X = TY|X, the second term vanishes, and analogously for the
third term when TM

̸Y|X = T̸Y|X. Both terms vanish simultaneously only when
DY|X ∈ {∅, Y}|DX |. This is trivially the case when Y is a singleton.

The overall cost of the data given the model simply is the sum of the data
costs per rule,

L(D | M) = ∑
X→Y∈M

L(DY|X | M)

To decode the data, the recipient will of course need to know each rule X → Y.
These are part of the model cost.

Cost of the Model To encode a rule, we first encode the cardinalities of X
and Y using LN, the MDL-optimal code for integers z ≥ 1, which is defined
as LN(z) = log∗ z + log c0, where log∗ z = log z + log log z + ..., and c0 is a
normalization constant such that LN satisfies the Krafft-inequality (Rissanen,
1983). We can now encode the items of X, resp. Y, one by one using optimal
prefix codes, L(X) = −∑x∈X log sx

∑i∈I si
. Last, but not least we have to encode

its parameters, |TM
Y|X |, 1(TM

Y|X), and 1(T̸Y|X). These we encode using a refined,
mini-max optimal MDL code. In particular, we use the regret of the Normalized
Maximum Likelihood code length (Kontkanen and Myllymäki, 2007) for the
class of binomials,

Lpc(n) = log

(
n

∑
k=0

n!
(n− k)!k!

( k
n

)k(n− k
n

)n−k
)

,

which is also known as the parametric complexity of a model class. Kontkanen
and Myllymäki (2007) showed that this term can be computed in time O(n) in
a recursive manner. We obtain the model cost L(X → Y) for a rule X → Y by

L(X → Y) = LN(|X|) + L(X) + LN(|Y|) + L(Y)+

Lpc(|TX |) + Lpc(|TM
Y|X | × |Y|) + Lpc(|TM

̸Y|X | × |Y|) .

From how we encode the data we can simply ignore the last two terms for rules
with |Y| = 1. The overall cost of a model M then amounts to

L(M) = LN(|R|) + ∑
X→Y∈R

L(X → Y) ,

where we first send the size of rule set R, and then each of the rules in order
defined by the spanning tree of the dependency graph. This concludes the



2.5. Grab 18

definition of our two-part MDL score given as

L(D, M) = L(M) + L(D | M).

For the interested reader, example computations are provided in Appendix
A.1.1, which give practical intuition about the basic and noise encoding.

2.4.3 the problem, formally
We can now formally define the problem in terms of MDL.
Problem 4 (Minimal Rule Set Problem). Given data D over items I , find that
rule set R and that set of T of tid-lists TM

Y|X for all X → Y ∈ R, such that for model
M = (R, T) the total description length,

L(D, M) = L(M) + L(D | M)

is minimal.

Solving this problem involves enumerating all possible models M ∈ M. There
exist ∑

|I|
i=0

(
(|I|i )× 2i

)
= 3|I| possible rules – where the second term in the sum

describes all possible partitions of i items into head and tail, and the equality
is given by the binomial theorem. Assuming that the optimal TM

Y|X are given,
there are generally 23|I| possible models. The search space does not exhibit any
evident structure that can be leveraged to guide the search, which is captured
by the following two theorems. We postpone the proofs to Appendix A.1.
Theorem 2.1 (Submodularity). The search space of all possible sets of association
rules 2Ω, where Ω are rules over I , when fixing a dataset and using the description
length L(D, M) as set function, is not submodular. That is, there exists a data set D
s.t. ∃X ⊂ Y ⊆ Ω, z ∈ Ω. L(D, X ∪ {z})− L(D, X) ≤ L(D, Y ∪ {z})− L(D, Y).

Theorem 2.2 (Monotonicity). The description length L(D, M) on the space of all
possible sets of association rules 2Ω is not monotonously decreasing. That is, there
exists a data set D s.t. ∃X ⊂ Y ⊆ Ω. f (X) ≤ f (Y).

Hence, we resort to heuristics.

2.5 grab
In this section we introduce Grab, an efficient heuristic for discovering good
solutions to theMinimal Rule Set Problem. Grab consists of two steps, candidate
generation and evaluation, that are executed iteratively until convergence of
L(D, M), starting with the singleton-only rule set R0 = {∅→ A | A ∈ I}.
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Candidate generation From the current rule set R we iteratively discover
that refined rule set R ′ that minimizes the gain ∆L = L(D, M ′)− L(D, M). As
refinements we consider the combination of two existing rules into a new rule
for which we give pseudocode in Alg. 2.1.

In particular, we generate candidate refinements by considering all pairs
r1 = X → Y, r2 = X → Z ∈ R, assuming w.l.o.g. nXY ≥ nXZ, and merging the
tails of r1 and r2 to obtain candidate rule r ′1 = X → YZ (line 4), and merging
the tail of r1 with the head to obtain candidate rule r ′2 = XY → Z (line 9). We
now construct refined rule sets R ′1 and R ′2 by adding rule r ′1 resp. r ′2. To reduce
redundancy, we remove r2 from both R ′1 and R ′2, and r1 from R ′1, taking care
not to remove singleton rules. We only evaluate those refined rule sets R ′ for
which the corresponding dependency graph is acyclic (line 7, 12), and select
the one with minimal gain ∆L < 0. Although we consider only pairs of rules
for merging, Grab converges fastly (see Fig. 2.2a).

Algorithm 2.1: generateCandidates (D, M)

input :Database D, model M = (R, T )
output :Ordered candidate refinement set C

1 G ← dependency graph of rule set R;
2 C ← ∅ // Candidate list
3 for r1 = X → Y, r2 = X → Z ∈ R, nY ≥ nZ do // Rule pairs with

same head
4 r ′1 ← X → YZ; R ′1 ← R + r ′1 − r1 − r2 // Merge the tails
5 if ∆̂1(r ′1) < 0 then // Check gain estimates
6 if ∆̂2(r ′1) < 0 then
7 if G + r ′1 − r1 − r2 is acyclic then
8 C ← C ∪ (∆̂2(r ′1), R ′1)

9 r ′2 ← XY → Z; R ′2 ← R + r ′2 − r2 // Merge the head
10 if ∆̂1(r ′2) < 0 then // Check gain estimates
11 if ∆̂2(r ′2) < 0 then
12 if G + r ′2 − r2 is acyclic then
13 C ← C ∪ (∆̂2(r ′2), R ′2)

14 return C
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Figure 2.2: Grab searches efficiently and estimates accurately. For DNA we show (left)
the convergence of the relative compression of model M at iteration i against the singleton
model Ms, %L = L(D,M)×100

L(D,Ms)
, and (right) the correlation between estimated and actual

gain of all evaluated candidates in real data.

Gain estimation To avoid naively evaluating the gain ∆L of every candidate,
we rely on accurate gain estimations. In particular, we consider two different
estimates; the first estimate is very inexpensive to compute, but overly optimistic
as it assumes a perfect overlap between the two rules. The second estimate is
computationally more costly, as it requires us to compute the intersection of the
tid lists of the two original rules. In practice, however, it is exact (see Fig. 2.2b).

Depending on how we combine two rules r1 and r2, we need different
estimate definitions. In the interest of readability, we here consider one case
in detail: that of combining singleton rules r1 = ∅→ A and r2 = ∅→ B into
r = A→ B. For the remaining definitions we refer to Appendix A.1.4.

Following the general scheme described above, for the first estimate ∆̂1 we
assume that TB ⊆ TA. With singleton tails we do not transmit any errors. Thus,
we only subtract the old costs for r2 and add the estimated cost of sending
where the new rule r holds, as well as the estimated regret for the newmatrices,

∆̂1(r) = − log
(

n
nB

)
+ log

(
nA
nB

)
+Lpc(nA)+Lpc(nB)+Lpc(nA−nB)−Lpc(n) .

For the tighter, second estimate ∆̂2 we instead need to retrieve the exact number
of usages of the rule by intersecting the tid lists of merged rules. The change in
model costs L(M) by introducing r appearing in L(M) is trivially computable
and thus abbreviated by L̂(M). For formerly covered transactions that are not
covered by the new rule, we need to send singleton rules with adapted costs,
which is estimated through simple set operations on the tid lists. Additionally,
we need to subtract the model costs for r2, in case B is completely covered by r,
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ensured by the indicator variable I. We hence have

∆̂2(r) =− log
(

n
nB

)
+ log

(
nA

|TA ∩ TB|

)
+ log

(
n

|TB \ TA|

)
+ L̂(M) + Lpc(nA)

+ Lpc(|TA ∩ TB|) + Lpc(nA − |TA ∩ TB|)− I(TB ⊆ TA)× Lpc(n) .

Grab first computes the first order estimate ∆̂1 per candidate, and only if this
shows potential improvement, it computes the second order estimate ∆̂2. Out of
those, it evaluates all candidates that have the potential to improve over the best
refinement found so far. In the next paragraph we describe how to efficiently
compute the overall score L(D, M).

Efficiently computing L(D, M) To get the codelength of a rule set with a new
candidate, two steps are carried out, which we summarize in Alg. 2.2. First,
the data is covered with the new rule to determine where the rule holds and
what error matrices to send. Covering the data is straightforward, but to find
the error matrices we have—unless we rely on a user-defined threshold—to
optimize for the best point to split between additive and destructive noise. We
observe that each rule encoding is independent of every other rule (except
singletons), that is, changing the error matrices for one rule does not change
the matrices for any other rule as we always encode all transactions where the
antecedent is fulfilled.

With this in mind, it is clear that we can optimize the split point for each
rule X → Y separately. Thus, we find a partitioning of TX into TM

Y|X and TM
̸Y|X

that minimizes the contribution of this rule to the overall costs:

∆TX ,TM
Y|X ,TM

̸Y|X ,1(TM
Y|X),1(T

M
̸Y|X)

= Lpc(|TX |) + Lpc(|TM
Y|X | × |Y|)

+ Lpc(|TM
Y|X | × |Y|) + log

(|TM
Y|X | × |Y|
1(TM

Y|X)

)
+ log

(|TM
̸Y|X | × |Y|
1(TM

̸Y|X)

)
.

We can also view the problem from a different angle, namely, for each transac-
tion t ∈ TX we count how many items of Y are present, which yields a vector
of counts B, B[i] = |{t ∈ TX | |t ∩ Y| = i}|. For fixed split point k, we get the
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Algorithm 2.2: Cover
input :Database D, model M = (R, T ), refined rule set R ′

output :Model M ′ = (R ′, T ′)
1 TM ′

Y|X ← (Equation (2.1)) // Initialize where new rule holds
2 for I ∈ I do // For each singleton
3 TM ′

I ← TI // Reset usage to baseline model
4 for {X → Y ∈ R ′ | I ∈ Y} do // For rule tail containing I
5 TM ′

I ← TM ′
I \ TX // Remove these transactions from list

6 return
(R ′, {TM ′

I | I ∈ I} ∪ {TM
U|V ∈ T | U → V ∈ R ∩ R ′} ∪ {TM ′

Y|X})

additive and destructive matrix sizes 1(·)k and transaction set sizes | · |k:

|TM
Y|X |

k :=
|B|

∑
i=k

B[i] |TM
̸Y|X |

k :=
k−1

∑
i=0

B[i]

1(TM
Y|X)

k :=
|B|

∑
i=k

B[i]× i 1(TM
̸Y|X)

k :=
k−1

∑
i=0

B[i]× i .

To find the best split k∗ we optimize along k using the two equation sets
above, which is computable in linear time with respect to the size of the conse-
quent,

k∗ = argmin
k=1...|B|

(
∆TX ,TM

Y|X ,TM
̸Y|X ,1(TM

Y|X),1(T
M
̸Y|X)

)
. (2.1)

This yields the best splitpoint k∗ for how many items of the consequent are
required for a rule to hold in terms of our MDL score and thus implicitly gives
the error matrices.
Putting everything together, we have Grab, given in pseudo-code as Alg. 2.3.

Complexity In the worst case we generate all pairs of combinations of rules,
and hence at each step Grab evaluates a number of candidates quadratic in
the size of the rule table. Each evaluation of the O(32m

) candidates requires a
database cover which costs time O(n×m), and singleton transaction set update,
thus giving an overall time in O(32m ×m× n). However, MDL ensures that the
number of rules is small, and hence a more useful statement about runtime is
thus given in the following theorems that are based on the size of the output or
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Algorithm 2.3: Grab
input :Dataset D
output :Heuristic approximation to M

1 M← {∅→ {A} | A ∈ I} // Initialize model with singletons
2 do
3 C ← generateCandidates(D, M)
4 M∗ ← M; ∆∗ ← 0
5 while C contains a refinement R with ∆̂2 < ∆∗ do
6 R ′ ← refinement R ∈ C with best ∆̂2
7 M ′ ← cover(D, M, R ′) // Construct model M ′

8 ∆ ′ ← L(D, M ′)− L(D, M) // Compute exact gain
9 if ∆ ′ < ∆∗ then
10 M∗ ← M ′; ∆∗ ← ∆ ′;

11 if M∗ ̸= M then // Update best model
12 M← M∗

13 while L(D, M) < L(D, M∗)
14 return M

in other words the number of mined rules.

Theorem 2.3 (Grab candidate evaluations). Given that we mine k rules for a given
dataset D, Grab evaluates O((m + k)3) candidates.

Proof. In each step of the algorithm we add at most one rule to the rule table.
We start initially with all p singletons in the table. At step i we thus generate
(p + i)2 many new candidates. If we mine k rules overall, there are ∑k

i=0(p + i)2

candidates that need to be evaluated in the worst case. We first do an index
shift to obtain ∑

p+k
j=p j2. We now proof a closed form solution to this sum by

rearranging the sum of cubes
k

∑
i=0

i3 =
k

∑
i=0

(
(i + 1)3)− (k + 1)3 .

Next we expand the right hand side
k

∑
i=0

i3 =
k

∑
i=0

(
i3
)
+ 3

k

∑
i=0

(
i2
)
+ 3

k

∑
i=0

(
i
)
+

k

∑
i=0

(
1
)
− (k + 1)3
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and rearrange

3
k

∑
i=0

i2 = −3
k

∑
i=0

(
i
)
−

k

∑
i=0

(
1
)
+ (k + 1)3 .

Expanding the remaining cubic term and applying Gauss’ formula to the one
sum we get

3
k

∑
i=0

i2 = −3
k(k + 1)

2
− (k + 1) + k3 + 3k2 + 3k + 1 .

Simplifying, we obtain
k

∑
i=0

i2 = k3 +
3
2

k2 +
k
2

.

We thus evaluate ∑
p+k
j=p j2 = (p + k)3 + 3

2 (p + k)2 + p+k
2 − ((p− 1)3 + 3

2 (p−
1)2 + p−1

2 ) = O((p + k)3) many candidates.

This theorem gives us insight in how many times Grab calls Cover. For the
runtime analysis, we know that in step i our rule table has size at most m + i
and Grab has to compute the cover of the newest rule in time O(n×m) and
update the singleton costs in time O((m + i)×m× n).

Theorem 2.4 (Grab runtime). Given that we mine k rules for a given dataset D, the
overall runtime of Grab is O((m + k)4 ×m× n).

Proof. We know that O((p + i)× p× n) is the dominating factor in the eval-
uation. In each round i, we evaluate (p + i)2 candidates in the worst case,
for each of which we have time O((p + i)× p× n). We thus get a runtime in
O((p + i)3 × p× n) at round i, hence, given that we mine k rules, an overall
runtime of ∑k

i=0 O((p + i)3 × p× n).
We proof now the closed form solution for the sum ∑k

i=0 i3 =
( k(k+1)

2
)2 by

induction.
Base case: trivial.
Induction hypothesis: Assume closed form holds for k=j.
Induction step j→ j + 1:
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j+1

∑
i=0

i3 =
j

∑
i=0

(
i3
)
+ (j + 1)3

=

(
j(j + 1)

2

)2

+ (j + 1)3

=
1
4
(

j2(j + 1)2 + 4(j + 1)(j + 1)2)
=

1
4
(
(j + 1)2(j2 + 4j + 4)

)
=

1
4
(
(j + 1)2(j + 2)2)

=

(
(j + 1)(j + 2)

2

)2

.

Plugging in this closed form into ∑k
i=0 O((p + i)3× p× n) similar as before, we

thus get an overall runtime of O((p + k)4 × p× n).

In practice, however, the runtime is much lower both due to our gain estimates
and because we only allow to merge rules with the same head.

2.6 experiments
In this section we empirically evaluate Grab quantitatively and qualitatively
on both synthetic and real-world data. We implemented Grab in C++. We
make all code and data available for research purposes.1 All experiments were
executed single-threaded on Intel Xeon E5-2643 v3 machines with 256 GB
memory running Linux. We report the wall-clock running times.

We compare to state of the art methods for mining statistically significant
patterns and association rules.2

In particular, we compare to Hyper+ (Xiang et al., 2008), which mines
noise-resistant patterns, Kingfisher (Hämäläinen, 2012), which is a state of the
art algorithm for the discovery of statistically significant rules under Fisher’s
exact test (Fisher, 1922), and Pack (Tatti and Vreeken, 2008), an MDL-based
method that yields a binary tree per item A ∈ I of which we can interpret the
paths to leafs as rules X → A.

1http://eda.mmci.uni-saarland.de/prj/grab/
2We leave classical support-confidence methods out for the simple fact that even for

trivial data Apriori results in millions of rules (see Appendix A.1.3).

http://eda.mmci.uni-saarland.de/prj/grab/


2.6. Experiments 26

0 5 10 15 20 25 30 35 40 45 50

100
101
102
103
104
105
106
107

%1s in the data

#r
ul
es

(a) Rules found in pure noise data of
different sparsity. No rule should be found.

0

20
0

40
0

60
0

80
0

1
00

0

100
101
102
103
104
105
106
107
108
109

#features

#r
ul
es

Grab Kingfisher
Pack Hyper+

(b) Data with planted rules, ground truth
is given by dashed, black line.

Figure 2.3: Results on synthetic data. Visualized are results on random data (left) and
data with planted rules for different data dimensionalities (right).

Synthetic data First, we consider data with known ground truth. As a san-
ity check, we start our experiments on data without any structure. We draw
datasets of 10000-by-100 of d% 1s, and report for each method the average
results over 10 independent runs in Fig. 2.3a. We find that both Kingfisher
andHyper+ quickly discover up to millions of rules. This is easily explained,
as the former relies on statistical significance only, and lacks a notion of sup-
port, whereas the latter does have a notion of support, but lacks a notion of
significance. Pack and Grab, however, retrieve the ground truth in all cases.

Next, we consider synthetic data with planted rules. We generate datasets
of n = 20000 transactions, and vary m from 10 to 1000 items. We generate rules
that together cover all features. We sample the cardinality of the heads and
tails from a Poisson with λ = 1.5. To avoid convoluting the ground truth via
overlap, or by rules forming chains, we ensure that every item A is used in at
most one rule. Per rule, we choose confidence c uniformly at random between
50 and 100%. We then randomly partition the n transactions into as many parts
as we have rules, and per part, set the items of the corresponding rule head X
to 1, and set Y to 1 for c% of transactions within the part. Finally, we add noise
by flipping 1% of the items in the data – we use this low noise level to allow for
a fair comparison to the competitors that do not explicitly model noise.

We provide the results in Fig. 2.3b. We observe that unlike in the previous
experiment, here Pack strongly overestimates the number of rules – it runs out
of memory for data of more than 92 features. Kingfisher and Hyper+ both
discover over an order of magnitude more rules than the ground truth. Grab,
on the other hand, is the only one that reliably retrieves the ground truth.
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Real-World Data Second, we verify whether Grab also yields meaningful
results on real data. To this endwe consider 8 data sets over a variety of domains,
for which we provide basic statistics in Table 2.1. In particular, we consider

• Abstracts (Tatti and Vreeken, 2008) A collection of m = 3 933 stemmed
words (features) for n = 859 abstracts of ICDM 2001-2007 (samples).

• Accidents (Geurts et al., 2003) A dataset of roughly n = 340 000 records
of traffic accidents in Belgium with binarized meta information about the
accident’s location and circumstances summing up to m = 468 features.

• Adult (UCI repository3) A collection of Census income data with m = 97
binary variables providing information about n = 10 830 persons and if
their income exceeds 50 000.

• Covtype (UCI repository) Data about forest cover types for n = 581 012
small areas along with meta information about the area, such as soil type
and slope, building a data set with m = 105 binary features.

• DNA (Myllykangas et al., 2006)Microarraymeasurements of DNAampli-
fication comprising data about copy number amplification for n = 4 590
cases and m = 391 sites (binarized).

• Mammals (Mitchell-Jones, 1999) A record of n = 2 183 geo locations
across europe along with longitude an latitude stating for m = 121
different mammals if it has been sighted at this location.

• Mushrooms (UCI repository) A collection of hypothetical samples of
n = 8 124 Mushrooms generated from The Audubon Society Field Guide
to North American Mushrooms, with m = 119 binary attributes such as
cap shape or spore color.

• Plants (UCI repository) For m = 70 states in the United States and
Canada, for n = 22 632 plants information has been gathered, whether
the plant appears in the state or not.

We run each of the methods on each data set, and report the number of
discovered non-singleton rules for all methods and the average number of items
in head and tail for Grab in Table 2.1. We observe that Grab retrieves much
more succinct sets of rules than its competitors, typically in the order of tens,
rather than in the order of thousands to millions. The rules that Grab discovers
are also more informative, as it is not constrained to singleton-tail rules. This is
also reflected by the number of items in the consequent, where the average tail
size is much larger than 1 for e.g. Mammals and Plants, where we find multiple
rules with more than 10 items in the consequent.

To qualitatively evaluate the rules that Grab discovers, we investigate the
results on Abstracts andMammals in closer detail. For Abstractswe find patterns
such as ∅ → {nearest, neighbor}, ∅ → {pattern, frequency}, ∅ → {naive, bayes},
and, notably, ∅ → {association, rule}. Further, we find meaningful rules, in-
cluding {high} → {dimension}, {knowledge} → {discovery}, {ensembl} →

3Dua and Graff (2017)
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Figure 2.4: Example rules for Mammals. Shown are the inferred presence (green) and
absence (red) of a pattern ∅ → {common squirrel, deer, ermine, marten, mice*} and b
rule {Southwest European cat} → {Mediterranean mice*, Iberian rabbit}. The intensity
of the colour indicates how many items of the tail hold – the ideal result is hence dark
green and light red. Yellow dots indicate presence of animals which are part of the tail of
the rule where animals of the corresponding rule head were not sighted.

{bagging, boosting}, and {support} → {vector, machin, SVM}. All patterns and
rules correspond to well-known concepts in the data mining community.

OnMammals,Grab finds large patterns such as ∅→{red deer, European mole,
European fitch, wild boar, marten, mice*}, and ∅→ {common squirrel, deer, ermine,
marten, mice*}, that correspond to animals that commonly occur across Europe,
with multiple mouse species (items) indicated by mice*. In addition, it also
discovers specific patterns, e.g. ∅→ {snow rabbit, elk, lynx, brown bear}, which
are mammals that appear almost exclusively in northeastern Europe. We visu-
alized the second rule in Figure 2.4a to show that the consequent should hold
in most of the cases, but not necessarily need to be always present. Moreover,
Grab is able to find meaningful rules in the presence of noise, e.g. {Southwest
European cat}→ {Mediterranean mice*, Iberian rabbit}, where the rule should only
hold in southwest europe. For the rule that Grab discovers this is indeed the
case, although the data contains (likely spurious) sightings of Iberian rabbits
or Mediterranean mice in Norway (see Fig. 2.4b) and some sightings of mice
alone, along the Mediterranean sea.

Runtime and Scalability Last, but not least, we investigate the runtime of
Grab. We first consider scalability with regard to number of features. For this,
in Fig. 2.5a we give the runtimes for the synthetic datasets we used above. From
the figure we see that while Grab is not as fast as Kingfisher and Hyper+, it
scales favourably with regard to the number of features. Although it considers
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Figure 2.5: Scalability. On the left side, runtimes are visualized on a logarithmic y-axis for
synthetic data of varying number of features (x-axis). On the right, runtimes (logarithmic
y-axis) are depicted for 8 real world data sets (x-axis). Kingfisher did not finish on
Accidents and Plants, Hyper+ did not finish on Mammals.

a much larger search space, Grab only needs seconds to minutes. On real data
Grab is the fastest method for five of the data sets, and only requires seconds for
the other datasets, whereas the other methods take up to hours for particular
instances (compare Figure 2.5b).

2.7 discussion and conlusion
We considered the problem of non-parametrically discovering sets of rules for a
given dataset, and proposed to mine succinct and non-redundant sets of rules
on solid information theoretic grounds. We showed that the problem does not
lend itself for efficient optimization, and offered Grab as a remedy, a highly
efficient heuristic that greedily approximates the MDL optimal result. The
experiments showed that Grab has the among the state-of-the-art unique ability
to mine small, non-redundant sets of highly informative noise-resistant rules
and patterns non-parametrically. On synthetic data it recovered the ground
truth, without picking up noise. Similarly, on real world data, it retrieved
concise, easily interpretable, and highly meaningful rule sets, as opposed to
the state of the art that discovered thousands, up to millions of rules even for
very small data.



31 Sets of Robust Rules, and How To Find Them

For instance, the results on the Mammals data provided evidence that Grab
recovers known population structures, even in the presence of noise. The results
on the ICDM Abstracts data were equally promising, with rule {support} →
{vector, machin, svm} as a notable example. In contrast to machine learning,
in data mining “support” is ambiguous. In the ICDM abstracts it means the
support of a pattern, as well as support vector machines, and the rule expresses
this. To verify this, we additionally ran Grab on abstracts from the Journal of
Machine Learning Research (JMLR), where it indeed instead recovered the
pattern ∅→ {support, vector, machin, svm}.

Our proposed algorithm is unique in that it can discover both patterns
and rules, is noise-resistant and allows rules and patterns to hold approxi-
mately, and, can discover rules with non-singleton consequents. Due to careful
implementation and accurate gain estimates, it scales well in the number of
transactions, as well as in the number of features. In practice,Grab can consider
up to several thousand features in reasonable time, thus offers insights into
relevant datasets with its expressive statement of rules and patterns.

For applications in for instance bioinformatics we need algorithms that
scale up to hundreds of thousands or even millions of features, and pattern
languages that consider statements such as mutual exclusivity to capture the
fine details of biological interactions. We will explore new pattern languages
and scalable approaches in the subsequent chapters, that enable generating
new insights for such large and complex biological datasets. Before that, we
will make use of Grab to shed light onto the inner workings of neural networks
in the next chapter, thereby extending the pattern language of Grab to be able
to express disjunctive statements.
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3
EXPLORING NEURAL
NETWORKS THROUGH
ROBUST RULES

3.1 introduction
Neural networks achieve state of the art performance in many settings. How-
ever, how they perform their tasks, how they perceive the world, and especially,
how the neurons within the network operate in concert, remains largely elusive.
While there exists a plethora of methods for explaining neural networks, most
of these focus either on the mapping between input and output (e.g. model
distillation) or only characterize a given set of neurons, but can not identify
which set to look at in the first place (e.g. prototyping). Here, we introduce
a new approach to explain how the neurons in a neural network interact. In
particular, we consider the activations of neurons in the network over a given
dataset, and propose to characterize these in terms of rules X → Y, where
X and Y are sets of neurons in different layers of the network. A rule hence
represents that neurons Y are typically active when neurons X are. For robust-
ness we explicitly allow for noise, and to ensure that we discover a succinct yet
descriptive set of rules that captures the regularities in the data, we formalize
the problem in terms of the Minimum Description Length principle.

To discover good rule sets in practice, we propose the unsupervised Ex-
plaiNN algorithm, which builds on the foundations of Grab, extending its

This chapter is based on Fischer, Oláh, and Vreeken (2021b).

33
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pattern language to disjunctions to reflect the relevant information in a network,
such as rules spanning multiple classes which are naturally disjunct. We con-
firm that ExplaiNN is able to retrieve those disjunctive rules in a brief study
on synthetic data, and show that the rules we discover on real world networks
give clear insight in how networks performs their tasks. As we will see, these
identify what the network deems similar and different between classes, how
information flows within the network, and which convolutional filters it expects
to be active where. An ablation study further confirms that the rule sets are of
high quality and capture class-relevant information succinctly. We find that our
rules are easily interpretable, give insight in the differences between datasets,
show the effects of fine-tuning, as well as super-charge prototyping as they tell
which neurons to consider in unison. ExplaiNN thus enables us to peek into
the black box of neural networks to get a deeper understanding how networks
perform their tasks.

3.2 related work
Explaining neural networks is of widespread interest, and especially important
with the emergence of applications in healthcare and autonomous driving. We
here introduce theworkmost relevant to ours, whilewe refer to surveys formore
information (Adadi and Berrada, 2018; Ras et al., 2018; Xie et al., 2020; Gilpin
et al., 2018). There exist several proposals for investigating how networks arrive
at a decision for a given sample, with saliency mapping techniques for CNNs
among the most prominent (Bach et al., 2015; Zhou et al., 2016; Sundararajan
et al., 2017; Shrikumar et al., 2017). Although these provide insight on what
parts of the image are used, they are inherently limited to single samples,
and do not reveal structure across multiple samples, let alone classes. For
explaining the inner working of a CNN, research mostly focuses on feature
visualization techniques (Olah et al., 2017) that produce visual representations
of the information captured by neurons (Mordvintsev et al., 2015; Gatys et al.,
2015). Although these visualizations provide insight on how CNNs perceive
the world (Øygard, 2016; Olah et al., 2018) it has been shown that concepts are
often encoded over multiple neurons, and that inspecting individual neurons
does not provide meaningful information about their role (Szegedy et al., 2014;
Bau et al., 2017). How to find such groups of neurons, and how the information
is routed between layers in the networks remains unsolved.

An orthogonal approach is model distillation, where we train easy-to-
interpret white box models to mimic the decisions of a neural network (Ribeiro
et al., 2016; Frosst and Hinton, 2017; Bastani et al., 2017; Tan et al., 2018). Rules
of the form (if–then) are easily interpretable, and hence a popular technique
for model distillation (Taha and Ghosh, 1999; Lakkaraju et al., 2017). Existing
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techniques (Robnik-Šikonja and Kononenko, 2008; Özbakır et al., 2010; Barakat
and Diederich, 2005) aim for rules that directly map input to output, rather than
providing insight into how information flows through the network. A notable
exception is the work of Tran and d’Avila Garcez (2018) which propose to mine
all sufficiently strong association rules – suffering from the well-known pattern
explosion – and restrict themselves to Deep Belief Networks only. In contrast,
Chu et al. (2018) propose to explain NNs by deriving decision boundaries of a
network using polytope theory. While this approach permits strong guarantees,
it is limited to very small (< 20 hidden neurons) piecewise linear NNs. In sum,
existing methods either do not give insight in what happens inside a neural
network, and/or, are not applicable to the type or size of state-of-the-art con-
volutional neural networks. While Zhang et al. (2018) show how we can gain
insight into convolutional layers of CNNs by building an explanatory graph
over sets of neurons, they – in contrast to what we propose – do not elucidate the
relation between such filters and subsequent dense layers, nor to the network
output.

Instead, we propose to mine sets of rules to discover groups of neurons
that act together across different layers in feed forward networks, and so reveal
how information is composed and routed through the network to arrive at the
output. To discover rules over neuron activations, we need an unsupervised
approach. As discussed in the previous chapter, rule mining methods based on
frequency (Agrawal and Srikant, 1994; Bayardo, 1998; Moerchen et al., 2011) or
statistical testing (Hämäläinen, 2012; Webb, 2010) typically return millions of
rules even for small datasets, thus thwarting the goal of interpretability. We
therefore take a pattern set mining approach similar toGrab, where we are after
that set of rules that maximizes a global criterion, rather than treating each rule
independently. Although providing succinct and accurate sets of rules, Grab is
limited to conjunctive expressions. This is too restrictive for our setting, as we
are also after rules that explain shared patterns between classes, and are robust
to the inherently noisy activation data, which both require a more expressive
pattern language of conjunctions, approximate conjunctions, and disjunctions
for both heads and tails of rules. We hence present ExplaiNN, a non-parametric
and unsupervised method that learns sets of such rules efficiently.

3.3 theory

We first informally discuss how to discover association rules between neurons.
We then formally introduce the concept of robust rules, and how to find them
for arbitrary binary datasets, last, we show how to combine these ideas to reveal
how neurons are orchestrated within feedforward networks.
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Figure 3.1: Overview. For a given network (left), binarized activations are gathered for
the layers Ii, Ij for each sample, and summarized in the binary database D (right). Rules
are discovered over D, where a good rule set M is given with at the bottom right, with
rules X → Y, X ∈ Ii, Y ∈ Ij.

3.3.1 patterns of neuron co-activation
Similar to neurons in the brain, when they are active, artificial neurons send
information along their outgoing edges. To understand flow of information
through the network, it is hence essential to understand the activation patterns
of neurons between layers. Our key idea is to use recent advances in pattern
mining to discover a succinct and non-redundant set of rules that together
describe the activation patterns found for a given dataset. For two layers Ii, Ij,
these rules X → Y, X ⊂ Ii, Y ⊂ Ij express that the set of neurons Y are usually
co-activated when neurons X are co-activated. That is, such a rule provides
us local information about co-activations within, as well as the dependence
of neurons between layers. Starting from the output layer, we discover rules
between consecutive layers Ij, Ij−1. Discovering overlapping rules between
layers X → Y and Y → Z, X ⊂ Ij, Y ⊂ Ij−1, Z ⊂ Ij−2, allows us to trace how
information flows through the entire network.

Before we can mine rules between two sets of neurons Ii and Ij of a network,
for example two layers, we have to obtain its binarized activations for a given
data setD = {(sk, ok)} consisting of samples sk and output labels ok. In particu-
lar, for each sample sk and neuron set Ii, we take the tensor of activations ϕi and
binarize it to ϕb

i . For networks with ReLU activations, which binarize naturally
at threshold 0, we might lose some information about activation strength that
is eventually used by subsequent layers. This binarization however allows us
to derive crisp symbolic, and directly interpretable statements on how neurons
interact. Furthermore, binarization reflects the natural on/off state of biological
neurons, also captured by smooth step functions such as sigmoid or tanh used
in artifical neural networks. We gather the binarized activations into a dataset



37 Exploring Neural Networks through Robust Rules

D where each row tk corresponds to the concatenation of binarized activations
ϕb

i and ϕb
j of neuron sets Ii and Ij for input sample sk, i.e., tk ∈ D is a binary

vector of length |Ii|+ |Ij|. See Fig. 3.1 for a toy example.
Next, given binary activation data D, our goal is to find that set of rules that

together succinctly describe the observed activations. The Minimum Descrip-
tion Length (MDL) principle lends itself as an objective to find such sets. Similar
to the previous chapter, our model classM is the superset of all possible rules
over D, and by MDL we identify the best model M∗ as the one that compresses
the data best. In contrast to Grab, which models the traditional rule language
restricted to conjunctions over items which is not sufficient for our application,
we consider an extended language that allows for partial disjunctions of items
(neurons, labels) and introduce a codelength function L(D, M) to instantiate
MDL for our model class of rule sets. This is necessary to properly model
rules over networks, where neuron activations tend to be noisy, and labels are
inherently mutually exclusive.

3.3.2 mdl for robust rules
Our goal is to find a set of rules M that, in terms of description length L(D, M),
best describes a binary database D = {t | t ⊂ I} that consists of transactions
t that are subsets of items I . Each rule is of the form X → Y, X, Y ⊂ I , and
indicates that Y is strongly associated with X, i.e. occurs mostly in transactions
where X is present. To recapitulate, we say a rule X → Y applies to a transaction
t iff X ⊂ t and say a rule holds for t if additionally Y ⊂ t. We indicate these
transactions sets as TX = {i | ti ∈ D, X ⊂ ti}, respectively TY|X = {i | ti ∈
TX , Y ⊂ ti}. Based on these definitions of rule transaction sets, we can now
formally introduce our codelength function L(D, M).

Baseline model Our base model Mind = {∅ → I | ∀I ∈ I} consists of
singleton rules only, i.e. it models that all items I are generated independently.
To send the n transactions of D using Mind, we simply send for each item I in
which out of all transactions in the database it appears. We can do so optimally
using a log binomial code as introduced in the previous chapter, which is given
by log ( |T∅ |

|TI|∅ |
) = log ( n

|TI |). To unambiguously decode, the recipient needs to
know each |TI |, which we can optimally encode via the parametric complexities
of the binomials (see Eq. 2.4.2).We thus have L(D, Mind) = ∑I∈I

(
log ( n

|TI |) +

Lpc(n)
). Mind serves as our baselinemodel, and its singleton rules are a required

part of any more complex model as they ensure we can always send any data
over I .
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Non-trivial models A non-trivial model M contains rules of the form X →
Y, X, Y ⊂ I that are not part of Mind. Similar to Grab, the idea is that we
first transmit the data for where these non-trivial rules hold, and then send
the remaining data using Mind. To determine where such a rule applies, the
receiver needs to know where X holds, and hence the data over X needs to be
transmitted first. To ensure that we can decode the data, as before, we only
consider models M for which the rules form an acyclic graph. We thus get a
codelength

L(D | M ∪Mind) =

(
∑

X→Y∈M
log
(
|TX |
|TY|X |

))
+

(
∑

∅→I∈Mind

log
(

n
|T ′I |

))
,

where T ′I = {t ∈ D | (I ∈ t) ∧ (∀X → Y ∈ M. I ∈ Y ⇒ t ̸∈ TY|X)} is the
modified transaction set containing transactions with item I not covered by any
non-trivial rule.

In addition to the parametric complexities of the binomial codes, the model
cost of a non-trivial model also includes the cost of transmitting the non-trivial
rules. To transmit a rule X → Y, we follow the approach from Grab and first
send the cardinalities of X resp. Y using the universal code for integers LN.
Knowing the cardinalities, we can then send the items of X resp. Y one by
one using an optimal prefix code given by L(X) = −∑x∈X log |Tx |

∑I∈I |TI |
. For a

particular rule X → Y ∈ M, the model costs for a rule, respectively the full
model thus amount to

L(X → Y) =LN(|X|) + LN(|Y|)
+ L(X) + L(Y) + Lpc(|TX |) ,

L(M ∪Mind) =|I| × Lpc(n) + LN(|M|)
+ ∑

X→Y∈M
L(X → Y) .

We provide an example calculation in App. A.1.1. With these definitions, we
have an MDL score that identifies the best rule set M∗ for data D as

M∗ = argmin
M∈M

(
L(M ∪Mind) + L(D | M ∪Mind)

)
,

whereM contains all possible rule sets over the items in D.
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Robust Rules In real world applications, we need a score that is robust against
noise. The key problem with noisy data is that a single missing item in a
transaction can cause a whole rule not to hold or apply. To discover rules that
generalize well, we need to explicitly account for noise. The idea is to let rules
apply, and hold, also when some items of head respectively tail are missing.
Specifying howmany items l, and k, out of all items in the rule head, respectively
tail, need to be part of a transaction, we relax the original rule definition to
account for missing items, or in other words, noise.

Furthermore, as output neurons – the classes – are only active mutually
exclusively, rules need to be able to model disjunctions. Setting l = 1 and k = 1
means that only one of the items of head respectively tail need to be present,
thus coincidentally corresponding to a disjunction of items in the head and tail
of the rule X → Y. This disjunctive form allows to model the activations of
output neurons, corresponding to class predictions, correctly, whereas l = |X|
and k = |Y| correspond to the original stringent rule definition of conjunctions.
Varying between the two extremes accounts for varying levels of noise. The
optimal l and k are those that minimize the MDL score.

To ensure a lossless encoding, we need to make sure that the receiver
can reconstruct the original data. Thus, for the previously introduced relaxed
definition ofwhen rules hold and apply, we send for each rule the corresponding
number of items l that need to be present for it to apply using LN(l) bits.
Knowing each l, the receiver can reconstruct where each rule applies. Sending
where a rule holds now leaves the receiverwith an approximation of the data. To
be able to reconstruct the actual data, we leverage the error matrices introduced
in the previous chapter that when XORed with the approximation yield the
original data. These two matrices X+

X→Y, and X−X→Y correct for the errors made
in the part where the rule applies and holds, respectively applies but does not
hold. As discussed, these error matrices are part of the model M and have to
be transmitted with an adapted L(D, M).

Complexity of the search To discover rules over the activations of layers Ii, Ij,
we have to explore all rules formed by subsets of neurons in Ii for the head,
combined with any subset of neurons of Ij for the tail. There exist 2|Ii | × 2|Ij |

such rules, and hence 22
|Ii |+|Ij | distinct models would need to be explored. In the

previous chapter, we showed that the rule set search space does not lend itself to
efficient search as it is neither monotone nor submodular, the counterexamples
also holding for this model definition. In fact, for robust rules, we additionally
have to consider where rules should apply respectively hold – optimizing k

and l – which results in approximately 2|Ii |×|Ij |×2
|Ii |+|Ij | models. This can be seen
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from combinatorics, as for two layers Ii, Ij, we enumerate all possible rules by

( |Ii |

∑
k=0

k×
(
|Ii|
k

))
︸ ︷︷ ︸
Possibilities for head

×
( |Ij |

∑
l=0

l ×
(|Ij|

l

))
︸ ︷︷ ︸
Possibilities for tail

≤ |Ii|
( |Ii |

∑
k=0

(
|Ii|
k

))
× |Ij|

( |Ij |

∑
l=0

(|Ij|
l

))
= |Ii| 2|Ii | × |Ij| 2|Ij | = |Ij| |Ii| 2|Ii |+|Ij |,

where the first sum enumerates all heads of size k, the binomial coefficient
describes the ways of drawing heads of such size, and the term k is the number
of models given by the robust head encoding. Similarly, the second sum enu-
merates all tails of size l, the binomial coefficient describes the drawing of such
tails, and the term l is the number of ways to place the error correcting matrices
for the robust tail encoding. As in theory we can have any subset of these rules
as a model, we thus get approximately 2(|Ij |×|Ii |×2

|Ii |+|Ij |) many different models.
Exhaustive search is therewith infeasible, which is why we present ExplaiNN,
a heuristic algorithm to efficiently discover good sets of rules.

3.4 explainn
ExplaiNN is based on the idea of iteratively refining the current model by
merging and refining already selected rules, similar to the previously proposed
Grab. In contrast to Grab, to permit scaling up to the size of a typical neural
network under our more expressive pattern language, we introduce a two-step
procedure, which first iteratively introduces new single-consequent rules to
the model, and then merges rules in the model, if it decreases theMDL score.
In particular, as search steps we consider first introducing new rules to M, by
taking a good set of items X ⊂ Ii for the head and a single item A ∈ Ij for the
tail and refine the model to M ′ = M ⊕ {X → A}, seeing if it decreases the
overall MDL costs according to Eq. 3.3.2. Second, we merge two existing rules
r1 = X → Y1 ∈ M and r2 = X → Y2 ∈ M, to form a new rule r ′ = X → Y1 ∪Y2,
and refine the model to M ′ = M⊕ {r ′}. For a rule r ′, the refinement operator
⊕ is adding the rule r ′ = X → Y to M, and removes the merged rules that led
to r ′, if any. Moreover, it updates the singleton transaction lists TA for all items
A ∈ Y, removing all transactions where r ′ holds.

We next discuss how to efficiently search for candidate rules with heads
that can express anything from conjunctions to disjunctions. Immediately after,
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Algorithm 3.1: GenCandNew
input :Dataset D over sets of neurons Ii, Ij, Model M, tail item

A, threshold θ
output :Best refinement M ′

1 HA ← ∅ // head items, in decreasing order of confidence
2 for x ∈ Ii do // For each neuron in Ii

3 σx,A ← |Tx∩TA|
|Tx | // Compute conditional frequency

4 if σx,A > θ then
5 insert (x, σx,A) into HA // Add neuron x to list

6 M ′ ← ∅
7 ∆min ← 0 // gain estimate in bits
8 for t = 1... |HA| do
9 M ′ = M⊕ {HA[: t]→ A} // Refinement: use first t neurons
10 ∆t ← L(D, M)− L(D, M ′)
11 if ∆t < ∆min then
12 ∆min ← ∆t
13 M ′ ← M⊕ {HA[: t]→ A} // Update best rule set

14 return M ′

we present the full algorithm ExplaiNN for mining high quality rule sets for
two arbitrary sets of neurons (e.g. layers) of a neural network.

3.4.1 searching for candidates
A key component of ExplaiNN is the candidate generation process, which
implements the two possible steps of generating new and merging existing
rules. Given two neuron sets Ii, Ij, to efficiently discover rules that are both
robust to noise, and may include disjunctively active neurons in the head, we
can not enumerate all possible rule heads for each individual tail neuron, as this
would result in |Ij| × 2|Ii | many rules. Instead, we keep a list Hy for each item
y ∈ Ij, storing all head neurons x ∈ Ii for which y is frequently active when
x is active, that is σx,y =

|Tx∩Ty |
|Tx | > θ, where θ is a confidence threshold. We

consider a rule X → Y to be good, if when neurons X are active, the neurons
Y are also likely to be active, which is directly represented by the confidence
θ. The lists are sorted decreasing on σ. We search in each Hy for the rule with
highest gain over all unions of first t = 1 . . . |Hy| neurons in the list. We add
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that rule X → y with highest gain to the candidate list. To compute the gain,
we consider all possible values k = 1 . . . |X| to determine for which transactions
Tk

X = {t ∈ D | |X ∩ t| ≥ k} the rule should robustly apply, where k = 1
corresponds to disjunction and k = |X| to conjunction of neurons. We provide
this idea in pseudocode as Alg. 3.1.

Algorithm 3.2: GenCandMerges
input :Dataset D, Model M, overlap threshold µ
output :Candidates C sorted by gain ∆

1 C ← ∅ // Candidate rule merges
2 for r1 = X1 → Y1, r2 = X2 → Y2 ∈ M do // For each rule pair
3 if |X1 ⊖ X2| ≤ µ then

/* Gain of adding conjunction of heads */
4 ∆∩ ← L(D, M⊕ {X1 ∩ X2 → Y1 ∪Y2})− L(D, M)
5 if ∆∩ < 0 then

/* Add to candidates */
6 insert (X1 ∩ X2 → Y1 ∪Y2, ∆∩) into C

/* Gain of adding disjunction of heads */
7 ∆∪ ← L(D, M⊕ {X1 ∪ X2 → Y1 ∪Y2})− L(D, M)
8 if ∆∪ < 0 then

/* Add to candidates */
9 insert (X1 ∪ X2 → Y1 ∪Y2, ∆∪) into C

10 return C

For an individual neuron y, such a rule would be optimal, but, our goal
is to discover groups of neurons that act in concert. To this end we hence
iteratively merge rules with similar heads – similar, rather than same, as this
gives robustness both against noise in the data, as well as earlier merging
decisions of the algorithm. We give pseudocode for this procedure as Alg.
3.2. For two rules X1 → Y1, X2 → Y2 with symmetric difference X1 ⊖ X2 =
(X1 \ X2) ∪ (X2 \ X1), we consider possible candidate rules X1 ∪ X2 → Y1 ∪Y2
and X1 ∩ X2 → Y1 ∪ Y2, iff |X1 ⊖ X2| ≤ µ for some threshold µ ∈ N. For
example, µ = 1 corresponds to the case that one head has one label more than
the other, all other labels are the same.

Both parameters θ and µ are simple, yet effective runtime optimizations. The
best results with respect to MDLwill always be obtained with the largest search
space, i.e. with θ and µ set to 0, respectively |X1|+ |X2|. Besides impacting
run-time, many of those rules may be uninteresting from a user-perspective, µ
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and θ allow to directly instruct ExplaiNN to ignore such rules.

3.4.2 explainn

Assembling the above, we have ExplaiNN, which, given two sets of neurons Ii, Ij
and a database of activations of these neurons, yields a heuristic approximation
to the MDL optimal model M∗. By first introducing all relevant single neuron
rules, it then proceeds by iteratively merging existing rules using the approach
described above, until it can achieve no more gain. For efficiency, we separate
the generation of the new rules from the merging of existing rules. In practice,
this does not harm performance, as we allow merging of similar heads and can
thus revert too greedy decisions introduced earlier. Furthermore, by observing
that independent rules X1 → Y1, X2 → Y2, with Y1 ∪Y2 = ∅ do not influence
each others impact on codelength, we can add all independent rules with the
highest respective gain at once. We provide pseudocode as Alg. 3.3.

3.4.3 complexity of explainn

The main algorithm of ExplaiNN is separated into the consecutive steps of
generating new rules, and merging of existing rules. For the generation of new
rules, we consider all possible single items A from neuron set Ij as tails and
subsets of items from neuron set Ii as heads. We, here, only consider subsets
formed by the first t = 1...|Ii| items from the list of neurons x ∈ Ii sorted by
conditional frequency (see Alg. 3.1). Due to the sorting we, hence, require
time in O(n× |Ij| × |Ii| log |Ii|) for generation of new rules, where the factor n
comes from intersecting transaction lists T to compute the gain. We can have
at most |Ij| generated rules before considering rule merges – i.e. each single
neuron appears in a rule – and in every merging step we combine two rules,
effectively reducing the rule set size by 1. In each such step, we consider any
pair-wise combination of rules out of which there are |Ij|2 many. For each rule
combination, the length of the new rule tail is of size at most |Ij|, which is the
number of levels we need to check where a rule applies for our noise encoding.
We thus need time in O(n× |Ij|4), where the factor n is again coming from the
transaction list intersections in the gain estimation. In summary, ExplaiNN thus
needs time in O(n× (|Ij| × |Ii| log |Ii|+ |Ij|4)). AsMDL ensures we consider
models that tend to be succinct and hence capture only relevant structure in the
data, ExplaiNN is in practice much faster and easily scales to several thousands
of neurons.
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Algorithm 3.3: ExplaiNN
input :Dataset D over sets of neurons Ii, Ij, frequency threshold

θ, overlap threshold µ
output :Best model M∗

1 M← {∅→ A | A ∈ Ij} // Initialize model with baseline rules
2 for A ∈ Ij do
3 R ′ ← GenCandNew(D, M, A, θ) // Alg. 3.1
4 M ′ ← M⊕ R ′

5 if L(D, M ′) < L(D, M) then
6 M← M ′

7 do
8 M̂← M
9 C ← GenCandMerges(D, M, µ) // Alg. 3.2
10 Y ← ∅ // Keep track of independence of merged rules
11 for X → Y ∈ C. Y ̸⊂ Y do
12 M ′ ← M⊕ {X → Y} // Refine model, test gain
13 if L(D, M ′) < L(D, M) then
14 M̂← M ′

15 Y ← Y

16 while M ̸= M̂
17 return C

3.5 experiments
In this section we empirically evaluate ExplaiNN on synthetic data with known
ground truth and real world data to explore how CNNs perceive the world.
Other approaches to discover patterns based on e.g. frequency measures or
statistical testing have already been shown to yield millions or billions of rules
or patterns, most spurious and redundant, and many more than anyone would
be willing to investigate as we have seen in the previous chapter. We hence
focus on evaluating our method for the task of finding activation patterns. Here,
we look at CNNs as they count towards the most widespread use of feedfor-
ward networks and naturally lend themselves for visualization, which helps us
to interpret the discovered rules. We compare to traditional prototyping and
activation map approaches on MNIST (LeCun and Cortes, 2010), and examine
which information is used how to arrive at classification for ImageNet (Rus-
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Figure 3.2: Evaluation of rule quality. Performance of ExplaiNN as precision and recall
on data with varying number of planted rules with mutual exclusive head items (left) and
co-occurring head items with varying noise (right). 10% noise corresponds to more noise
than signal in the data. We provide the average and standard error across 10 repetitions.

sakovsky et al., 2015). Finally, we investigate the effect of fine-tuning in transfer
learning on the Oxford Flower data (Nilsback and Zisserman, 2008). The im-
plementation of ExplaiNN is publicly available.1 For the below experiments,
running on commodity hardware, ExplaiNN took minutes for MNIST and
Flower, and up to 6 hours for ImageNet– yielding from a few hundred up to 3000
rules, for the smaller, respectively larger networks, and earlier, respectively later
layers.

3.5.1 recovering ground truth
We discussed and evaluated conjunctive rules in the previous chapter. To
evaluate howwell ExplaiNN can recover the ground truth from data in settings
of high noise and mutually exclusive features, we first generate synthetic binary
data sets of 10000 samples and introduce {10, 50, 100, 200, 300, 500} rules with
up to 5 items in head and tail, respectively. For each rule, the frequency is
drawn from a uniform distribution U(.02, .08), the confidence is drawn from
U(.5, 1). We introduce noise by flipping 0.1% of the entries chosen uniformly
at random, and add 5 noise features with frequency equal to those of rules. In
the first set of experiments, we set head items mutual exclusively, in line of
finding rules over the NN output labels. ExplaiNN achieves high recall and
precision (see Figure 3.2a) in terms of retrieving exact ground truth rules, and
does not retrieve any redundant rules. Next, we investigate the impact of noise
on the performance, generating data of 10000 samples and 100 rules similar
to above, with head items now set co-occuring, varying the level of noise in
{0.1%, 0.5%, 1%, 3%, 5%, 10%} bitflips in the matrix, where 10% noise means

1http://eda.mmci.uni-saarland.de/prj/explainn/

http://eda.mmci.uni-saarland.de/prj/explainn/
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more noise than actual signal. ExplaiNN is robust to noise, even when facing
almost the same amount of noise and signal (see Fig. 3.2b).

3.5.2 how neural networks perceive the world
How information is filtered As a first real world example, we consider the
MNIST data of handwritten digits. We train a simple CNN of 2 convolutional
and one fully connected layer using Keras, achieving 99% classification accu-
racy on test data (see Supp. A.2.2 for details). We are interested in what the
individual filters learn about the digits, and how ExplaiNN reveals shared
features across several classes. We compare the found patterns against average
activation maps and single neuron prototypes. We see that whereas the average
activation maps per class do not reveal the purpose of a filter, the rules learned
by ExplaiNN clearly identify which pixels together trigger a filter. For example,
in filter 2 in layer 1 the prototype does not reveal any insight from its maze-like
visualization (see Fig. 3.3a), and average activation maps just show the number
given by a (single) class, whereas the discovered rules identify shared structure,
such as curvatures across digits (see Fig. 3.3c). Finally, we provide the discov-
ered rules for filter 12 in convolutional layer 1 in Fig. 3.3d. We observe that
this filter acts as a negative, essentially an imprint of the digit. These examples
provide information on how CNNs exploits different local structures to classify
images based on the immediate information that rules provide on images and
filters. Next, we will investigate how networks cope with more complex data,
leveraging rules to super-charge prototyping.

How information flows To understand the inner life of neural networks in a
more complex setting, we examine the activations for the ImageNet data set of
pretrained VGG-S and GoogLeNet architectures (Chatfield et al., 2014; Szegedy
et al., 2015). We focus on analyzing the VGG-S results for which an optimized
and highly interpretable prototyping method to visualize multiple neurons
exists (Øygard, 2016), and provide results for GoogLeNet in App. A.2.2. Mining
for rules from the output to the last layer, ExplaiNN yields rules with individual
heads spanning multiple labels, and tails spanning multiple neurons, which
together encode the information shared between labels. In Fig. 3.4, 3.5, we
provide a general and diverse overview of the results based on prototyping.
We focus on rules with multiple neurons in the tail, as such class and multiclass
prototypes can hardly be found by hand. Overall, we observe that the larger the
number of neurons in the tail, the sharper and more interesting the resulting
protoype. Furthermore, we found that for many prototypes spanning multiple
classes, we discover multiple rules the same classes (e.g. Black Grouse) and
the protoypes indicate that only a fraction of information, such as patterns, a
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(a) Prototype for filter 2 in CONV1. (b) Prototype for filter 36 in CONV2.
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(c) Average activation of neurons for digit classes for filter 2 in the first convolutional

layer. Overlayed are ExplaiNN rules, where pixel groups of the same colour (e.g. purple
pixels top left for classes 2, 3) belong to a single rule spanning multiple classes.
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(d) Visualizations for filter 12 in the first convolutional layer. This filter seems to capture

the ’negatives’ or imprints of the handwritten digits.

Figure 3.3: MNIST. Visualized are prototypes (a,b), average activations (c), and rules
(c,d) from different convolutional layers from a network trained on MNIST.
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Figure 3.4: Diverse prototypes. Visualized are prototypes for rules found in the VGG-S
network for ImageNet data between the output and last hidden layer. The class labels
corresponding to the output are given above each image, the size of the group of neurons
that this picture was generated from is given in the bottom right.
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Figure 3.5: More prototypes. Visualized are prototypes for rules found in the VGG-S
network for ImageNet data between the output and last hidden layer. The class labels
corresponding to the output are given above each image, the size of the group of neurons
that this picture was generated from is given in the bottom right.
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(a) Visualization for whole tail (b) Visualization for the units in the tail individually

Figure 3.6: Characteristic faces. From the data for all dog breed categories, ExplaiNN dis-
covered the rule between the labels {Japanese spaniel, Pekinese, Shih-Tzu, Lhasa,
Affenpinscher, Pug, Brabancon griffon}, and 5 units from the FC7 layer, for which
a prototype is given in the top image. The units together capture the characteristic
face of these breeds, wherease individual units (bottom) give only little insight about the
encapsulated information.

colored leg or beak, or a color patch, is used per rule, such that together the sets
of neurons compose the relevant information to arrive at the class prediction.

In Fig. 3.4, the first row of the panel are examples of neuron groups that
learn typical shapes of objects, such as Sombrero or Gondola. The second row
contains groups of neurons capturing typical patterns and colors for individual
classes, such as yellow patches on black skin of the Fire Salamander, red caps
with white dots of the Agaric mushroom, the typical leaf with red veins of
Sorrel or the wings of a Monarch butterfly. The third row contains common
features between two classes that are together captured by the same group
of neurons, like the arch-like structures and round rooftops found for certain
Triumphal Archs and Mosques, the layered and intertwined worm-like shapes
of many Fur Coats and the Gyromira mushroom, or the characteristic tradi-
tional covering of yurts and the front part of dogsleds.

In Fig. 3.5, groups of neurons that are shared between multiple classes
are visualized both revealing surprising similarities, as well as confirming
that the network learns similarities that we also use as a human. In the first
row, the neurons described by the first two images capture the typical shape
and red color of the ears shared between the Red Fox and the Lesser Panda,
respectively the insect legs and shiny turquoise color of the body of Tiger
Beetles and Damselflies. Intriguingly, the network also learns a roundish
shape and distinct pattern between the Jackfruit and the Squirrel Monkey.
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At this point, we would like to invite the reader to look up how the top of the
head of such a monkey looks like, it resembles surprisingly well the size, color,
shape, and texture of a Jackfruit. For the last picture in the first row of this panel,
we see dotted wings that clearly are related with the associated labels Cabbage
Butterfly, and Sulphur Butterfly. But opposed to visualizations related to
other Butterflies (given in both panels), the wings are all oriented in a distinct
way, which resemble the cap of a dotted mushroom, which might explain the
association with the Agaricmushroom. In the second row, we observe that the
network captures common features shared between similar classes – in this case
closely related animals – with the same set of neurons, which matches human
intuition. To get an idea whether it is indeed the combination of neurons that
captures this information, we look at the examples of faces of certain dog breeds,
where we observe that if we visualize these neurons individually (Fig. 3.6), it is
hard to extract anything meaningful from the images: the information is really
encoded in the set of neurons that act together.

We also observe cases where rules describe how the network discriminates
between similar classes. We give an example in Fig. 3.7 for the neurons Ex-
plaiNN discovers to be associated with just huskies, just malamutes, and both
of these classes together. These dog breeds are visually similar, sharing a black–
white fur pattern, as well as head and ear shapes. These traits are reflected
by the neurons corresponding to the rule for both breeds. Looking closer, we
can see that distinct traits, the more pointy ears of the husky, respectively the
fluffy fur of the malamute, are picked up by the neurons discovered for the
individual classes. Beside discovering what shared and distinct traits the net-
work has learned for classes, we also find out when it learns differences across
samples of the same class. As one example, for the dog breed Great Danes, we
discover three rules that upon visualization each correspond to visually very
different sub-breeds, whereas a simple class prototype does not reveal any such
information (Fig. 3.8).

Next we investigate the information flow within the network, by iteratively
finding rules between adjacent layers, starting with rules X → Y from output
layer to last fully connected layer FC7. Based on this set of rules, we then apply
ExplaiNN to discover rules Y → Z between FC7 and FC6, where heads Y
are groups of neurons found as tails in the previous iteration. We recursively
apply this process until we arrive at a convolutional layer. This gives us traces
of neuronal activity by chaining rules X → Y → Z → · · · discovered in the
iterative runs. We visualize two such traces in Fig. 3.10, which give insight in
how the network perceives different classes, passing on information from layer
to layer.

One example of a discovered trace is for the class totem pole (Fig. 3.10a).
We observe that the set of neurons discovered for FC7 and FC6 each yield
prototypes that resemble the animalistic ornaments of such totem poles, which
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Siberian husky
AND NOT
Malamute

Siberian husky
AND Malamute

Malamute
AND NOT

Siberian husky

(a) Rule prototypes for layer FC7.

(b) Examples from Imagenet. Left: Malamute, Right: Siberian Husky.

Figure 3.7: Neurons discriminating Huskies and Malamutes. (a) Huskies and Malamutes
are very similar looking dog breeds. (b) Prototypes for rules X → Y discovered for classes
X, Siberian husky (red frame), class Malamute (yellow frame), resp. both (orange
frame) and neurons Y in FC7. The neurons associated with both classes represent typical
features shared between the two classes, those associated only with Siberian huskies
show their slightly sharper, more defined head, while those associated only with Malamutes
capture their more fluffy fur.

can also be found in the training data. Interestingly, we see that the neuron sets
found for different filters of the last convolutional layer CONV5 together detect
parts of the object, including the vertical pole, the rooftop-like structures, and
eyes that are often found in the animalistic ornaments, both found at the top
of a totem. These filters act in a highly specific manner, detecting only specific
parts of the image, such as thinner or wider vertical structures in the center, or
objects at the top center of the image.

We also find signs of overfitting, e.g. when considering the information
trace for a set of dog breeds (Fig. 3.10b). Note that for readability, we here
only show a subset of the discovered rules with other rules showing similar
prototypes. We observe that the prototypes for FC7 and FC6 both show side-
views of animals. The networks seems to learn features that are specific to
side photos of dogs, which are prevalent in the training data, also indicated
by the filter prototypes. For the filters, we see that the network acts on very
specific parts of the image, detecting structures at the bottom that resemble
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Class prototype Top: Imagenet example images
Bottom: Rule based prototypes

Figure 3.8: Great Danes. The left image shows the visualization for the whole class
Great Danes. This visualization could not highlight many characteristic features, as there
is a large diversity within the class. On the right side 3 images from the dataset are shown,
along with 3 rules that ExplaiNN finds in connection with the class label. We are able
to pick up trends, that are not characteristic to the whole class, but only a subset.

paws and pairs of front and hind legs, and at the top of the image, which
resemble dog faces and clouds. We also findmore abstract features with groups
of filters detecting horizontal edges, which reminds of the back of the dog in
side-view. While there is room for interpretation of prototypes, the discovered
traces provide evidence on how the network perceives the world, as information
from prototypes can be interpreted across layers, and in combination with the
spatial location of activations in the filters.

Figure 3.9: Ablation study. Accuracy per class of VGG-S before (yellow) and after (blue)
intervention on weights connecting neurons to class given by a rule, and 90% quantile of
accuracies obtained for randomized intervention (red). Intervention was done by setting
the corresponding weight to zero.
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Rules carry class information To quantitatively assess the rules that Ex-
plaiNN discovers, we here consider the VGG-S network for ImageNet and in-
tervene on those neurons in the last fully connected layer that ExplaiNN finds
to be class-associated. For each class c, we set incoming weights from neurons
y to 0, for which we have discovered a rule X → Y, c ∈ X, y ∈ Y, comparing
classification rate before and after intervention. As baseline, we additionally
intervene on an equally sized random subset of all weights leading to class c,
again measuring classification rate after intervention. We see that for all classes,
performance drops much more strongly for the actual interventions than for
the random ones, in most cases even to 0 (see Fig. 3.9). This gives evidence
that the discovered rules capture information necessary for classification. We
further observe that under intervention the model often predicts closely related
classes, e.g. Fire Salamander to Spotted Salamander, Barbell to Dumbbell,
or Palace to Monastery, which gives insight towards similarity of classes, ro-
bustness of predictions, and therewith sensitivity to adversarial attacks.

The effect of fine tuning Finally, we show that ExplaiNN provides insight
into the effect of fine-tuning in transfer learning. For this we consider Oxford
Flower data (Nilsback and Zisserman, 2008), which consists of 8k images of 102
flower types. For investigation, we consider both the vanilla VGG-S network
trained on ImageNet from above, and a fine-tuned version from the Caffeemodel
zoo.2 We run ExplaiNN to obtain rules between the output and the final layer
of both networks. We provide examples in Fig. 3.11. The visualizations show, as
expected, a strong emphasis on colour and shape of the corresponding flower.
Interestingly, the visualizations of the same neurons for the original VGG-S
show almost identical shapes and pattern, but with less intense colour, and
in both observe prototypes with animal-like features such as eyes or beaks.
This might be an indication that information about these specific flowers is
already in the vanilla network hidden in some specific combination of neurons
obtainable by rewiring, although the network never had to classify those, nor
has it probably seen these flowers in the original ImageNet data.

3.6 discussion and conclusion
The experiments show that ExplaiNN is able to discover distinct groups of
neurons that together capture traits shared and distinct between classes, within-
class heterogeneity, and how filters are used to detect shared features, segment
background, or detect edges locally. Neither of these are revealed by activation
maps, which miss the local information that patterns provide, nor by saliency

2https://github.com/jimgoo/caffe-oxford102
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(b) Part of an information flow for *{Black-and-tan coonhound, english foxhound,
borzoi, ibizan hound, saluki, scottish deerhound, curly-coated

retriever, entle bucher, mexican hairless}.

Figure 3.10: Information flow. Example rule cascades discovered for ImageNet. For each
rule X → Y, the group of neurons of tail Y are used to generate a prototype (images
in colored frames). To discover these rule cascades, we first mine rules between output
and FC7. We use the tails of these rules (neurons of FC7) as heads to mine rules to the
next layer (FC6). Finally, we use the tails of those rules to mine rules between FC6 and
CONV5.

maps, which investigate network attention for an individual image alone. Proto-
typing is a great tool for visualizing neuron information content, but, by itself is
limited by the massive number of possible combinations of neurons, requiring
thousands of hours to painstakingly handpick and connect the information of
just individual neurons (Olah et al., 2020). Combining ExplaiNN with proto-
typing permits exploring networks beyond single neurons, by automatically
discovering which neurons act in concert, which information they encode, and
how information flows through the network.

In particular, we discover distinct groups of neurons in fully connected
layers that capture shared respectively distinct traits across classes, which helps
in understanding how the network learns generality but still can discriminate
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Figure 3.11: Flower visualizations. For rules found between output and last fully connected
layer, we visualize the neurons in the tail of the rule for the fine-tuned VGG-S network
(first), the original VGG-S network (second), and example images for the flower classes
(right).

between classes. Due to the local information that our rules provide, we can also
detect differences in the perception across samples of a single class, where for
example different groups of neurons describe visually different sub-breeds of a
class of dogs. By connecting rules thatwefind across several layers, we trace how
information is gathered and combined to arrive at a classification, from filters
that detect typical class specific features in the image, through fully connected
layers wheremultiple neurons together encode the combined information, up to
the final classification output. Applying ExplaiNN to investigate the impact of
fine-tuning in transfer learning, we found that for groups of neurons in the given
fine-tuned CNN, surprisingly, the contained information is almost identical to
the original CNN, but capturing the traits of the new classes almost perfectly.
For the given task, fine-tuning thus mostly resulted in routing information
differently, rather than learning to detect new features.

Overall, ExplaiNN performs well and finds surprising results that help to
understand how CNNs perceive the world. While many important tasks are
solved by such networks, attention based architectures play an important role
in e.g. language processing. Although rules can likely also help to understand
what these models learn, these networks encode an entirely different type of
information that is inherently hard to understand and visualize, and hence an
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exciting challenge for future work. Here, our main interest was characterizing
information flow through neural networks, and hence, we focused on subse-
quent layers. ExplaiNN, however, operates on arbitrary sets of neurons, thus
naturally allows investigating e.g. residual networks, where the previous two
layers contribute information. Currently scaling to thousands of neurons, it
will make for engaging future work to scale to entire networks at once.

Within the scope of this thesis, we will now turn back to the foundations
of pattern mining, looking at the goal of finding more expressive patterns. In
particular, in the next chapter we discuss the importance of patterns of mutual
exclusivity, and how to find those in combinationwith co-occurences of features.
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4
PATTERNS OF
CO-OCCURRENCE AND
MUTUAL EXCLUS IV ITY

4.1 introduction
Classical pattern and rule mining, which we discussed in the last chapters, is
concernedwith finding local associations or co-occurences, essentiallymodeling
logical conjunctive statements over the attributes of the data. An essential
primitive for describing relationships in many interesting applications such
as biology, however, is mutual exclusivity. To capture relevant and interesting
structure in such data, discovering patterns of mutual exclusivity can in general
reveal valuable insight that goes well beyond what simple associations or co-
occurrences are able to express.

We are particularly interested in discovering a small, non-redundant and
easily interpretable set of patterns that together summarize the data and clearly
express the significant co-occurrences and mutual exclusivity within. In super-
market basket analysis, patterns of mutual exclusivity allow to express typical
buying preferences, such as products of either the one or the other brand. By com-
bining information of mutual exclusivity with co-occurrences, we can discover
the ingredients of a fancy dinner with meat and its vegetarian replacement.

While transaction data is the classic application for pattern mining, the
key motivation for this work comes from biology, in particular from single cell

This chapter is based on Fischer and Vreeken (2020).
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sequencing analysis. We consider binary data where for each cell (transactions)
we are given which genes are active or which epigenetic features are present
(items), and want to gain insight in how these interact. The traditional task is to
discover groups of significantly co-activated genes, which are of interest because
such genesmay be part of genetic pathways or encode part of protein complexes.
Patterns of co-occurrence only tell part of the story, however. Genes with
mutually exclusive activation allow us additionally to discover e.g. antagonistic
relationships within pathways, such as gene co-activations that are lethal, and
exchangable sub-components in protein complexes, changing the function of the
protein complex – analogous to exchanging the bit of a screwdriver.

Things become even more interesting when we consider a pattern language
that additionally allows combinations of mutual exclusivity and co-occurrence,
as this enables us to discover and succinctly describe a much larger class of
possible interactions. For example, we can then express that the co-activation
of two genes A and B is mutually exclusive with the co-activation of genes C, D
and E, or that we often see either gene A or B activated, but whichever one it is,
always together with one out of C, D, and E. Neither of these interactions would
be possible to capture with statements on co-occurrence or mutual exclusivity
alone, we truly need a pattern language that includes both.

In this chapter we define exactly such a pattern language, with the goal
to discover the set of patterns over this language that together summarize the
data best. We formalize this problem in terms of the Minimum Description
Length principle, which permits a score such that it is robust against noise
in the occurrences of these patterns, and, can avoid spurious results through
an efficient statistical test for K-ary mutual exclusivity. As the combinatorial
problem of mining the best set of patterns does not lend itself to efficient exact
search, we propose Mexican, a highly efficient bottom-up heuristic to discover
good pattern sets from data.

We evaluate Mexican on both synthetic and real-world data. On synthetic
data we confirm that, unlike the state of that art,Mexican is robust to noise and
reconstructs the ground truth, and on a wide range of real world datasets, we
find that it discovers small sets of patterns that we confirm to provide mean-
ingful information. For example, from single cell sequencing data we discover
previously unknown patterns of mutual exclusivity that reflect driving factors
of local processes, which can be confirmed with results from the literature.

4.2 related work
Wediscussed relatedwork from classical (conjunctive) patternmining in the sec-
ond chapter. To the best of our knowledge, the task of mining (non-redundant,
significant) patterns of mutual exclusiveness has not yet been explored. There
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Figure 4.1: Toy database with example pattern forest. Left: Database D of items A, ..., G.
Item presence is indicated by bars. Transactions where pattern-subtree Q holds are
indicated by σQ, the remainder of data where the tree does not apply by σ¬Q. Right:
Pattern trees of database D.

do however exist proposals to generalize pattern mining towards richer boolean
expressions, including disjunctions (Zaki et al., 2010; Shima et al., 2004; Nana-
vati et al., 2001), but these are again limited to frequency as a measure of
interestingness. Closer to our goal are approaches to mine association rules
with negative dependencies (Hämäläinen, 2012; Antonie and Zaïane, 2004), as
whenever we discover both A → ¬B and B → ¬A, we can conclude mutual
exclusiveness between items A and B, i.e. infer A ×⃝ B. This gives us the first
baseline approach we will consider in the experiments, i.e. we mine significant
association rules using Kingfisher (Hämäläinen, 2012), and post-process its
results to identify patterns of mutual exclusivity.

Another related approach is that of mining low entropy sets (Heikinheimo
et al., 2007), which are itemsets for which the contingency table exhibits low
entropy. Low entropy sets hence generalize frequency, and can detect any type
of dependency, including mutual exclusivity. We consider this as the second
baseline, where we simply mine itemsets with an entropy lower than τ, and
post-process the result to identify those that exhibit mutual exclusivity.

4.3 notation
We use the same notation of a database D over items I , transactions t ∈ P(I),
and itemsets X ⊆ I as before. To express the richer pattern language of co-
occurrence, mutual exclusivity, as well as combinations thereof, we enrich the
notation of traditional pattern mining. First, we need the projection πX(D) of a
database D onto an itemset X, which yields the intersection of each transaction
t ∈ D with X, i.e. πX(D) = {t ∩ X | t ∈ D}. Second, we need the selection
σc(D) of a logical condition c over database D, which yields all transactions
t ∈ D that satisfy c, i.e. σc(D) = {t ∈ D | c(t) ≡ ⊤}. We call the number of
transactions where this condition holds, its support suppD(c) = |σc(D)|.
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We denote the logical k-ary AND by ∧⃝c1,...,ck . For a given transaction t
it resolves to ⊤ iff all the given conditions hold, i.e. ( ∧⃝ c1,...,ck (t) ≡ ⊤

)
↔(

∀k
i=0ci(t) ≡ ⊤

). Analogue, we denote the logical k-ary XOR by ×⃝c1,...,ck , which
resolves to⊤ iff exactly one of the provided conditions holds, i.e. ( ×⃝ c1,...,ck (t) ≡
⊤
)
↔
(
∃j
(
(cj(t) ≡ ⊤) ∧ (∀i ̸=jci(t) ≡ ⊥)

)). We connect conditions back to
items I ∈ I by introducing the base case ∧⃝I(t) ≡ ⊤ ↔ I ∈ t. Vice versa, it(c)
gives us the itemset X of all items involved in a condition c. We then have the
projection of D onto condition c as πit(c)(D).

To ease notation, we will write⊙(c1, . . . , ck)wherever t is clear from context.
In addition, we will directly use single items I ∈ I as conditions, instead of
writing ∧⃝(I). As an example, we will write ∧⃝(A, B, C) and ×⃝(A, B, C) to
denote the pattern of co-occurence pattern resp. mutual exclusivity over ABC.

We can express more complex patterns by using hierarchies of conditions,
e.g. we can express by ×⃝(∧⃝(A, B), ∧⃝(C, D)) that AND-pattern AB holds
mutually exclusively with AND-pattern CD. In other words, a condition c
forms a pattern tree, with conditions c ∈ {×⃝, ∧⃝} as inner nodes, and items
I ∈ I as leafs. From now on, we will use formulas, patterns, and pattern trees
interchangably.

4.4 theory
To solve our problem using MDL, we need to formally define a model class
M. As we use two-part codes, we will further need to define a code length
function that gives the number of bits needed to describe a model, and a code
length function that yields the number of bits needed to describe the data at
hand given a model. Before we formally introduce our approach, we provide
the intuitions of the problem and how MDL naturally lends itself to solve it.

4.4.1 the problem, informally
Given a database, our goal is to find a set of patterns that together succinctly
describe the data. Here, we are interested in patterns that capture co-occurence
as well as mutually exclusive relationships in the data. These can be simple
relationships, such as the co-occurence of items A, B, C, captured by ∧⃝(A, B, C),
or the mutual exclusive occurence of them, captured by ×⃝(A, B, C). We are
also interested in more complex, nested relationships, e.g. two item sets X =
{X1, ..., Xi} and Y = {Y1, ..., Yj}, with items in X co-occuring, and items in
Y co-occuring, but X and Y occuring mutually exclusive, which results in
×⃝(∧⃝(X1, ..., Xi), ∧⃝(Y1, ..., Yj)). With X = {A, B}, Y = {C} we show this
pattern tree in Fig. 4.1.
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We hence define a model M ∈ M as a set of pattern trees P , which we refer
to as a pattern forest. We require that every M always contains the singleton
tree ∧⃝(I) for each item I ∈ I . This gives us the baseline encoding that ensures
we can always model any data D over I . Wherever a non-singleton pattern
tree in M holds, however, we will transmit the corresponding data accordingly.
As an example, considering Fig. 4.1 again, we can succinctly transmit where
A, B, C hold by sending all transactions where pattern tree P holds in one go,
rather than sending this for each item individually. This allows us to detect
patterns even of low support, as if the corresponding items co-occur sufficiently
strongly, encoding them together will reduce the code length.

Overall, we aim to find that model M∗ ∈ M such that the overall cost for
the model and data is minimal.

4.4.2 mdl for pattern forests
We will now formalize an MDL score based on the intuition of pattern forests
above. First, we describe how to compute the model costs and then define the
cost of transmitting data given a model .

Encoding a Model
To transmit a model, we first send how many pattern trees are there in our
model M. We then send each pattern tree along with the items used in each
tree. Our model costs are thus defined as

L
(

M
)
= LN(|M|) + ∑

P∈M

(
log
(
|I|
|it(P)|

)
+ Lpc(|I|, 2)︸ ︷︷ ︸

NML code

+LD(P)
)

+ ∑
I∈I

Lst(I) ,

where the last term is the cost for the singleton stumps. We transmit the number
of trees in the forest using the MDL-optimal code LN(n) for integers. To send
an individual pattern tree P ∈ M, we first transmit which items it(P) ⊆ I
are used in the tree, which we do using a refined MDL code, in particular the
Normalized Maximum Likelihood (NML) code for multinomials. Once we
know the relevant items, we proceed to transmit the actual tree using LD(P),
which we define next.

We encode trees recursively, starting from the root. For every node we have
to use 1 bit to encode whether it is an internal node or a leaf. If P is a leaf, we
are done, and have LD(P) = 1. If P is an internal node, we have to additionally
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encode the type of the operator (∧⃝, ×⃝), the number of children |ch(P)|, and
the items it(Q) each child Q ∈ ch(P) contains, after which we can recurse.

For an internal ∧⃝ node P with children ch(P) = {Q1, . . . , Qk}, and D ′ =
σP(D) that part of the data where P holds,

LD(P) = 2 + LN

(
|ch(P)|

)
+ Lpc

(
|D|, 2

)
+ ∑

Qi∈ch(P)
LD ′(Qi)

+ Lpc
(
|it(P)|, |ch(P)|

)
+ log

(
|it(P)|

|it(Q1)|, . . . , |it(Qk)|

)
,

where the terms on the second line together encode the relevant items per child.
Analogue, whenever P is an ×⃝ node, we have

LD(P) = 2 + LN

(
|ch(P)|

)
+

k

∑
i=1

(
Lpc
(
|D ′≥i|, 2

))
+ ∑

Q∈ch(P)
LD ′≥i (q)

+ Lpc
(
|it(P)|, |ch(P)|

)
+ log

(
|it(P)|

|it(Q1)|, . . . , |it(Qk)|

)
,

where D ′≥i = D \ (∪i−1
j=1σQj) that data excluding transactions covered by chil-

dren before Qi. Finally, for singleton trees PI we get

Lst
(

PI
)
= 1 + Lpc

(
|D|, 2

)
,

where we use 1 bit to indicate the root is a leaf node, and the parametric
complexity Lpc for the log binomial over all rows.

Encoding the Data
To encode data D using a model M, we make use of the information that the
pattern trees P ∈ M provide about the dependencies in the data. In particular,
we use a pattern P to encode that part of the data where P holds, while we
encode the remaining data using the singleton trees PI for each singleton I ∈ I .
We will start with encoding the data for which a singleton tree PI holds, i.e.,
where I is present. To do so we use optimal data-to-model codes,

LD (πPI (D) | PI
)
= log

(
|D|
|σPI |

)
.

For a non-singleton pattern tree, things are slightly more involved. First, we
have to encode where the root node, i.e. the logical formula for this tree, holds,
after which we can recurse. We have two cases, that of an ∧⃝ node, and that
of an ×⃝ node. We start with the former, where we consider data D and a tree
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P∧⃝ with root node ∧⃝ with children ch(P) = {Q1, . . . , Qk}. We first encode for
which of the |D| transactions P holds, after which we can recurse for each child
Q only for that part of the data D ′ = σP∧⃝(D) where P∧⃝ holds,

LD(πP∧⃝(D) | P∧⃝
)
= log

(
|D|
|σP∧⃝ |

)
+

k

∑
i=1

LD ′(πQi (D ′) | Qi
)

,

where πP(D) is the projection of data D on pattern P. Analogue, for a pattern
tree P×⃝ with an ×⃝ as root node, we iteratively encode where each child holds,
while actively using information about already transmitted children. We have

LD(πP×⃝(D) | P×⃝
)
=

k

∑
i=1

((
D ′≥i
|σQi |

)
+ LD ′≥i

(
πQi (σP×⃝) | Qk

))
.

where D ′≥i = D \ (∪i−1
j=1σQj) that data excluding data covered by children before

Qk. Importantly, this encoding is independent of the order in which we iterate
over the children. We will provide a proof for the case of 3 children, the case
for an arbitrary number of l children follows the same reasoning.

Theorem 4.1. Given a node P = ×⃝(i, j, k) with corresponding margins ni, nj, nk of
the children, it does not matter in which order we send where the children hold using
LD ′(πP×⃝(D ′) | P

)
.

Proof. We essentially need to show that we can flip the children order without
changing the cost, for that assume a new order P = ×⃝(k, i, j), then we show
that

log
(

n
ni

)
+ log

(
n− ni

nj

)
+ log

(
n− ni − nj

nk

)
!
= log

(
n
nk

)
+ log

(
n− nk

ni

)
+ log

(
n− ni − nk

nj

)
.

We use the definition of the binomial with factorials, use the standard rules for
logarithmic arithmetic to pull the binomials apart, and then add new terms
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that add up to 0 to derive the equation above.

log
n!

(n− ni)!ni!
+ log

(n− ni)!
(n− ni − nj)!nj!

+ log
(n− ni − nj)!

(n− ni − nj − nk)!nk!

= log(n!)−(((((((log((n− ni)!)− log(ni!) +(((((((log((n− ni)!)

−
(((((((((
log((n− ni − nj)!)− log(nj!) +(((((((((

log((n− ni − nj)!)

− log((n− ni − nj − nk)!)− log(nk!)

+ log((n− nk)!)− log((n− nk)!)︸ ︷︷ ︸
=0

+ log((n− ni − nk)!)− log((n− ni − nk)!)︸ ︷︷ ︸
=0

= log
n!

(n− nk)!nk!
+ log

(n− nk)!
(n− ni − nk)!ni!

+ log
(n− ni − nk)!

(n− ni − nj − nk)!nj!

The other permutations as well as the case for more than 3 children follow the
same reasoning.

As an example of a pattern tree P×⃝, consider Fig. 4.1, where we would like to
encode data for pattern P. Following to the equation above, for an ×⃝ pattern we
first encode for each children where they hold, and then recurse, which yields
log ( |D||σQ |

) bits for identifying transactions of Q and log (
|σ¬Q |
|σC |

) bits for identifying
transactions of the leaf C. The recursion on the ∧⃝ child Q yields 0 bits, as we
already identified the corresponding transactions with the code for the root
node. The same is the case when we recurse on the leaf nodes.

Putting all together, we now send for each pattern tree where it holds and
transmit the remaining data with singleton trees,

L
(

D | M
)
= ∑

P∈M

(
LD(πP(D) | P

))
+ ∑

I∈I

(
LD(πI(D) | I

))
,

where the last term corresponding to the singleton trees only transmits transac-
tions that are not covered by a pattern, i.e. we consider a modified transaction
multiset σ ′I (D) = {t ∈ D | I ∈ t ∧ (∀P ∈ M. I ̸∈ πP(t))} . With the above, we
have a lossless encoding for a dataset D given a model M.

4.4.3 the problem, formally
With the scores above, we can now formally state the problem.
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Problem 5 (Minimal Pattern Forest Problem). Given a database D over items I ,
find the smallest set of pattern trees M that minimizes the total description length

L
(

D, M
)
= L

(
M
)
+ L

(
D | M

)
.

Although our defined model encoding allows for arbitrary hierarchies over
×⃝ and ∧⃝, we can apriori reject certain combinations because we know they
will not be insightful. For example, if a node and its children are all ∧⃝, we can
obtain a much simpler model without loss by merging these nodes into a single
∧⃝ node. We can hence exclude directly nested ∧⃝ nodes from our search.

We also exclude pattern trees with directly connected ×⃝ nodes – not for
reasons of inefficiency, but rather because we are not interested in what these
represent. Consider, for example a nested ×⃝ pattern such as ×⃝(A, ×⃝(B, C)).
Rather than expressing that one of either A, B, or C holds, which is what we are
explicitly interested in, this pattern expresses that an odd number of its items
is true. Although arguably an interesting statement to discover in data, it is not
mutual exclusivity and hence not what we are after.

Overall, we therefore enforce alternating layers of operators, that is a chil-
dren of ×⃝ can only be a ∧⃝ or a leaf, and a children of ∧⃝ can only be ×⃝ or a leaf.
To keep all discovered patterns interpretable, we restrict ourselves in practice
to pattern trees of depth at most 2.

Discovering the exact solution to theMinimal Pattern Forest Problem requires
the enumeration of all possible sets of pattern trees, for the simple reason that
our score does not exhibit any trivially exploitable structure such as convexity,
monotonicity, or sub-modularity. However, the model space is of size

|M| =
|I|/2

∑
k=1

|I|

∑
i=2k

(
|I|
i

)
∑

l1+..+lk=i
l1,..,lk≥2

(
i

l1, .., lk

)

·
k

∏
j=1

2
lj/2

∑
m=0

∑
h1,..,hm≥2

2m≤h1+..+hm≤lj

(
h1 + .. + hm

h1, .., hm

)(
lj − (h1 + .. + hm)

)
! .

In order of terms in the first line, the first sum indicates the number of trees in
a model, the second sum the number of items covered by these trees, the first
binomial the number of subset of this size, the third sum together with the first
multinomial indicates the possible partitionings of this item subset over the
trees. In the second line we describe the number of trees possible, given by the
first product, and then multiply by 2, which is the number of ways we can fix
the operators. We then have to go over all different tree shapes. For that, we
first sum over all the possible number of inner nodes in the tree. The second
sum in the second line together with the first multinomial gives the partition of
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Figure 4.2: Noise sensitivity of Fisher’s exact test. Exact p-value p∗ for experiments of
2-ary ×⃝ with varying levels of noise in the data. Significance threshold α is given as
dashed line, 25% and 75% quantiles are indicated by the red band.

items over the leafs of these inner nodes. The last term gives the combinations
of distributing the remaining items over the leafs that are children of the root.
It is thus practically infeasible to enumerate this search space. Hence, we resort
to heuristics.

4.4.4 the chance of being exclusive
Before we present our algorithm we first discuss the issue of spurious discover-
ies. That is, especially in sparse data, we are very likely to find that two or more
items are perfectly mutually exclusive but just so by chance. To rule out that we
include such spurious patterns in a model, we introduce a statistical test that
supplements our MDL score, that is able to rule out patterns in a model that
are likely to arise by chance. Formally, we want a statistical test that yields the
likelihood of seeing an MDL gain similar or better than observed for a given ×⃝
pattern over itemset X, assuming independence between the items I ∈ X. It
turns out that the MDL gain for pattern with two items ×⃝(A, B) is monotone
in the joint count.
Theorem 4.2 (Monotonicity of gain). For items A, B with marginals nA, nB and
joint nAB, the MDL gain of adding ×⃝(A, B) to the model M is smaller than for any
n ′AB < nAB.

Proof. We will show that the MDL costs for a joint count nAB + 1 is the cost
for joint count nAB plus some log ϵ > 0. We will start off with the MDL costs,
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Figure 4.3: Approximating Fisher’s exact test. Approximate p-values p̂ against exact
p-values p∗ for experiments of 3-ary ×⃝ with varying margins. Minimum margin for an
experiment is indicated by color.

given by the costs of transmitting transactions covered by the XOR pattern and
transmitting the transactions where A, B overlap using the singleton code. The
model costs can be ignored as they are the same for different joint counts of the
same pattern. Hence, we get
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(3)
= log

(
n

nA

)
+ log

(
n− nA

nB

)
+ 2 · log

(
n

nAB

)
+ log

(
nAnB(n− nAB)2

(n− nA − nB + 1)(n− nA − nB + 2)(nAB + 1)2︸ ︷︷ ︸
=ϵ

)
.

For equality (1), we use the well known equations ( n
k−1) = k

n−k+1 (
n
k) and

(n
k) = n

k (
n−1
k−1) to change the n, respectively k of the binomial coefficient by 1.

Equality (2) is a recursive application of the first binomial coefficient equation.
Equality (3) is essentially reordering and cancelling out terms and pulling the
2 into the logarithm. Starting with the costs of transmitting the data using the
pattern with joint count nAB − 1 we thus arrived at the costs of transmission
costs for the pattern with joint nAB plus some log ϵ. It remains to show that
ϵ ≥ 1.

We will now bound each of the terms in the denominator of ϵ by one of the
numerator terms from above. Assume that a) nA, nB ≥ 1, b) nA > nAB, and
c) nB > nAB. Then we get

nA
b)
≥ nAB + 1, nB

c)
≥ nAB + 1 ,

n− nAB
b)
≥ n− nA + 1

a)
≥ n− nA − nB + 2 > n− nA − nB + 1 .

It follows that ϵ ≥ 1, which complestes the proof.

By this theorem we hence know that any datasets for A, B with similar or better
gain are exactly those datasets with smaller or equal joint count.

For the simple case of two variables, we can obtain an exact p-value through
Fisher’s exact test (Fisher, 1922). Fisher’s exact test leverages the fact that
an observed joint count with fixed marginal counts follows a hypergeometric
distribution, hence we can compute the exact p-value by

p∗2 =
nAB

∑
i=0

(nA
i )(

n−nA
nB−i )

( n
nB
)

,

where nX is the number of rows that contain X. For given significance thresholds
α, this yields an exact test to decide for the simple case of 2-ary ×⃝ pattern if
it is significant or not – and which allows evaluating the influence of noise on
mutually exclusivity over A, B.

To do so, we generate data of n = 1000 transactions, where we plant a
perfect ×⃝ pattern with margins nA = nB = 100, nAB = 0, and vary the level
of noise. In particular, we add noise by flipping {0.01, 0.11, ..., 10} % entries
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uniformly at random. For each noise level we generate 100 folds, measure
the p-value, for which we report the median and 25% to 75% quantile range
in Figure 4.2. We see that already at very modest amounts of noise (2%) the
observed gains could just as well be by chance, and clearly illustrates the need
for a statistical test.

However, while with Fisher’s exact test we have a test for the case of 2
variables, there is no hypergeometric distribution we can use for three variables
– we have to resort to plain combinatorics, and enumerate all possibilities of
observing data with the given marginals, given by

p∗3 =
nAB

∑
i=0

nAC

∑
j=0

nBC

∑
k=0

nABC

∑
l=0

(
n

nA

)(
nA

nAB

)(
nAB

nABC

)(
n− nA

nB − nAB

)(
nB − nAB

nBC − nABC

)
(

n− nA − nB + nAB
nC − nBC − nAC + nABC

)(
nA − nAB

nAC − nABC

)
/

((
n

nA

)(
n

nB

)(
n

nC

))
.

While somewhat doable for patterns of three items and small joint counts, this
quickly becomes infeasible otherwise: if we generalize this formula to K-ary
XOR, the number of sums grows to 2K − K− 1, while the number of terms in
each summation grows to 2K − 1. That is, the computational complexity of just
computing the p-value for K-ary XOR grows exponentially in K. As we are
explicitly interested in arbitrary sized sets of mutually exclusive items, we hence
need an alternative solution. To this end, we present a good approximation1
for the p-value of K-ary XOR, for which the runtime is independent of K.

Suppose we know that for a 3-ary XOR ABC that ×⃝(A, B) is significant for
a given significance threshold α under p∗2 . Then, we can use an adaptation of
Fisher’s exact test to approximate p∗3 , by treating AB as a new item that we call
×⃝AB. Furthermore, we denote by nAB the number of rows that contain both A
and B and are thus not mutually exclusive. We, hence, approximate by

p̂3 =
nABC

∑
i=0

(
n×⃝AB+nAB

i )(
n−n×⃝AB−nAB

nC−i )

( n
nC
)

.

More generally, for two sets of variables X, Y for which we know ×⃝(X) and
×⃝(Y) is significant, the p-value of ×⃝(X ∪Y) is approximated by

p̂ =

nX̃Ỹ

∑
i=0

(
nX̃
i )(

n−nX̃
nỸ−i )

( n
nỸ
)

,

1We refer to it as Fischer’s inexact test.
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where nX̃ = |{t ∈ D | (t ∩ X) ̸= ∅}| is the number of rows where at least
one of the items of X is present. Note that we thus essentially condensed X
and Y each in a new item X̃ and Ỹ. Since we are now working on the case of
two variables again, Theorem 4.2 applies and we can leverage the fact that the
gain is monotone in the joint count. Furthermore, we can use the following
known recursive definition of terms qi – the i-th term in the summation – that
drastically reduces numerical instabilities for large n,

p̂0 =
(n−nX̃

nỸ
)

( n
nỸ
)

,

p̂i = p̂i−1 (nX̃ − i)(nỸ − i)
(i + 1)(n− nX̃ − nỸ + i + 1)

.

We provide a proof of this recurrence in Appendix A.3.1.
To explore how well we approximate the true p-value, we generate data

with n = 500, m = 3, vary the marginal densities for each of the three variables
in {5, 10, ..., 100}, the joints between each of the two variables in {0, 5, 10, 15}
and the full joint in steps of 2 up to the minimum pairwise joint. This leaves us
with a total of 144000 experiments covering the space of very sparse to dense
dataset margins and combinations of those. In our tests, p̂3 shows to be a good,
slightly more conservative approximation of p∗3 that deviates from the exact
value only if an item I has low support nI in the order of ten rows (see Fig. 4.3),
while computation is on average 200 times faster. Knowing that with larger
K-ary XOR the running time increases exponentially for the exact test, while
our approximation remains constant regarding K, we get a good, computable
approximation that allows us to prune for insignificant mutually exclusive
patterns. While due to multiple hypothesis testing issues that plague every
significant pattern mining approach, we cannot claim significance of the ×⃝
patterns, we can leverage this test as a powerful filtering technique to prevent
many spurious patterns to be even considered in the model.

4.5 mexican
To discover high quality pattern forests in practice, we propose the Mexican
algorithm,2 which leverages heuristics to efficiently explore the search space. To
discover patterns representing mutual exclusivity and co-occurrences that are
easily interpretable, we restrict the depth of pattern trees to 2 and alternating
operators between layers. The Mexican algorithm can however be trivially
adapted to discover patterns of arbitrary depth d.

2Mexican is short forMutual EXclusIve and Conjunctive pAtterNs.
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4.5.1 merging trees
The main idea of Mexican is that, instead of enumerating all possible models,
we iteratively refine the current model by combining pattern trees in the current
model. We do so as follows.

Mexican starts with a model M that only consists of singleton trees. We
can combine two singleton trees A and B by introducing a new root, yielding
×⃝(A, B) and ∧⃝(A, B) as candidate pattern trees. A pattern tree ×⃝(A, B) and a
singleton C we can combine in the following two ways. We either merge C into
the XOR, and have ×⃝(A, B, C), or we create a new conjunctive node with both
patterns as children, i.e. we have ∧⃝(×⃝(A, B), C). Analogue, a pattern tree
∧⃝(A, B) and singleton C we can again either merge, and have ∧⃝(A, B, C), or
combine under a new mutual exclusivity root node, and have ×⃝(∧⃝(A, B), C).

If we have two pattern trees with root nodes of the same type, e.g. ∧⃝(A, B)
and ∧⃝(C, D), resp. ×⃝(A, B) and ×⃝(C, D), we can either merge them and
obtain ∧⃝(A, B, C, D) resp. ×⃝(A, B, C, D), or combine them by introducing
a new root node of the alternate kind, and have ×⃝(∧⃝(A, B), ∧⃝(C, D)) resp.
∧⃝(×⃝(A, B), ×⃝(C, D)). Overall, we require that the depth of the new tree is
≤ 2, and that operators alternate along a path from root to leaf.

Summarizing the above, we create candidate patterns from pairs of pattern
trees P and R as follows:

• Make R and P children of a new root r ∈ {×⃝, ∧⃝}
• Make R a new child of P
• Merge R with existing child Q of P

– if root(R) = root(Q), add children of R to children of Q
– if Q is singleton, make Q child of R, and R child of P

• Merge R and P that have same root operator
We thus obtain an algorithm mergeTrees(M) that given a current model M
yields a set of candidate patterns to refine M. Although heuristic, this scheme
does explore large parts of the relevant search space: intuitively, a conjunction
specifies that items usually co-occur, and hence that all subsets of these items
usually co-occur, and similarly so formutual exclusive patterns. This is captured
by the idea of our bottom-up search.

4.5.2 algorithm
Putting together the candidate generation strategy and the MDL code length
definitions, we arrive at Mexican, for which we give the pseudocode in Al-
gorithm 4.1. Starting with the set of all singleton trees as initial model (line
1), we iteratively refine our model by generating a set C of candidate pattern
trees using mergeTrees (line 3), from which we find the pattern P that gives
the best gain ∆ = L(D, M⊕ P)− L(D, M) in terms of our previously defined
MDL score (line 7). In case the candidate is an ×⃝ pattern, we also compute
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Algorithm 4.1:Mexican
input :Dataset D, Significance threshold α
output :Heuristic approximation to the optimal model M∗

1 M← I // Initialize model with singletons
2 do
3 C ← mergeTrees(M) // Generate candidates
4 M ′ ← M
5 ∆ ′ ← 0
6 for P ∈ C do
7 ∆← L(D, M⊕ P)− L(D, M) // Compute gain
8 p← 0
9 if root(P) = ×⃝ then // If candidate is XOR
10 p← p̂ of P // Compute p-Value
11 if ∆ < ∆ ′ and p < α then // Update current best
12 M ′ ← M⊕ P
13 ∆ ′ ← ∆

14 M← M ′ // Update best model
15 while L(D, M) decreases
16 return M

the p-Value estimate p̂ (line 9, 10) and filter it out if it is above the signifance
threshold α (line 11). We add the pattern P with the highest gain to the model,
M⊕ P, while removing all non-singleton patterns that were used to construct
P from M (line 12). If there is no candidate that would decrease the current
codelength, we terminate and return the current best model (line 15, 16).

4.5.3 complexity
As in the previous chapters, we will analyze the complexity in terms of the size
of the discovered model rather than the input. The following theorems capture
complexity properties of Mexican in terms of the number of found patterns k.
Theorem 4.3 (#Candidates of Mexican). Given that we mine k pattern trees, with
at most l leafs each, for a given dataset D,Mexican evaluates at most O((k · l +m)2l2)
candidates per iteration.

Proof. In a given iteration, we can have at most m singletons and k ′ = ⌊ kl
2 ⌋

pattern trees that together form a model. The term k ′ is the upper bound that
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we get when we divide the trees in the final model into trees of size 2, which is
the smallest possible tree as otherwisewewould have a singleton. We canmerge
each tree with any other tree resulting in (k ′ + m)(k ′ + m− 1)/2 tree pairs to
look at. Withoutmaking further assumptions on the shape or content of the tree,
we have to assume that we can merge one tree in any leaf or inner node of the
other tree. There are at most l leafs and at most ⌊l/2⌋+ 1 inner nodes, using the
constraint that a tree has at most depth 2. For each merge, including merging
under a new root or as a new child, we can use two different operators. This
gives at most (k ′ + m)(k ′ + m− 1) · 2 · (2 · (l + (⌊l/2⌋+ 1) + (⌊l/2⌋+ 1)) + 1)
candidates.

It now remains to include the number of iterations, which results in the follow-
ing time complexity of Mexican.

Theorem 4.4 (Runtime ofMexican). Given that we mine k pattern trees with at most
l leafs each for a given dataset D, the runtime ofMexican is in O(k · l · (k · l + m)2l2).

Proof. From Th. 4.3 and the observation that in each iteration one of the tree
grows by at least 1 in the number of leafs because of the pairwise merge, we
know that there are at most k · l merges possible. Otherwise we would get a
tree that is larger than any tree in the final model.

4.6 experiments
We empirically evaluateMexican on both synthetic data with known ground
truth as well as on real world data. For that, we implemented Mexican in C++.
There is no direct competitor that is able tominemutually exclusive patterns, we
instead compare to the two closest cousins. The first method that we compare to
is an implementation for mining low entropy patterns, LEminer (Heikinheimo
et al., 2007). To compare to LEminer, we postprocessed the results to extract
patterns where at least some subset of features has few overlapping transactions
with the rest of the features, which can be seen asmutual exclusive patterns over
itemsets. The secondmethod is an adaptation of Kingfisher that derives mutual
exclusive patterns from statistically significant association rules (Hämäläinen,
2012). We reimplemented Kingfisher in C++, such that it scales to larger
datasets and processed the results to merge rules A → ¬B and B → ¬A to
×⃝(A, B). Note that Kingfisher is only able to find rules with single items in
the consequent, hence we can only mine for mutual exclusive feature pairs. We
want to emphasize at this point that both methods LEminer and Kingfisher
were originally not designed to discover patterns of mutual exclusivity and the
comparison is thus slightly unfair. However, these methods come closest to
what we do. All experiments were carried out single-threaded on Intel Xeon
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E5-2643 v3 machines with 256GB RAM running Linux. Mexican finishes within
seconds to minutes on all synthetic and real data, with the exception of the
single cell and Instacart data, for which it needs hours, due to the large width
respectively height of the data sets. The code and all data is available online.3.

4.6.1 synthetic data
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(a) Patterns found in pure noise data of different sparsity.
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(b) Patterns found in synthetic data with planted patterns. Numbers of LEminer are a
lowerbound as each run was terminated after 1 hour.

Figure 4.4: Synthetic data. Top: #Patterns found in pure noise data. Bottom: #Patterns
found in data with planted patterns.

As a sanity check, we first consider data without any structure. We generate
data sets of size 1000× 100 with d% 1s that are set uniformly at random, and
report the average number of found patterns across 10 folds for each method.
We show the results in Fig. 4.4a, and see thatwhileMexican recovers the ground

3http://eda.mmci.uni-saarland.de/prj/mexican/

http://eda.mmci.uni-saarland.de/prj/mexican/
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truth in all cases but one, its competitors Kingfisher and LEminer, discover up
to millions of spurious patterns.4

Simple patterns
To evaluate whether thesemethods can recover ground truth beyond pure noise,
we generate data where we plant 10 pure ×⃝, respectively pure ∧⃝ patterns over
at most 5 items in data with n = 10000 rows. We add noise to this data by
flipping 0.1% of the entries – an average of 10 entries per column – uniformly
at random, ensuring that ×⃝ patterns are not spurious (see also Fig. 4.2).

We generate 10 datasets for each of the two setups, and record the number
of patterns each method discovers. We find that on average Kingfisher reports
hundreds, and LEminer more than a million patterns for each of the two experi-
ments. In contrast, Mexican recovers the 10 patterns in the ∧⃝ data exactly, and
on average 7.6 patterns for the ×⃝ data. As on data without noise it does recover
all patterns, this is likely due to the (strong) effect of noise on the significance
of ×⃝ patterns of higher arity.

Nested Patterns
Next, we investigate how well Mexican performs on data that contains more
complex patterns, in particular including nested logical formulas, we plant
k ∈ {5, 7, ..., 80} pattern trees into n = 10000 rows. We draw uniformly at
random c ∈ {2, 3, 4} children for the root. For each of those children we draw
up to 2 nodes as their children. We then draw an operator o ∈ { ∧⃝, ×⃝} for each
inner node. For each pattern tree we draw rows from N (500x, 10x), where x
is the maximum number of children of any ×⃝ subtree, or 1 if none exists, to
avoid overly sparse features. We then partition the rows for each ×⃝ subtree
according to a multinomial over the children. Finally, we apply noise as in the
previous experiment. We run each of the methods, and report the number
of discovered patterns in Figure 4.4b. We see that, Kingfisher and LEminer
discover thousands up to billions of patterns, whereasMexican recoversmodels
that are – both in numbers, as well as upon close inspection – very close to the
ground truth.

4.6.2 real-world data
To evaluateMexican on real data, we look at six different binarized datasets over
different domains. We consider data on Belgian traffic Accidents, lemmatized
words from abstracts of Deep Learning and Quantum Computing papers on

4Note that we observed a similar behaviour of state-of-the-art methods based on
frequency or statistical testing on pure noise also in the Experiments of previous chapters
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Kf Le Mexican
Dataset n m #×⃝ #⊙k #∧⃝ #×⃝ #⊙k

Accidents 340K 468 38K 216M∗ 1 34 6
DLQ 10K 4.2K 830K 34M∗ 10 130 4
DNA 1.3K 392 20K 1B∗ 114 0 0
Mammals 2.2K 121 5K 198K 4 15 12
SC 65 20.2K 63M 0∗ 131 500 41
Instacart 2.6M 1236 - - 1 95 3

Table 4.1: Reported are number of rows n and columns m in data set and number of
found AND and XOR patterns #∧⃝, #×⃝, and nested patterns #⊙k for Kingfisher (Kf),
LEminer (Le), and Mexican. By * we indicate the forced termination of LEminer
after either 1 Billion patterns were mined, or >500GB of disk space was consumed.
Resulting numbers are patterns returned on termination, hence a lower bound.

ArXiv (DLQ) (Dalleiger and Vreeken, 2020), DNA amplification data (Myl-
lykangas et al., 2006), EuropeanMammals (Mitchell-Jones, 1999), and Single
Cell RNA-sequencing (SC) data (Ardakani et al., 2018). Data dimensions and
results are reported in Tab. 4.1.

The results show that Mexican is able to retrieve succinct, hence inter-
pretable, sets of patterns, where the other methods discover orders of magni-
tude more patterns than there are rows and columns in the data. Furthermore,
these results show that our method scales up to many thousands of features
and millions of rows. Both Kingfisher and LEminer are not able to process
Instacart. Examining the results of Mexican by operator type, we observe that
Mexican for some data sets discovers many ×⃝ patterns, especially sparse data
such as Instacart, whereas other data that has highly correlated margins, such
as DNA, yields more ∧⃝ patterns. When appropriate,Mexican discovers also
more complex, nested patterns that describe the data well, which we examine
further below.

The experiments further show that Mexican is fast despite the theoretically
challenging problem, taking only seconds forDNA andMammals, up to hours on
data of very high dimensionality or sample size, such as Instacart and SC. So far,
we focused on the pattern set size, which is a good indicator of accessibility of
the sets to a human expert, however does not provide any qualitative statement
about the results. In the following we examine the quality of pattern sets for
DLQ, and SC.
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DLQ data
For the DLQ dataset we find informative patterns that capture the discrep-
ancies between papers of the two communities. By observing that discov-
ered patterns reflect classical word co-occurences, such as ∧⃝(monte, carlo) or
∧⃝(nearest,neighbour), and the XOR pattern ×⃝(∧⃝(deep, learning),quantum)
that summarizes how the data was generated, it is clear that Mexican is able
to infer patterns that capture main properties of the data. Close inspection
of the patterns further reveals that we are able to retrieve more subtle distinc-
tions between the Deep Learning and Quantum Computing fields, such as
×⃝(adversarial, free), or ×⃝(stochastic, superposition). Furthermore,Mexican
discovers larger patterns that might indicate subdomains within Deep Learn-
ing or Quantum Computing, such as ×⃝(operation, radiation, autoencoder), or
×⃝(layer, atom, cryptography,hamiltonians, reality, remote).

Single Cell Data
Finally, we look at the case of the single cell sequencing data set. Single cell
sequencing is a recent breakthrough that enables to measure genetic and epige-
netic features for separate, single cells instead of cell batches that weremeasured
previously. Hence, instead of analysing only global averages over all cell states,
we can now obtain the state of each cell individually, and thus capture the
patterns underlying cellular dynamics. The major challenge of such data is the
large number of features as we are interested in analyzing all (several tens of
thousands of) genes. Furthermore, there is only a limited understanding of the
whole gene regulatory system. This is both a limitation in terms of how we can
validate but also an opportunity to suggest new relationships derived from our
discoveries.

For the SC data, many patterns discovered by Mexican reflect distinct
local mechanisms within the cellular life5. One of the discovered patterns is
∧⃝(POP5,ZCCHC17), which can be seen as a pattern of protein production,
one of the most crucial functions of a cell. Both of these proteins are essential for
protein synthesis, POP5 as part of themachinery detectingwhich building block
to add to the amino acid chain (van Eenennaam et al., 2001), and ZCCHC17 in
the complex actually generating the chain (Chang et al., 2003). A pattern of
another important cellular process is ∧⃝(IMPDH2,UMPS). Both of these genes
and associated proteins are essential for the synthesis of building blocks of the
DNA and thus are key for cell proliferation. In particular, UMPS is responsible
for the final two steps of pyrimidine synthesis, a buildung block for certain
nucleotids (the N in DNA)(Krungkrai et al., 2001). IMPDH2 catalyzes a crucial

5Please note that due to the history of discovery, many genes have been assignedmore
than one name. The aliases can be looked up at e.g. https://www.genecards.org/.

https://www.genecards.org/
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step in the synthesis of the nucleotide Guanine (Carr et al., 1993). Due to its
direct effect on the supply of Guanine and thus the rate of cell proliferation,
IMPDH2 is also used as drug target for cancer treatment (Naffouje et al., 2019).

An example of a mutual exclusivity pattern is ×⃝(ZNF692,BRF1) for which
we can hypothesize an antagonistic role of the two genes influencing gene
regulation. In particular, ZNF692 encodes a protein that acts as a transcriptional
repressor (Inoue andYamauchi, 2006), while BRF1 is a component of RNAPolIII,
responsible for the transcription of genes (Hsieh et al., 1999).

Finally, with the pattern ×⃝(RP11.446E9.1, SETD1B,MIOX), we can suggest
novel relationships between genes. MIOX is related to the Polyol metabolism,
and is tightly regulated by DNA methylation in its promoter (Sharma et al.,
2017). SETD1B, on the other hand, is part of a complex modifying Histone
proteins (Schultz et al., 2002). These modifications are known epigenetic mark-
ers for gene regulation. Thus, the Lysine modification introduced by SETDB1
might play a repressive role in the regulation of MIOX, an interesting subject of
further study.

These findings show that Mexican discovers a succinct set of patterns
that characterise cellular mechanisms, and thus can be leveraged to guide
future research by suggesting potential relationships as subject for further
investigations.

4.7 discussion and conclusion
In contrast to robust rules, this chapter focused on the problem of discovering
patterns of co-occurence and mutual exclusivity. In particular, we proposed a
pattern language over logical conjunctions and mutual exclusivity, and defined
the goal of discovering succinct and non-redundant sets of patterns over this lan-
guage that together generalize the data. As such, the pattern language in com-
bination with a scalable algorithm lends itself for exploring high-dimensional
biological datasets. For example, it can be leveraged to discover new gene
relationships from expression data, where mutual exclusive patterns model
interesting biological concepts which would otherwise be missed.

We defined the problem in terms of the Minimum Description Length
principle, and as the resulting score does not lend itself for efficient exact
search, we proposed an effective heuristic approach calledMexican to efficiently
approximate the optimal solution. To filter out spurious results, we suggest
a statistical test for K-ary mutual exclusivity and propose a computationally
efficient approximation to it.

With the among the state of the art unique ability of discovering both co-
occurrences as well as mutual exclusive relationships, we show that Mexican
gives an extended view on the distribution of the data by conducting experi-
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ments with synthetic and real world data. On synthetic data, we showed that
Mexican is able to recover the ground truth without picking up on noise, where
the state-of-the-art methods discovered millions of patterns even when there
are none. Through experiments on real data we confirmed that Mexican con-
sistently returns succinct pattern sets interpretable by human experts, scaling
up to millions of rows and thousands of features. Close inspection revealed
that patterns Mexican discovered are indeed meaningful and correspond to
domain knowledge.

One major application of a pattern language equipped with mutual exclu-
sivity is biological data on the gene regulatory system, where such patterns
could indicate replacable sub-components or antagonistic players in a pathway.
To showcase the efficacy of Mexican in this domain, we considered a case study
on single cell RNA sequencing data. The discovered patterns reflect local cel-
lular mechanisms that we validated with the literature, but also suggest new
relationships of genes about only little is known so far, which could be subject
to further experiments.

Although Mexican meets the goals we set initially for this work and yields
highly encouraging results, we are interested in even more scalable approaches,
which could potentially scale to hundreds of thousands if not millions of fea-
tures. Examples of such challenging datasets include transactional data of
large retailers, or data of human variation, which are important to understand
for clinical settings as well as drug development. Scaling to these orders of
magnitude larger number of features, however, requires a paradigm shift from
how traditionally pattern mining problems are modeled. Before we discuss a
solution to this problem, in the next chapter we investigate how we can mine
subgroups at scale, considering patterns of conjunctions and mutual exclusiv-
ity, and how we can use this method to understand which input makes neural
networks misclassify for complex natural language and vision tasks.
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5
DISCOVERING
LABEL -DESCR IPT IVE
PATTERNS

5.1 introduction
State-of-the-art deep learning methods achieve human-like performance on
challenging tasks, such as in computer vision or linguistics. As much as ‘to
err is human’, these models make errors, too.1 Some of these errors are due to
noise that is inherent to the process we want to model, and therewith relatively
benign. Systematic errors, on the other hand, e.g. those due to bias or misspec-
ification, are much more serious, as these lead to models that are inherently
unreliable. If we know under what conditions a model performs poorly, we
can actively intervene, e.g. by augmenting the training data, and so improve
overall reliability and performance. Before we can do so, we first need to know
whether a model makes systematic errors, and if so, how to characterize them
in easily understandable terms.

We propose a method that allows us to do so for arbitrary classification
models, by partitioning the input data according to correctness of the model’s
predictions, and then mining those partition-specific patterns that together
describe the partitions most succinctly. To get a good understanding of what

This chapter is based on Hedderich, Fischer, Klakow, and Vreeken (2022).
1The full proverb goes ‘to err is human, to forgive is divine’. Let us hope we never

have to rely on the forgiveness of neural networks.
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causes systematic errors, we consider a rich pattern language that allows us to
express conjunctions, mutual exclusivity, and nested combinations thereof. This
task is an instance of the more general problem of label description, where for
given labeled data we are interested in a non-redundant and easily interpretable
description of the associations between the data and the given labels. We
formulate this problem in terms of the Minimum Description Length principle,
by which we identify the best set of patterns as the one that best compresses the
data without loss. As the search space is twice exponential, and does not exhibit
any easy-to-exploit structure, we propose the efficient and hyper-parameter-free
Premise algorithm to heuristically discover the premises under which we see the
given labels.

The label description problem is obviously related to classification. Here,
we however are not so much interested in prediction, but rather description
and therewith value interpretability of the results over accuracy. This no-
tion we share with subgroup discovery (Novak et al., 2009; van Leeuwen and
Knobbe, 2012; Sutton et al., 2020), emerging pattern mining (Dong and Li,
1999), and significant pattern mining (Pellegrina et al., 2019), which aim to
discover those conditions under which a target attribute has an exceptional
distribution and hence are closely related to finding descriptive rules for the
target attribute (Agrawal et al., 1993; Hämäläinen, 2012). The key difference is
that we are not interested in discovering all patterns that are strongly associ-
ated, but rather want a small and non-redundant set of patterns. As such, our
approach is an instance of pattern set mining (Vreeken and Tatti, 2014; Fischer
and Vreeken, 2019, 2020; Proença and van Leeuwen, 2020), but distinct from
existing work in the sense that it has to scale to large input domains, discovers
noise-robust patterns, considers a richer pattern language, and partitions of the
data, all at the same time.

We evaluate Premise both on synthetic and real-world data. We show that,
unlike the state of the art, Premise is robust to noise, scales to large numbers
of items, deals well with imbalance, and association to labels. Through two
case studies we show that Premise discovers patterns that provide clear insight
into the systematic errors of NLP classifiers, and, perhaps most importantly, are
indeed actionable. In particular, we show these patterns elucidate the biases of
recent Visual Question Answering (VQA) classifiers, and that we can improve
the performance of a neural Named Entity Recognition (NER) model by acting
on the patterns Premise discovers.

5.2 related work
We discussed pattern mining in the related work of the previous chapters. Ap-
proaches to mine patterns or pattern sets are unsupervised in nature, i.e. they
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do not take label information into account. Rule mining, however, naturally
lends itself to describe associations between labels and items. As discussed be-
fore, most existing methods evaluate patterns individually, thereby discovering
millions of rules even if the data is pure noise. Grab, which we discussed in
the first chapter, instead mines small sets of rules that together summarize the
data well, and Classy (Proença and van Leeuwen, 2020) discovers rule lists
that characterize a given label. We compare to both Grab and Classy in the
experiments. We can already reveal that it does not work well in our setting:
the approaches to mine rules and rule lists do not scale well and are sensitive
to label imbalancing. Furthermore, they are inherently not able to reflect that
the consequence is likely to co-occur with the antecedent and unlikely to occur
otherwise. As a result, they fail to pick up subtle patterns, e.g. one that occurs in
70% of the misclassified instances, and 40% of the correctly classified instances.

More close to our work is supervised pattern mining, out of which sub-
group discovery (Wrobel, 1997; Novak et al., 2009; García-Vico et al., 2018) and
emerging pattern mining (Dong and Li, 1999) are among the most prominent
representatives (Novak et al., 2009). Emerging pattern mining returns all pat-
terns that meet a user-specified ‘growth’ threshold, and hence suffers from the
same problems as frequent pattern mining. Subgroup discovery instead returns
the top-k patterns that correlate most strongly. This keeps the result sets of
manageable size, but does not solve the problem of redundancy (van Leeuwen
and Knobbe, 2012). Statistical pattern mining aims to discover patterns that
correlate significantly to a class label (Llinares-López et al., 2015; Papaxanthos
et al., 2016; Pellegrina and Vandin, 2018). While it is (relatively) easy to test
one pattern for significance, in practice we have to evaluate many millions of
candidates, and hence multiple hypothesis testing becomes a serious problem:
these methods tend to discover millions of ‘significant’ patterns even from small
data, making the results hard to use.

Specifically to explain classifiers, several approaches aim to capture de-
pendencies of features or attributes that a classifier uses to make a prediction,
e.g. in terms of patterns or rules (Henelius et al., 2014; Barakat and Diederich,
2005), by model distillation (Frosst and Hinton, 2017; Lakkaraju et al., 2017),
or to discover patterns of neurons within neural networks that drive a deci-
sion (Fischer et al., 2021b). These, however, focus on the dependencies the
classifier exploits for successful prediction as opposed to understanding where
– or why – something goes wrong. Here, Duivesteijn and Thaele (2014) use the
Cortana tool (Meeng and Knobbe, 2011) to explain where a classifier performs
particularly poorly in terms of feature subspaces. SliceFinder (Chung et al.,
2020) follows a similar idea. However, both models were only evaluated on
data with less than 50 features. Our experiments show that these methods do
not scale well to the feature spaces common in NLP data.

For specific applications, such as characterizing classification errors in NLP
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models, there exists manual approaches based on challenging test sets (Gardner
et al., 2020; Ribeiro et al., 2020) or testing a hypothetical cause for misclassi-
fication (Rondeau and Hazen, 2018; Wu et al., 2019; Lee et al., 2019a). Such
manual approaches, however, require existing knowledge about the difficulties
of the models. In contrast, LIME (Ribeiro et al., 2016) and Anchors (Ribeiro
et al., 2018) analyze and describe the decision boundary of each instance, thus
providing only local explanation for individual samples. Furthermore, none of
the methods scales well to the data that we consider.

5.3 notation
As in the previous chapters, we consider binary transaction data D over a set of
items I , and use the same definitions of transactions, itemsets, and projections.
Additionally, each transaction t ∈ D is assigned a binary label ℓ(t) ∈ {l−, l+}.
For ease of notation, we define the partition of the database according to this
binary label D− = {t ∈ D | ℓ(t) = l−} and D+ = {t ∈ D | ℓ(t) = l+}.
Moreover, we use the language of k-ary conjunctions and XOR from Mexican.
We are here specifically interested in patterns of AND operator over XOR
operations, i.e. ∧⃝(×⃝c1,...,ck , . . . , ×⃝c ′1,...,c ′k

)(t). An XOR operation is called clause,
γ(c) lists all clauses in conjunctive condition c. To simplify notation, we drop t
where it is clear from context and write I for conditions on a single item c(I).
In this chapter, we use condition and pattern interchangeably.

5.4 theory
To discover those patterns best describing the given labels, we here introduce
the class of modelsM and corresponding codelength functions. Before we
define these formally, we give the intuition.

5.4.1 the problem, informally
Given a dataset of binary transaction data and corresponding binary labels,
we aim to find a set of patterns that together identify the partitioning of the
data according to the labels. As an application, consider the input words of an
NLP task as transactions, along with labels that express whether an instance
is misclassified by a given model. We are now interested in patterns of words
that describe these labels. In essence, we want to find word combinations
such as ∧⃝(how, many), or mutual exclusive patterns, e.g. ×⃝(color, colour), that
capture synonyms or different writing styles, all occuring predominantly when
a misclassifcation happens. The pattern language we use is a combination of
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the two, namely conjunctions of mutual exclusive clauses, e.g. ∧⃝(what, ×⃝(color,
colour)). We provide an example in Figure 5.1.

We thus define a model M ∈ M as the set of patterns P that help to
describe given labels. Similar to the previous chapters, to ensure that we can
always encode any data, M contains all singleton words I ∈ I , describing the
entire data D label unspecific. Here, the model containing all singletons also
acts as a baseline implementing the assumption that there are no associations
that describe the label. Whenever there is a structure in the labels that can be
explained by a pattern, we transmit data corresponding to a label (D+, D−)
separately. This allows us to more succinctly transmit where patterns hold.

Let us consider the example in Figure 5.1, where we would first send
∧⃝(A, ×⃝(B, C)) occurrences in D+, and then its occurrences in D−. Thus,
we identify where A, C, and D hold at once, and we leverage the fact that
∧⃝(A, ×⃝(B, C)) occurs predominantly in D+, resulting in more efficient trans-
mission. Intuitively, a bias of a pattern to occur in one label more than in the
other corresponds to a large deviation between the conditional probability –
the pattern occurrence conditioned on the label – and the unconditional proba-
bility – the pattern occurence in the whole database. In this case, the codes are
hence more efficient when sending pattern separately for D+ and D−. Coming
back to the example, F however occurs similarly often in both labels – there is
almost no deviation between conditional and unconditional probability – hence
it is unlikely that it identifies a structural error. Here, the baseline encoding
transmitting F as singleton in all of D will be most efficient. This approach
allows us to identify patterns that occur predominantly for one of the labels as
the patterns that yield better compression when conditioned on the labels, and
thus characterise labels in easily understandable terms.

We are hence after the model M∗ ∈ M that minimizes the cost of trans-
mitting the data and model. In the following sections, we will formalize this
intuition using an MDL score to identify that pattern set that best describes the
data given the labels. We will first detail how to compute the encoding cost for
the data given the model and then the cost for the model itself.

5.4.2 cost of data given model
Let us start by explaining how to encode a database D with singleton items I
in the absence of any labels, which will later serve as the baseline encoding
corresponding to independence between items and labels. To encode in which
transaction an item I holds, we use optimal data-to-model codes as introduced
before. Hence, the codelength for transmitting the data is

L (πI (D) | I) = log
(
|D|

|σI (D) |

)
.
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Pattern for D+:

∧⃝(A, ×⃝(B, C))

Pattern for D−:
∧⃝(E)

Singletons in D:
F

Figure 5.1: Example database and model. Left: a toy database D over a set of items,
separated by labels into D+ and D−. Right: the corresponding model M containing
patterns describing data partitions D− and D+ induced by labels l− and l+

Taking into account the partitioning of D along the label, yielding D+ and D−,
we encode I separately:

L (πI (D) | I) = log
(
|D−|

|σI (D−) |

)
+ log

(
|D+|

|σI (D+) |

)
.

As such, we explicitly reward patterns (here, singletons) that have a different
distribution between the unconditional probability – i.e. frequency in D of I –
and the conditional probability of I conditioned on the label – i.e. frequency in
D− respectively D+. It models the property that we are interested in; a pattern
that characterizes a certain label. It is straightforward to extend to patterns of
co-occurring items P = ∧⃝(X1, . . . , Xk) by selecting on transactions where the
pattern holds

L (πP (D) | P) = log
(
|D−|

|σP (D−) |

)
+ log

(
|D+|

|σP (D+) |

)
.

There might be transactions where individual items of P are present, but not
all of P holds. To ensure a lossless encoding, the singleton code L(πI (D) | I) is
modified to cover all item occurrences left unexplained after transmitting P .
Hence, we get

Ls (πI (D) | P) = log
( |D|
|σI (D) \

(⋃
P∈P ,I∈P σP (D)

)
|

)
.

For patterns expressing conjunctions over mutual exclusive items, such as
∧⃝(×⃝(A, B), ×⃝(C, D)), we first send for both D− and D+ forwhich transactions
the pattern holds, after which we specify which of the items is active where. We
do that one by one, as we know that when the pattern holds and A is present, B
cannot be present too. With each transmitted item of the clause, there are thus
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fewer transactionswhere the remaining items could occur, hence the codelength
is reduced. More formally, the codelength for a pattern P of conjunctions of
clauses is given as

L(πP (D) | P) = ∑
l∈{−,+}

log
(
|Dl |

|σP
(

Dl
)
|

)
+

∑
cl∈

γ(P)

∑
I∈
cl

log
(|σP

(
Dl
)
| −∑I ′∈cl,I ′≤I |σI ′

(
σP

(
Dl
))
|

|σI
(
σP
(

Dl
))
|

)
,

assuming a canonical order on I . With clauses of only length 1 we arrive at a
simple conjunctive pattern, and the function resolves to the codelength function
for conjunctive patterns discussed above. Note here that the codelength is the
same regardless of the order assumed on the I , which we discussed in the
previous chapter.

This concludes the definition of codelength functions for transmitting the
data. The overall cost of transmitting the data D given a model M is hence

L(D |M) =
(

∑
P∈P

L(πP (D) | P)
)
+
(

∑
I∈I

Ls(πI (D) | P)
)

.

5.4.3 cost of the model

Let us now discuss how to transmit the model M for pattern set P . First, we
transmit the number of patterns |P| using the MDL-optimal code for integers
LN(|P|). Then, for each pattern P, we transmit the number of clauses via
LN(|γ(P)|). For each such clause, we transmit the items it contains using a log
binomial, requiring log (|I||cl|) bits plus the parametric complexity term Lpc(|I|).
Lastly, we transmit the parametric complexities of all binomials used in the data
encoding.

Combining the above, the overall model cost is

L(M) = LN(|P|) + ∑
P∈P

(LN(|γ(P)|) + Lpc(|D+|)+

Lpc(|D−|))+∑
cl∈P

(
log
(
|I|
|cl|

)
+Lpc(|I|)

)
+∑

I∈I
Lpc(|D|) ,

by which we have a lossless MDL score.
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5.4.4 the problem, formally
Based on the above, we can now formally state the problem.

Problem 6 (Minimal Label Description Problem). Given data D over I and
partitions D− and D+, find model M ∈ M that minimizes the codelength L(D) +
L(D | M).

Solving this problem through enumeration of all models is computationally
infeasible, as the size of the model space is

|M| = 2∑
|I|
i=1 (

|I|
i )×∑i

j=1 {
i
j} ,

where the first term in the summation specifies the number of possible item
combinations in a pattern of length i, the second term counts the number of
possible ways to separate them into j different clauses via the Stirling number
of the second kind and the exponent is introduced as a model M consists of
arbitrary combinations of patterns. The MDL score for such complex model
classes does not lend itself for easy-to-exploit structure such as monotonicity.
Hence, we resort to an efficient bottom-up search heuristic for discovering good
models which we introduce in the next section.

5.5 premise
To find good pattern sets in practice, we present Premise, which discovers
Patterns REconstructingMISclassification Errors, by efficiently exploring the
search space in a bottom-up heuristic fashion.

5.5.1 creating and merging patterns
Premise starts with a model M that contains only singletons. It then iteratively
improves the model by adding, extending, and merging patterns until it can
not achieve more gain in the MDL score. To ease the explanation, we first
introduce the setting with conjunctive patterns only. We start with an empty
set of patterns M, the dataset is initially encoded only using singletons. We
then search for candidate patterns that improve L(M, D). These can be created
in the following ways:
• single items: I ∈ I that improves the MDL score when transmitted separately

for D− and D+,
• pairs of items: a new conjunctive pattern ∧⃝(I1, I2) ∈ I × I ,
• patterns and items: a new conjunctive pattern ∧⃝(P, I) by merging an existing

pattern P ∈ M with an I ∈ I ,
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• pairs of patterns: a new conjunctive pattern ∧⃝(P1, P2) obtained by merging
two existing patterns P1, P2 ∈ M.

We can speed up the search by pruning infrequent and therewith uninteresting
patterns. Pairs of items for which the transaction sets barely overlap are unlikely
to compress well as conjunctive patterns. Hence, we introduce a minimum
overlap threshold of 0.05 in all experiments. This straightforwardly leads to
algorithm createCandidates given as pseudocode in Alg. 5.1, that, based on
a current model M, outputs a set of possible candidate patterns that we will
consider as additions to the model.

5.5.2 filtering noise
Additionally to the MDL score, we use Fisher’s exact test, which we discussed
in the previous chapter, as a filter for spurious candidate patterns. Fisher’s exact
test allows to assess statistically whether two items co-occur independently
based on contingency tables. We assume the hypothesis of homogeneity; in our
case that there is no difference in the pattern’s probability between D− and D+.
We can then compute the p-value for the one-sided test directly via

p =
min(a,d)

∑
i=0

(a+b
a−i)(

c+d
c+i)

( n
a+c)

.

with c = |σP (D) |, a = |D| − c, d = |σP (D+) |, b = |D+| − d and n = |D|
for a pattern P labeled with l+. For patterns labeled with l−, the other tail of
the distribution is tested (with a and b as well as c and d switching places).
A general problem for statistical pattern mining is the lack of an appropriate
multiple test correction. We here however only use the test to filter candidates,
false positive patterns passing the test are still evaluated in terms of MDL.

5.5.3 the premise algorithm
Combining the candidate generation with our MDL score, we obtain Premise.
We give the pseudo-code in Algorithm 5.2. Starting with the empty model, we
generate candidates as discussed in the previous section, and for each of those,
we compute the gain in terms of MDL (line 7) as well as the pattern’s p-value
(line 8). We select the candidate below a significance threshold α that reaches
the highest gain (line 9-11) and add it to the model. If we created the pattern
through a merge, we remove its parent patterns from M. We repeat the process
until no candidate provides further gain in codelength.



5.5. Premise 92

Algorithm 5.1: createCandidates
input :D, patterns P in current M, max neighbour distance K
output :Set of candidate patterns P
/* Define nb(I, 0) = I for simplicity */

1 C ← {}
/* Single item and its neighbours */

2 for I ∈ I do
3 A← {}
4 for k ∈ {0, . . . , K} do
5 A← A ∪ {nb(I, k)}
6 C ← C ∪ {×⃝(A)}

/* Pairs of items and their neighbours */
7 for (I1, I2) ∈ I × I do
8 A1 ← {}
9 for k1 ∈ {0, . . . , K} do
10 A1 ← A1 ∪ {nb(I1, k1)}
11 A2 ← {}
12 for k2 ∈ {0, . . . , K} do
13 A2 ← A2 ∪ {nb(I2, k2)}
14 C ← C ∪ { ∧⃝(×⃝(A1), ×⃝(A2))}

/* Pattern + item and its neighbours */
15 for P in P do
16 for I ∈ I do
17 A← {}
18 for k ∈ {0, . . . , K} do
19 A← A ∪ {nb(I, k)}
20 C ← C ∪ { ∧⃝(γ(P) ∪ {A})}

/* Pattern + Pattern */
21 for (P1, P2) ∈ P ×P do
22 C ← C ∪ { ∧⃝(γ(P1) ∪ γ(P2)}

/* filter criteria: minimum overlap of .05, fisher’s exact test */
23 C ← Filter(C)
24 return C
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Algorithm 5.2: Premise
input :D, significance threshold α
output :approximation M of M∗

1 repeat
2 ∆ ′ ← 0
3 M ′ ← M
4 C ←createCandidates(M)
5 for P ∈ C do
6 ∆← L(D, M⊕ P)− L(D, M) // gain
7 p←FisherExactTest(P) // p-value
8 if p < α and ∆ < ∆ ′ then
9 ∆ ′ ← ∆
10 M ′ ← M⊕ P

11 M← M ′

12 until ∆ ′ = 0
13 return M

5.5.4 mutual exclusivity
In our practical applications from NLP, we are interested in finding clauses
expressing words that are synonyms, that reflect similar concepts, or language
variations, such as ∧⃝(which,×⃝(color, colour)) or ×⃝(could, can). Such statements,
however, require a richer pattern language than given by the purely conjunctive
patterns discovered by the state-of-the-art. We discussed above how to identify
the best model over such a richer pattern language of clauses in terms of MDL.
Instead of enumerating all possible clauses exhaustively or searching for an XOR
structure similar to the approach of Mexican, for NLP applications, we follow
a more informed approach, taking into account information from pre-trained,
classifier-independent word embeddings.

For the clauses of mutually exclusive items, we are mostly interested in find-
ing words that are synonyms or that reflect similar concepts, such as ×⃝(color,
colour) or ×⃝(could, can). Research in NLP has proposed various techniques
for identifying such pairs including manually created ontologies such as Word-
Net (Miller, 1995) or word embeddings that are learned through co-occurrences
in text andmapwords to vector representations. This information about related
words can be used to guide the search for mutually exclusive patterns. Using
such pretrained embeddings rather than deriving them from the given input
data has the advantage that we are independent of the size of the input data
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set, and receive reliable embeddings, which were trained on very large, domain
independent text corpora.

While our approach is independent of the specific method, we have chosen
FastText word embeddings trained on CommonCrawl and Wikipedia (Grave
et al., 2018). In contrast to word ontologies, word embeddings have a broader
vocabulary coverage. They also do not impose strict restrictions such as a par-
ticular definition of synonyms and instead reflect relatedness concepts learned
from the text. FastText embeddings have the additional benefit that they use
subword information, removing the issue of out-of-vocabulary words. The
word embeddings are independent of the machine learning classifier we study.
As measure of relatedness m between two items I1, I2, we use cosine similarity,
i.e. m = cos(emb(I1), emb(I2))where emb is themapping between an item/word
and its vector representation. We define nb(I, k) as the k-closest neighbours
I ′ ∈ I of I, i.e. those items for which m(I, I ′) is the k-highest. Examples for
words and their neighbours in FastText embeddings are given in Table 5.1.

Based on the information of the embedding, we derive ×⃝-clauses. For
each item I, we explore mutual exclusivity in its 1 . . . K closest neighbours, i.e.
from ×⃝(I, nb(I, 1)) until ×⃝(I, nb(I, 1), . . . , nb(I, K)) where K is the maximum
neighbourhood size. For that, we adapt the createCandidates algorithm so
that whenever we consider merging with an item I, we also consider merging
with the ×⃝-clauses containing additionally the 1, 2, . . . K closest neighbours
(see Alg. 5.1).

Since not all words have K neighbours that represent similar words, we addi-
tionally filter neighbourhoods such that

⋂
I σI(D)⋃
I σI(D)

< a and m(I, nb(I, k)) > bk for
all items I in the clause, i.e. we require that their transactions barely over-
lap (mutual exclusivity), and that their embeddings are reasonably close.
In all experiments we set K = 5, a = 0.05 and bk to the 3rd quartile of
{m(I, nb(I, k)) | I ∈ I}.

In the general case for arbitrary labeled data, we could follow the Mexican
approach to search for potential XOR structure, which however would lead to
a much increased search space and hence computational costs, without any
benefits for the specific applications.

5.5.5 complexity
As before, we analyze the complexity of Premise in terms of the size of themodel
it discovers. Consider Premise finds k conjunctive patterns of maximum length l
for a dataset with m items. Since in every round either a new singleton or pair is
generated that belongs to one of the k final patterns, or two existing patterns are
merged, the algorithm runs O(k l) rounds. In each round, the dominating factor
is the candidate generation, out of which there are O(m) potential singletons,
O(m2) pairs, and at maximum O(k l) pattern merges, corresponding to the case
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Word 5-nearest neighbours

photo photograph, photos, picture, pic, pictures
color colour, colors, purple, colored, gray
can could, will, may, might, able
say know, think, tell, mean, want

Table 5.1: Words and their nearest neighbours on Visual7W.

that all parts of the final patterns exist as singleton patterns in the current round.
Hence, we get a worst case time complexity of O(k l (k l + m2)) for Premisewith
conjunctive statements.

For clauses containing mutual exclusivity, for all practical applications we
consider XOR statements of the c closest words in a given embedding, where c is
a small constant. We hence considerO(m c) single XOR clauses, O((m c)2) pairs,
and at maximum O(k l) pattern merges, where again this corresponds to the
case that all parts of the final patterns exist as singleton patterns in the current
round. Hence we get a worst case time complexity of O(k l (k l + (m c)2)). For
the general case, when searching for arbitrary AND and XOR combinations,
we refer to the previous chapter.

5.6 experiments
Weevaluate our approach on synthetic datawith known ground truth, aswell as
on real world NLP tasks to characterise misclassifications. We compare against
significant pattern mining (SPuManTe, Pellegrina et al., 2019), rule set mining
(Grab, Fischer and Vreeken, 2019), rule lists (Classy, Proença and van Leeuwen,
2020), top-k subgroup discovery (Subgroup-Discovery, Lemmerich and Becker,
2018) and the subgroup discovery tool Cortana (Meeng and Knobbe, 2011;
Duivesteijn and Thaele, 2014). As representatives of interpretable, global ma-
chine learning models we consider the rule-learner Ripper (Cohen, 1995) and
patterns derived from classification trees (Tree). Due to runtime issues, we com-
pare to the local explainability method (Anchors, Ribeiro et al., 2018) only in
the NER experiment. For similar reason, we exclude SliceFinder (Chung et al.,
2020), and disjunctive emerging patterns (Vimieiro, 2012); neither completed a
single run within 12 hours.

Experiments were performed on an Intel i7-7700 machine with 31GB RAM
running Linux. For the single-threaded C++ implementation of Premise, all
synthetic data experiments finished within minutes for the moderately sized
data sets, and within hours for the larger datasets with 5k and 10k items. On
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the VQA datasets Premise finished within 20 minutes and on the NER data
within 4 hours.

For the decision tree, patterns are exracted from a tree trained on the mis-
classification data. Each of the tree’s inner nodes is a binary decision regarding
the presence of an item and a pattern is the conjunctive path from the tree’s
root to one of its leafs. The model is trained with Gini impurity as decision
criterion in the implementation from scikit-learn.

For subgroup discovery, the implementation by Lemmerich and Becker
(2018) is used with depth-first search and weighted relative accuracy as quality
function. The size of the result set and the maximum depth are set to the
ground truth for the synthetic data and to 100. On the synthetic data, it hence
has an advantage over all other approaches which would not hold in a real-
world scenario. Maximum depth is set to 5 for the VQA datasets. SPuManTe
is used with the authors’ suggested parameters, setting its sample size to the
dataset size. The subgroup discovery tool Cortana (Meeng and Knobbe, 2011)
as used by Duivesteijn and Thaele (2014) expects two numeric labels, one
for ground truth and one for prediction probability. We, therefore, split the
misclassification label into two labels that disagree if an instance is misclassified.
As quality measure, we use negative r and we follow the authors approach of
only considering subgroups that cover 1% of the data to prevent overfitting.
The maximum depth is set to ground truth for the synthetic data and to 5 for
VQA. The beam width is kept to 100 and the quality threshold to 0.2 following
the default settings.

WemodifiedGrab for the task at hand by restricting the possible rule-heads
to the labels only, but allowing tails over all other items. For Classy we used
the publicly available implementation by the authors as used in the original
publication. Minimum support is set to 1 and maximum rule length to the
ground truth for the synthetic data and 5 for the VQA datasets.

For Visual7W and LXMERT, we use the published, pretrained models
by the corresponding authors. For LXMERT, the minival version of the de-
velopment set is used. For the LSTM+CNN+CRF classifier for NER, we
follow the specific set-up of Hedderich et al. (2020) with English FastText
embeddings. OntoNotes was split and preprocessed using the script from
https://github.com/yuchenlin/OntoNotes-5.0-NER-BIO. The fine-tuning
data consists of 240 instances/sentences as two patterns did not match any
training data. Fine-tuning on the additional data is performed for 30 epochs.
As labels, the intersection between CoNLL03 and OntoNotes is used (PER,
LOC, ORG) in the BIO2 format.

Code and datasets are publicly available.2

2https://github.com/uds-lsv/premise

https://github.com/yuchenlin/OntoNotes-5.0-NER-BIO
https://github.com/uds-lsv/premise
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Figure 5.2: Synthetic data results. We report mean and standard error over 10 repetitions
for all synthetic data experiments. As competitors only recover fragments of patterns, the
results are in terms of a soft F1 score, which also rewards the discovery of fragments.

.

5.6.1 synthetic data
Unless specified differently, for each of the experiments we generate a data
matrix with 10 000 samples, half of which get label l−. The set of items I has
size 1000. We draw patterns of length 2− 5 from I with replacement until 50%
of items are covered. For each pattern we then draw k ∼ N (150, 20) and set the
items of the pattern in .9k random transactions from D+, and .1k transaction
from D− to 1. This corresponds to a typical sparsity level for pattern mining
problems. Additionally, for each item that is part in a pattern, we let it occur in
k ∼ N (50, 20) random transactions from D. For all items not part of a pattern,
we let them occur in k ∼ N (150, 20) transactions from D. Lastly, we introduce
background noise by flipping .1% of the entries in the data matrix at random.

A standard metric to evaluate success of a model is the F1 score – the
harmonic mean between precision and recall – which for discovered pattern
set Pd and ground truth pattern set Pg is defined as

F1(Pd, Pg) = |Pd ∩ Pg|/
(
|Pd ∩ Pg|+

1
2
|Pd −⃝ Pg|

)
,

where −⃝ is the symmetric difference between two sets. As competitors only
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recover fragments of patterns and hence obtain very low F1 scores, we instead
report a soft F1 score that rewards also fragments. We define it as harmonic
mean between a soft precision and a soft recall:

SoftPrec(Pd, Pg) = ∑
pd∈Pd

argmax
pg∈Pg

|pd ∩ pg|
|pg|

,

SoftRec(Pd, Pg) = ∑
pg∈Pg

argmax
pd∈Pd

|pd ∩ pg|
|pg|

,

F1(Pd, Pg) =
2 ∗ SoftPrec ∗ SoftRec
SoftPrec+ SoftRec .

Results for experiments measured as vanilla (hard) F1 score are given in App.
Fig. 9.
Scalability. First, we investigate how the different methods scale to larger item
sets I in Fig. 5.2a. We observe that the performance of most existing methods
deteriorates already for data with several hundred items, only Premise can
robustly scale to data with more items. The subgroup discovery approaches of
standard Subgroup-Discovery and Cortana scale also to these larger datasets,
the performance, however, is in a range of around .3 respectively .2 in terms of
soft F1 score. Note that we let subgroup discovery retrieve the top k patterns,
where k equals the number of ground truth patterns, it hence has an advan-
tage over all other approaches which would not hold in a real-world scenario.
Subgroup discovery, however, still only yields (soft) F1 scores of around .35,
whereas Premise recovers ground truth patterns with close to optimal F1 scores.
Label imbalancing. To investigate the effect of label imbalancing, we vary the
proportion of transactions having label l−, i.e. |D−|/|D|, visualized in Fig.
5.2b. An imbalancing of labels is commonly encountered in real world datasets,
where e.g. the number of misclassified samples makes up only a small fraction
of overall samples. We again find that only Premise is consistently robust across
the varying levels. Again, as opposed to all other competitors, vanilla Subgroup-
Discovery and Cortana show decent performance of .35 respectively .5 soft F1
across all ratios. Premise again achieves soft F1 scores close to 1.
Varying label shift. Next, we look at label shift, the effect of patterns occurring
not exclusively in one of the labels in Fig. 5.2c. This is again a likely event in
real world data. We adapt the occurrence of patterns between 1, meaning the
pattern exclusive occurs in one partition of the database, to .6, meaning that 60%
of the transactions where a pattern occurs have one label, the others have the
other label. Similar to before, we observe subgroup discovery approaches and
Premise are robust to this change. For SPuManTe, we find the best performance
for a label shift of .7 while for Ripper, Classy and Grab performance drops even
for slight label shifts.
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Robustness to background noise. Finally, we look at how the methods cope with
background noise, by flipping a fraction of entries of the data matrix. We find
that Ripper, Classy, Premise, SPuManTe, and Subgroup Discovery are robust
even to large amount of noise – to the extent of how they perform without noise
(see Fig. 5.2d). Grab on the other hand performs much less well when there is
more noise than actual signal.
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Figure 5.3: Synthetic text data results. On synthetic text data, varying the number
of items per pattern (a), the amount of shift noise (b), and the amount of label noise
(c), we visualize the results in terms of F1 score with respect to the ground truth for
existing methods and Premise. We additionally provide the results of Premise on data
containing patterns of mutual exclusive clauses for varying amounts of shift noise (d).

Synthetic text data. For an evaluation with known ground truth more similar to
the NLP application domain, we evaluate how well all methods cope with item
– or token – distributions similar to real text. To obtain such a synthetic data
set with similar item/token distributions as natural language text, we derive
transactions/instances from the around 3.4k sentences in the development set
of the PennTreebank Corpus (Marcus et al., 1993). In particular, we draw 12
distinct patterns, for each pattern choosing items from the vocabulary tokens at
random. To ensure that we introduce only new patterns into the data, we verify
that none of the items in the patterns co-occur in the original data. We then
insert each pattern into a random subset of the PennTreebank instances, where



5.6. Experiments 100

the number of instances to be covered is drawn from a normal N (150, 20). The
data contains 6k unique items.

Then, we generate four different sets of experiments. In the first set, we
introduce conjunctive patterns varying pattern length of the introduced patterns
between 1 and 8 without noise. In the second set of experiments we vary the
amount of shift noise, introducing shifts of {0.6, 0.7, 0.8, 0.9, 1}, and choosing
pattern length uniformly in 1 to 5. In the third set we instead change the amount
label noise, varying in {0, 0.05, 0.1, 0.15, 0.2}. In the fourth set of experiments,
we introduce patterns consisting of conjunctions of mutual exclusive itemsets.
The number of clauses per pattern and the number of items for each clause
is chosen uniformly at random between 1 and 5. A pattern is only added
to an instance if this would not break the mutual exclusivity assumptions of
all patterns. For the word neighborhoods, items in the same clause obtain
embeddings located around a randomly chosen centroid. All other items obtain
random embeddings. We repeat all experiments 10 times and report the F1
score as average across repetitions in Fig. 5.3.

For patterns of length 1, i.e. single items, all methods except for SPuManTe
perform very good, with vanilla Subgroup-Discovery, Cortana, and Classy
reaching perfect soft F1 scores, and Premise close to optimal F1 scores. For most
considered competitors, the performance, however, deteriorates quickly for
slightly longer ground truth patterns. A notable exception isGrab, which is able
to retrieve longer patterns and is resistant to shift and noise in the form of non-
systematic label errors, yet fails to discover long patterns withmore than 5 items
accurately. Premise outperforms all competitors, achieving consistently high
F1 scores beyond .9. For complex patterns consisting of conjunctive clauses of
disjunctions, which none of the competitors can express, we verify that Premise
is able to retrieve them even in the presence of noise.

Overall, these results show that existing methods are challenged by datasets
of larger scale. Furthermore, we find that the state-of-the-art breaks downwhen
we have label imbalancing. In contrast, Premise solves both these challenges,
which is important for characterising misclassifications for real world machine
learning models.

5.6.2 real data: visual question answering
Visual Question Answering (VQA) is the popular and challenging task of an-
swering textual questions about a given image. We analyze the misclassification
of Visual7W (Zhu et al., 2016) and the state-of-the-art LXMERT (Tan and Bansal,
2019), both specific architectures for different VQA tasks. Visual7W reaches
54% accuracy in 4-option multiple choice, LXMERT a validation score of 70%.
Both classifiers perform far from optimal and thus serve as interesting applica-
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tions for describing (misclassification) labels. We derive misclassification data
sets from applying the classifiers to the development sets.

In Tab. 5.2 we give statistics about the data and retrieved patterns. Both
the tree based method and SPuManTe retrieve many hundred or thousand
patterns making it difficult to interpret the results. Furthermore, we know
from the previous experiments that these methods find thousands of patterns
even when there exist only few ground truth patterns. Subgroup-Discovery
requires the user to specify the number of patterns a-priori, which is not known.
The discovered patterns are highly redundant with often ten or more patterns
expressing the same cause for misclassification. It is thus hard to get a full
description of what goes wrong, it lacks the power of set mining approaches
that evaluate patterns together. Cortana filters more strongly, the discovered
patterns are, however, still redundant. Most patterns found by Classy consist
of only one token, Grab and Ripper fail to retrieve meaningful results.In App.
Tab. 5.2, we provide further statistics about the data and retrieved patterns.

In Tab. 5.3 we provide an excerpt of the patterns found by Premise. We can
clearly see the advantage of the richer pattern language, allowing to find pat-
terns with related concepts such as ∧⃝(what, ×⃝(color, colors, colour)). Generally,
the patterns found by Premise highlight different types of wrongly answered
questions, including counting questions, identification of objects and their
colors, spatial reasoning, and higher reasoning tasks like reading signs. Fur-
thermore, Premise retrieves both frequent patterns, such as ∧⃝(how, many) and
rare patterns such as ∧⃝(on, wall, hanging).

Premise also discovers patterns that are biased towards correct classification.
These can indicate issues with the dataset. For instance, ∧⃝(who, took, ×⃝(photo,
picture, pic, photos, photograph)), although a difficult question, is nearly always
answered by ”photographer“ and thus easy to learn. Another problematic
question is indicated by the pattern ∧⃝(clock, time), where usually the answer is
”UNK“, the actual time being replaced with the unknown word token by the
limited vocabulary of Visual7W. The pattern hence indicates a setting where
the VQA classifier undeservedly gets a good score.

By adding additional information as items to each instance, it is possible
to gain further insights. Appending the correct output to each instance, we
observe for the question when the picture was taken two different trends. On
the one hand, the discovered pattern ∧⃝(when, ×⃝(daytime, nighttime)) is as-
sociated with correct classification, the pattern ∧⃝(when, ×⃝(evening, morning,
afternoon, lunchtime)), on the other hand, points towards misclassification. This
is intuitively consistent as the answers “daytime” and “nighttime” are easier to
choose based on a picture.

We observe in the discovered patterns that the Visual7W and LXMERT
classifiers share certain issues, like the counting questions. However, no patterns
regarding color or spatial position are retrieved. This might indicate that the
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Pattern Example

UNK how are the UNK covered
∧⃝(how, many) how many elephants are there
∧⃝(what, ×⃝(color,colors, colour) what color is the bench
∧⃝(on, top, of ) what is on the top of the cake
∧⃝(left, to) what can be seen to the left
∧⃝(on, wall, hanging) what is hanging on the wall
∧⃝(how, does, look) how does the woman look
∧⃝(what, does, ×⃝(say, like what does the sign say
think, know, want))

(a) Visual7W

Pattern Example

∧⃝(How, many) How many kites are flying?
∧⃝(hanging, from) What is hanging from a hook?
∧⃝(×⃝(kind, sort), of) What kind of birds are these?
∧⃝(×⃝(would, could, How would you describe the decor?
might, can), you)
∧⃝(name, of ) What is the name of this restaurant?
number What is the pitchers number?
×⃝(letter, letters) What letter appears on the box?
∧⃝(How, much,×⃝(cost,costs)) How much does the fruit cost?

(b) LXMERT

Table 5.3: VQA example patterns. Our method discovers meaningful and easily inter-
pretable patterns. For Visual7W (left) and LXMERT (right), we show a subset of the
patterns highlighting different reasons for misclassification along with examples from the
corresponding datasets.

more recent LXMERT classifier can handle these question types better.

5.6.3 real data: named entity recognition
A machine learning classifier might perform well during development, its
performance when deployed “in the wild” however is often much worse. Un-
derstanding the difference is important for being able to improve the classifier.
To evaluate on a different task, we chose Named Entity Recognition (NER).
This is a sequence labeling task that identifies entities like persons, locations
and organizations in text and it is the basis for many more advanced tasks
such as text search or virtual assistants. Here, we investigate the popular
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LSTM+CNN+CRF architecture (Ma and Hovy, 2016) for NER. The classifier
is trained on the standard NER dataset CoNLL03, where it achieves a good
performance (F1-score of 0.93). On OntoNotes, a dataset covering a wider
range of topics, the performance drops to 0.61 F1 on the development set. We
take each sentence as one instance and label it as misclassification if at least one
token in the sentence is predicted incorrectly. This results in a misclassification
dataset with about 16k instances and 23k unique items.

Anchor (Ribeiro et al., 2018) allows to obtain conjunctive patterns to explain
NLP instances locally. It took, however, several days to analyze all misclassifica-
tions on modern GPU hardware due to the necessary, repeated queries to the
NER classifier. Anchor finds 4.1k patterns with many redundant and overly
long and specific patterns. As expected from a local method, the patterns are
highly specific and thus identify problems of the model for particular instances
rather than identifying the general (global) issues that the model has. Premise
retrieves a concise set of 190 patterns. An example is ∧⃝(-LRB-, -RRB-) that indi-
cates different preprocessing of the text, where -LRB- is an alternative form for
the opening bracket, which is specific to the OntoNotes data, and thus should
be properly handled by the NER classifier. Patterns also indicate problems with
differing labeling conventions. We find the single item pattern ’s because this
token is included as part of the entity in OntoNotes (e.g. ”Samuel Alito ’s“) but
excluded in CoNLL03. Similar differences can be seen for other patterns like
∧⃝(Wall, Street) which have differing labels in the two datasets. We also find
issues with the OntoNotes dataset itself. It contains bible excerpts which are
not labeled at all. We discover this via several found patterns that describe this
domain containing God, Jesus, and Samuel.

As there is no ground truth available and to empirically validate that the
found patterns affect the classifier’s performance, we select the top 50 patterns
according to gain in MDL and for each pattern sample 5 sentences containing
it uniformly at random from the OntoNotes training data. The CoNLL03 clas-
sifier is then fine-tuned on this data. Sampling and fine-tuning is repeated 20
times with different seeds. Using the pattern-guided data, the performance
is improved to 0.67 mean F1 score (SE 0.003) compared to sampling fully at
random where only a small improvement to 0.62 (SE 0.005) is achieved. This
shows that the patterns discovered by Premise provide actionable insights into
how a classifier can be improved.

5.7 discussion and conclusion
We considered the problem of finding interpretable and succinct descriptions
of a given label, and proposed to discover succinct pattern sets to describe
the labels based on the Minimum Description Length Principle. To solve this
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formulation in practice, we proposed an efficient bottom-up heuristic Premise.
Experiments showed that Premise provides concise and interpretable de-

scriptions of labeled data. On synthetic data we found that the state-of-the-art
methods across different fields related to supervised pattern mining, including
subgroup discovery, emerging pattern mining, statistical pattern mining, rule
mining, discovery of rule lists, and tree based classification, all have severe
difficulties finding the ground truth pattern set, while Premise accurately re-
trieves it. It thus renders itself as the most suitable method for challenging
real world applications revolving around characterising misclassifications of
Natural Language Processing models. For such tasks, the labels are inherently
imbalanced and the sets of items – in this case tokens – is large. Besides, to
capture the structures of word associations, we need to consider a richer pattern
language capturing mutual exclusiveness, which out of existing methods only
Premise is able to express.

On two models for Visual Question Answering, we set for characterising
their misclassifications. While some of the competing methods retrieved rea-
sonable explanations, these were highly redundant and barely interpretable for
human experts. Moreover, important concepts, such as patterns that are similar
across related words or synonyms, were completely missed. Premise, on the
other hand, discovered succinct sets of patterns that provide interesting charac-
terizations, revealing that models struggle with counting, spatial orientation,
reading, and identifies shortcomings in training data. For a popular Named
Entity Recognition classifier, we consider a model applied to text of a different
source and characterize the resulting classification errors. Compared to the
state-of-the-art local explanation method Anchors, Premise retrieves a more
succinct set of patterns in less time and we also show that the obtained insights
are actionable.

In summary, our method showed to be the only approach that scales well
to data typical in real world problem settings, while at the same time being
robust to noise, and label imbalance. With these abilities, combinedwith amore
expressive pattern language compared to the state-of-the-art, Premise enables
to get a better understanding about the general issues of classification models
rather than instance specific (local) issues. It hence fills the gap of a robust
approach to describe labels in terms of human-interpretable patterns, suited
to take on problems such as characterizing misclassifications of large-scale
machine learning models.

While our approach scales already to tens of thousands of features, it makes
for engaging future work to go beyond that, towards hundreds of thousands of
features or to extend thework on characterizingmisclassifications incorporating
elements of the classifier itself, such as neuron activations, leveraging method-
ological insights gained from ExplaiNN. It, however, turns out that finding
even classical conjunctive patterns sets on such a scale is extremely challeng-
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ing, with contemporary work limited to (at most) a few thousands of features,
the methods discussed in the previous chapters to around twenty-thousand
features. These limitations are largely due to the combinatorial search that is
commonly employed to explore the discrete search space of patterns. To scale
to hundreds of thousands of features thus requires a fundamentally different
approach. In the next chapter we provide a solution by linking the learning of
discrete variables to continuous optimization in the context of pattern mining.



6
DIFFERENTIABLE
PATTERN SET MINING

6.1 introduction
Modern approaches to pattern mining are designed as a model selection prob-
lem to overcome the drawbacks of the traditional approaches that swamp the
analyst with extremely many results, most of which are redundant or spurious.
This model selection explicitly asks for a small set of patterns that together
generalize the data well. This solves one problem, but creates another: the
search space for pattern sets is even larger than that of patterns alone – doubly
exponential in the number of features – and does not exhibit any structure that
permits efficient search. As a result, existing methods rely on heuristics, and
are applicable only to modestly sized data of at most a few thousand features,
by which modern biological applications, such as genome-wide association
studies or single-cell sequencing data with hundreds of thousands of features,
are far out of reach.

In this paper we propose a radically different strategy to pattern set mining
that scales extremely well in both the number of samples n and number of
features m, naturally handles noise, and copes equally well with sparse and
dense data. We achieve this by taking a differentiable rather than a combinatorial
approach. Our key idea is to learn a special kind of interpretable neural au-
toencoder for binary data, which we refer to as BinaPs, short for Binary Pattern
Networks. These networks consist of two linear layers – the encoding hidden

This chapter is based on Fischer and Vreeken (2021).
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and the decoding output layer – with continuous weights, sharing weights be-
tween encoder and decoder. By using a novel type of binary activation function
and binarizing weights during each forward pass, we can interpret the neurons
in the hidden layer as ‘classic’ conjunctive patterns. Here, we propose a recon-
struction loss that properly accounts for dense respectively sparse data, and as
such the networks are equally well applicable to dense biological datasets as
well as classical sparse transaction data.

One key benefit of our formulation is that it naturally allows for discovering
noisy patterns: the network is rewarded for reconstructing the data, and hence
automatically learns how much and which parts need to occur for a pattern to
be considered as ‘present’. Similar to other pattern set mining approaches, such
as tiling (Geerts et al., 2004) or boolean matrix factorization (Miettinen, 2010;
Miettinen and Vreeken, 2011), deciding the optimal size of the pattern set – the
size of the hidden layer – is NP-hard. We however also show that in practice
this is not a problem at all: initialized with a sufficiently large capacity, our
networks drive the weights of edges towards ‘surplus’ neurons to zero and can
so find an (almost) optimal number of patterns, even when initialized with as
many hidden neurons as there are features. The overall most important benefit
of BinaPs in contrast to existing methods, is however its massive scalability: the
differentiable formulation is not only much easier to optimize, but also allows
us to leverage the power of modern GPUs.

Evaluating BinaPs against the state-of-the-art on synthetic data, we show
that it accurately retrieves the ground truth, and is robust to noise. BinaPs is
the only method applicable on datasets with truly large n and m, on which we
confirm that it discovers meaningful patterns that provide non-trivial insight. It
is also applicable to moderately sized data, on which we show that it performs
at least as well as the state-of-the-art. As a case study, we consider a biological
dataset of over two hundred thousand features on which BinaPs are able to
mine patterns in mere minutes, recovering structure which can be confirmed by
the literature, and generating new insights that could be leveraged by experts,
such as potential roles of genes for which the functions are so far unknown.

6.2 related work
We reviewed pattern mining literature in the first chapter, emphasizing the
development of modern approaches as a model selection problem, in which
patterns are evaluated together using a global score, e.g. based on MDL or maxi-
mum entropy (Vreeken et al., 2011; Smets and Vreeken, 2012; Mampaey et al.,
2012; Dalleiger and Vreeken, 2020). While these methods retrieve succinct and
interpretable summarizations of the data as opposed to traditional approaches
based on frequency, this comes at the cost of a twice exponential search space
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that does not expose any easy to exploit structure. Hence, heuristic algorithms
are employed that add patterns one by one in a bottom-up fashion, and thus
can get stuck in local minima. Furthermore, despite efficient heuristics these
approaches still do not scale to modern data such as retail databases or many
biological problem settings.

With the advent of Deep Learning, efficient GPU-based implementations to
train neural networks experienced wide-spread adoption. In unsupervised set-
tings, autoencoders can be trained to yield succinct representations of complex
datasets, also providing local information in analogy to patterns (Kramer, 1991;
Masci et al., 2011; Kingma and Welling, 2014). Such networks are, however,
inherently hard to interpret – especially with respect to how the structures that
the network actually learned link to the given input – and lack the clear inter-
pretability of patterns barring their use for exploration. For low resource and
embedded devices, network architectures with binarized {−1, 1} weights and
activations have been proposed, thus making model storage and application
much more memory efficient (Saad and Marom, 1990; Courbariaux et al., 2015;
Rastegari et al., 2016; Hubara et al., 2016; Li and Liu, 2016; Deng et al., 2018),
for more information we refer to the review of Simons and Lee (2019). While
these works provide discrete-valued connection between neurons and input,
these networks have no incentive to learn easy-to-interpret structures reflecting
associations between input features. Preliminary experiments confirm this:
these networks do not learn any such relation between weights, neurons, and
actual ground truth patterns. Inspired by the link between continuous opti-
mization of an objective and learning discrete variables, we here propose to
learn interpretable patterns using a novel constrained network architecture.

6.3 theory
In this section, we propose BinaPs, a novel type of binarized neural autoencoder
capable of learning pattern sets. We start by briefly introducing notation and
then provide an informal overview of how BinaPs work. After introducing
them formally, we discuss practical considerations, and provide theoretical
analysis.

6.3.1 notation
To be able to easily connect classical notation of machine learning and neural
networks with pattern mining, we will redefine databases D in terms of matrix
notation. We now consider binary input data D ∈ {0, 1}n×m of n samples and
m features. A sample si ∈ D denotes the ith row in the data matrix D[i]. We
denote the value of feature j ∈ {1, . . . , m} for the ith sample by D[i, j]. We are
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Figure 6.1: Example database and BinaPs. A binary database D is given in the top left,
a binary pattern network with pattern layer size k = 4 on the right. Example continuous
weights W and bias b used during backpropagation, and their binarized, respectively
discretized counterparts Wb and bd used during the forward pass, are given at the bottom,
alongside the pattern set P that we can directly derive from these weights. Neuron
activations (orange) for the orange sample in D are given according to the example
binarized weights and bias.

interested to find a set of patterns P, where each pattern p ∈ P is a set of feature
indices p ⊂ {1, 2, . . . , m} representing feature co-occurrences. To learn good
sets of patterns P, we propose a binarized neural network architecture, where
we generally denote W for a weight matrix, Wb for its binarized version, b for a
bias, and bd for its discretized version. Activation functions are denoted as λ,
functions applying a part of the network to an input, e.g. the encoding layer,
as f . To ease notation, whenever we apply a univariate function to a vector,
we apply it to every entry in the vector. For instance, an activation function
λ : R → {0, 1} applied to x ∈ R3 yields λ(x) ∈ {0, 1}3. Partial derivatives
of a function f with respect to parameter x are written as ∂ f

∂x , matrices M are
generally denoted with capital letters, and vectors v with lower case letters.

6.3.2 the idea in a nutshell
For a given binary database, we aim to find that set of patterns P that together
succinctly describe the data. That is, a good set of patterns should cover the
database non-redundantly while minimizing the reconstruction loss if we re-
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construct the database from P alone. For continuous and unstructured data,
autoencoder proved to be a successful tool to capture the main structure in the
data by minimizing reconstruction loss. An autoencoder is a neural network
consisting of task-specific encoding layers that end in an embedding layer, and
a decoder – which is most often symmetric to the encoder – to reconstruct the
input from the embedding layer. The embedding layer is usually small com-
pared to the input layer, thus imposing an information bottleneck and forcing
the network to learn relevant and shared structure between inputs. Neural net-
works are, however, inherently hard to understand for a human, as connections
between input and neurons are non-symbolic and often non-linear.

Here, we propose a novel kind of neural autoencoder, where weights and
activations are taking values in {0, 1} during the forward pass. To learn in small
noisy steps during backpropagation, for training we use continuous versions of
the weights, optimizing reconstruction loss with respect to these continuous
weights. The autoencoder consists of one linear hidden layer – the pattern layer
– and one linear output layer. For each neuron in the hidden layer, incoming
binary weights indicate whether an input item is part of the encoded pattern,
e.g. binarized weight Wb[i, j]means that input item j is part of the pattern given
by hidden neuron i. As such, each neuron in the hidden layer corresponds to a
pattern p, while all neurons together correspond to the pattern set P.

We construct binarized versions of the weights that we use in the forward
pass through the autoencoder, i.e. to reconstruct the input. To ensure that
the hidden neurons correspond to actual patterns, and that such patterns are
interpretable, two additional constraints are introduced. First, we introduce
a discrete negative bias to the pattern layer to make sure that a minimum
number of items is required to be present in the input for the neuron to fire
– respectively the pattern to hold. Second, we “mirror” the weight matrix,
such that the weight of the decoding layer is the weight of the encoding layer
transposed. This ensures that the input/output relation is fixed, thus ensures
that if a neuron fires – meaning a pattern over a set of input neurons holds – it
activates exactly those output neurons that are part of the pattern. We give an
example network and toy database in Fig. 6.1.

6.3.3 binaps – binary pattern networks
We define Binary Pattern Networks (BinaPs) as autoencoder with two linear
layers. Each layer has binary weights and binary activations, and a continuous
version of weights and bias for backpropagation. We first formally define the
functions that this stack of layers encodes given binary weights – corresponding
to the forward pass of the network – and then provide the derivatives of a loss
function with respect to the continuous version of the weights – corresponding
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to the backward pass – and show how we can binarize the continuous weights
for the next iteration.

The forward pass

A binary linear layer is defined as

fWb(x) = xW⊺
b ,

with input x and binarized weights Wb. For sample s ∈ {0, 1}m, in the forward
pass, the function of the encoding layer takes the form

fE(s) = λE( fWb(s)) ,

where Wb ∈ {0, 1}k×m is the binary weight matrix for the hidden layer of size k,
and λE : R→ {0, 1} is a binary activation function.

The function of the decoding layer, taking as input the result of the encoding
layer y ∈ {0, 1}k, is defined as

fD(y) = λD( fW⊺
b
(y)) ,

where Wb is the same weight matrix as in the encoding layer.
The activation function consists of two parts, a learnable bias term b that

allows to train how many items of this pattern have to be present in the input
for the neuron to fire, and a binarization function to produce the output signal.
First, we define the clamping function, which clamps value x to boundaries a, b

clamp(x, a, b) =


a if x < a ,
x if a ≤ x ≤ b ,
b if b < x .

The activation of the encoding layer is then given as

λE(x) = round(clamp(x + bd, 0, 1)) ,

where x ∈ Nk, and bd ∈ {−∞, . . . ,−2,−1}k is the discretized bias parameter.
The activation function of the decoding layer is λD(x) = round(clamp(x, 0, 1)),
which does not involve a bias term aswewant to reconstruct an item if it appears
in any pattern. This concludes the definitions of all components of BinaPs in a
forward pass, which is thus computed by fD( fE(s)) for given input s.
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The backward pass

To learn a good model for a given dataset D, our aim is to minimize the recon-
struction loss across all samples s ∈ D

L(D; W, b) = ∑
s∈D
|| fD( fE(s))− s|| .

Given the loss term for a given batch of samples, we can then compute deriva-
tives with respect to the continuous weights W and biases b, and backpropagate
through the network. Networks are trained using gradient descent, for which
the derivatives with respect to the parameters can be obtained using the chain
rule. For the linear layer, the derivative with respect to the weights W, input x,
and incoming gradient flow go is, similar to vanilla neural networks, given as

∂ fWb

∂W
= g⊺o x ,

∂ fWb

∂x
= goW .

The activation functions λ in each layer resemble a step function, hence there
does not exist an analytical solution to their derivative. For the decoder ac-
tivation λD we use a version of the straight-through-estimator ∂λD

∂x = 1go as
suggested by Bengio et al. (2013).

For the hidden layer, the straight-through-estimator fails, as wrongly pre-
dicted items backpropagate a negative gradient to weights through the acti-
vation, even though the neuron was not active. In other words, patterns get
penalized for wrong reconstruction, regardless of whether they were actually
taking part in the reconstruction. Thus, we propose the gated straight-through-
estimator, which distinguishes the two cases of whether λE was activated on
input x or not. For given input x and incoming gradient flow go, we define
gradients with respect to bias b and input x as

∂λE
∂x

=

{
go if λE(x) = 1
0 if λE(x) = 0

,
∂λE
∂b

=

{
go if λE(x) = 1
max(0, go) if λE(x) = 0

.

With the partial derivatives defined, the chain rule allows us to propagate
gradients through the network and update the continuous parameters W and
b accordingly. After backpropagation, we clamp the weights to be in range
[0, 1], which allow us to use a stochastic binarization. We clamp the bias to be
at maximum −1, which means that the bias acts as a learnable threshold for a
minimum number of items to be present for a pattern to hold.
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From continuous to discrete.
In the next forward pass, we then binarize respectively discretize the weight
and bias parameter. As the weights are in range [0, 1], we can use a stochastic
interpretation and treat them as a Bernoulli variable, the binarization thus
becomes a draw from a Bernoulli B,

Wb[i, j] = B(W[i, j]) .

Hence, the binary versions of the weights change probabilistically in every
iteration. For the discretization of the bias we ceil the values bd[i] = ⌈b[i]⌉.

The algorithm.
With all information in place, we are able to train a binary pattern network, for
which we provide pseudocode as Alg. 6.1. In practice, we use batch learning,
where line 3 is replaced by an appropriate batch slicing of the database, and
all operations become the corresponding tensor operations. The pattern set P
encoded by the network is given by a binarization of the final weight matrix
WP = round(W), where row i encodes a pattern that contains each item j for
which WP[i, j] = 1.

Reconstruction loss for transaction data.
Binary matrices, and in particular sparse transaction databases, impose an
additional challenge when optimizing the loss. In analogy to a classification
problem with imbalanced class labels, where there is an intrinsic bias towards
correctly classifying the overrepresented class, sparsity introduces a huge im-
balance when it comes to reconstruction as 1s are highly underrepresented yet
most important for mining patterns. In extreme cases, such as very sparse data
usually given by supermarket transaction data, a model achieves very low re-
construction loss by predicting 0s everywhere – similar to always predicting the
overrepresented class in the classification analogy. We thus propose a sparsity
dependent reconstruction loss, which for given sample D[i], and reconstruction
zi, is

Lα(D[i]; W, b) = ∑
j∈[1,m]

(
(1− D[i, j])α + D[i, j](1− α)

)
|zij − D[i, j]| ,

where α = #1s
#1s+#0s is the sparsity of the data, and zij is the reconstructed feature

j for sample i. The loss function thus avoids aforementioned intrinsic biases by
properly modeling sparsity in the reconstruction.
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Algorithm 6.1: BinaPs training
input :dataset D, initial BinaPs (W1, b1), number of epochs

emax, batch size l
output :pattern set P

1 t← 0 // Step
2 for e = 1 . . . emax do // For each epoch
3 for i = 1 . . . n do // For each sample

// Forward pass
4 Wt

b ← B(Wt) // Binarize weights
5 bt

d ← ⌈bt⌉ // Discretize bias
6 yi ← round(clamp(D[i](Wt

b)
⊺ + bt

d, 0, 1)) // fE
7 zi ← round(clamp(yiWt

b, 0, 1)) // fD
8 L(D[i]; W, b) // Compute loss

// Backward pass
9 gW ← ∂L

∂W // Weight gradient
10 gb ← ∂L

∂b // Bias gradient
11 Wt+1 ← update(Wt, gW) // Optimizer step
12 bt+1 ← update(bt, gb)
13 t← t + 1

14 P = {{j | round(Wt[i, j]) = 1} | i ∈ 1 . . . k} // Pattern set
15 return P

Escaping poor local minima.

The probabilistic nature of our binarization allows us to escape poor local
minima due to the stochasticity introduced by drawing the binarized weights
each round. By bounding the continuous version of the weights by a very small
but positive value from below, we further ensure thatwith lowprobability, every
item could potentially still be learned for a neuron. In particular, we adapt the
clamping of weights after updating the weights during backpropagation in
iteration t such that

Wt+1 = clamp(Wt+1, 1/m, 1) ,
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where the minimum 1/m is chosen such that on expectation 1 out of m items is
randomly assigned to the pattern of a neuron1, independent of data dimensions.
This helps to escape poor local minima by e.g. preventing neurons from dying –
meaning that the gradient of corresponding weights and biases would always
be zero.

Initialization.
To initialize the model, we can again take advantage of the stochasticity of the
weights. By setting the initial weights W0

ij = 1/m for data of size m, we have
uniform chances of setting any particular weight to 1, and have an initialization
that is insensitive to the number of features m, thus allowing to learn even
small patterns properly early on in the optimization. To enforce learning of
proper patterns at the beginning of the optimization, we set all bias terms in the
encoding layer to −1, which means that at least two items have to be present
for a neuron to fire.

Size of hidden layer.
So far, we assumed the architecture, and in particular the size of the hidden
layer c, to be fixed. This hyperparameter, which we call capacity, corresponds
to the maximum size a retrieved pattern set can attain. Existing work, often
assumes the size of the optimal pattern set k∗ to be given, as deciding k∗ for
BMF (Miettinen et al., 2008) and related problems such as minimum tiling
of databases is NP-hard (Geerts et al., 2004), where the optimal pattern set is
the smallest set of patterns that together reconstruct the database. Similarly,
to decide if the hidden layer capacity c corresponds to the size of an optimal
pattern set, is NP-hard.
Theorem 1 (Estimating hidden layer size c∗ is NP-hard). For a given database D
consisting of patterns P, estimating the smallest hidden layer size c∗ = |P| that would
result in perfect reconstruction, is NP-hard.

Proof. Weprove the theorem by introducing the concept of bipartite dimensions
of a graph, which is known to be NP-hard, on which we reduce our problem.
Definition 1 (Bipartite Dimension). For a bipartite graph G = (V1 ∪V2, E), the
bipartite dimension is the minimum number of bicliques between V1 and V2 required to
cover all edges E.

Lemma 2. Deciding the bipartite dimension for a graph G is NP-hard (Garey and
Johnson, 2000, GT18).

1After initialization, each incoming edge is is a Bernoulli random variable with same
probability, hence the number of items in the pattern follows a Binomial.
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For a given database D of items I and sample identifier S = {1, 2, . . . , n}, the
binary database matrix corresponds to an adjacency matrix of the (undirected)
bipartite graph spanned by the two node sets of all items and all sample identi-
fiers, with an item and an identifier having an edge iff the item occurs in the
corresponding sample. More formally, we define GD = (I ∪ S , {(i, j) ∈ I ×S |
D[i, j] = 1}). The perfect reconstruction of the database D with minimal num-
ber of patterns thus corresponds to the minimal number of bicliques of GD,
with each biclique corresponding to a pattern. Hence, the minimal number
of patterns k∗ and thereby the hidden layer size c∗ required to achieve perfect
reconstruction corresponds to the bipartite dimension of the underlying graph,
which is NP hard to decide (Lemma 2).

The good news is, however, that binary pattern networks – as opposed to other
approaches such as BMF – are robust to optimistic estimates of k∗, i.e. the
capacity c of the network only serves as an upper bound for the number of
patterns it will retrieve. In practice, we can set e.g. c = m and the network
simply sets incomingweights to surplus neurons to 0, thus shrinking the pattern
set to an almost optimal size. It is important to note that by setting c to the
number of items, the network does not memorize the input, as it is forced to
learn proper patterns due to the bias term b ≤ −1.

Complexity.
The complexity of learning binary pattern networks is the same as for vanilla
neural networks, which is O(ntm2c) for t iterations and data of n samples and
m items and a BinaPs of capacity c. This term is dominated by the matrix
multiplication, for simplicity we assumed naive matrix multiplication. As the
search space for pattern sets is twice exponential in the number of features
and usually does not lend itself for easy to exploit structure, a low-degree
polynomial complexity is great news. State-of-the-art approaches based on
e.g. information theory do not provide differentiable objectives, the major
issue being the discreteness of the search space, hence they resort to heuristic
algorithms. Here, by having a link between the discrete search space and the
continuous loss, we circumvent this problem, thus resulting in a differentiable
objective optimizable in polynomial time. In practice, GPUs drastically speed up
the optimization even further, allowing us to scale up to and beyond hundreds
of thousands of features.

6.4 experiments
Here, we empirically evaluate BinaPs on both synthetic as well as real world
data. For that, we implemented our approach in PyTorch and compare to state
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Figure 6.2: BinaPs is scalable. For synthetic data with known ground truth of varying
number of features and planted patterns, we show the F1 score (a) and the runtime (b)
for all methods. Experiments were aborted when exceeding 3 days of runtime.

of the art pattern mining methods that leverage different objectives and ap-
proaches. We use the publicly available implementations of all methods, and
make our implementation available.2 All experiments of existing methods were
carried out on Intel Xeon E5-2643 v3 machines with 256GB RAM running Linux,
BinaPswere trained on an NVIDIA A100-SXM4 GPUwith 40GBmemory. Exist-
ing methods supporting multithreading were executed in parallel on 16 cores.
In particular, we compare to Asso, which is based on boolean matrix factoriza-
tion, and use an automated rank selection approach (Miettinen and Vreeken,
2011), Slim, an information theoretic pattern set miner based on the Minimum
Description Length principle (Smets and Vreeken, 2012), and Desc, which
mines pattern sets using maximum entropy modeling (Dalleiger and Vreeken,
2020). Preliminary experiments showed that vanilla binary networks (Cour-
bariaux et al., 2015), do not yield any evident easy-to-interpret relation between

2http://eda.mmci.uni-saarland.de/prj/binaps/

http://eda.mmci.uni-saarland.de/prj/binaps/
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weights, neurons, and ground truth patterns. Individual experiments were
stopped if taking more than 3 days. Asso is given the maximum k, and BinaPs
capacity c, equal to the number of features m for all experiments. Despite being
large overestimates of the actual pattern set sizes, both methods show to be
robust to this choice, hence we did not optimise these parameters further. For all
methods, we optimised hyperparamters for each dataset separately, for details
we refer to App. A.5.1.

6.4.1 recovering ground truth
To evaluate all methods with respect to scalability and robustness to noise, we
first generate synthetic data with known ground truth. We consider data with
various number of planted patterns, where each pattern is assigned 2 to 10
features at random. Futhermore, we draw for each pattern a random subset of
the samples of size drawn from N (.05n, .005n). Here, .05 corresponds to the
mean density of patterns, similar to sparse real world data, and n is the number
of samples. In a first set of experiments, we vary the number of samples n, to
show that BinaPs can handle small data well. In a second set of experiments, we
vary the number of planted patterns, comparing BinaPs with existing methods
with respect to scalability. In a third set of experiments, we introduce varying
amounts of noise, to evaluate how well the approaches can cope with noise. To
evaluate how well the planted pattern sets are retrieved, we consider F1 – the
harmonic mean between precision and recall – which is defined as

F1(Pd, Pg) =
|Pd ∩ Pg|

|Pd ∩ Pg|+ 1
2 |Pd −⃝ Pg|

,

measuring how well discovered pattern set Pd matches the ground truth Pg,
with −⃝ the symmetric difference between two sets. An intersection of two
pattern sets P, P ′ is defined as true matches between individual patterns, i.e.
P ∩ P ′ = {p | p ∈ P ∧ p ∈ P ′}.
Small n. We start by confirming whether BinaPs can cope with small data. To
this end we generate synthetic data density and distribution as above, planting
100 different patterns in n = {1000, 1100, . . . , 10 000} samples, flipping 0.1% of
data entries at random, corresponding to a signal to noise ratio of 20. Although
1000 samples may not sound very small, the probability for creating spurious
but statistically significant co-occurrences for just one pattern when planting
100 patterns is already 23% (see App. A.5.2 for the derivation). In other words,
considering fewer than 1000 samples does not make sense.

We report the results in terms of the F1 score in Fig. 6.3. We see that BinaPs
robustly retrieves nearly all patterns even when the data consists of just a
few thousand samples, already ably recovers 75% of the patterns completely
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Figure 6.3: BinaPs is applicable on data with few samples. F1 score for pattern sets
discovered by BinaPs on synthetic data with varying number of samples.

from just 1000 samples. When investigating the retrieved pattern sets for the
data of 1000 samples, we see that as expected by the above analysis, some of
the retrieved patterns correspond to frequent co-occurences of ground truth
patterns, which are counted as errors in the F1 score.
Recovering ground truth. To evaluate all methods with respect to scalability,
we generate data with pattern sizes and densities as before, distributing pat-
terns over n = 10 000 samples uniformly at random, varying the number of
different planted patterns in {10, 30, . . . , 90}. As above, we introduce .1% of
noise. Scaling further, we generate data of n = 100 000 samples and plant
{100, 300, . . . , 900, 1000, 3000, 5000} patterns, all of same frequency and level of
noise. Here, we generate large data sets in terms of number of samples to avoid
introducing spurious pattern sets, as two ground truth patterns are likely to
co-occur significantly in small datasets.

The results show that state-of-the-art methods Slim and Desc have trouble
retrieving the ground truth (see Fig. 6.2a). They overfit respectively underfit.
Asso as well as BinaPs do retrieve ground truth pattern sets accurately. We
observe that Asso, Slim, and Desc all scale unfavourably, with Asso performing
overall weakest in terms of runtime (Fig. 6.2b), taking days for relatively small
data sets, similar to Slim, and not being able to process even medium sized
data sets. Desc shows to scale slightly better, being able to process moderately
sized data sets, the retrieved patterns however not matching ground truth. In
contrast, BinaPs scales to tens of thousands of patterns while retrieving pattern
sets accurately, being able to process datasets with 100k samples and close to
20k features in slightly more than an hour.
Noise robustness. Next, we investigate the impact of noise on how well methods
are able to retrieve the correct pattern set. We generate data of n = 100 000
samples and 100 planted patterns with distributions as above, but now varying
the percentage of noise in {0, 0.001, 0.002, . . . , 0.009, 0.01, 0.02, . . . , 0.05}, where
0.05 corresponds to a signal to noise ratio of 1. We visualize the results in
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Figure 6.4: BinaPs is robust to noise. For synthetic data with known ground truth and
varying the level of noise, we show the F1 score (a) and the runtime (b) for all methods.
With 5% noise, we have a 1:1 ratio of signal-to-noise.
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Fig. 6.4a-6.4b. Both Asso and BinaPs are robust to high amounts of noise, even
for a signal to noise ratio of 1. Slim and Desc, on the other hand, are very
sensitive to noise, both retrieving more spurious patterns the more noise is
present. On these datasets BinaPs run for minutes, whereas the competitors
take up to several hours.

6.4.2 quantitative results on real data
To evaluate BinaPs on real data, we consider 5 datasets of different dimensions.
In particular, we consider click-stream data of the hungarian on-line news
portal Kosarak,3 data on Belgian traffic Accidents (Geurts et al., 2003), DNA-
amplification data (Myllykangas et al., 2006), online grocery shopping data
from Instacart, for which we give more information in App. A.5.3, and single
nucleotide polymorphisms in genomes of human individuals from the 1000
Genomes project (The 1000 Genomes Project Consortium, 2015). We provide
details on howwe processedGenomes in App. A.5.4. We provide statistics about
the data and results in Table 6.1.

Whereas all methods are able to handle the small DNA and Accidents data,
there are already orders of magnitude differences in runtime, with BinaPs
finishing inminutes andAsso and Slim taking hours up to a day. With increasing
number of columns, existing approaches fail to scale, Asso not being able to
handle Instacart. On larger data such as Kosarak, all existing approaches did not
terminate within 3 days, or run out of memory. BinaPs being the only approach
to reliably handle large – both in n as well as m – databases, it retrieves patterns
for Kosarak, and the challenging Genomes data.

Looking at the results, BinaPs retrieves succinct and non-redundant pattern
sets. Furthermore, these easy-to-interpret pattern sets are much smaller than
the initial capacity c given to the network, despite not explicitly penalizing
model complexity. While retrieving equally succinct pattern sets, Asso fails to
scale to moderately sized data. Slim, an MDL based approach, finds thousands
of partially redundant patterns already for medium sized data, which make it
hard to analyze as a whole. Desc underfits for Accidents respectively Instacart
only returning patterns of length 2.

6.4.3 qualitative results on real data
Here, we will first compare the results on two small datasets, and then move on
to analyze the insights gained for the new Genomes data set based on patterns
found by BinaPs.

3http://fimi.uantwerpen.be/
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DNAOn this dense data, BinaPs andAssodiscover compact patterns that exhibit
a block structure, with consecutive items merged into a feature. Such block-
like structures correspond to the larger chromosomal areas where DNA copy
number amplification happens, and hence represent biologically meaningful
patterns. For this particular data set, we can see the disadvantages of iterative
heuristics such as from Slim, which learns parts of this block structure early
on, but then overfits to overly large patterns that only appear in few samples
and without evident block structure. These larger patterns are however likely
due to random co-occurrences. Desc here only finds short patterns, likely being
caught in a local minimum.
Instacart BinaPs discover patterns describing dense, noisy blocks, for example
a pattern spanning dozens of fruits, which are bought together in arbitrary
combinations. Slim breaks such dense blocks in many (thousands) of individ-
ual patterns, each containing a small subset of items. Desc again underfits,
finding patterns of length 2 only. BinaPs also discover small patterns that re-
veal the general buying behaviour of customers such as a pattern of different
prepared dishes {Pizza,Ceasar salad, Hummus wrap, Filled wrap}, or certain
food styles, such as {Chicken Wrap, Chile con queso}.
Genomes Last, we consider a dataset that motivated this work. The data contains
information about variants of a population of human individuals for single nu-
cleotide positions within genes, and, with over 200 thousand features, Genomes
is far beyond what existing methods can consider. BinaPs, however, is able to
discover a succinct pattern set inmereminutes. Here, we analyze the discovered
patterns in more detail.

Biologically, we expect sequence stretches to be conserved and hence vari-
ants to be inherited “together”. A first positive observation is that most patterns
that BinaPs discover indeed show such blocks of variants that are close-by on
the genome.

Within such blocks, the rare variants often lie on the same allele – indicated
by consecutive “0|1” variants – meaning that often one parent has the “common”
reference variants for consecutive sites, whereas the other parent has the “rare”
variants. Encouragingly, individual BinaPs patterns show this, and even more
interesting, BinaPs often discover a second pattern for the same sites that show
the opposite, for example most sites to be “1|0”. Whether this is due to phasing
or has biological meaning, we leave to the experts.

Taking a closer look at individual patterns, we find interesting connections
between variants and the genes they occur in. For example, we find a pat-
tern spanning multiple variants in the genes NUCB2, NCR3LG1, ABCC8, and
ROMO1. Variants at NUCB2 and ABCC8 have together been associated with
type 2 diabetes and high blood pressure in Japanese population (Sakamoto
et al., 2007). For NCR3LG1 we know that it is close-by to ABCC8, but similar to
ROMO1 there has not been any connection made between the variants of these
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genes, and hence could provide interesting insights for experts.
Another highly interesting pattern is over SF3A1, RRP7A, and Z82190,

where SF3A1 andRRP7Aencode proteins that are part of the ribosomal complex,
the factory that produces proteins in a cell. Z82190 is a so far uncharacterized
gene, and this pattern hence suggests what its role could be, which can guide
future studies.

BinaPs discovers both large patterns of many variants within few genes, but
also discover associations overmany genes at once. As last example, we consider
the pattern of variants in FUBP1, SELENOI, ZKSCAN5, TMEM225B, ASPN,
SOX6, PLEKHA7, and ALX3. ASPN and ALX3 are taking part in chondrogene-
sis, an essential developmental process producing elastic tissue covering ends
of bones and joints. FUBP1 and SOX6 are genes linked to other developmental
processes. For ZKSCAN5 and TMEM225B only little is known so far. These
results encourage for further in-depth analysis by domain experts.

Overall, BinaPs retrieve informative patterns over variant sites, which can
give interesting insights to relations between variants, genes, and their function.

6.5 discussion and conclusion
We considered the problem of pattern set mining and propose BinaPs, a novel
kind of binarized neural networks that are capable of discovering a compact set
of interpretable patterns that together describe the data well. In experiments
on both synthetic as well as real data, BinaPs reliably recovered the ground
truth and showed promising results on several large scale real world datasets,
discovering succinct descriptions of the data while scaling to hundreds of
thousands of samples and features. The results further showed that BinaPs
discover patterns of varying length and frequency, that describe true structure
of the given data, on sparse and dense data as well as small to large n, as well
as m.

Naturally related to BinaPs, boolean matrix factorization showed good
results on small data sets, but fails to scale beyond small data. Furthermore, it
generally requires the rank of the factorization – the size of the pattern sets – to
be given, wheras BinaPs only need a large enough capacity of the pattern layer,
and shrinks the number of patterns – or factors – if necessary. State-of-the-art
information theoretic methods, based on the Minimum Description Length
principle or Maximum Entropy distributions, tended to over- or underfit, which
is likely due to their heuristic combinatorial search rather than their objective.
These methods did often recover (many) small fragments of ground truth
patterns, whichmay be puzzled together by domain experts. In contrast, BinaPs
were able to discover entire patterns, or larger chunks.
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With their ability to learn patterns using continuous, gradient-based op-
timization, BinaPs pave the way towards exploratory studies of challenging
data sets comprising hundreds of thousands of features that state-of-the-art
algorithms for pattern set mining fail to process, while providing patterns in
the interpretable language of conjunctions over input symbols.

While BinaPs can reveal interesting structure in data and provide insights
for human experts, it would make for interesting future work to extend BinaPs
to richer pattern languages. For example, by developing an architecture that
reflects statements similar to the previously introducedMexican, to mine re-
lationships of mutual exclusivity, which capture interesting structures in real
world datasets. Similarly, investigating deeper networks would make for en-
gaging future work as more involved architectures could for example allow to
extract pattern hierarchies from the data. Simply making the network larger
however comes at the cost of reduced interpretability of the patterns and, hence,
needs to be carefully balanced.



7
STRONG PRUNING FOR
LOTTERY T ICKETS WITH
NONZERO BIAS

7.1 introduction
Challenging tasks across different domains, from protein structure prediction
for drug development to detection in complex scenes for self driving cars,
have recently been solved through deep neural networks (NNs). This success,
however, is due to heavy overparametrization and comes at the expense of
large amounts of computational resources that these models require to be
trained and to be deployed. While training small NNs from scratch commonly
fails, the lottery ticket hypothesis (LTH) conjectured by Frankle and Carbin
(2019) bears a potential solution. The LTH states that within a large, randomly
initialized NN there exists a well trainable, much smaller subnetwork, or ’ticket’,
which can be identified by pruning the large NN. Thus, both training and
deployment becomes computationally much cheaper at the expense of the
pruning algorithm. Even more promising is the conjecture of the existence of
’strong lottery tickets’ (SLTs) by Ramanujan et al. (2020), which are subnetworks
of randomly initialized NNs that do not require any further training, for which
expensive training might become obsolete. This strong lottery ticket hypothesis
(SLTH)was later proven for networkswithout biases (Malach et al., 2020; Pensia
et al., 2020; Orseau et al., 2020).

This chapter is based on Fischer, Gadhikar, and Burkholz (2021a).

127
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Whereas standard intialization schemes – and hence SLTs – use zero biases,
most successfully trained NN architectures have nonzero biases. Such nonzero
bias terms are important to equip NNs with the universal approximation prop-
erty (Scarselli and Tsoi, 1998). Serving as our main motivation, we show that
NNs without biases, which include SLTs, fail to achieve this in general. To
enable successful training by pruning alone, we, hence, generalize common
initialization schemes, including the ’looks linear’ orthogonal initialization, to
nonzero biases. We show that a signal that computes the output of a function
or gradients can propagate through such nonzero bias initialized networks.
This means they are trainable and gradient-based scoring functions, which are
typically used by lottery ticket pruners, are computable. Moreover, we formally
prove the SLTH in this setting and provide empirical evidence that our theory
derives realistic conditions, in which lottery ticket pruning is feasible.

For the discovery of SLTs in practice, Ramanujan et al. (2020) proposed
Edge-Popup, to the best of our knowledge the only algorithm capable of doing
so. Their proposal is, however, not suited to recover bias parameters and finds
only relatively dense tickets. We here extend their approach in multiple ways
to recover strong tickets that include bias parameters and that are sparser than
the ones obtained by vanilla Edge-Popup. In particular, we extend the popup
scores to bias terms, and slowly anneal the sparsity of the network to the desired
target sparsity. In addition, our LTH proof conjectures that a rescaling of the
parameters is necessary to find SLTs of high sparsity. We propose an efficient
optimization procedure to find such a good scaling factor in each epoch.

In a synthetic data study, we show that SLTs recovered by Edge-Popup from
NNs with nonzero bias initialization outperform tickets found in networks
initialized with zero bias. Furthermore, we show that on this data, Edge-Popup
with rescaling finds much sparser tickets of higher quality. While these results
are encouraging, we discuss that on image data, nonzero biases might play
a less prominent role for the current generation of SLT pruning algorithms,
which identify subnetworks of suboptimal sparsity with few bias parameters
in the recovered ticket (Fischer and Burkholz, 2022). We anticipate that our
generalization of strong tickets and initialization schemes could pave the way
for the next generation of algorithms for the discovery of parameter efficient
subnetworks at initialization.

7.2 related work
The lottery ticket hypothesis (Frankle and Carbin, 2019) has spurred the devel-
opment of neural network pruning algorithms that either prune before (Wang
et al., 2020; Lee et al., 2019b; Tanaka et al., 2020; Verdenius et al., 2020), during
(Frankle and Carbin, 2019; Srinivas and Babu, 2016; You et al., 2020; Lee et al.,



129 Strong pruning for lottery tickets with nonzero bias

2020; Liu et al., 2021a,a; Weigend et al., 1991; Savarese et al., 2020; Chen et al.,
2021; Su et al., 2020; Ma et al., 2021), or after training (Savarese et al., 2020;
LeCun et al., 1990; Hassibi and Stork, 1992; Dong et al., 2017; Li et al., 2017;
Molchanov et al., 2017; Zhang et al., 2021). In particular for pruning before and
during training, their main objective is to identify a subnetwork of a randomly
initialized neural network – a lottery ticket – that can be trained to achieve a
similar performance as the fully trained large network. Usually, these methods
try to find lottery tickets in a ‘weak’ (but powerful) sense, that is to identify a
sparse neural network architecture that is well trainable starting from its initial
parameters. These methods score edges in terms of network flow, which can
be quantified by gradients at different stages of pruning, or based on edge
weights, and prune all edges with the lowest scores until the desired sparsity is
achieved (Frankle et al., 2021).

Zhou et al. (2019) and Ramanujan et al. (2020) postulated an even stronger
hypothesis, as they realized that the randomly initialized neural network con-
tains so called ’strong’ lottery tickets that do not require further training after
pruning. Malach et al. (2020); Pensia et al. (2020); Orseau et al. (2020) proved
their existence by deriving realistic lower bounds on the width of the original
randomly initialized neural network that contains a lottery ticket with a given
probability.

However, the proposed pruning algorithm for SLTs, i.e., edge-popup (Ra-
manujan et al., 2020), as well as the existence proofs only handle neural network
architectures with zero biases. A reason might be that very large neural net-
works can compensate for missing biases in the studied application, i.e. image
classification. Yet, this compensation usually requires a higher number of
weight parameters but state-of-the-art algorithms and proofs for SLTs do not
cover highly sparse tickets as we also show in the next chapter (Fischer and
Burkholz, 2022). Another reason might be that most neural network initializa-
tion schemes propose zero biases. Exceptions include a data dependent choice
of biases (Yang et al., 2019) and a random scheme that does not try to prevent
exploding or vanishing gradients in deep neural networks (Hanin and Rolnick,
2019). The recent trend in the search for weak lottery tickets towards rewinding
parameters to values obtained early during training (Frankle et al., 2020) also
results in lottery ticket initialization with nonzero biases.

None of these nonzero bias initialization schemes are designed in support
of the existence of SLTs. We fill this gap with this work.

7.3 notation
Let f (x) denote a bounded function, without loss of generality f : [−1, 1]n0 →
[−1, 1]nL , that is parameterized as a deep neural network with architecture
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n̄ = [n0, n1, ..., nL], i.e., depth L and widths nl for layers l = 0, ..., L with ReLU
activation function ϕ(x) := max(x, 0). It maps an input vector x(0) to neurons
x(l)i as:

x(l) = ϕ
(

h(l)
)

, h(l) = W (l)x(l−1) + b(l),

W (l) ∈ Rnl×nl−1 , b(l) ∈ Rnl

where h(l) is the pre-activation, W (l) is the weight matrix, and b(l) is the bias
vector of layer l. For convenience, the parameters of the network are subsumed
in a vector θ :=

((
W (l), b(l)

))L

l=1
. We also write f (x | θ) to emphasize the

dependence of f on its parameters θ. The supremum norm of any function g is
defined with respect to the same domain ||g||∞ := supx∈[−1,1]n0 ||g||2.

Assume furthermore that a ticket fϵ can be obtained by pruning a large
mother network f0, which we indicate by writing fϵ ⊂ f0. The sparsity level
ρ of fϵ is then defined as the fraction of nonzero weights that remain after
pruning, i.e., ρ =

(
∑l ||W

(l)
ϵ ||0

)
/
(

∑l ||W
(l)
0 ||0

)
, where || · ||0 denotes the l0-

norm, which counts the number of nonzero elements in a vector or matrix.
Another important quantity that influences the existence probability of lottery
tickets is the in-degree of a node i in layer l of the target f , which we define as
the number of nonzero connections of a neuron to the previous layer plus 1 if
the bias is nonzero, i.e., k(l)i := ||W (l)

i,: ||0 + ||b
(l)
i ||0, where W (l)

i,: is the i-th row
of W (l). The maximum degree of all neurons in layer l is denoted as kl,max. In
the formulation of theorems, we make use of the universal constant C that can
attain different values.

7.4 types of lottery tickets
As introduced before, there exist different types of lottery tickets depending
on the amount of pruning and training involved in their discovery. To clarify
the differences between them, we provide an overview in Fig. 7.1 and formally
define these tickets in terms of the network parameters θ. Frankle and Carbin
(2019) first conjectured the LTH, suggesting that within large, randomly ini-
tialized NNs there exist small subnetworks that – after training – perform as
well as the large network after training. These were later referenced as ’weak
tickets’, which can be informally defined as follows.

Definition 7.1 (Weak lottery tickets). Given a randomly initialized neural network
f0(x | θ0), a small subnetwork fϵ(x | θ′0), θ ′0 ⊂ θ0 of sparsity |θ

′
0|
|θ0|

is called a weak
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Figure 7.1: Types of lottery tickets. From a large neural network given by parameters
θ, the goal is to identify a small subnetwork θ ′ ⊂ θ, |θ

′ |
|θ| ≪ 1 that performs as well as

the original network. If this subnetwork at initialization θ ′0 performs as good as the large
network after training, θT, it is called a ’strong ticket’. If it requires further training from
the initialization, θ ′T ′ , it is called ’weak ticket’. If it is trained from an intermediate training
point from the pruning process, it is called ’rewound ticket’.

ticket, if it can be trained to match the performance of the fully trained large network,
i.e. L

(
x, y; θ ′T ′

)
≈ L (x, y; θT) for loss L.

They key task of weak lottery ticket pruning is to discover such a small sub-
network. First proposals aimed to identify weak tickets in one shot, i.e. prune
a network once to the desired target sparsity. Later, iterative – or multishot
– approaches have been shown to be more successful, where throughout the
iterations the sparsity of the network is iteratively reduced to the desired target
sparsity. Essentially, in each iteration we use weak lottery ticket pruning to iden-
tify a slightly smaller network than before, reset the parameters to initialization,
and then repeat on the smaller network. All of these approaches usually rely
on pre-training, i.e. they train a network for few epochs and then identify the
most important parameters based on a score, e.g. based on their magnitude or
taking into account gradient flows (Frankle and Carbin, 2019; Wang et al., 2020;
Lee et al., 2019b; Tanaka et al., 2020).

For iterative magnitude pruning (IMP), Frankle et al. (2020) showed that it
is necessary to rewind the parameters to values earlier in training rather than to
initialization, to be applied successfully to complex image tasks. These tickets
can be defined as follows.

Definition 7.2 (Rewound lottery tickets). Given a randomly initialized neural
network f0(x | θ0), a small subnetwork fϵ(x | θ′0), θ ′0 ⊂ θ0 identified by an iterative
pruning approach is called a rewound ticket, if it can be trained from an intermediate
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x

f,
f ϵ

target f
zero bias fϵ

nonzero bias fϵ

Figure 7.2: Function approximations. Depicted are approximations of an exponential
function (solid black) by sparse NNs with nonzero bias (dashed blue), which are piecewise
linear functions, and zero bias (dotted orange), which are two linear pieces through the
origin, which exemplify Lem. 7.1.

training point from the pruning process θ ′k to match the performance of the fully trained
large network, i.e. L (x, y; θ ′T∗) ≈ L (x, y; θT) for loss L.

One special case is to skip reset entirely, which is often referred to as ticket
finetuning in the literature (Liu et al., 2021a).

Both weak and rewound tickets can give substantial gain in terms of re-
sources, especially during deployment. Yet, we have to invest into training for
several epochs, where in iterative pruning approaches we start with rather large
networks, and require full training of the small ticket network. Strong lottery
tickets provide a remedy, as they do not require any further training, first con-
jectured by Ramanujan et al. (2020) and later formally proven to exist (Malach
et al., 2020; Pensia et al., 2020; Orseau et al., 2020).
Definition 7.3 (Strong lottery tickets). Given a randomly initialized neural network
f0(x | θ0), a small subnetwork fϵ(x | θ ′0), θ ′0 ⊂ θ0 is called a strong ticket, if
it, at initialization, matches the performance of the fully trained large network, i.e.
L (x, y; θ ′0) ≈ L (x, y; θT) for loss L.

These tickets can be seen as the holy grail of NN pruning, as they bear
the promise of extreme resource efficiency by skipping training entirely. So
far, only one algorithm exists, which retrieves relatively dense strong tickets.
In this chapter, we will focus on the foundations of strong lottery tickets. We
will see why (good) strong lottery tickets currently are hard to find and how
to overcome some of these issues, thereby improving the capabilities of the
state-of-the-art strong tricket pruner.

7.5 motivation: universal approximation
Why do we need to initialize nonzero biases? With nonzero biases, neural
networks have the universal approximation property (Scarselli and Tsoi, 1998).
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Thus, for a given ϵ > 0 and arbitrary continuous function g, a large enough
neural network can approximate g up to error ϵ. Standard neural networks
and also weak lottery tickets are able to learn nonzero biases even from zero
initialization. However, this is not the case for strong lottery tickets. Strong
lottery tickets rely on pruning alone to obtain a model with high performance.
Nonzero biases need to be available from the initialization for them to be univer-
sal approximators with ReLU activations. The following Lemma captures the
problem with zero bias networks, which is a factorization of univariate ReLU
networks of arbitrary depth and width.

Lemma 7.1. Univariate neural networks with ReLU activations f : R → RnL of
arbitrary depth L and layer widths n1, . . . , nL, and without biases, represent a function
f (x) = W+ϕ(x) + W−ϕ(−x), W+, W− ∈ RnL×1.

Proof. Weprove by induction over the number of hidden layers L of the network.
First, assume that L = 1, i.e. f (1)(x) = ϕ(W (1)x), with W (1) ∈ Rn1×1. For any
output neuron f (1)j (x), j = 1, . . . , n1, we have

f (1)j (x) =
n0

∑
i=1

ϕ(W (1)
i x)

=

{
∑n0

i=1 W (1)
i I(W (1)

i > 0)ϕ(x), if x ≥ 0

∑n0
i=1−W (1)

i I(W (1)
i < 0)ϕ(−x), otherwise,

where I(.) is the indicator function. For networks with a single layer, we thus
get f (1)(x) = W (1)

+ ϕ(x) + W (1)
− ϕ(−x) with

W (1)
+ =W (1)

i I(W (1)
i > 0) ,

W (1)
− =−W (1)

i I(W (1)
i < 0) ,

which proves our claim for L = 1.

Next, our induction hypothesis is that f (l)j = W (l)
+ ϕ(x) + W (l)

− ϕ(−x). For
networks with l + 1 layer, f (l+1)(x) = W (l+1)ϕ

(
f (l)(x)

)
, W (l+1) ∈ Rnl+1×nl ,
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for each output neuron f (l+1)
j (x), j = 1, . . . , nl+1 we obtain

f (l+1)
j (x) =

nl+1

∑
i=1

ϕ
(

f (l)(x)
)

i
W (l+1)

ji

=
nl+1

∑
i=1

ϕ
(

W (l)
+ ϕ(x) + W (l)

− ϕ(−x)
)

i
W (l+1)

ji (induction hypothesis)

=

∑
nl+1
i=1 ϕ

(
W (l)

+ x
)

i
W (l+1)

ji , if x ≥ 0

∑
nl+1
i=1 ϕ

(
−W (l)

− x
)

i
W (l+1)

ji , otherwise

=


∑

nl+1
i=1 W (l)

+,iW
(l+1)
ji x, if x ≥ 0∧W+,i > 0

∑
nl+1
i=1 −W (l)

−,iW
(l+1)
ji x, if x < 0∧W−,i > 0

0, otherwise.

Hence, we get

W (l+1)
+ =W (l+1)W (l)

+

W (l+1)
− =−W (l+1)W (l)

− ,

which concludes the induction step, and the proof.

This factorization shows that ReLU networks without biases are greatly
limited in terms of the functions they can express, which we visualize for an
example in Fig. 7.2. From this Lemma we derive the following insight about
neural networks without biases – and hence strong lottery tickets – which forms
the motivation of our work.

Corollary 3. Neural networks with ReLU activations and without biases are not
universal function approximators.

Proof. We prove by contradiction. Assume that such a network is a universal
function approximator, i.e. for any function g and any ϵ there exists a network
that can approximate g up to error ϵ.

Let us try to approximate the constant function g(x) = 0.5 on the domain
[−1, 1]with a neural networkwithout biases. FromLemma 7.1, we know that an
univariate ReLU networkwithout biases represents a function f (x) = w+ϕ(x)+
w−ϕ(−x) with two parameters w+, w− ∈ R. The minimum mean squared
error with respect to g(x) that f can achieve is

∫ 1
−1(g(x)− f (x))2dx = 1/8 for

w+ = 3/4 and w− = 3/4 (see Appendix A.6.1 for derivation). Thus for any
ϵ < 1/8, f (x) fails to approximate g(x) up to error ϵ, which is a contradiction.
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Note that a neural ReLU networkwith nonzero biases can represent the function
g(x) = 0.5 perfectly. For instance, a network of depth L = 1 with one neuron
in the intermediary layer is sufficient, as 0.5 = ϕ(0.5).

Although g(x) = 0.5 is an obviously simple function, it already serves
as a counterexample and hence suffices to prove the theorem. However, for
networks without bias this is a hard task, as it explicitly requires to model an
argument independent offset – or bias. Yet, it is easy to see from Lemma 7.1 that
these networks usually fail to guarantee universal approximation for univariate
non-linear functions even without explicit biases. We provide g(x) = ex as an
example in Appendix A.6.1.

This theorem provides the theoretical motivation for why we need nonzero
bias initializations for well performing strong lottery tickets, and why it is
necessary to include bias terms when pruning for good strong lottery tickets.

7.6 initializing nonzero biases
Common initialization schemes (e.g. He et al. (2015); Glorot and Bengio (2010);
Burkholz and Dubatovka (2019)) set all biases to zero, while network weights
are drawn randomly to obtain parameter diversity. Proofs of the strong lottery
ticket hypothesis have focused on this setting, thereby foregoing the universal
approximation property of deep neural networks (Scarselli and Tsoi, 1998),
since pruning alone can only recover the zero-initialized biases.

Here, we propose the initialization of nonzero biases, which then become
subject to pruning in addition to the network weights. How should these
biases be initialized? A good approach has to fulfill two essential criteria. a)
The randomly initialized neural network needs to be trainable by SGD. This
property is also critical for most pruning algorithms, as they are inspired by
SGD and define pruning scores based on gradients. b) The randomly initialized
neural network should contain lottery tickets with high probability.

Before we can answer how to initialize biases, we first have to face a different
issue pertaining strong lottery tickets. Standard initialization approaches, like
He (He et al., 2015) or Glorot (Glorot and Bengio, 2010) initialization, achieve
trainability by ensuring that the output of a deep neural network is contained
within a reasonable range, thus rendering the computations of gradients nu-
merically feasible. Network weights are commonly initialized according to
a distribution with variance σ2 that is inverse proportional to the number of
neurons n in a layer, σ2 ∝ 1/n. In consequence, after pruning a high percentage
of these weights, the network output is heavily down-scaled, which needs to be
compensated by up-scaling the output, as also discovered experimentally by
Ramanujan et al. (2020) and mentioned by Malach et al. (2020).
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7.6.1 output scaling

For ReLU networks with zero biases, the appropriate output scaling after or
during pruning is straight forward to compute, as networks of depth L are L-
homogeneous in the network parameters. That is, multiplying each parameter
with the same scalar σ leads to a scaling factor of σL: f (x | σθ) = σL f (x | θ).
This holds no longer true for nonzero biases.
The following observation helps us to develop a notion that is similar to homo-
geneity for networks with nonzero biases.

Lemma 7.2. Let h (θ0, σ) denote a transformation of the parameters θ0 of the deep
neural network f0, where each weight is multiplied by a scalar σl , i.e., h(l)ij (w(l)

0,ij) =

σlw
(l)
0,ij, and each bias is transformed to h(l)i (b(l)0,i ) =

(
∏l

m=1 σm

)
b(l)0,i . Then, we have

f (x | h(θ0, σ)) = ∏L
l=1 σl f (x | θ0).

Proof. Let the activation function ϕ of a neuron either be a ReLU ϕ(x) =

max(x, 0) or the identity ϕ(x) = x. A neuron x(l)i in the original network
becomes g

(
x(l)i

)
after parameter transformation. We prove the statement by

induction over the depth L of a deep neural network.
First, assume that L = 1 so that we have x(1)i = ϕ

(
∑j w(1)

ij xj + b(1)i

)
. After

transformation by h, i.e. w(1)
ij 7→ σ1w(1)

ij and b(1)i 7→ σ1b(1)i , we receive g
(

x(1)i

)
=

ϕ
(

∑j w(1)
ij σ1xj + σ1b(1)i

)
= σ1x(1)i because of the homogeneity of ϕ(·). This

proves our claim for L = 1.
Next, our induction hypothesis is that g

(
x(L−1)

i

)
= ∏L−1

m=1 σmx(L−1)
i . Scal-

ing each parameter by applying h, we obtain

g
(

x(L)
i

)
= ϕ

(
∑

j
h(L)

ij (w(L)
ij )g

(
x(L−1)

j

)
+ h(L)

i (b(L)
i )

)
(network definition)

= ϕ

(
∑

j
w(L)

ij σLg
(

x(L−1)
j

)
+ b(L)

i

L

∏
m=1

σm

)
(def. of transformation)
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= ϕ

(
∑

j
w(L)

ij σL

L−1

∏
m=1

σmx(L−1)
j + b(L)

i

L

∏
m=1

σm

)
(induction hypothesis)

=
L

∏
m=1

σmx(L)
i (homogeneity of ϕ),

which was to be shown.

Lemma 7.2 suggests that if we scale each weight by a factor σw,l , scal-
ing the corresponding biases by a factor σb,l = ∏l

m=1 σw,m would result in
the same network f without scaling of parameters. We only have to cor-
rect the output by dividing it with a factor ∏L

l=1 σw,l . From this observation,
we directly derive our initialization proposal, as it suggests an equivalence
(irrespective of scaling) between initialising parameters in θi ∈ U[0, 1] and
our more realistic setting. Concretely, we propose to replace b(l)i = 0 by
b(l)i ∼ U([−∏l

k=1 σw,k, ∏l
k=1 σw,k]) or b(l)i ∼ N

(
0, ∏l

m=1 σw,m

)
, respectively,

when the weights are w(l)
ij ∼ U ([−σw,l , σw,l ]) or w(l)

ij ∼ N (0, σw,l).
As a general remark, note that the scaling factor of the output ∏L

m=1 σw,m
quickly approaches zero for increasing depth, which could render one-shot
pruning numerically infeasible. For that reason, we propose a computationally
cheap rescaling procedure that allows us to find significantly sparser strong
lottery tickets. This is also helpful for maintaining the trainability of the pruned
network (Hayou et al., 2021), which we discuss next in the context of initializa-
tions with nonzero biases.

7.6.2 signal preservation
The question remains whether input and gradient signals can still propagate
through the large original network with such an initialization. A common
criterion to prevent initial vanishing or exploding gradients, in particular in
mean field analyses (Schoenholz et al., 2017), is to ensure that the squared
signal norm of the input can propagate through the initial network. To bound
the second moment of the squared output, we generalize Cor. 3 for normal
distributions in Burkholz and Dubatovka (2019) to symmetric weight and bias
distributions.

Lemma 7.3. Assume that the weights and biases of a fully-connected deep neural
network f are drawn independently from distributions that are symmetric around the
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origin 0 with variances σ2
w,l or σ2

b,l , respectively. Then, for every input x(0), the second
moment of the output is

E

(∥∥∥ f (x(0))
∥∥∥2

2

)
=
∥∥∥x(0)

∥∥∥2

2
ΠL

l=1

nlσ
2
w,l

2
+ σ2

b,L
nL
2

+
L−1

∑
l=1

σ2
b,l

nl
2

ΠL
k=l+1

nkσ2
w,k

2
.

Proof. First, let us focus on the distribution of a neuron x(l)i given all neu-
rons of the previous layer with x(l)i = ϕ

(
h(l)i

)
. Since we assume that the

weights and biases are distributed independently with zero mean, it follows
that also the preactivation h(l)i = ∑j w(l)

ij x(l−1)
j + b(l)i has zeromean and variance

V
(

h(l)i | x(l−1)
)
= ∑j

(
x(l−1)

j

)2
V
(

w(l)
ij

)
+ V

(
b(l)i

)
= σ2

w,l

∥∥∥x(l−1)
∥∥∥2

+ σ2
b,l ,

where V is the variance operator. It is furthermore symmetric around zero
so that a neuron x(l)i = ϕ

(
h(l)i

)
∼ 0.5δ0 + 0.5phl,+

is projected to zero with
probability 0.5 and otherwise follows the distribution of the positive preacti-
vation phl,+

, where δ0 denotes the delta distribution at 0 and hl,+ the random
variable hl conditional on hl > 0. In consequence, the squared neuron value
(x(l)i )2 ∼ 0.5δ0 + 0.5ph2

l
has expectation E

((
x(l)i

)2
)

= 0.5 E

((
h(l)i

)2
)

=

0.5 σ2
w,l

∥∥∥x(l−1)
∥∥∥2

+ 0.5 σ2
b,l .

Since all the neurons are independent and identically distributed given the
neurons of the previous layer, we can easily deduce the expected signal norm

E

(∥∥∥x(l)
∥∥∥2

2

∣∣∣∣ ∥∥∥x(l−1)
∥∥∥2

2

)
=

nl

∑
i=1

E

((
x(l)i

)2
∣∣∣∣ ∥∥∥x(l−1)

∥∥∥2

2

)
=

nl
2

(
σ2

w,l

∥∥∥x(l−1)
∥∥∥2

+ σ2
b,l

)
.

This gives us the expected signal norm of an arbitrary layer conditioned on
the previous layer. We can use this relationship to also compute the average
squared signal norm of the output layer, which is

E
(
∥ f (x0)∥2

2

)
= E

(∥∥∥x(L)
∥∥∥2

2

)
= E

(
E

(∥∥∥x(L)
∥∥∥2

2

∣∣∣∣ ∥∥∥x(1)
∥∥∥2

2

))
,

where the first equality is by definition of the network, and the second equality
holds by law of total expectation. By recursively repeating this argument on
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the inner expectation, we get

E
(
∥ f (x0)∥2

2

)
= E

(
E

(∥∥∥x(L)
∥∥∥2

2

∣∣∣∣ ∥∥∥x(1)
∥∥∥2

2

))
= E

(
E

(
E

(∥∥∥x(L)
∥∥∥2

2

∣∣∣∣ ∥∥∥x(2)
∥∥∥2

2

) ∣∣∣∣ ∥∥∥x(1)
∥∥∥2

2

))
= E

(
E

(
. . . E

(
E

(∥∥∥x(L)
∥∥∥2

2

∣∣∣∣ ∥∥∥x(L−1)
∥∥∥2

2

) ∣∣∣∣ ∥∥∥x(L−2)
∥∥∥2

2

)
. . .
∣∣∣∣ ∥∥∥x(1)

∥∥∥2

2

))
.

Using the derivation further above, which provides a solution to the expected
signal norm for a layer conditioned on the previous layer, we can iteratively
resolve the innermost expectation

E
(
∥ f (x0)∥2

2

)
= E

(
E

(
. . . E

(
E

(∥∥∥x(L)
∥∥∥2

2

∣∣∣∣ ∥∥∥x(L−1)
∥∥∥2

2

) ∣∣∣∣ ∥∥∥x(L−2)
∥∥∥2

2

)
. . .
∣∣∣∣ ∥∥∥x(1)

∥∥∥2

2

))

= E

(
E

(
. . . E

(
nL
2

(
σ2

w,L

∥∥∥x(L−1)
∥∥∥2

2
+ σ2

b,L

) ∣∣∣∣ ∥∥∥x(L−2)
∥∥∥2

2

)
. . .
∣∣∣∣ ∥∥∥x(1)

∥∥∥2

2

))

= E

(
E

(
. . .

nLσ2
w,L

2
E

(∥∥∥x(L−1)
∥∥∥2

2

∣∣∣∣ ∥∥∥x(L−2)
∥∥∥2

2

)
+

nLσ2
b,L

2
. . .
∣∣∣∣ ∥∥∥x(1)

∥∥∥2

2

))
.

Repeating this last argument provides the statement that was to be shown.

For σ2
w,l ≈ 2/nl (as usually realized by He initialization) and our choice

σb,l = ∏l
m=1 σw,m, this implies that E

(
∥ f (x0)∥2

2

)
≈
∥∥∥x(0)

∥∥∥2

2
+ 1, which pre-

vents initial signal and gradient explosions even for high depth L.

’Looks linear‘ and orthogonal initialization The above lemma assumes
that the weights and biases are drawn independently at random. This does not
hold for orthogonal weight initialization, whose benefits have been highlighted
in numerous works in general (Pennington et al., 2017, 2018; Saxe et al., 2014)
and in particular for lottery ticket pruning (Lee et al., 2020). Themarginal distri-
bution of each weight entry is still normally distributed as w(l)

ij ∼ N (0, 1/nl) so
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that our lottery ticket existence proof (in Section 7.7) still applies approximately
to this setting. However, the main advantage of orthogonal weight initializa-
tion for trainability is usually induced by (approximate) dynamical isometry.
For ReLU activation functions, this is not achievable simply by initializing the
whole matrix W(l) as orthogonal (Pennington et al., 2017, 2018; Burkholz and
Dubatovka, 2019). The solution is in fact based on the same insight that enables
all current lottery ticket existence proofs for ReLUs, where the identity can be
represented by x = ϕ(x)− ϕ(−x).

As dynamical isometry can be achieved by a Jacobian that is similar to
the identity, Burkholz and Dubatovka (2019); Balduzzi et al. (2017) could
ensure perfect dynamical isometry for ReLUs by a ’looks linear‘ initializa-
tion of the weight matrix and zero biases so that the full signal is always
preserved at initialization. Effectively, each neural network layer computes
x̃(l) = ϕ

(
W (l)

0 x̃(l−1)
)
− ϕ

(
−W (l)

0 x̃(l−1)
)
, where the matrix W (l)

0 ∈ Rnl /2 ×
Rnl−1/2 is orthogonal. Extending this idea by nonzero biases corresponds, effec-
tively, to x̃(l) = ϕ

(
W (l)

0 x̃(l−1) + bl

)
− ϕ

(
−W (l)

0 x̃(l−1) − bl

)
, where the matrix

W (l)
0 ∈ Rnl /2 ×Rnl−1/2. Concretely, we define

W(l) =

[
W(l)

0 −W(l)
0

−W(l)
0 W(l)

0

]
,

b(l) =
[

b(l)0 −b(l)0

]
for orthogonal, nonzero bias initialization with b(l)

0 ∼ N
(

0, σ2
b,l I
)
indepen-

dently from the weights. Note that each entry of the weight matrix is again
distributed as w(l)

ij ∼ N (0, 2/nl) as in case of He initialization.
How shouldwe choose the variance σ2

b,l of the biases? Similarly to Lemma7.3,
we can derive the variance of the output signal as

E
(
∥ f (x0)∥2

2

)
=
∥∥∥x(0)

∥∥∥2

2
+

L

∑
l=1

σ2
b,l

nl
2

.

Initially, the additional ∑L
l=1 σ2

b,l
nl
2 is easier to control than in Lemma 7.3, exactly

because the weights do not scale the biases randomly. Note that we could
improve this further and initialize the bias also dependent on the weights
and make them cancel out to achieve again perfect dynamical isometry at
initialization and E

(
|| f (x0)||22

)
= ||x(0)||22. However, this would depend on a

carefully chosen dependence between weights and biases that gets destroyed
during training and/or pruning. For that reason, we still assume a situation
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(a) Target
network f

(b) Mother network f0 (c) Strong lottery ticket fϵ

Figure 7.3: Existence proof network construction. (a) Two subsequent layers li, li−1 of the
target network f of depth L. (b) A mother network f0 of depth 2L, where intermediate
layers with degree-one nodes are squeezed in between any pair of subsequent layers. The
size of this layer is determined by the reduction on the subset sum problem. Bold neurons
and connections are used to approximate w∗ of the target f and the bias of the neurons
in li of f . (c) Lottery ticket fϵ obtained from the mother network by pruning connections
(dashed lines).

similar to Lemma 7.3 and initialize σb,l = ∏l
m=1 σw,m. This case is also supported

(at least approximately) by our lottery ticket existence proof and respects the
scaling of parameters as outlined in Lemma 7.2.

With the trainability of randomly initialized networks, we have fulfilled the
first criterion of a good initialization proposal for nonzero biases. The second
criterion, the existence of lottery tickets, is discussed in the next section.

7.7 existence of tickets with nonzero biases
Proofs of the existence of lottery tickets have derived sufficient conditions under
which pruning algorithms should have a good chance to find a winning ticket.

The first proof of the strong lottery ticket hypothesis (Malach et al., 2020)
has shown that a weight-bounded deep neural target network of depth L and
width n with ReLU activation functions is contained up to error ϵ with high
probability in a larger deep neural network of double the depth of the target
network, i.e., 2L. Their strong requirement on the width of the large network to
be of polynomial order O(n5L2/ϵ2) or, under additional sparsity assumptions,
O(n2L2/ϵ2), was subsequently improved to a logarithmic dependency of the
form O(n2 log(nL)/ϵ) for weights that follow an unusual hyperbolic distribu-
tion (Pensia et al., 2020) and O(n log(nL/ϵ)) for uniformly distributed weights
(Orseau et al., 2020). The improvement is achieved by the insight that many
different parametrizations exist that can compute almost the same function as
the target network. All proofs have in common that two neural network layers
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are needed to approximate a neuron ϕ(wT x), which explains the 2L depth
requirement.

7.7.1 slth with nonzero bias initializations
So far, all of these works assume that the target network has zero biases. This
limits significantly the class of functions that we can hope to learn by pruning
alone. To extend the existence proofs, the first question that we have to answer
is: How does the error propagate through a network with nonzero biases?
Similarly to Lemma 1 in (Pensia et al., 2020), we can deduce from the answer
how close each parameter θϵ needs to be to the target one in order to guarantee
an ϵ approximation of the entire network.
Lemma 7.4 (Approximation propagation). Assume ϵ > 0 and let the target
network f and its approximation fϵ have the same architecture. If every parameter θ of
f and corresponding θϵ of fϵ in layer l fulfils |θϵ − θ| ≤ ϵl for

ϵl := ϵ

(
L
√

nlkl,max

(
1 + sup

x∈[−1,1]n0

∥∥∥x(l)
∥∥∥

1

)
L

∏
k=l+1

(∥∥∥W (l)
∥∥∥

∞
+ ϵ/L

))−1

,

then it follows that ∥ f − fϵ∥∞ ≤ ϵ.

Proof. Our objective is to bound ∥ f − fϵ∥∞ ≤ ϵ. We repeatedly use the trian-
gle inequality and that |ϕ(x)− ϕ(y)| ≤ |x − y| is Lipschitz continuous with
Lipschitz constant 1 to derive∥∥∥x(l) − x(l)

ϵ

∥∥∥
2

≤
∥∥∥h(l) − h(l)

ϵ

∥∥∥
2

=
∥∥∥W(l)x(l−1) + b(l) −W(l)

ϵ x(l−1)
ϵ + b(l)

ϵ

∥∥∥
2

=

∥∥∥∥∥∥W(l)x(l−1) + b(l) −W(l)
ϵ x(l−1)

ϵ + b(l)
ϵ + W(l)

ϵ x(l−1) −W(l)
ϵ x(l−1)︸ ︷︷ ︸

=0

∥∥∥∥∥∥
2

≤
∥∥∥(W(l) −W(l)

ϵ

)
x(l−1)

∥∥∥
2
+
∥∥∥b(l) − b(l)

ϵ

∥∥∥
2
+
∥∥∥W(l)

ϵ

(
x(l−1) − x(l−1)

ϵ

)∥∥∥
2

≤ ϵl
√

ml sup
x∈[−1,1]n0

∥∥∥x(l−1)
∥∥∥

1
+ ϵl
√

ml +
(∥∥∥W(l)

∥∥∥
∞
+ ϵl

) ∥∥∥(x(l−1) − x(l−1)
ϵ

)∥∥∥
2

with ϵl ≤ ϵ/L. ml denotes the number of parameters in layer l that are smaller
than ϵl and ∥W∥∞ = maxi,j |wi,j|. Note that ml ≤ nlkl,max. The last inequality
follows from the fact that all entries of the matrix

(
W(l) −W(l)

ϵ

)
and of the
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vector (b(l) − b(l)
ϵ ) are bounded by ϵl and maximally ml of these entries are

nonzero. Furthermore,
∥∥∥W(l)

ϵ

∥∥∥
∞
≤
(∥∥∥W(l)

∥∥∥
∞
+ ϵl

)
follows again from the

fact that each entry of
(

W(l) −W(l)
ϵ

)
is bounded by ϵl .

Thus, at the last layer it holds for all x ∈ [−1, 1]n0 that

∥ f (x)− fϵ(x)∥2

=
∥∥∥x(L) − x(L)

ϵ

∥∥∥
2

≤
L

∑
l=1

ϵl
√

ml

(
1 + sup

x∈[−1,1]n0

∥∥∥x(l−1)
∥∥∥

1

)
L

∏
k=l+1

(∥∥∥W (l)
∥∥∥

∞
+ ϵ/L

)
≤ L

ϵ

L
= ϵ,

using the definition of ϵl as given in the theorem statement in the last step.

Note that large weights in every layer could imply that ϵl is exponential in
L. However, if we assume bounded weights so that ||W (l)||∞ ≤ 1, we receive a
moderate scaling of ϵl = Cϵ/L, where C depends on the maximum degree of
the neurons kl,max ≤ nl−1 + 1 and the size of the biases via supx∈[−1,1]n0 ||x(l)||1.
As we expect each output component of the target network f to be in [0, 1],
reasonable choices of biases lead usually to supx∈[−1,1]n0 ||x(l)||1 ≤ nl−1 and
thus ϵl = ϵ/(L(nl + 1)(nl−1 + 1)e). Otherwise, we could rescale all parameters
and thus the output to ensure desirable scaling. However, this would come at
the expense of adapting the allowed error ϵ accordingly.

Next, we extend the proof of the existence of lottery tickets in Orseau et al.
(2020) to nonzero biases. In addition, we generalize it to domains [−1, 1]n0

(instead of balls with radius 1) and present sharper width estimates based on
the in-degrees of neurons instead of the full target network width nl . The big ad-
vantage of our initialization scheme is that we can directly transfer an approach
that would assume uniformly distributed parameters in θi ∼ U([−1, 1]).

Theorem 7.1 (Existence of lottery ticket). Assume that ϵ, δ ∈ (0, 1) and a tar-
get network f with depth L and architecture n̄ are given. Each weight and bias of
a larger deep neural network f0 with depth 2L and architecture n̄0 is initialized in-
dependently, uniformly at random according to w(l)

ij ∼ U([−σw,l , σw,l ]) and b(l)i ∼
U([−∏l

k=1 σw,k, ∏l
k=1 σw,k]). Then, with probability at least 1− δ, f0 contains an

approximation fϵ ⊂ f0 so that ∥ f − λ fϵ∥∞ ≤ ϵ if for l = 1, ..., L

n2l−1,0 = Cnl−1 log
(

kl−1,maxnl

min {ϵl , δ/L}

)
and n2l,0 = nl ,
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where ϵl is given by Lemma 7.4 and the output is scaled by λ = ∏2L
l=1 σ−1

w,l .

Asimilar statement holds also for normal distributions, i.e., w(l)
ij ∼ N

(
0, σ2

w,l

)
and b(l)i ∼ N

(
0, ∏l

k=1 σ2
w,k

)
. Note that, essentially, we receive the same scaling

as in case of zero biases. Only the maximum degree kl−1,max is modified by
+1. The reason is that we can treat each bias as an additional weight in the
construction of a ticket. We provide the full proof in the appendix and restrict
ourselves in the following to the description of the main idea.
Proof Idea. Layer 2l − 1 and 2l of the large network serve the representation of
the neurons in Layer l of the target network, e.g, neuron ϕ

(
∑j wijx

(l−1)
j + bi

)
.

By using the identity x = ϕ(x)−ϕ(−x) for ReLUs, we can express the preactiva-
tion also as ∑j ϕ

(
wijx

(l−1)
j

)
− ϕ

(
−wijx

(l−1)
j

)
+ sign(bi)ϕ(|bi|). We provide a

visualization of this construction in Fig. 7.3, where we highlight the construction
for a single weight and neuron in the target, through one term ϕ

(
wijx

(l−1)
j

)
and bias ϕ(|b(l−1)

i |), which are each approximated through a subset sum con-
struction of randomly initialized weights and biases in f0. The width of the
intermediate layers needs to be only of order log(1/ϵ) according to results
by Lueker (1998) on the subset sum problem, which can be applied to find-
ing lottery tickets (Pensia et al., 2020). Accordingly, with probability at least
1− δ, for each parameter θ (i.e., wij, −wij, or |bi|) exists a subset S of n uni-
formly distributed parameters Xi ∼ U([−1, 1]) so that |θ − ∑i∈S Xi| < ϵl for
n ≥ C log 1/ min{ϵl , δ}. Repeating this argument in combination with union
bounds over ki parameters per neuron, all neurons in a layer, and all layers,
leads to the desired results. While this construction is purely theoretical in
nature, it turns out that the mother network and approximation of the target
have properties that are comparable to real world lottery ticket settings.

7.7.2 proof construction – from theory to practice
We, here, conduct a study on the efficacy of the existence proof construction
with respect to the networks f0 and fϵ, the code is available online.1 In particular,
we show that the proof construction of mother networks f0 of Thm. 7.1 admits
for efficient approximations fϵ for a given target network f . As a case study, we
consider a LeNet (LeCun et al., 1998) architecture of the form 784 → 300 →
100→ 10, where each fully connected layer is followed by ReLU activations. We
train such a He initialized LeNet by Iterative Magnitude Pruning (Frankle and
Carbin, 2019) on MNIST, which results in a small target network with around

1https://github.com/RelationalML/NonZeroBiases/releases/tag/
nonzerobias

https://github.com/RelationalML/NonZeroBiases/releases/tag/nonzerobias
https://github.com/RelationalML/NonZeroBiases/releases/tag/nonzerobias
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Initialization % Acc. # Param. Sparsity
Target f He 97.96 18697
Appr. fϵ Orthogonal 97.98 106192 0.0027
Appr. fϵ Uniform 97.94 112157 0.0029
Appr. fϵ Normal 97.96 121153 0.0031

Table 7.1: Constructed target networks. Results of constructing lottery tickets to a pruned
target network from LeNet on MNIST. Sparsity refers to the sparsity of approximations fϵ

with respect to the mother network f0.

20k parameters, and an accuracy of 97.96. We consider the resulting ticket as
target network f .

As detailed in the Theorem 7.1, each layer in the target network can be
approximated by two subsequent layers in a mother network f0 of depth 2L.
Our approximation to the target lottery ticket is a subnetwork of this mother
network, fϵ ⊂ f0. We construct each layer of fϵ by solving the subset sum
problem neuron-wise, aiming to find the smallest subset of weights in f0 that
allow to approximate eachweight in f , as implied by the proof. Our experiments
verify that the constructed SLTs indeed do as well as the target network on
MNIST data for our proposed nonzero initialization schemes, including a ’looks
linear’ orthogonal initialization (see Tab. 7.1). Furthermore, these tickets are of
great sparsity with respect to the constructed mother network and only a factor
of ∼ 6 larger than the (real) target, providing evidence that extremely sparse
solutions exist in large, overparametrized neural networks. Finally, although
purely theoretical, the construction used within the proof leads to a mother
network f0 of architecture 784→ 31400→ 300→ 12040→ 100→ 4040→ 10,
which is well within the size of modern neural networks that are considered
for pruning.

7.8 parameter scaling during pruning
According to Sec. 7.6.1 and our existence proof, we expect that the output of
a pruned network usually does not match the right target range. The lottery
ticket fϵ needs to be scaled by a factor λ > 0 (and usually λ > 1) . In the
existence proof, λ = ∏L

m=1 σw,m but this factor can be vanishing small for very
deep networks. Furthermore, in many applications we do not know the exact
size the of the network parameters and the output might also not be restricted
to [−1, 1]. For these reasons, we propose to learn an appropriate output scaling
factor λ > 0 that successively adapts the lottery ticket fϵ after each pruning
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epoch. For regression minimizing the mean squared error with respect to N
data samples with targets yi,s, this scalar can be easily computed as

λmse =

(
N

∑
s=1

nL

∑
i=1

yi,sx(L)
i,s

)
/

(
N

∑
s=1

nL

∑
i=1

x(L)
i,s x(L)

i,s

)
.

In case of a different loss L, we only have to solve a one-dimensional optimiza-
tion problem of the form

min
λ>0
L(y, λx(L))

which can, for instance, be achieved with SGD. To distribute the scaling factor
on the different layers, we use again the parameter transformation in Lemma 7.2

w(l)
ij = w(l)

ij λ1/L, b(l)i = b(l)i λl/L,

which ensures that the overall output of the neural network is scaled by λ.
Combining this parameter rescaling for tickets found in each epochwith the

SLT algorithm Edge-Popup, along with a slow annealing of the target sparsity
throughout the course of pruning, we obtain Edge-Popup-scaled, for which
we report pseudocode in Alg. A.1. As we show next, this parameter rescaling
allows us to obtain much sparser lottery tickets than pure pruning.

7.8.1 a synthetic case study

We compare Edge-Popupwith annealing of target sparsities against a version
with scaling Edge-Popup-scaled for networks initialized with and without
biases. On two synthetic benchmarks, which turn out to be challenging settings
for SLT pruning, we evaluate these methods for both He as well as ‘looks-
linear’ orthogonal initialization with and without nonzero bias extensions. All
experiments are carried out on commodity hardware. Edge-popup training was
conducted in the default way suggested by the original authors by SGD with
momentum of 0.9 and weight decay 0.0005, combined with cosine annealing
of the learning rate starting from 0.1. We train for e = 10 epochs and ea = 5
annealing epochs in case of the shifted ReLU example and ea = 20 annealing
epochs in case of the ellipse for sparsity levels 0.01, 0.05. In case of higher
sparsity levels, ea = 10 annealing epochs are sufficient. During annealing, we
slowly reduce the sparsity over time by ρi/ea , where ρ is the desired network
sparsity, and i is the current epoch. We used a batch size of 32 in all experiments
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Figure 7.4: Strong lottery ticket pruning with Edge-Popup. Shown are results for
discovered tickets of different target sparsities and initialization schemes obtained through
Edge-Popup and Edge-Popup-scaled. We report the mean and obtained minimum
and maximum performance on the validation data as error bars across 5 repetitions.
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and report mean based on 5 repetitions. All code and data is publicly available.2

A Shifted ReLU

First, we consider data of a regression problem that follows a shifted ReLU func-
tion ϕb(x) = max(0, x + b) with b = 0.5. We thus draw N = 104 iid samples
xi ∼ U[−1, 1] with targets yi = ϕ(xi + 0.5) + ni with independent Gaussian
noise ni ∼ N (0, 0.012). For a network of depth 5, where each layer is of width
100, we retrieve strong lottery tickets at target sparsities {0.002, 0.01, 0.05, 0.1, 0.2}.
We report the mean squared error (MSE) of the strong tickets on the test set in
Fig. 7.4.

We observe that, consistently, the nonzero bias initialized networks enable
the recovery of strong tickets with orders of magnitude smaller errors than
in networks with zero-initialized bias. Furthermore, Edge-Popup-scaledwith
proper rescaling of parameters consistently outperforms the vanilla (unscaled)
algorithm for extreme sparsities. At lower sparsity levels, rescaled Edge-Popup
allows to retrieve well performing tickets that match the low error of their more
dense counterparts, whereas vanilla Edge-Popup fails to find good tickets.

The Onion Slice

Next, we consider a classification problem, where points are arranged in elliptic
rings, and each point is labeled by the ring it appears in. N = 104 inputs are
again sampled iid from uniform distributions x1, x2 ∼ U[−1, 1] and one of four
labels is assigned as target based on the value y = 0.5(x1− 0.3)2 + 1.2(x2 + 0.5)2.
Class boundaries are defined as (0.2, 0.5, 0.7), while noise is introduced by
flipping a label to a neighboring class with probability 0.01.

For networks of depth 5 and width 100, we retrieve strong lottery tickets at
target sparsities {0.01, 0.05, 0.1, 0.2, 0.5}. We report the accuracy of tickets on
the test set in Fig. 7.4. Tickets pruned from networks initialized with nonzero
biases outperform their zero-bias counterparts. An exception to this rule is
given by the unscaled Edge-Popup for sparsity 0.01, where both initialization
approaches (with nonzero and zero biases) show unsatisfactory performance.
In contrast, the rescaled Edge-Popup with nonzero bias He initialization is still
able to retrieve extremely sparse tickets with more than 10 accuracy points
margin to all other approaches.

2https://github.com/RelationalML/NonZeroBiases/releases/tag/
nonzerobias

https://github.com/RelationalML/NonZeroBiases/releases/tag/nonzerobias
https://github.com/RelationalML/NonZeroBiases/releases/tag/nonzerobias


149 Strong pruning for lottery tickets with nonzero bias

7.9 discussion & conclusion
Strong lottery tickets, as currently defined in the literature, do not lend them-
selves as universal function approximators due to the limitation to the standard
zero bias initialization schemes for neural networks. We hence transferred the
strong lottery ticket hypothesis to neural networks with potentially nonzero
initial biases and proved the existence of strong lottery tickets under realistic
conditions with respect to the network width and initialization scheme. This
generalization equips training by pruning for strong lottery tickets with the
universal approximation property.

Along with the proof, we have extended standard initialization schemes to
nonzero biases and formally shown that our proposal defines well trainable
neural networks, while they support the existence of strong lottery tickets.
These initialization schemes include the ’looks-linear’ approach (Burkholz and
Dubatovka, 2019; Balduzzi et al., 2017) that ensures initial dynamical isometry
of ReLU networks, which often leads to favorable training properties.

Based on our theoretical insights, we have derived a parameter scaling
strategy that enables pruning algorithms to find sparser strong lottery tickets.
We have extended the Edge-Popup algorithm (Ramanujan et al., 2020) for strong
lottery ticket pruning accordingly and demonstrated the utility of our innova-
tions on two case studies. For imaging data, our nonzero bias initializations
are well trainable, but the current generation of algorithms lacks the ability
to draw an advantage over zero bias initialized networks (see App. A.6.4),
likely due to their parameter-inefficacy (Fischer and Burkholz, 2022). With the
development of pruning algorithms that can find highly sparse strong lottery
tickets, we anticipate that nonzero bias initializations are important for lottery
ticket pruning in theory as well as practice. In the next chapter, we leverage our
nonzero bias initializations to construct and hide ground truth lottery tickets to
answer fundamental question about current LTH algorithms.
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8
PLANT ’N ’ SEEK : CAN
YOU F IND THE WINNING
TICKET?

8.1 introduction
The lottery ticket hypothesis bears the promise of resource efficient training
and deployment of highly performant neural networks. The existence of strong
LTs, which do not need any further training at all, has been proven formally for
networks without (Malach et al., 2020; Pensia et al., 2020; Orseau et al., 2020)
and with potentially nonzero biases (Fischer et al., 2021a). While these types
of proofs show existence in realistic settings, the sparsity of the constructed
tickets is likely not optimal, as they represent a target parameter by multiple
neurons of degree 1. The construction and proof of the generalized strong LT
hypothesis raises two question – is the suboptimal sparsity merely an artifact
of existence proofs or a general limitation of the pruning approach? And,
if very sparse tickets exist, are current algorithms able to find them or are
further improvements needed to achieve effective network compression? These
questions cannot be answered by comparing LT pruning algorithms solely on
standard benchmark datasets (Frankle et al., 2021), but demand the comparison
with known ground truth LTs. The lack thereof was raised as an issue by Frankle
et al. (2021). To fill this gap and generate baselines with known ground truth,
we here propose an algorithm to plant and hide arbitrary winning tickets in

This chapter is based on Fischer and Burkholz (2022).
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randomly initialized NNs and construct sparse tickets that reflect common
challenges in machine learning. We use this experimental set-up to compare
state-of-the-art pruning algorithms designed to search for lottery tickets.

Our results indicate that state-of-the-art methods achieve only sub-optimal
sparsity levels. This suggests that previous challenges to identify highly sparse
winning tickets as subnetworks of randomly initialized dense networks (Frankle
et al., 2020; Ramanujan et al., 2020) can be explained by algorithmic limitations
rather than fundamental problems with LT existence. In our experiments, the
qualitative trends how methods compare to each other are consistent with
previous results on image classification tasks (Tanaka et al., 2020; Frankle et al.,
2021) indicating that our experimental set-up exposes pruning algorithms to
realistic challenges. In addition, we identify an opportunity to improve state-of-
the-art pruning algorithms in order to find strong LTs of better sparsity. Our
proposed planting framework will enable the evaluation of future progress in
this direction.

8.2 related work
We gave an overview over the relevant LT pruning literature in the last chap-
ter and, here, briefly discuss literature in the broader scope of finding small,
well performing NNs. Apart from LT pruning, different approaches have been
developed to reduce computational resources and perform structure learning,
including dynamic sparse training (Evci et al., 2020; Liu et al., 2021b), adap-
tations (Frankle et al., 2020; Renda et al., 2020; Liu et al., 2021a) of Iterative
Magnitude Pruning (IMP) (Han et al., 2015; Frankle and Carbin, 2019) and
sparse regularization techniques (Weigend et al., 1991; Savarese et al., 2020).
As these approaches do not identify LTs as subnetworks of randomly initialized
NNs, they do not rely on the existence of planted tickets and are therefore
beyond the scope of our experimental analysis. However, the ground truth
tickets which we derived for planting could still provide an interesting baseline
to explore whether sparse training of deep NNs can identify extremely sparse,
hand designed NN architectures.

Dense NNs are known to find NN representations that are less sparse than
hand crafted architectures (Denker et al., 1987), yet, the the explicit objective
of sparse training is to address this issue. We provide the tools to evaluate
progress in this direction by planting known ticket architectures. While the
ultimate goal of deep learning is to solve problems with otherwise unknown
solutions such as image classification (Frankle et al., 2021) or protein structure
prediction (Tunyasuvunakool et al., 2021), the design of NN architectures for
human solvable problems has already in the past provided important insights
into NN properties, including universal approximation (Scarselli and Tsoi, 1998;
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Yarotsky, 2018) or the importance of algorithmic alignment (Xu et al., 2020).
NNs that compute polynomials (Scarselli and Tsoi, 1998; Yarotsky, 2018), xor
gates (Rumelhart et al., 1986), discrete fast fourier transformation (Velik, 2008),
symmetry groups (Sejnowski et al., 1986), general piecewise linear functions
(Arora et al., 2018), or argmax (Xu et al., 2020) could also present interesting
candidates for planting in future investigations.

8.3 existence of strong lottery tickets
Pruning algorithms that search for strong lottery tickets achieve sparsity levels
of around 0.5 but not substantially smaller if the resulting models should be
able to compete with the accuracy of the entire, trained mother network (Ra-
manujan et al., 2020). Proofs of the existence of strong lottery tickets give no
clear indication whether this is an algorithmic shortcoming, which could be
overcome, or a fundamental limitation of pruning randomly initialized net-
works alone. The reason is that existing proofs (Malach et al., 2020; Pensia
et al., 2020; Orseau et al., 2020; Fischer et al., 2021a) guarantee high existence
probabilities of subnetworks that have double the depth and 2− 30 times the
width of the target network and thus non-optimal sparsity. Based on their 2L
construction, Malach et al. (2020) even went so far to conclude that training
by pruning might be computationally at least as hard as training shallower
NNs. However, it is well known that specific function classes can be approx-
imated in significantly more parameter efficient ways by deeper NNs rather
than shallower ones (Mhaskar et al., 2017; Yarotsky, 2018) and also be learned
more efficiently (Schmidt-Hieber, 2020). Thus, by leveraging its full depth, the
randomly initialized 2L deep NN might contain a much sparser strong LT than
any of the ones whose existence has been proven.

As a first step towards making claims about the existence of very sparse
representations, we therefore prove next a lower bound on the probability that
a target NN of general architecture is contained in a larger, randomly initialized
NN with the same depth as the target network. As many relevant targets have
known representations of lower sparsity than what is covered by this bound,
we will afterwards propose a planting algorithm to design experiments that
can distinguish between algorithmic and fundamental limitations of pruning
for strong LTs.

8.3.1 lower bound on existence probability
Pruning a randomly initialized NN usually finds a strong LT that is close to
a target network but does not recover the original parameters exactly. First,
we need to understand how these errors in the parameters affect the final
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network output and what error sizes are acceptable. For completeness, we
restate Lemma 7.4 discussed in the previous chapter that guarantees an ϵ
approximation of the entire network.
Lemma 8.1 (Error propagation). Assume ϵ > 0 and let the target network f
and its approximation fϵ have the same architecture. If every parameter θ of f and
corresponding θϵ of fϵ in layer l fulfils |θϵ − θ| ≤ ϵl for

ϵl := ϵ

(
L
√

nlkl,max

(
1 + sup

x∈[−1,1]n0

∥∥∥x(l)
∥∥∥

1

)
L

∏
k=l+1

(∥∥∥W (l)
∥∥∥

∞
+ ϵ/L

))−1

,

then it follows that ∥ f − fϵ∥∞ ≤ ϵ.

Respecting the allowed errors ϵl , we can next establish a lower bound on
the existence probability of a specific target network assuming standard initial-
ization schemes with necessary nonzero bias initialization. The main argument
is a union bound over matching each target neuron i (with ki parameters) with
neurons of the mother network in the corresponding layer.
Theorem 8.1 (Lower bound on existence probability). Assume that ϵ ∈ (0, 1)
and a target network f with depth L and architecture n̄ are given. Each parame-
ter of the larger deep neural network f0 with depth L and architecture n̄0 is ini-
tialized independently, uniformly at random with w(l)

ij ∼ U
([
−σ

(l)
w , σ

(l)
w

])
and

b(l)i ∼ U
([
−∏l

k=1 σ
(k)
w , ∏l

k=1 σ
(k)
w

])
. Then, f0 contains a rescaled approximation

fϵ of f with probability at least

P (∃ fϵ ⊂ f0 : ∥ f − λ fϵ∥∞ ≤ ϵ) ≥
L

∏
l=1

(
1−

nl

∑
i=1

(1− ϵ
ki
l )

nl,0

)
,

where ϵl is defined as in Eq. (7.4) and the scaling factor is given by λ = ∏L
l=1 1/σ

(l)
w .

We could obtain similar results for initially normally distributed weights
and biases, we would just have to substitute ϵl by ϵl/2. A proof is provided in
Appendix A.7.2.

Thm. 8.1 provides us with an intuition for what kind of targets we can
expect to find. First of all, it tells us that a large number of nodes in a layer,
and more importantly nodes with large in-degree ki, render the existence of
a specific network architecture as strong LT less likely. Each additional layer
reduces the probability further. Moreover, we observe that the last layer is a
bottleneck, as it usually has the same width as in the large initial network. A
higher width of the mother network is clearly advantageous. Note that we
could turn this theorem also into a lower bound on the width nl,0 of the larger
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Figure 8.1: Benchmark data. Shown are samples from the Circle (left) and Helix (right)
task.

mother network as it is common in existence proofs. Fig. 11 in Appendix A.7.2
supports this intuition with the visualization of an example. Assuming the
same width nl,0 = n0 and nl = n across layers, we would receive roughly
n0 ≥ C log(Ln/δ)maxl

(
ϵ−kmax

l

)
. Even though it is polynomial in the relevant

parameters, it only provides a practical existence proof for extremely sparse
architectures. We therefore have to resort to planting to answer fundamental
questions about abilities of pruning algorithms. In fact, the proof of the above
theorem inspires the planting algorithm introduced next.

8.3.2 planting strong lottery tickets
As we have discussed, the LTs that exist with high probability rarely fulfill
criteria of interest, such as low sparsity, favorable generalization properties, or
adversarial robustness. We therefore propose to plant winning tickets with
such desirable properties within randomly initialized neural networks. This
approach offers the flexibility to design experiments of different degrees of
difficulty and generate training and test data based on a ground truth.

A simple approach to planting a target f in a network f0 would be to select
a random subset of neurons in each layer and set them to their target values
and otherwise randomly initialize the rest. This, however, would usually lead
to a trivially detectable ticket because the target parameters are much larger
than the initialized parameters of the larger mother network. The reason is that
both networks produce output that lies in a similar range (ideally the one of
the training labels). Yet, the target network has to achieve this by adding up a
much smaller number of parameters. A different perspective on the same issue



8.3. Existence of strong lottery tickets 156

is that a pruned lottery ticket needs to be scaled up to compensate for the lost
parameters. Note the scaling factor λ in Theorem 8.1 for that purpose. Thus,
at least, we would need to scale the target parameters appropriately during
planting. To cover natural degrees of freedom in ReLU networks, we instead
allow for different neuron-wise scaling factors λj > 0. Note that such a scaling
can be compensated by rescaling of parameters in the next layer, as

x(l+1)
k = ϕ

[
∑

i
(w(l+1)

kj /λj)ϕ

(
∑

i
(w(l)

ji λj)x(l−1)
i + (b(l)j λj)

)
+ b(l+1)

k

]
.

To apply only a small change to the randommother network during planting, we
choose λj together with matching target neurons and mother network neurons.
We search in each layer of f0 for suitable neurons that best match a target neuron
in f , starting from the first hidden layer. Given that we matched all neurons
in layer l − 1, we try to establish their connections to neurons in the current
layer l. A best match is decided by minimizing the l2-distance to its potential
input parameters thereby adjusting for an optimal scaling factor. For example,
let neuron i in Layer l of the target f have nonzero parameters (b, w) that point
to already matched neurons in Layer l − 1. Each of the matched neurons j ′

in Layer l − 1 of f0 has been previously associated to a scaling factor λold,j ′

such that the corrected θ = (b, wλold) parameters would compute the correct
neuron in f0. In Layer l of f0, each neuron j that we have not matched yet could
be a potential match for i. Let the corresponding parameters of j be m. The
match quality between i and j is assessed by

qθ(m) = ∥θ− λ(m)m∥2 ,

where λ(m) = θT m/ ∥m∥2
2 is the optimal scaling factor. The best matching

parameters m∗ = argminm qθ(m) are replaced by rescaled target parameters
θ/λ(m∗) in f0 and we remember the scaling factor λ(m∗) to consider matches
of neurons in Layer l + 1. Note that this rescaling is necessary to ensure that
the neuron is properly hidden and attains similar values as other non-planted
neurons in f0. We provide pseudocode as Algorithm 8.1.

Matching neurons thoroughly can be computational resource intensive, if
the target network f consists of a high number of neurons, because each neuron
needs to be compared with most of the neurons in the mother network or at
least a significant share of candidate neurons. A fast alternative is to pick a
random neuron in the mother network as a match and choose an appropriate
scaling factor (see Algorithm 8.2).

We use this algorithm to plant the following three exemplary targets that
expose pruning algorithms to different but common challenges related to high
sparsity.
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Algorithm 8.1: Planting
input : target f , larger neural network f0
output : f0 with planted f ( f ⊂ f0), output scaling factors λ

1 Initialize λold = [1]n0 // scaling factors for input are 1
2 for l = 1 to L− 1 do
3 for all neurons i of f in Layer l do
4 θ := (b, wλold) // scaled parameters of neuron i in f
5 m∗ = argminm qθ(m) // find best match for i in f0
6 Replace m∗ in f0 by θ/λ(m∗)
7 λi = λ(m∗) // remember scaling factor of i in f0

8 end
9 λold = λ

10 end
11 return f0, λ

Construction of targets for planting
Based on the proposed planting algorithm, we generate sparse tickets for three
problems that expose general pruning algorithms to common challenges in
machine learning: a basic classification problem, regression problem, and
manifold learning problem. On purpose, these are designed to avoid high
computational burdens and, most importantly, have sparse neural network
architectures with variable depth.

ReLU unit Apart from a trivial function f (x) = 0, a univariate ReLU unit
f (x) = ϕ(x) = max(x, 0) is the most sparse lottery ticket that is possible.
Assuming a mother network f0 of depth L, a ReLU can be implemented with a
single neuron per layer. Any path through the network with positive weights
∏L

l=1 ϕ(wil−1il x) defines a ReLU with scaling factor λ = ∏L
l=1 wil−1il for indices

il in Layer l with wil−1il > 0.
Note that each random path fulfills this criterion with probability 0.5L so

that even random pruning could have a considerable chance to find an optimal
ticket. A winning path exists with probability ∏L

l=1(1− 0.5nl,0), which is almost
1 even in small mother networks. Thus, planting is not really necessary in this
case. Since not all pruning algorithms set biases to zero, however, we still set all
randomly initialized biases along a winning path to zero to make the problem
easier.

As we see in experiments, despite this simplification, pruning algorithms
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Algorithm 8.2: Faster planting by random matching
input : target f , larger neural network f0
output : f0 with planted f ( f ⊂ f0), output scaling factors λ

1 Initialize λold = [1]n0 // scaling factors for input are 1
2 for l = 1 to L− 1 do
3 for all neurons i of f in Layer l do
4 θ := (b, wλold) // scaled parameters of i in f
5 m∗ = parameters of random unmatched neuron in f0
6 Replace m∗ in f0 by θ/λ(m∗)
7 λi = λ(m∗) // remember scaling factor of i in f0

8 end
9 λold = λ;

10 end
11 return f0, λ

are severely challenged in finding an optimally sparse ticket. Even though basic,
a ReLU unit seems to be a suitable benchmark that is a common building block
of other tickets.

Circle For simplicity, we restrict ourselves to a 4-class classification problem
with 2-dimensional input. The output is therefore 4-dimensional, where each
output unit fc(x) corresponds to the probability fc(x) that an input (x1, x2) ∈
[−1, 1]2 belongs to the corresponding class c with c = 0, 1, 2, 3. As common, this
probability is computed assuming softmax activation functions in the last layer.
The decision boundaries are defined in the last layer based on inputs of the form
g(x1, x2). The role of the first layers with ReLU activation functions of a Circle
target f is to compute the function g(x1, x2) = x2

1 + x2
2, which is fundamental to

many problems, in particular to the computation of radial symmetric functions.
The high symmetry of g(x1, x2) allows us to construct a particularly sparse

representation bymirroring data points along axes as visualized in Figure 8.2 (a).
With the first two layers (l = 1, 2), we map each input vector (x1, x2) to the
first quadrant by defining x(1)1 = ϕ (x1) + ϕ (−x1) and x(1)2 = ϕ (x2) + ϕ (−x2).
Thus, Layer l = 1 consists of 4 neurons, i.e., x(1)1 = ϕ (x1), x(1)2 = ϕ (−x1),
x(1)3 = ϕ (x2), x(1)4 = ϕ (−x2), while Layer l = 2 consists of 2 neurons, i.e.,
x(2)1 = ϕ

(
x(1)1 + x(1)2

)
, x(2)2 = ϕ

(
x(1)3 + x(1)4

)
.

Each consecutive layer l mirrors the previous layer (x(l−1)
1 , x(l−1)

2 ) along



159 Plant ’n’ Seek: Can You Find the Winning Ticket?

the axis a(l) = (cos(π/2l−1), sin(π/2l−1)). It achieves this by mapping the
neurons of the previous layer to three neurons, one representing the component
of x(l−1) that is parallel to a(l), and two neurons that each represent the positive
or negative signal component that is perpendicular to the axis a(l). The last
two neurons could be added to a single neuron in the next layer if we want
to decrease the width of some layers to 2 in between. To take more advantage
of the allowed depth L, we map three neurons immediately to the next three
neurons that represent the mirroring by defining

x(l)1 = ϕ
(

a(l)1 x(l−1)
1 + a(l)2 x(l−1)

2 − a(l)2 x(l−1)
3

)
,

x(l)2 = ϕ
(

a(l)2 x(l−1)
1 − a(l)1 x(l−1)

2 + a(l)1 x(l−1)
3

)
,

x(l)3 = ϕ(−h(l)2 ).

If the depth of our network is high enough, we could use the parallel com-
ponent x(l)1 as estimate of the radius of the input. To enable higher precision
for networks of smaller depth, however, we also apply to each remaining com-
ponent a piecewise linear approximation of the univariate function h(x) = x2

and add those two components. Note that any univariate function can be easily
approximated by a neural network of depth L = 2. The precise approach is
explained in our next example.

Helix To test the ability of pruning algorithms to detect lower dimensional
submanifolds, we approximate a helix with three output coordinates f1(x) =
(5π + 3πx) ∗ cos(5π + 3πx)/(8π), f2(x) = (5π + 3πx) ∗ sin(5π + 3πx)/(8π),
and f3(x) = (5π + 3πx)/(8π) for 1-dimensional input x ∈ [−1, 1]. As we have
observed that many pruning algorithms have the tendency to keep a higher
number of neurons closer to the input (and sometimes also the output layer),
we construct a ticket that has similar properties. This should ease the task for
pruning algorithms to find the planted winning ticket.

Each of the components fi(x) is an univariate function that we can approx-
imate by an univariate deep neural network ni(x) that encodes a piece-wise
linear function (see Figure 8.2 (c) for an explanation). As neural networks
are generally overparameterized, we have multiple options to represent ni(x).
For simplicity, we write it as composition of the identity with a depth L = 2
univariate network gi(x) of width N in the hidden layer, which can be written
as

gi(x) =
N

∑
j=1

a(i)j ϕ(pj(x− sj)) + b(i),
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where the signs pj ∈ {−1, 1} can be chosen arbitrarily (and we chose alter-
nating signs to create diversity). The knots s = (sj)j∈[N] mark the boundaries
of the linear regions and a = (a(i)j )j∈[N] indicate changes in slopes m(i)

j =(
fi(sj+1)− f (sj)

)
/
(
sj+1 − sj

) (with sN+1 := sN + ϵ) from one linear region
to the next. a(i)j = m(i)

j − m(i)
j−1 for 2 ≤ i ≤ N, a(i)1 = m(i)

1 , and b(i) =

fi(s1) − ∑N
j=1 a(i)j ϕ(pj(s1 − sj)). Note that only the outer parameters a(i)j are

function specific, while the inner parameters pj and sj can be shared among
the functions fi.

We thus create a helix ticket by first mapping the input x ∈ [−1, 1] to [0, 2].
This allows us to represent the identity in the later layers by ϕ(x) = x, as
x ≥ 0. We can always compensate for the bias +1 by subtracting a bias −1
when needed. f3(x) = (5π + 3πx)/(8π) can therefore be represented by a
path from the input to the output that only contains a single neuron per layer.
We concatenate this path with a neural network that consists of layers that
approximate f1(x) and f2(x) and otherwise identity functions. At Layer l = 2,
this network creates neurons of the form ϕ(pj(x− sj)), where the knots sj mark
an equidistant grid of [0, 2]. Layer l = 3 creates two neurons, one corresponding
to x(2)1 = f1(x) and one corresponding to x(2)2 = f2(x). These can be computed
by linear combination of the previous neurons using the parameters a(i)j and
b(i). All the remaining layers basically encode the identity.

Strong tickets based on trained neural networks Even though we cannot
expect to construct sparse baseline solutions for benchmark image classification
tasks, we can leverage the fact that weak LTs can currently be identified at
lower sparsity levels than strong LTs (see our experiments). To answer the
question whether state-of-the-art pruning algorithms can find sparse strong
LTs in the setting of standard benchmark data, we plant a trained weak LT in
a randomly initialized (VGG like) neural network. Note that the proposed
pruning algorithm can also be applied to convolutional layers in addition to
fully connected ones.

8.4 experiments
We utilize our planting framework to answer the question whether LT pruning
algorithms that identify subnetworks of randomly initialized neural networks
are able to identify highly sparse LTs, ideally in a strong sense but we also
analyze weak LTs. Hypothetically, it could be possible that pruning algorithms
for weak LTs only have to resort to training the identified LT because a highly
sparse strong LT does not exist with high probability. Yet, if we guarantee the
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Layer 1-2 Layer 3

Layer 4

Input

(a) Mirroring along axes for Circle. (b) Circle architecture with depth L = 5.

sj

slope m
j

(c) Univariate function approximation. (d) Helix architecture with depth L = 5.

Figure 8.2: (a) Visualization of the first layers of Circle representing g(x1, x2) = x2
1 + x2

2.

(c) Univariate deep neural network parametrization with outer weights a(i)j = ∆mj =

mj −mj−1. (b+d) Ticket architectures, edge width is proportional to the absolute weight
value, blue indicates a negative sign, yellow a positive sign. Neurons are colored by bias
sign, gray indicates zero biases.
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existence of a sparse strong LT, the algorithms would be able to find it and
would not require further training. Similarly, if we insist on finding extremely
sparse architectures, it might be necessary to give up the search for initial LTs
(Frankle et al., 2020; Renda et al., 2020; Liu et al., 2021a). If this were true, we
should be able to find highly sparse LTs with the original pruning algorithm if
we ensure the existence of a solution by planting.

We reject these hypotheses with our experiments, in which we randomly
initialize a large neural network of width nl = 100 and depth L = 5 by He
initialization with nonzero biases (Fischer et al., 2021a) and plant one of our
constructed targets into the initial network. To show that our experiments reflect
realistic conditions, we also compare the general trends to results on standard
image classification. We compare only pruning methods that identify lottery
tickets as subnetworks of randomly initialized neural networks, as these could
potentially find our planted solution or an equally performing one. We thus
consider GraSP, SNIP, Synflow, Magnitude pruning, and Random pruning
(Wang et al., 2020; Lee et al., 2019b; Tanaka et al., 2020; Frankle and Carbin,
2019), which are algorithms to discover weak tickets, and Edge-Popup, which
was designed to find strong tickets (Ramanujan et al., 2020).

We distinguish two different pruning approaches, singleshot (see Fig. 8.3)
and multishot (see Fig. 8.5) experiments. In singleshot pruning, which is
originally applied in SNIP, and GraSP, edges are scored in a single pass and
then pruned to the desired sparsity. Compared to multishot pruning, this
saves significant amount of resources by preventing training entirely if a strong
ticket is found. If a weak ticket is found, only a small subnetwork needs to be
trained once. Multishot pruning leads usualy to better results (Frankle et al.,
2021), because it relies on updated gradient information. Analogous to iterative
magnitude pruning, for each round r, we iteratively reduce the sparsity to
ρr/10, where ρ is the desired network sparsity. Within each round, the current
subnetwork is first trained, then pruned to the current target sparsity, and then
reset to initial parameters for the next round. We analyze the performance of
tickets before training to assess whether they qualify as strong LTs and after
training to evaluate whether at least pruning for weak LTs is feasible and can
identify LT of sparsities that can compete with our planted baseline ticket. Our
code is made publicly available1.

8.4.1 hyperparameters and data
For each experiment, we generate n = 10000 samples, where input data is
sampled from [−1, 1], for ReLU and Helix and from and [−1, 1]3 for Circle.
The output for ReLU is computed by f (x) = max(0, x). For Helix, we compute
the three output coordinates as f1(x) = (5π + 3πx) ∗ cos(5π + 3πx)/(8π),

1https://github.com/RelationalML/PlantNSeek/releases/tag/v1.0-beta

https://github.com/RelationalML/PlantNSeek/releases/tag/v1.0-beta
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f2(x) = (5π + 3πx) ∗ sin(5π + 3πx)/(8π), and f3(x) = (5π + 3πx)/(8π).
For Circle, we consider circles centered at the origin with radius

√
0.2,
√

0.5,
and
√

0.7 as decision boundaries for the classes. We additionally introduce a
small amount of noise to simulate real world data more closely. For Circle
we flip approximately 1% of samples to the next closest class, and for the two
regression problemswe introduce additive noise drawn fromN (0, 0.01) to each
output dimension. To assess the accuracy respectively mean squared error of
the tickets and trained models, we split off 10% of the data that acts as a hold
out test set.

In general, all initial networks for each specific task are generated using
the algorithm explained in the previous section. For Circle, we use 10 knots
for the piecewise linear approximation, and 30 knots for the piecewise lienar
approximations done in Helix. To prune byGraSP, SNIP, Synflow,Magnitude,
and Random and train the derived tickets, we use Adam (Kingma and Ba, 2015)
with a learning rate of 0.001. We found that this learning rate performed well
over all experiments, and leads to accurate models when there is no pruning.
It also corresponds to the default settings suggested by the authors of Syn-
flow (Tanaka et al., 2020). Training of the discovered tickets was done for 10
epochs across all experiments, where we could observe a convergence of the
respective loss. We measured loss by cross entropy respectively MSE and used
a batch size of 32 for all experiments. We report mean and obtained intervals
(i.e., minimum and maximum) across 10 repetitions for multishot, and across
25 repetions for the main singleshot experiments measured on the hold out test
set.

Singleshot pruning For singleshot pruning, we considered networks of depth
3, 5, 10 each with layer width 100 for all three data sets on target sparsities
{0.01, 0.1, 0.5, 1} and the sparsity of the ground truth ticket. Additionally, we
tested for a network of depth 6 and width 1000 on Circle for the same sparsity
levels. As suggested by Tanaka et al. (2020), we also test Synflow in combination
with 100 rounds of pruning for a network of depth 6 and width 100 on Circle.
For all additional singleshot experiments, we provide results in the next section.

Multishot pruning For multishot pruning, we alternated pruning and train-
ing for 10 rounds, where each training step was carried out for 5 epochs, which
consistently led to convergence of accuracy on the considered Circle data set.
Similar to singleshot pruning, we considered target sparsities {0.01, 0.1, 0.5, 1}
and ground truth ticket sparsity.

Edge-Popup pruning To prune with Edge-Popup, we here used the parameters
suggested in the original code of Ramanujan et al. (2020), which is SGD with
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Figure 8.3: Singleshot results depth 5. Performance of discovered tickets for Circle,
ReLU, and Helix against target sparsities as mean and obtained intervals (minimum and
maximum) across 25 runs. In order of appearance from top to bottom: Circle, ReLU,
and Helix post pruning (left) and post training performance (right). Baseline ticket with
leftmost sparsity and performance given by black dashed line.
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momentum of 0.9 and weight decay 0.0005, combined with cosine annealing of
the learning rate. To establish a comparison to the multishot pruning results,
we train the scores for 10 epochs. Additionally, for the experiment extending
Edge-Popup by annealing the sparsity level, we slowly reduce the sparsity over
time by ρi/10, where ρ is the desired network sparsity, and i is the current epoch.

8.4.2 hand designed ground truth

Singleshot pruning

For our benchmark data we test the ability of algorithms to discover both strong
and weak tickets. The key results for singleshot pruning are visualized in Fig.
8.3, reporting performance of the algorithms trying to discover tickets at varying
sparsity levels. Results for varying network depths and widths can be found
in App. A.7.4 noting that they are consistent also with larger depth, but the
methods fail to find any ticket in more shallow networks of depth 3.

First, we note that training the full network (at sparsity level 1.0) can solve
each of our tasks. Thus, planting does not destroy the general trainability of
the initial mother network. In fact, we would observe the same performances
without planting. Second, we find that none of the approaches is able to discover
strong tickets, in particular not the planted ticket, before training in a single
shot. Furthermore, the performance of all methods on the simpler ReLU is
considerably better than on Helix. We find that all approaches, including
Random pruning, are able to find weak tickets for moderate sparsity levels
for Circle and ReLU, but fail to recover sparse weak tickets on the manifold
learning task Helix. Interestingly, although Magnitude pruning was originally
not designed for this pruning strategy, it is on parwith state-of-the-art singleshot
methods. For more extreme sparsity levels ≤ 0.01, in particular baseline ticket
sparsity, all methods fail to recover good subnetworks.

Dissecting the singleshot results further, we identify layer collapse as the
main source of failure formore extreme sparsities, meaning that entire layers are
masked, thus disrupting flow through the network. While layer-wise pruning
could prevent this collapse, i.e., have a fixed target sparsity per layer, in practice
an interruption of flow is observed nevertheless. Despite that Synflow was
proposed as a solution to this issue, we observe that it also experiences layer
collapse for extreme sparsities, even when pruning for 100 rounds as suggested
in the original paper, performing only slightly better than with one round of
pruning (see App. A.7.4). In summary, with only a single pruning round, most
pruning algorithms discover weak tickets at moderate sparsity, however fail to
recover weak tickets of low sparsity and any strong tickets.
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Figure 8.4: Varying noise. Performance of methods for Circle with varying noise for
10 rounds of alternating pruning and training. We report mean and obtained intervals
(minimum and maximum) of accuracies of the final pruned network across 10 repetitions
before (left) and after (right) the final training. The noise level is indicated by line type.
Ground truth ticket accuracy is indicated by black lines.

Comparison to results on image data The reported results are in line with
experiments on image data as reported in the literature (Tanaka et al., 2020). In
particular, for all these methods a similar drop around 0.01 sparsity is observed
for different VGG and Resnet architectures and image data sets. Similarly, layer
collapse has been reported for image data. The main difference is that for our
data, we know the obtainable sparsity as well as performance of tickets, setting
these results into a context beyond trendline differences of methods for selected
sparsity values.

Robustness to noise To model real-world settings, all our datasets contain
small amounts of noise. To rule out that noise in the data is the primary source
for issues with discovering tickets, we generated Circle datasets with varying
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levels of noise. Hence, to test the robustness of pruning algorithms to noise
in the data, we considered Circle with a network of depth 6 and width 100
and varied the amount of noise in the data to be {0, 0.001, 0.01, 0.1}. We report
the results before and after training in Fig. 8.4. The results indicate that on the
one hand, without noise we do not see much of an improvement in terms of
discovered tickets, but on the other hand observe that the algorithms are robust
to even large amounts of noise, finding tickets with almost similar performance
as with no noise at all.

Multishot pruning
While much more resource intensive, iteratively training followed by pruning
and resetting to initial weights, slowly annealing to the desired sparsity, has
been proven a successful approach to discover lottery tickets. Here we extend
this pruning scheme to other approaches beyond magnitude pruning.

To investigate the effect of multishot pruning, we run each of the previous
methods iteratively for 10 rounds on our benchmark datasets (see Fig. 8.5).
Analogous to iterative magnitude pruning, for each round r, we iteratively
reduce the sparsity to ρr/10, where ρ is the desired network sparsity. Within
each round, the current subnetwork is first shortly trained, then pruned to the
current target sparsity, and then reset to initial parameters for the next round.
Compared to the singleshot results, we observe that for the classification task,
Magnitude, SNIP, and Synflow are able to retrieve weak tickets of much higher
sparsity. Furthermore, these three approaches are now able to recover weak
tickets of moderate sparsities also for the challenging Helix dataset. Overall,
Synflow consistently performs best in discovering weak tickets, even recovering
the extremely sparse baseline ticket for Circle. We also observe that GraSP
performs poor overall, noting that it is amethod designed for singleshot pruning.
Examining the results, we see that GraSP experiences layer collapse already in
early iterations with large target sparsities. None of the above approaches is
able to discover strong tickets reliably, only in individual instances of the ReLU
task, Synflow and SNIP could retrieve a strong ticket of high sparsity.

To discover strong tickets, Ramanujan et al. (2020) proposed Edge-Popup,
which falls in the same category of multishot pruning approaches. Edge-Popup
assigns each model parameter a score value, which is then actively trained
for several rounds while freezing all original parameters, requiring a similar
computational effort as multishot pruning, yet leaving the original weight and
bias parameters untouched. Training Edge-Popup for 10 rounds, we observe
that it discovers a strong ticket of sparsity 0.5 for Circle, however, fails to
discover tickets of different sparsity, which is in line with their original results
(Ramanujan et al., 2020). Similar to other algorithms, we observe layer collapse.
We can extend their original algorithm using annealing as in multishot prun-
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Figure 8.5: Multishot results. Performance for Circle (top), ReLU (middle), and Helix
(bottom) for 10 rounds of alternating pruning and training. For Edge-Popup we report
the performance for 10 rounds of training (solid line), as well as training combined with
iterative reduction of the sparsity (dashed line). We provide mean and obtained intervals
(minimum and maximum) of accuracies of the final pruned network across 10 repetitions
before (left) and after (right) final training. Baseline ticket accuracy is indicated in black.
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ing by slowly decreasing the target sparsity in every round, which increases
performance allowing it to discover a subnetwork with reasonable accuracy at
0.1 sparsity. Edge-Popup is not able to find any good subnetwork for the Helix
task.

GraSP with local sparsity constraints As observed before, GraSP seems
unsuitable for multishot pruning due to early layer collapse. Several works (You
et al., 2020; Tanaka et al., 2020) considered local sparsity constraints, having a
target sparsity for each layer, or even channel. These however impose unrealistic
architecture constraints as layer sparsity is usually imbalanced (Tanaka et al.,
2020), which also holds true for our Circle and Helix benchmarks. With
the goal to avoid layer collapse, we still equipped GraSP with local sparsity
constraints per layer (see App. A.7.5). Yet, the flow through the layers stays
interrupted. A possible explanation is that GraSP incorporates information
about weight couplings via the hessian in its pruning strategy, which makes it
more sensitive to removing individual connections from the mask as it happens
during iterative pruning.

Comparison to results on image data Our results are coherent with the re-
ported relative trends on image tasks both for strong and weak tickets (Ra-
manujan et al., 2020; Tanaka et al., 2020). We further reproduced results for
VGG16 on CIFAR10with non-zero bias initialization (Fig. 8.6 left). In particular,
for strong tickets we observe the same trends for Edge-Popup spiking at 0.5
sparsity, performing less well at sparsity 0.1, and not recovering tickets for
higher and lower sparsity. Again consistent with previously reported results,
other methods are neither suited nor designed to find strong tickets. For weak
tickets, Synflow performs best, with only a slight margin towards SNIP and
Magnitude. This margin is however much tighter than originally reported
in Synflow, as we allow both SNIP and Magnitude to learn in a multishot
fashion, which closely resembles the approach of iterative magnitude pruning
and prevents layer collapse to a large extent.

8.4.3 vgg with strong tickets
While no ground truth solution is known for image classification tasks on stan-
dard benchmark datasets, we can still use our planting framework to answer
meaningful questions in this context, as we demonstrate next. To test the hy-
pothesis whether Edge-Popup is limited to discover strong tickets of suboptimal
sparsity of around 0.5, we investigate its capabilities to recover a planted base-
line ticket from VGG16. For that, we use Synflow to discover a weak ticket
of sparsity 0.01 from VGG16 with multishot pruning, train the weak ticket on
CIFAR10, and plant it back into the network. Running Edge-Popup on this
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Figure 8.6: VGG16 CIFAR10 results. (Left) Performance for learned weak tickets. (Right)
Performance of strong tickets discovered by Edge-Popup for VGG with planted baseline
ticket of sparsity 0.01. Baseline ticket performance is indicated by black line.

network, we observe that it indeed cannot retrieve the baseline ticket of desired
sparsity in this real world setting (see Fig. 8.6 right).

8.4.4 structure learning and lottery tickets
Our planting framework is designed for the analysis of LT algorithms that
seek for subnetworks of randomly initialized NNs. Structure learning methods
follow a different approach, yet also yield subnetworks that perform well on a
given task. While planting is less relevant in this case, we can still compare their
results with our hand-crafted solutions. We show in App. A.7.3 that neither
dynamic sparse training (Evci et al., 2020) nor LT fine-tuning techniques (Liu
et al., 2021a; Renda et al., 2020) find architectures that are competitive with our
constructed ground truth tickets.

8.5 discussion & conclusion
We investigated the optimality of existing lottery ticket pruning methods and
their potential for improvement, both regarding the discovery of strong tick-
ets – subnetworks that perform well at initialization, as well as weak tickets –
subnetworks that perform well after training. Recent works, in particular by
Frankle et al. (2021), evaluated lottery ticket pruning methods and showed
that no single best method across considered settings and sparsities exists, and
raised the issue of missing baselines in the field. To tackle this issue, we here
proposed an algorithm that plants and hides target networks within a larger
network, thus allowing to generate baseline tickets for rigorous benchmarking.
For three common challenges in machine learning, a classification, regression,
and manifold learning problem, we hand-crafted extremely sparse network
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topologies, planted them in large, randomly initialized neural networks, and
evaluated the state-of-the-art pruning methods in combination with different
pruning strategies.

Our results indicate that state-of-the-art lottery ticket pruning methods
achieve in general sub-optimal sparsity levels, and are not able to recover lottery
tickets that are competitive with a planted ground truth. This suggests that
previous challenges to identify highly sparse winning tickets as subnetworks
of randomly initialized dense networks (Frankle et al., 2020; Ramanujan et al.,
2020) can be explained by algorithmic limitations rather than fundamental
problems with lottery ticket existence. While slightly discouraging, these result
on our benchmark data are coherent with reported as well as reproduced
classification results on image data. This shows that our benchmarks, while
artificial in nature, reflect realistic conditions that result in similar trends as
real world image data sets would. Moreover, we have shown that our planting
framework can also be used in a real data setting to answer a limited set of
questions. For instance, by planting a trained weak ticket back into a CNN, we
established that the failure of Edge-Popup to discover extremely sparse strong
lottery tickets is likely an algorithmic rather than a fundamental limitation. This
exemplifies how our framework enables experiments beyond relative method
comparisons, as typically conducted on standard image benchmark data. As our
results indicate, several major questions pertaining to neural network pruning
are still open: How can pruning approaches for weak tickets be improved
to discover tickets of best possible sparsity? How can we find weak tickets
of high sparsity that match the performance of the large network without
intermediate training rounds? And, how can we discover highly sparse strong
lottery tickets? We anticipate that our contribution can be used and extended
to measure progress regarding these questions against independent sparse and
well-performing baseline tickets.
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9
CONCLUS ION

In this thesis, we focused on key research questions pertaining to patternmining
and neural networks. We further showed how these two fields complement each
other, leveraging the interpretability of patterns to better understand neural
networks, and the efficiency of neural network learning for pattern discovery.
In particular, we considered the questions of how to find expressive patterns in
binary data, and how to do so efficiently, an answer to both being crucial for
the discovery of insightful patterns in data. Furthermore, we considered the
questions of what neural networks learn to successfully arrive at a decision, and
what regularities in the input data leads to systematic errors in their prediction.
These questions are relevant to better understand the decision process of these
opaquemodels and improve their robustness, both important clues of models in
safety-critical environments such as the medical domain. Finally, we considered
the question of how to learn neural networks in a resource-efficient way, as
state-of-the-art models are largely over-parameterized, making them in many
settings prohibitively expensive to train. As our work was cumulative, we
will first briefly summarize all contributions to these open questions and then
provide a joint discussion with future directions of research.

summary of contributions
Related to the first set of questions about pattern mining, we proposed richer
languages of rules and patterns that express co-occurrences and mutual ex-
clusivity, along with algorithms to find such patterns effectively in real-world
binary data. We put special emphasis on the discovery of insightful, non-
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redundant, and human-interpretable patterns in the data, such that our results
can aid domain-experts in better understanding the process underlying their
data, aid them in postulating new hypotheses, or guide their decision-making.
We showed on several synthetic benchmarks that our contributions have the
among existing methods unique ability to find the relevant regularities in data
without picking up spurious results, and showed on real-worl data that discov-
ered results provide relevant insights. On a recent large-scale transcriptomics
dataset, we demonstrated that such algorithms – in contrast to state-of-the-art
– scale to the challenging biological and biomedical settings. Moreover, the
rich pattern language allows to capture biologically meaningful properties and
provide novel insights that domain experts can leverage for future research.
Our contributions, hence, enable pattern mining with powerful languages at
scale, which are of relevance in such fields as biology that has a high demand
for exploratory methods for knowledge discovery.

We further showed how to transfer and extend our pattern mining ap-
proaches to better understand how neural networks work internally. In par-
ticular, we proposed to examine networks by discovering rules across neuron
activations, extending the language of rule tails to also capture disjunctive
statements. Our results revealed novel insights into what a neural network
deems interesting for image prediction tasks, how information flows through a
network to arrive at an outcome, and what it learns to distinguish within and
between classes. The suggested approach, hence, allows to peek into the black
box of neural networks to better understand their decision process and to learn
from how it uses information, both of which are crucial to understand their
success, but also the biases it might learn.

It is important to understand the success of neural networks, but also their
systematic errors. To understand those, we proposed to discover differential
patterns that explain which regularities in the input data make neural networks
err. Our solution is readily scalable to describe misclassifications of modern
natural language processing models in terms of a rich language of conjunctions
and mutual exclusivity. Our results not only provide interesting clues about
systematic issues in the data that are challenging for the networks, but are also
actionable.

To scale to extremely high dimensional data such as encountered in typical
retail transaction data or in population-scale genomic studies, we proposed a
new framework to pattern mining, rethinking the classical approach of discrete
optimization of patterns and pattern sets. Connecting classical pattern mining
with neural networks, we proposed a new type of binarized autoencoder that
allows to find pattern sets, linking continuous optimizationwith the exploration
of the discrete search space of patterns. We showed that our approach scales to
orders of magnitude higher dimensional data than what was possible before,
enabling pattern mining in data of the current age. On the 1000 Genomes data
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set, data of genetic variation in a human population, we further showed that
the discovered patterns provide interesting insights into human variation that
suggest a potential role of so far unknown mutations in human individuals.

Finally, we turned to the problem of training small, but well-performing
neural networks. Such networks not only forego the prohibitively expensive
training process of their larger counterparts, but are also inherently more in-
terpretable. Models that are easier to train and to understand not only benefit
classical neural network learning, but, through the link to pattern mining es-
tablished in this thesis, also directly benefit the discovery process of patterns.
We, here, considered one of the recent, arguably most promising avenues to
find such networks, which is described by the lottery ticket hypothesis. This
hypothesis states that there exist small, well trainable sub-networks in ran-
domly initialized neural networks that can match the performance of their
larger counterparts. Even more promising are strong lottery tickets, which
are such sub-networks that do not require any further training and have been
formally proven to exist.

We showed that standard initialization schemes of neural networks are,
however, not sufficient to equip the strong lottery tickets with the universal
approximation property. To overcome this issue, we proposed new initializa-
tions schemes that are well trainable and equip initialized neural networks
with the ability of universal approximation. We then formally showed that
strong lottery tickets exist in such networks, hence equipping strong lottery
tickets with the ability of universal approximation. Based on insights from the
proof we further suggested a parameter scaling procedure that lead to better
signal preservation in tickets. Both of these contributions enable finding orders
of magnitude sparser tickets in synthetic benchmark data. We are convinced
that our theoretical contributions facilitate research for the discovery of sparse
strong lottery tickets.

So far, approaches that discover any lottery ticket – weak or strong – are
only evaluated against their dense counterpart and existing methods. This
is due to a lack of benchmarks for lottery tickets. Hence, whether there exist
sparser or better tickets could never be answered. This raised the question if the
current limitations regarding sparsity and performance are due to algorithmic
or fundamental constraints. In our last contribution we derived a framework
that allows to plant and hide a target network, e.g. a lottery ticket, in a large,
randomly initialized neural network. Building up on the results of our previous
contribution, we posed three challenging problems and constructed extremely
sparse neural networks solving these tasks, which we then hid in large neural
networks. These small planted subnetworks serve as benchmarks to evaluate
the state-of-the-art in lottery ticket pruning with respect to sparsity and perfor-
mance. The results indicate that the current limitations are, in fact, algorithmic
constraints, opening up room for new proposals for the discovery of lottery
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tickets. Our contribution, for the first time, allows tomeasure progress in lottery
ticket discovery and enables the evaluation of future progress in the field.

outlook
Our proposed richer pattern languages, such as robust rules or patterns of
mutual exclusivity, enable to discover important types of regularities that so
far were hard to find. With our formulation of differential pattern mining, we
furthermore extended this line of work to explaining labels of a dataset, where
these labels implicitly induce a decomposition of the data. While this is of
high value in settings where label descriptions offer insights into an underlying
process, such as for misclassification labels, it would also be interesting to
study how to find data decompositions automatically in a purely unsupervised
setting, for which Dalleiger and Vreeken (2020) offer a solution in the context
of conjunctive statements. It would furthermore be interesting to extend on
the idea of statistical testing of discovered patterns as introduced in the third
chapter also for other pattern languages and models, for example building on
the work of Hämäläinen (2012) for rules. Assessing the statistical significance
is in high demand, especially in biological exploratory studies.

Our suggested approach to analyze networks through rules was the first
of its kind and offered unique insights into the behaviour of neural networks.
Following up on this, it would be interesting to equip the pattern language with
the concept of negations, as networks, just as humans, make use of absence
of features. It, hence, would likely provide valuable insights to capture this
usage of information through rules to further understand the decision making
process in neural networks.

For the analysis of systematic issues of neural networks beyond misclassi-
fication, such as unfair racial or societal biases in a prediction, it would make
for engaging future work to consider multiple labels at once. A solution to this
problem was proposed by Budhathoki and Vreeken (2015), which is, however,
limited to conjunctive statements and small-scale data. Patterns across multiple
labels or label outcomes could for example showwhat in the input causes a bias
of the network prediction against minorities, with the found patterns serving
as a basis to counteract this behaviour of networks. Analyzing input patterns
describing labels being interesting on its own, analyzing patterns of network
activations in the context of labels might not only serve for insights into the
network reasoning, but also provide actionable patterns where a domain expert
could for example directly interact with the neurons leading to false predictions
or a bias.

Taking a step back, we discussed pattern mining and neural networks and
how we can bridge these two fields. In particular, we showed how these two
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can benefit from each other’s strength, on the one hand by exploring networks
through patterns, offering the interpretability of patterns to better understand
the networks, and on the other hand discovering patterns through networks,
offering the fast, continuous learning strategies of neural networks to drastically
speed up pattern discovery. With these foundations laid, there are several
directions opening up for future work.

It would first of all be interesting for both, large-scale biological applica-
tions as well as the exploration of modern deep and wide neural networks,
to study how to construct binarized autoencoders in a way that allow for the
discovery of the richer pattern languages proposed in this thesis or the concept
of differential patterns. In other words, how can we adapt the new paradigm
of discovering patterns to our more expressive languages to leverage the power
of neural network training for pattern mining. On a similar note, it would be
interesting to study different languages for entirely different data types such
as graphs or sequences. Utilizing recent advances in architectures for graph
neural networks (Scarselli et al., 2009; Duvenaud et al., 2015; Veličković et al.,
2018) and transformers (Vaswani et al., 2017; Devlin et al., 2019) might be an
interesting avenue to approach this line of research. Reversely, it would also
make for engaging future work to analyze these types of networks – graph
neural networks and transformers – through the lense of patterns. This would
require a different type of pattern language that is able to express statements
over graphs or sequences, where we can draw from contemporary work in
graph (Goebl et al., 2016; Coupette and Vreeken, 2021; Coupette et al., 2022)
and sequence mining (Bhattacharyya and Vreeken, 2017; Wiegand et al., 2021).

With the connection of pattern mining and neural networks, studying the
problem of overparametrization and expensive training of neural networks
becomes twice beneficial. Having a solution to this problem pertaining to
neural networks would make their training more efficient, and at the same
time improve efficiency in the discovery of patterns. Our foundational work on
lottery tickets provides an important step into this direction. Knowing where
we stand in the quest for lottery tickets, identifying several issues of current
network pruning algorithms, and being able to evaluate success all serves as
a great starting point to develop new algorithmic approaches to this problem.
Noting that this line of researchwas conducted relatively late in the PhD studies,
we are looking forward to engage on this research problem.

Slightly disconnected at first glance, lottery tickets and pattern mining also
turn out to offer plenty of opportunities for future research to connect them.
For example, the properties of lottery tickets, in particular what they learn,
is largely unknown. Mining patterns or rules across the activations of these
tickets, similar to what we proposed for fully connected and convolutional
neural networks, might deliver interesting insights into what makes a good
lottery ticket. Considering our binarized autoencoders, discovering lottery



178

tickets in them might correspond to finding the patterns in the data and hence
offer an even more efficient solution to pattern mining. This approach, due to
the constraints on the weight matrices, is, however, non-trivial and hence also
makes for engaging future work.



APPENDICES

a.1 robust rules
a.1.1 an example computation of mdl for rules

Figure 1: Example database and model. A toy database D with blocks indicating where
the items A, B, C, D occur in D, margins and relevant joint counts are given on the right.
A sensible rule set M ∪Mind = A→ BC ∪Mind is given on the right, the part of the
database where the rule applies and holds is indicated by a light respectively dark orange
area.

For the given example in Fig. 1, we now compute the codelength L(D, M) =
L(M) + L(D | M) of transmitting the whole database D using M ∪Mind. Here,
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we will stick with the simple encoding without error matrices, to make the
process of computation more understandable. For reference, we first compute
the baseline model, which is given by

L(D, Mind) =|I| × Lpc(|D|) + ∑
I∈I

log
(
|D|
|TI |

)
=4× Lpc(100) + log

(
100
40

)
+ 2 log

(
100
35

)
+ log

(
100
33

)
≈14.88 + 93.47 + 179.64 + 87.93 = 375.92.

Thus, sending the data with just the baseline model costs 375.92 bits. Now, we
will compute L(D, M ∪Mind), we will start with the costs of sending the data
L(D | M ∪Mind)

L(D | M ∪Mind) =

(
∑

X→Y∈M
log
(
|TX |
|TY|X |

))
+

(
∑
I∈I

log
(
|D|
|T ′I |

))

= log
(

40
30

)
+ log

(
100
40

)
+ log

(
100
5

)
+ log

(
100
3

)
+ log

(
100
35

)

≈29.66 + 93.47 + 26.17 + 17.30 + 89.82 = 256.42.

The model costs are composed of the parametric complexities for the (adapted)
baseline rules, plus the costs of transmitting what the rule is composed of along
with its parametric complexity. We thus get

L(M ∪Mind) =|I| × Lpc(|D|) +
(

∑
X→Y∈M

LN(|X|)

+ LN(|Y|) + L(X) + L(Y) + Lpc(TX)

)
=4× Lpc(100) + LN(1) + LN(2)

− log
40

143
− log

35
143
− log

33
143

+ Lpc(40)

≈14.88 + 1.52 + 2.52 + 1.84
+ 2.03 + 2.12 + 3.11

=28.02.

Hence, the model with the complex rule has a smaller codelengh than the
baseline, with L(D, M ∪Mind) = 284.44 bits.
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Figure 2: Example of tail error encoding. For a given database D given in a, where blocks
indicate the occurrence of items, a good rule is given byA → BCDE. The part of the
database where the rule applies is indicated by the orange area. In b we show the part
of the transaction were the rule holds for varying number k of tail items that have to
be present in a transaction, from all items on the left – corresponding to a conjunction
– towards just a single item on the right, which corresponds to a disjunction. In c we
visualize the error encoding used to transmit the data for k = 3. We first transmit the data
where the rule holds, resulting in the area that is indicated by the gray block. XORing the
error matrix X− with this block, it is possible to reconstruct the original data for the part
where the rule holds. Using X+, we reconstruct the original data in the area where the
rule applies but does not hold.

For the error encoding for tails, which allow to discover rules in noisy
settings (compare Fig. 2a,b), we send where a rule X → Y approximately holds
according to someparameter k, which defines the number of items of the tail that
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have to be present in the transaction. The errors made by this approximation
are then accounted for by sending error correcting matrices X−X→Y and X+

X→Y,
which account for the destructive, respectively additive noise in the are where
the rule applies (compare Fig. 2c).

Let us first assumewe are given a k, we will later show howwe can optimize
for k. We redefine the transaction sets TY|X = {t ∈ D | (X ⊂ t)∧ (|Y ∩ t| ≥ k)},
which corresponds to the transactions where the rule approximately holds.
We will now slightly abuse notation and indicate the binary input matrix that
correspond to D by D, and we subset this matrix using the transaction id lists
and item subsets. Both of these are sets of indices that indicate which rows,
respectively columns to use of the matrix. For example, the submatrix where X
holds is given by D[TX , X]. We can now define the error correcting matrices to
be X−X→Y = D[TY|X , Y] ×⃝ 1

|TY|X |×|Y|, and X−X→Y = D[TX \ TY|X , Y], where ×⃝
is the element-wise XOR operator and 1i×j is a matrix of size i× j filled with
ones. The receiver, knowing TX and TY|X , can then reconstruct the original data
D[TY|X , Y] = 1

|TY|X |×|Y| ×⃝X−X→Y, respectively D[TX \ TY|X , Y] = X+
X→Y.

While this explains the concept of how error correctingmatrices can be used
to reconstruct the original input, which hence define a lossless encoding, we
are mainly interested in the codelength functions. To adapt the data costs, we
now additionally send the two error matrices, which we can do using binomial
codes. Hence, we get

L(D | M) =

(
∑

X→Y∈M
log
(
|TX |
|TY|X |

))
+

(
∑
I∈I

log
(
|D|
|T ′I |

))

+ log
(|TY|X | × |Y|
|X−X→Y|

)
+ log

(|TX \ TY|X | × |Y|
|X+

X→Y|

)
,

with the second line providing the codelength of the error matrices, and |X |
indicating the number of ones in X .

Our model M now not only consists of rules M∪Mind, but also of the set of
error correctingmatrices. As the submatrix towhichwe need to apply thematrix
is fully defined by TX , TY|X , and Y of the corresponding rule, also defining
its size, the only adaptation we need for the model costs is the parametric
complexities induced by the codes for transmitting the data. This yields

L(M) =|I| × Lpc(|D|) +
(

∑
X→Y∈M

L(X → Y)

+ Lpc(|TY|X | × |Y|) + Lpc(|TX \ TY|X | × |Y|)
)

.
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This completes theMDL costs for rules robust to noise in the tail for a given k.
To optimize k, the crucial insight is that the codelength of individual complex
rules are independent, as is the data cost. That means we can optimize a k for
each rule separately. Thus, for a given rule X → Y we can enumerate all |Y|
many models for the different thresholds k and let MDL decide which one fits
the data best.

a.1.2 submodularity and monotonicity of the
search space

In this section we provide counterexamples to disprove submodularity and
monotonicity of the codelength function on the search space of all rule sets.

Submodularity Let us first define submodularity:

Definition 2 (Submodularity). Given an alphabet Ω and a set function f : 2Ω → R,
a set function is called submodular iff ∀X ⊂ Y ⊆ Ω, z ∈ Ω. f (X ∪ {z})− f (X) ≥
f (Y ∪ {z})− f (Y).

This definition of submodularity inherently shows the diminishing returns
property of submodular functions, that is the larger the set grows, adding a
particular element to it give less increase in the function value. Theoretically,
this property can be used to guide the search, but here we show that if we
define the alphabet to be all possible rules and the function to be the codelength
defined before, Ω = {X → Y | X ⊆ I , Y ⊆ I \ X} and f (R) = −L(D, R), the
codelength is neither submodular nor monotone w.r.t the search space of rules.

For the counterexample, visualized in Fig. 3a, let n = 1000 be the database
size and nA1 = 500, nA2 = 100, nA3 = 100, nB = 700 the respective usages of
the variables. Now let us set X = {A1 → B}, Y = {A1 → B, A2 → B}, and
z = A3 → B and compute the codelengths:

f (X) =−
(

log
(

n
nA1

)
+ log

(
n

nA2

)
+ log

(
n

nA3

)
+ log

(
n

nB − nA1

)
+ Lpc(nA1) + Lpc(nA1 × |B|) + 4Lpc(n)

)
,

f (X ∪ {z}) =−
(

log
(

n
nA1

)
+ log

(
n

nA2

)
+ log

(
n

nA3

)
+ log

(
n

nB − nA1 − nA3

)
+ Lpc(nA1) + Lpc(nA1 × |B|) + Lpc(nA3) + Lpc(nA3 × |B|) + 4Lpc(n)

)
,
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Figure 3: Data used as counterexamples for submodularity and monotonicity of L(D, M).
For the submodularity counterexample (a), n = 1000, nA1 = 500, nA2 = 100, nA3 =
100, nB = 700. For the monotonicity counterexample (b), n = 1000, nA = 850, nB =
700, nC = 700.

f (Y) =−
(

log
(

n
nA1

)
+ log

(
n

nA2

)
+ log

(
n

nA3

)
+ log

(
n

nB − nA1 − nA2

)
+ Lpc(nA1) + Lpc(nA1 × |B|) + Lpc(nA2) + Lpc(nA2 × |B|) + 4Lpc(n)

)
,

f (Y ∪ {z}) =−
(

log
(

n
nA1

)
+ log

(
n

nA2

)
+ log

(
n

nA3

)
+ Lpc(nA1) + Lpc(nA1 × |B|)

+ Lpc(nA2) + Lpc(nA2 × |B|) + Lpc(nA3) + Lpc(nA3 × |B|) + 3Lpc(n)
)

.

Note that the error matrices are basically zero cost, because in this coun-
terexample we do not have any errors. If we use the definition of submodularity
from above and plug in the numbers given above, we get:

f (X ∪ {z})− f (X) ≥ f (Y ∪ {z})− f (Y)

log
(

n
nB − nA1

)
− log

(
n

nB − nA1 − nA3

)
≥ log

(
n

nB − nA1 − nA2

)
+ Lpc(n)

716.9− 464.4 ≥ 464.4 + 5.33 E,

which is a contradiction.
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Monotonicity
The next question that can be raised is if the codelength function is monotoni-
cally decreasingwith respect to the search space. Let us first defineMonotonicity
formally.

Definition 3 (Monotonicity). Given an alphabet Ω and a set function f : 2Ω → R,
a set function is called monotonically decreasing iff ∀X ⊂ Y ⊆ Ω. f (X) ≥ f (Y).
Analogously, the function is called monotonically increasing iff ∀X ⊂ Y ⊆ Ω. f (X) ≤
f (Y).

It is easy to see that the function is not monotonically decreasing, as if we
add a rule that only covers parts of the data already explained by a different
rule, there are no bits saved because all rules are send independently and
thus we just pay additional bits to send the part where the new rule holds.
Consider the example database given in Figure 3b. If we start with a model
X = {A → B, A → C}, and add a rule such that Y = X ∪ {A → B ∪ C}, it is
easy to see that the codelength is increasing, as we redundantly encode the
data B and C with the new rule. The exact calculations are left as an exercise.

a.1.3 apriori on mushroom
To illustrate the (well-known) impracticality of using Apriori to mine useful
association rules, for different support and confidence parameters we show in
Fig. 4 the number of rules Apriori discovers on theMushroom data. We see that
even at 90% confidence and 10% frequency, i.e. approx. 800 out of 8024 rows
of data) we discover close to 10M rules, which hardly is a useful result on a
dataset of 8 024 transactions over 124 items.

a.1.4 gain estimates
In this section we provide all formulas necessary to compute first and second
tier estimates of the gain. The first and second tier estimate computations are
explained throughout the next subsections.

Merging singletons As we encode singleton rules ∅→ A, A ∈ I and more
complex rules X → Y, |X| > 0∨ |Y| > 1 with two different models, we need to
have different gain estimates for all combinations of merging different types of
rules. In this section, we provide definitions of all estimates for all combinations.

Suppose we have rules ∅→ A, ∅→ B, A, B ∈ I , we get the gain estimate
for r = ∅→ AB by considering all possible splitpoints for the error matrices,
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Figure 4: Rule discovery with Apriori. The number of rules Apriori discovers on the
Mushroom data for varying levels of frequency and confidence.

assuming perfect overlap for the first tier estimate and partial overlap given by
nest for the second tier estimate:

∆̂1(r) =− log
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n
n∅→A

)
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)
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)
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)
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)
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,
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∆̂2(r) =− log
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,

with nI = |TI | the support of item I, nX→Y = |TM
Y|X | the current usage of the

singleton rule, and nest = |TA ∩ TB| the estimated support of the new rule r. We
compute the change in the model costs regarding sending information about a
rule, that is the terms appearing in L(M), exactly and abbreviate it here with
L̂(M).

Similarly, we get the gain estimates for r = A→ B:

∆̂1(r) =− log
(

n
n∅→B

)
− Lpc(n)

+ log
(

nA
nB

)
+ Lpc(nA) + Lpc(nB) + Lpc(nA − nB) ,

∆̂2(r) =− log
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n∅→B

)
− I(TM

B|∅ ⊆ TA)× Lpc(n) + L̂(M)

+ log
(

nA
nest

)
+ log

(
n

|TM
B|∅ \ TA|

)
+ Lpc(nA) + Lpc(nest) + Lpc(nA − nest) .

Note that in the first line of the second tier gain estimate, we have the
indicator variable I that evaluates to 1 iff TM

B|∅ ⊆ TA. That is, we only substract
the model costs for the old singleton rule ∅→ B if it is not used anywhere else.

Merging a singleton with a pattern If we combine a rule ∅ → X, |X| > 1
with a singleton rule ∅→ A, we need to consider three different cases, each of
which has a different gain estimate. First, let us consider the case of merging
the tails to r = ∅→ XA.

For the first tier gain estimate we assume a perfect overlap between the
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dense error matrix of ∅ → X and the transactions supporting A. In essence,
we assume that A overlaps with the most dense part of ∅→ X. We can get the
splitpoint (Eq. 2.1) by estimating the new count vector for the first tier gain
estimate as follows. We generate a new count vector of size equal to the size
of the new tail plus one for the cases where none of the items in the tail hold.
Starting from the largest bin (i.e. all items of the tail hold), for each bin we
merge all combinations of the count bins of the generating rules that would
yield this number of items. E.g. for rules r1 = ∅ → AB and r2 = ∅ → C
we have counts B1 = [2, 10, 47] and B2 = [1, 55], we merge these two count
vectors into B ′ = [1, 3, 8, 47]. With these counts we can then estimate the new
splitpoint k ′ and the corresponding transaction set and error matrix counts
|TM

XA|∅|
′, and 1 ′(TM

XA|∅), as well as |TM
��XA|∅|

′, and 1 ′(TM
��XA|∅) for the number of

rows and number of 1s in a matrix, respectively. Be aware of the prime as a
notation for this approximation of the overlap. For the second tier gain estimate
we compute error matrix counts by intersecting the corresponding tid lists for
each level according to Eq. 2.1. We indicate these counts by k∗ superscript. The
estimates are hence given as
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.

The second case for merging ∅ → X and ∅ → A is that the singleton
becomes the new head, i.e. r = A→ X. Here, as before, we assume that tids
with X are a subset of tids of A. For the second tier estimate we get the overlap
of X with A by intersecting the tid list of the destructive noise matrix of X and
the tid list of A to find out where X holds. Furthermore, we estimate increase
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of the singleton costs for all singletons I ∈ X that are not covered any longer
by looking at transactions TM

I|∅ ∪ (TI \ TA). With nest given as the number of
transactions where A is present and where ∅→ X holds, we thus obtain

∆̂1(r) = + log
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+ Lpc(nA) + Lpc(nest × |X|) + Lpc((nA − nest)× |X|) .

The third case of the mixed rule estimates is that X becomes the new head,
we thus get r = X → A. The first estimate is straightforward, assuming that the
tids of the singleton rule is a subset of occurences of tids of X. For the second
tier gain estimate we obtain the usage of the new rule by intersecting the tid
lists of the two merged rules as before, we only need to take care of the case
that not all singletons occur together with X. In that case we have to send an
adapted code for the singleton. For this singleton code, the regret term is taken
care of by the indicator variable in the first line of the second tier estimate, the
data costs are covered by the estimate |TA ∩ TX | of how much less of A we have
to encode with a singleton using r. Note that, as before, we still have to send
complexity terms for the error matrices, hence we get

∆̂1(r) =− log
(

n
n∅→X

)
− Lpc(n) + log

(
nX
nA

)
+ Lpc(nX) + Lpc(nA) + Lpc(nX − nA) ,
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∆̂2(r) =− log
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where I(l) is the indicator variable evaluation to 1 if the statement l is true, and
0 otherwise.

Merging general rules What remains are the estimates for merging two
“proper” rules X → Y and X → Z. To obtain the first tier gain estimate of
merging the tails to r = X → YZ, we assume that the most dense parts of the
destructive noise matrices overlap. Hence we can use our approach of before
and estimate the splitpoint k ′ and counts B ′ by merging always the counts
B1[i] and B2[j] with i, j as large as possible, thus getting estimates for the error
matrices |TM

YZ|X |
′, 1 ′(TM

YZ|X) and so on. For the second tier gain estimate we
obtain a splitpoint k∗ by intersecting the corresponding tid lists for each level
pair. This yields
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For the other case, where we merge the head to r = XY → Z, we assume
for ∆̂1 that the transactions where X → Z holds overlaps perfectly with the area
where X ∪Y holds. For the second tier gain estimate we get the exact overlap
counts by intersecting the tid lists of each level. We estimate the singleton
costs by adding up the potential costs of increasing the singleton counts by the
number of transaction not covered anymore, i.e. estimating the new costs by
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a.1.5 data
In this section, we briefly summarize the composition of the real datasets used
to analyze Grab.

• AbstractsAcollection ofm = 3933 stemmedwords (features) for n = 859
abstracts of ICDM 2001-2007 (samples).

• Accidents A dataset of roughly n = 340000 records of traffic accidents in
Belgium1 with binarized meta information about the accident’s location
and circumstances summing up to m = 468 features.

• Adult A collection of Census income data with m = 97 binary variables
providing information about n = 10830 persons and if their income
exceeds 50K.

• Covtype Data about forest cover types for n = 581012 small areas along
with meta information about the area, such as soil type and slope, build-
ing a data set with m = 105 binary features.

1http://fimi.ua.ac.be

http://fimi.ua.ac.be
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• DNA Microarray measurements of DNA amplification comprising data
about copy number amplification for n = 4590 cases and m = 391 sites
(binarized).

• Mammals A record of n = 2183 geo locations across europe along with
longitude an latitude stating for m = 121 different mammals if it has
been sighted at this location.

• Mushrooms A collection of hypothetical samples of n = 8124 Mush-
rooms generated from The Audubon Society Field Guide to North Amer-
ican Mushrooms, with m = 119 binary attributes such as cap shape or
spore color.

• Plants For m = 70 states in the United States and Canada, for n = 22632
plants information has been gathered, whether the plant appears in the
state or not.
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a.2 what’s in the box?
In this section we will give extended examples on how to compute the MDL
score for a given database and set of rules, elaborate on the error encoding
for the rule tails, and give a visual toy example on the impact of the extended
pattern language for the rule head.

a.2.1 the impact of the extended pattern language

Figure 5: Example of the impact of noise. For a given database D given in a, where blocks
indicate the occurrence of items, a good rule is given byABC → D. Due to high noise,
the simple conjunctive pattern language results in a bad representation on where the rule
should apply, visualized on the left of b. More relaxed definitions towards disjunctions,
where we only require l items of the head to be present in the transaction, result in much
more stable representation on where the rule applies.

Extending the pattern language for rule heads is crucial to be applicable
for tracing activation patterns through a neural network. We here continue
the example of the first chapter (see Appendix A.1.1) highlighting one reason
why we need the extended pattern language. First of all, we need to start from
labels, which are inherently activated mutually exclusive, as we only have a
single label as classification. To find shared features of labels, it is essential to
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be able to express disjunctions with rule heads. Furthermore, the data as well
as activation patterns across the data are very noisy. Thus, determining where
a rule applies just based on conjunctions of features can give a very twisted
look of the data at hand, as visualized in Fig. 5. That is the reason to introduce
a more flexible language similar to approximate rule tails, which solves these
issues.
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a.2.2 experiments and data
Here, we detail the setup and training of the individual networks, and provide
further experimental results. In particular, we first discuss the training setup
for MNIST and highlight key results in App. Sec. A.2.2, and then provide
additional insights into ImageNet prototypes. For ImageNet, we first shortly
discuss prototypes obtained for GoogLeNet – a different network architecture
than VGG – in App. Sec. A.2.2 and then proceed to show additional results on
VGG-S for ImageNet in App. Sec. A.2.2.

MNIST training
We trained a CNN on MNIST using the Keras framework, using 60000 images
for training and 10000 images as hold out test set for evaluation. The network
consists of 2 convolutional layers, with 20 filters in the first layer and 40 filters in
the second layer, each using 3x3 kernels and 2x2maxpooling. The convolutional
layers are followed by a Dropout layer with dropout rate .25, and the flattened
outputs are passed on to a fully connected layer with 64 nodes with ReLU
activations. Then follows a dropout layer with rate .5 and the output layer of
size 10 with softmax activations. The network was trained using AdaDelta with
default parameters based on categorical cross entropy loss over 12 epochs using
a batch size of 128. We gathered binarized activations across all filters and
applied ExplaiNN to build rules from the output layer to the first respectively
second convolutional layer. Additionally to the examples in the main thesis,
we provide images for filter 36 in layer 2 in Fig. 6. The discovered rules show
that it detects horizontal edges in a class specific manner, whereas prototyping
and activation maps again fail to reveal this information. Interestingly, these
edge-detectors are long known to play an important role in convolutional layers
for image tasks.

ImageNet further results
Here, we present additional results on the ImageNet data set. If not specified
directly, pretrained models were obtained from the references indicated in the
main manuscript.

GoogLeNet results To examine if rule mining also works on different net-
work architectures and prototyping methods, we ran GoogLeNet pretrained
on ImageNet and gathered activation values across the network. Here, we only
focus on rules from output to last hidden layer for brevity. Similar to VGG-S,
we find expressive rules that span multiple classes and multiple neurons in the
last layer, capturing typical structures of the classes (see Fig. 7). We observe,
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(a) MNIST Average activations. Average activation maps across a class for filter 36.
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5 6 7 8 9

(b) Horizontal edge detector. Discovered rules, feature groups found across classes share
the same colour.

Figure 6: Filter visualizations. Activation maps (a) for the classes, the prototype of the
filter (b), and discovered rules (c), over the whole dataset for filter 36 in the second
convolutional layer.

however, that this particular prototyping method yields harder to interpret
images, which is known to be an issue and not due to the rules.

VGG shared neurons One key result for the VGG-S network for ImageNet is
that, similar to the previous MNIST network, traits that are shared between
classes are encoded by the same set of neurons. We discovered many such
shared traits that the network is able to pick up across classes, which are encap-
sulated in groups of neurons in the last layer. For example, there are neurons
that capture the red beaks of different birds, arch like structures of buildings,
tusks of elephants, and the ugly face of a whole group of different dog breeds
(see App. Fig. 8).
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Chesapeake Bay Retriever

Irish Water Spaniel

Poodle Peacock Obelisk

(a) Prototypes for rules from output label to last hidden layer.

(b) Samples for curly haired dog breeds. From left: Curly Coated Retriever,
Chesapeake Bay Retriever, Irish Water Spaniel, Poodle

Figure 7: GoogLeNet results on ImageNet. (a)Visualizations for the rules found between
the labels and the last hidden layer in GoogLeNet. The labels in the rule heads are
written above the prototype images of the tail unit groups. Each rule tail captures some
interesting features of the corresponding classes: In the first rule the characteristic curly
hair of different dog breeds is captured, the second group encapsulates information about
the typical colourful plumage of peacocks, the third captures the shape of obelisks. We
provide example images of the curly haired dog breeds in (b).
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Figure 8: Shared information across labels. Visualizations for the rules found between
the labels and the last fully connected layer (FC7). The labels in the rule heads are
written above the prototype images of the tail unit groups. Each rule tail captures some
interesting features of the corresponding classes: In the first rule the characteristic face of
different dog breeds is captured, the second group encodes information about the arch
structures present for both Viaduct and Triumphal arch, the third captures the red
beaks surrounded by blackish feather that are shared between different birds, and the
fourth shows typical heads and tusks of elephants.
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a.3 patterns of mutual exclusivity and co-oc-
currence

Theory

a.3.1 fisher’s recurrence
We now proof by induction that the following recurrence relation holds for the
terms p̂i of the summation in p̂

p̂0 =
(n−nX̃

nỸ
)

( n
nỸ
)

,

p̂i = p̂i−1 ·
(nX̃ − i)(nỸ − i)

(i + 1)(n− nX̃ − nỸ + i + 1)
.

Proof. Induction base. Assume nX̃Ỹ = 0. Obviously holds as p̂0 is the original
equation.
Induction step. Assume that the equation holds for i. Then we get(
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by using the well known identity for binomials (n

k) =
n−k+1

k ( n
k−1).

Experiments

a.3.2 program calls
Mexican To rule out exploring unreasonable patterns, we constrain Mexican
to candidates with a minimum overlap of 50% for ∧⃝, resp. a maximum overlap
of 10% for ×⃝. Furthermore we set the minimum support to 0.1% of the number
of rows in the data and a conservative significance threshold α = 0.001. To keep
the results interpretable for the SC data, we set a minimum support threshold
for a pattern to 3.
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Kingfisher We set a minimum confidence of 50% for the rule mining and a
minimum support of 0.1% of the number of rows in the data and a conservative
significance threshold α = 0.001, similar to Mexican.

LEminer To somewhat limit the number of patterns that LEminer finds, we
set the maximum number of bits to 1.5 and the dependency threshold to 0.7
and only mine attribute sets (-s).

a.3.3 data preprocessing
DLQ data
The arXiv data base was queried with keywords Deep Learning, respectively
Quantum Computing to retrieve paper abstracts. Words in all abstracts were
lemmatized, and words that are not nouns, verbs or adjectives got removed.
Five thousand abstracts of each of the two categories were put together in a
data set. The words of all abstracts were treated as bag of words and encoded
as separate binary columns, words with a support of less than 10 were removed
from the bag.

Instacart
The Instacart dataset originally has many items of the same type but different
vendors (e.g. tens of different toilet papers), while transactions are usually
very short. This makes the data very sparse, driving the support for even small
patterns down to single digits, which in context of a database with more than
2 million rows is nothing. Hence we decided to process the data by hand to
summarize similar items into buckets, and focussing on the food data.

Single Cell Data
The original single cell data was processed to have a transcript level normal-
ization, by using the established TPM (Transcripts Per Million) values. Fur-
thermore, we carried out a per cell normalization, setting the 75% quantile of
gene expression levels to 0, the upper quantile to 1, as common in the literature.
Columns containing only zeroes were removed and the resulting data was
converted into a transaction file format.
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a.4 label-descriptive patterns and their appli-
cation to characterizing classification er-
rors
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Figure 9: Synthetic data results (F1 score). We visualize results on synthetic data with
varying number of items (a), label ratio (b), label shift (c) and amount of background
noise (d). The results are in terms of F1 score with respect to the ground truth.
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a.5 differentiable pattern set mining
a.5.1 training parameters
For Slim, we use the proposed default candidate ordering from their manuscript
and provide a minimum support threshold of 10 for pruning. For Asso, we test
T = {0.1, 0.2, · · · , 1}, as suggested in their example experiment setup in the
codebase. We implemented BinaPs in Pytorch, and for all experiments train the
networks using Adam Kingma and Ba (2015), with an initial learning rate of
0.01, and an adaptive learning rate schedule lowering the base learning rate to
0.001 and 0.0001 after epoch 5 and 7, respectively, and train for overall 10 epochs.
The exception is Instacart, with relatively few features but comparatively many
samples. There, we observe a saturation of loss in the third epoch and hence
stop after that. As discussed in the main text, Asso is trained for rank selection
testing k up to the number of features in the data, similarly we set the capacity
c of BinaPs to the number of features. For Kosarak and Genomes, we provide
the methods with k = c = 1000. For medium sized data with less than 20k
features, such as the synthetic data and the DNA data set, we use a batch size
of 64, for all other data we use a batch size of 32. In general, we recommend
these as default values as this setup proved robust about the wide range of
experiments we carried out. It is however easy to carry out a parameter grid
search evaluating reconstruction loss on a test set. To extract pattern sets from
the network, we binarize the weights at a threshold of .2.

a.5.2 binaps with small n

Here we provide a derivation of the claim that already a single pattern is likely
(> 23%) to co-occur with other patterns when planting 100 patterns in 1000
samples with a density of .05 uniformly at random over the transactions. For a
patterns p and any other pattern q with marginal frequencies np = 50 and nq =
50, we are interested in the minimum joint frequency npq such that the pattern
occur statistically significant. To test the hypothesis assuming indpendence
between patterns, we use Fisher’s exact testF , setting the significance threshold
to α = 0.01. Searching for the smallest joint frequency npq such that F < α, we
obtain npq ≥ 8, meaning that if the patterns co-occur in at least 8 samples their
relation is likely to be statistically significant. The next question is how likely
an event of p co-occuring with any of the other 99 pattern is, which are planted
in the data set. Hence we compute this probability P using the hypergeometric
distribution now taking into account the overall number of patterns, yielding

P = 99 ∗
50

∑
i=8

(50
i )(

950
50−i)

(1000
50 )

≈ 0.233.
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Hence, the chance of observing even just one pattern co-occuring significantly
with another pattern is larger than 23%.

a.5.3 instacart data
Weobtained the instacart dataset from the official Kaggle challenge2 andmerged
food items of the same type (e.g. all sugar of different brands) each into a single
item. This allows us to circumvent problems induced by the extreme sparsity
of the database, where many items only occur extremely infrequent, even just
once, and thus do not expose any statistical significant relationships, and to
be able to find actual patterns such as e.g. Milk and Cookie, which would not
be possible if we would consider all combinations of e.g. brands and types of
chocolate cookies. Treating each transaction separately, independent of time
and customer id, we obtain a dataset of 1236 food items appearing in 2704831
transactions.

a.5.4 1000 genomes data
We processed the variant calls of all individuals available in phase 3 of the 1000
Genomes project3, filtering for autosomal single nucleotide variants (SNVs)
with an allel frequency of at least .01. For all protein coding genes specified
for the reference genome, we define windows from the transcription start site
(TSS) to 1000 base pairs downstream of the TSS. We then filter for SNPs that
appear in such a window, and define features in our binary matrix M for all
cases where at least one of the alleles show the rare variant (“1|0”, “0|1”, “1|1”).
Thus, the data matrix is of size 3·#filtered variants × #individuals. For each
individual i, we set the data entry Mij = 1 if the individual shows genotype j.

2https://www.kaggle.com/c/instacart-market-basket-analysis/data
3ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/

https://www.kaggle.com/c/instacart-market-basket-analysis/data
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/
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a.6 pruning for lottery tickets with non-zero
biases

In the following section, we present the missing proofs and additional experi-
mental results.

a.6.1 relu networks without bias are not universal
approximators

We, here, provide the necessary derivations for the counter-examples used in
Theorem 3. For the example g(x) = 0.5, x ∈ [−1, 1], by minimizing the mean
squared error (MSE), we get a loss of

L(x; w+, w−) =
∫ 1

−1
(g(x)− f (x))2 dx,

where f (x) is the neural network, which from Lemma 7.1 we know is only
dependent on w+, w− ∈ R. Solving this integral, we obtain

L(x; w+, w−) =
∫ 1

−1
(g(x)− f (x))2 dx

=
∫ 0

−1
(0.5− w−ϕ(−x))2dx

+
∫ 1

0
(0.5− w+ϕ(x))2dx (Lemma 7.1)

=
∫ 1

0
0.5− w−ϕ(x) + w2

−ϕ(x)2

− w+ϕ(x) + w2
+ϕ(x)2dx

=
∫ 1

0
0.5− w−x + w2

−x2 − w+x + w2
+x2dx (Def. ϕ(x) for x > 0)

=

[
0.5x− 0.5w−x2 +

1
3

w2
−x3

−0.5w+x2 +
1
3

w2
+x3 + C

]1

0
. (Primitive function)

We are interested in the network, and hence parameters w∗+, w∗−, that minimize
the loss. Thus, we solve L(x;w+ ,w−)

dw+

!
= 0, which yields w∗+ = 3

4 , and
L(x;w+ ,w−)

dw−
!
=
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0, which yields w∗− = 3
4 . We can directly see from the shape of the function that

these values are indeed a minimum, and not a maximum. Plugging this back
into the primitive function above, we obtain L(x; w∗+, w∗−) =

1
8 . Hence, for any

ϵ < 1
8 there does not exist a network that can approximate the function to this

error.
For a slightlymore complicated function, without explicit offset, we consider

g(x) = ex, x ∈ [−1, 1]. Analogue to above, we first minimize the MSE

L(x; w+, w−) =
∫ 0

−1
(ex − w−ϕ(−x))2dx

+
∫ 1

0
(ex − w+ϕ(x))2dx

=
∫ 1

0
e−2x − 2e−xw−x + w2

−x2

+ e2x − 2exw+x + w2
+x2dx

=

[
−0.5e−2x + 2e−xw−x + 2e−xw− +

1
3

w2
−x3

+0.5e2x − 2exw+x + 2exw+ +
1
3

w2
+x3 + C

]1

0
.

For L(x;w+ ,w−)
dw+

!
= 0, we get w∗+ = 3, and L(x;w+ ,w−)

dw−
!
= 0, which gives w∗− =

−3(2e−1 − 1). Again, we can observe from the shape of the function that is
given by f (x) that these values are indeed a minimum and not a maximum.
Plugging back in to the primitive function, we get L(x; w∗+, w∗−) = 11.5e−1 −
12e−2 + 0.5e2 − 6. Hence, for any smaller ϵ we do not have a network that can
approximate to this error.

a.6.2 existence of lottery tickets: proof of
theorem 7.1

Statement. Assume that ϵ, δ ∈ (0, 1) and a target network f with depth L and archi-
tecture n̄ are given. Each weight and bias of a larger deep neural network f0 with depth
2L and architecture n̄0 is initialized independently, uniformly at random according to
w(l)

ij ∼ U([−σw,l , σw,l ]) and b(l)i ∼ U([−∏l
k=1 σw,k, ∏l

k=1 σw,k]). Then, with proba-
bility at least 1− δ, f0 contains an approximation fϵ ⊂ f0 so that || f − λ fϵ||∞ ≤ ϵ if
for l = 1, ..., L

n2l−1,0 = Cnl−1 log
(

1
min {ϵl , δl}

)
and n2l,0 = nl ,
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where ϵl is defined in Eq. (7.4), δl = δ/(Lkl−1,maxnl), and the output is scaled by
λ = ∏2L

l=1 σ−1
w,l .

Proof. Lemma 7.2 simplifies the above parameter initialization to an equivalent
setting, in which each parameter is distributed as wij, bi ∼ U[−1, 1], while
the overall output is scaled by the stated scaling factor λ. We assume that all
parameters are bounded by 1 so that we can find them within the range [−1, 1].
Otherwise, we would need to increase n2l−1 by a factor that is proportional to
the maximum parameter value θmax, which is integrated into our constant C.

Every layer l of f corresponds in our construction to two layers of f0, i.e.,
layers 2l − 1 and 2l. The neurons in layer 2l correspond directly to the output
neurons in layer l of f . Thus, we only need width n2l,0 = nl in f0. Layer 2l − 1
serves the construction of intermediary neurons of in-degree 1. Using the
identity ϕ(x) = ϕ(x)− ϕ(−x), we see that all neurons in layer l of f can indeed
be represented by a two-layer neural network consisting of 3nl−1 intermediary
neurons of degree 1, as

x(l)i = ϕ

(
∑

j
w(l)

ij x(l−1)
j + b(l)i

)

= ϕ

(
∑

j
w(l)

ij ϕ
(

x(l−1)
j

)
−∑

j
w(l)

ij ϕ
(
−x(l−1)

j

)
+ b(l)i ϕ (1)

)
.

According to Lemma 7.4, we need to approximate each w(l)
ij and −w(l)

ij up to er-
ror ϵl/2 and b(l)i up to error ϵl to guarantee our overall approximation objective.
Since we have to do this for every parameter, our overall approximation can
only be successful with probability 1− δ if we increase our success probability
for each parameter, 1− δl , accordingly. In total, we have ml,max of such nonzero
parameters in layer l with ml,max ≤ 2nlkl,max. (To be precise, ml,max denotes the
number of parameters that are bigger than ϵl). The successes of finding differ-
ent parameters are not necessarily independent but we can identify a sufficient
δl with the help of a union bound. Accordingly, 1− δ ≥ 1− ∑L

l=1 δlml,max is
fulfilled for δl ≤ δ/(2Lnlkl,max). Note that we later integrate the factor 2 in the
constant related to the layer width.

With probability at least 1− δl , we can approximate each single parameter
by solving the subset sum problem for the corresponding neuron. As out-
lined in Cor. 2 by Pensia et al. (2020), which is based on Cor. 3.3 by Lueker
(1998), we need C log

(
1

min(δl ,ϵl)

)
neurons in layer 2l− 1 per neuron of the form

ϕ
(
±x(l−1)

j

)
or ϕ (1). Since we have to represent 3nl−1 of these neurons, in total
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we require layer 2l − 1 of f0 to have width

n2l−1,0 ≥ Cnl−1 log
(

1
min (δl , ϵl)

)
.

Next, we briefly explain the main ideas that lead to this result. The main
difference of our situations in comparison with Pensia et al. (2020) is that we
additionally create neurons of the form ϕ (1) to represent nonzero biases. Let
ϕ(y) be our target neuron, where y is either y = x(l−1)

j or y = 1 depending
on which neuron we want to represent. Note that we can construct multiple
candidates for a neuron ϕ(y) by pruning neurons in layer 2l − 1. We achieve
that by setting all weights that do not lead to y in the previous layer and the
bias term of a neuron to zero or, if y = 1, we set all weights to zero and keep the
nonzero bias term if the bias is positive. Let the index set of the such pruned
neurons corresponding to y be I. This leaves us with neurons of the form
w2,iϕ (w1,iy) with sign(y)w1,i ∼ U[0, 1] and w2,i ∼ U[−1, 1] for i ∈ I. For the
probability distribution of w1,iw2,i, Cor. 2 of Pensia et al. (2020) states that it
contains a uniform distribution. It follow that the subset sum problem has a
solution. Thus, for any parameter θ ∈ [−1, 1] there exists a subset S ⊂ I so that
with probability at least 1− δl

|θ −∑
i∈S

w1,iw2,i| ≤ ϵl .

if |I| ≥ C log
(

1
min(δl ,ϵl)

)
, which was to be shown.

Note that the same result also holds for normally distributed w1,i, w2,i, as
their product contains a uniform distribution. This follows from the fact that the
normal distribution contains a uniform distribution (Pensia et al., 2020). Thus,
the product of two normal distributions contains a product of two uniform
distributions and this product of uniform distributions contains a uniform
distribution as stated by Cor. 2 of Pensia et al. (2020).

‘Looks-linear’ initializations are also covered by this proof. When we can
construct a parameter w(l)

ij by solving a subset sum problem, we can construct
−w(l)

ij in the same way just with the negative correspondents of the parameters
that construct w(l)

ij .

a.6.3 algorithm for edge-popup-scaled

In this section we outline the proposed edge-popup-scaled algorithm. Here,
the getMask(.) function returns a binary mask M, where the weights corre-
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Algorithm A.1: edge-popup-scaled
input :Data (X, y), sparsity ρ, levels ea, epochs T, mother

network f0 with depth L, loss L
output :Ticket fϵ, scaling factor λopt

1 Initialize parameters W0, b0, w(l)
ij ∼ U([−σw,l , σw,l ]) and

b(l)i ∼ U([−∏l
k=1 σw,k, ∏l

k=1 σw,k]), scores S, s
w(l)

ij
∼ Const(0.5)

and s
b(l)i
∼ Const(0.5)

2 for i = 1 to ea do
3 ρ ′ = ρi/ea

4 for t in [1, .., T] do
5 M = getMask( f0, S, ρ ′) // mask largest scores
6 L( f (xi, M · [W0, b0]), yi) // compute loss
7 s̃

w(l)
ij
= s

w(l)
ij
− α ∂L

∂h(l−1) w(l)
ij ϕ(h(l−1)

i ) // gradient step
8 λ̃ = argminλ>0 L(y, λx(L)) // compute optimal scaling
9 w(l)

ij = w(l)
ij λ̃1/L, b(l)i = b(l)i λ̃l/L // apply scaling

10 λopt = λ̃, Sopt = S̃, Mopt = getMask( f0, Sopt, ρ)
11 fϵ = f0(Mopt · [W0, b0]) // final ticket
12 return fϵ, λopt

sponding to the largest scores (according to the sparsity ρ) are retained in the
mask.

a.6.4 experiments on imaging data
We conducted experiments on the benchmark CIFAR10 for classification with
CNNs and reconstruction with autoencoders. In particular, we pruned He
initialized VGG16 models for classification with Edge-Popup with annealing
for 5 levels, 50 epochs, and optimized via SGD with momentum of .9, learning
rate of .1, and cosine annealing of the learning rate, as discussed in the origi-
nal paper (Ramanujan et al., 2020). Experiments were repeated 5 times. For
reconstruction, we pruned a convolutional autoencoder as detailed in Table. 1,
with annealing for 5 levels, 50 epochs, optimized with Adam and a constant
learning rate of .001. These set of experiments were repeated 4 times. From
the results, reported in Fig. 10, our first observation is that we can success-
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Figure 10: CIFAR10 results. Comparison of Edge-Popup results on CIFAR10 with
models with zero vs nonzero bias initializations. Reported are mean as well as minimum
and maximum obtained from 5 repetitions for classifiation (a) and reconstruction (b)
across different sparsity levels.

fully prune for strong lottery tickets for both zero bias as well as nonzero bias
initialized networks. Second, the achieved results do not differ significantly.
Upon further investigation of the autoencoder tickets, this might be the case
due to insufficient pruning of bias parameters, as most of the layers in the
ticket do not contain any bias. This could be a systematic property of image
data, i.e. convolutions do not require bias parameters for efficient prediction
or reconstruction, or could be a shortcoming of current strong lottery ticket
pruning to be parameter-inefficient and hence unable to draw advantage from
the bias parameters. In recent literature, it was shown that Edge-Popup is indeed
unable to recover a ground truth ticket of high sparsity for CIFAR10 (Fischer
and Burkholz, 2022). Only once more efficient SLT pruners are available, we
can give a definite answer to the question of whether biases are necessary for
efficent SLTs for imaging data.
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Layer name Description
Encoder 1 Conv(3, 64, 3)
Encoder 2 Conv(64, 64, 3)
Encoder 3 Conv(64, 128, 3)
Encoder 4 Conv(128, 128, 3)
Encoder 5 Conv(128, 128, 3)
Encoder 6 Linear(2048, 512)
Decoder 1 Linear(512, 2048)
Decoder 2 ConvTranspose(128, 128, 3)
Decoder 3 Conv(128, 128, 3)
Decoder 4 ConvTranspose(128, 64, 3)
Decoder 5 Conv(64, 64, 3)
Decoder 6 ConvTranspose(128, 3, 3)

Table 1: Autoencoder architecture. Description of stacked autoencoder architecture. Each
inner layer is followed by a ReLU activation, the final layer by tanh activation.
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a.7 plant ’n’ seek

In the following section, we present the proofs of the theorems and lemmas of
the main manuscript.

a.7.1 error propagation: proof of lemma 8.1

Statement. Assume ϵ > 0 and let the target network f and its approximation fϵ have
the same architecture. If every parameter θ of f and corresponding θϵ of fϵ in layer l
fulfils |θϵ − θ| ≤ ϵl for

ϵl := ϵ

(
L
√

ml

(
1 + sup

x∈[−1,1]n0

∥∥∥x(l−1)
∥∥∥

1

)
L

∏
k=l+1

(∥∥∥W (l)
∥∥∥

∞
+ ϵ/L

))−1

,

then it follows that ∥ f − fϵ∥∞ ≤ ϵ.

Proof. Our objective is to bound ∥ f − fϵ∥∞ ≤ ϵ. We repeatedly use the trian-
gle inequality and that |ϕ(x)− ϕ(y)| ≤ |x − y| is Lipschitz continuous with
Lipschitz constant 1 to derive∥∥∥x(l) − x(l)

ϵ

∥∥∥
2
≤
∥∥∥h(l) − h(l)

ϵ

∥∥∥
2

≤
∥∥∥(W(l) −W(l)

ϵ

)
x(l−1)

∥∥∥
2

+
∥∥∥b(l) − b(l)

ϵ

∥∥∥
2
+
∥∥∥W(l)

ϵ

(
x(l−1) − x(l−1)

ϵ

)∥∥∥
2

≤ ϵl
√

ml sup
x∈[−1,1]n0

∥∥∥x(l−1)
∥∥∥

1
+ ϵl
√

ml

+
(∥∥∥W(l)

∥∥∥
∞
+ ϵl

) ∥∥∥(x(l−1) − x(l−1)
ϵ

)∥∥∥
2

with ϵl ≤ ϵ/L. ml denotes the number of parameters in layer l that are smaller
than ϵl and ∥W∥∞ = maxi,j |wi,j|. Note that ml ≤ nlkl,max. The last inequality
follows from the fact that all entries of the matrix

(
W(l) −W(l)

ϵ

)
and of the

vector (b(l) − b(l)
ϵ ) are bounded by ϵl and maximally ml of these entries are

non-zero. Furthermore,
∥∥∥W(l)

ϵ

∥∥∥
∞
≤
(∥∥∥W(l)

∥∥∥
∞
+ ϵl

)
follows again from the

fact that each entry of
(

W(l) −W(l)
ϵ

)
is bounded by ϵl .
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Thus, at the last layer it holds for all x ∈ [−1, 1]n0 that

∥ f (x)− fϵ(x)∥2 =
∥∥∥x(L) − x(L)

ϵ

∥∥∥
2

≤
L

∑
l=1

ϵl
√

ml

(
1 + sup

x∈[−1,1]n0

∥∥∥x(l−1)
∥∥∥

1

)
L

∏
k=l+1

(∥∥∥W (l)
∥∥∥

∞
+ ϵ/L

)
≤ L

ϵ

L
= ϵ,

using the definition of ϵl in the last step.

a.7.2 lower bound on existence probability:
proof of theorem 8.1

Next, we prove the following lower bound on the probability that a very sparse
lottery ticket exists.

Statement. Assume that ϵ ∈ (0, 1) and a target network f with depth L and ar-
chitecture n̄ are given. Each parameter of the larger deep neural network f0 with
depth L and architecture n̄0 is initialized independently, uniformly at random with
w(l)

ij ∼ U
([
−σ

(l)
w , σ

(l)
w

])
and b(l)i ∼ U

([
−∏l

k=1 σ
(k)
w , ∏l

k=1 σ
(k)
w

])
. Then, f0 con-

tains a rescaled approximation fϵ of f with probability at least

P (∃ fϵ ⊂ f0 : ∥ f − λ fϵ∥∞ ≤ ϵ) ≥
L

∏
l=1

(
1−

nl

∑
i=1

(1− ϵ
ki
l )

nl,0

)
,

where ϵl is defined as in Eq. (7.4) and the scaling factor is given by λ = ∏L
l=1 1/σ

(l)
w .

Proof. As shown by Fischer et al. (2021a), the scaling of the output by λ simpli-
fies the above parameter initialization to an equivalent setting, in which each
parameter is distributed as wij, bi ∼ U[−1, 1], while the overall output is scaled
by the stated scaling factor λ, again assuming that all parameters are bounded
by 1− ϵ. Each parameter in Layer l needs to be approximated up to error ϵl
according to Lemma 7.4. To match the same sparsity level of f , for each neuron
i in each Layer l of f , we have to find exactly one neuron in the same layer
(Layer l) of f0 that represents i. We start with matching neurons at Layer 1
(given the input in Layer 0) and proceed iteratively by matching neurons in
Layer l given the already matched neurons in Layer l − 1.

Let us pick a random neuron in Layer l of f0. How high is the probability
that it is a match with a given target neuron i in layer l of f ? The neuron i
consists of ki parameters that have to be matched. Since the corresponding
neurons in layer l − 1 of f and f0 have already been matched according to
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our assumption, we only have one possible candidate θ0 for each of the ki
parameters θi. For uniformly distributed parameters, we have |θi − θ0| ≤ ϵl
with probability ϵl . For normally distributed θ0 ∼ N (0, 1), the probability is at
least ϵl/2 (as long as |θ0 ± ϵ| ≤ 1. This can be seen by Taylor approximation of
the cdf of a standard normal Φ(z + ∆z)−Φ(z− ∆z) in z. For the remainder of
the proof, however, we assume uniformly distributed parameters. Thus, all ki

independent parameters are a match with probability ϵ
ki
l . Accordingly, none of

the available nl,0 neurons in Layer l is a match with probability
(

1− ϵ
ki
l

)nl,0 .
With the help of a union bound we can deduce that the probability that at

least one of the neurons i in Layer l of f has no match in f0 is smaller or equal
to ∑nl

i=1

(
1− ϵ

ki
l

)nl,0 . Therefore, the converse probability that we find a match
for every single neuron in Layer l of f is at least 1−∑nl

i=1

(
1− ϵ

ki
l

)nl,0 .
Since we have to guarantee a match for each single layer and the matching

probability of a new layer is conditional on the previous layer, we obtain a
lower bound on the existence probability of a lottery ticket by multiplying the
layerwise bounds.

This bound is only practical for very sparse target networks f with neurons
of small in-degrees ki. It still shows that the existence of very sparse lottery
tickets is possible under the right conditions. To provide an intuition how
this bound on the existence probability depends on the relevant parameters,
we visualize the bound when one component is varied in a simple example,
in which all nodes and layers are homogeneous so that they have identical
properties like degree, width, etc. Fig. 11 shows that the bound most critically
depends on the degree of a node and the width of the mother network. Yet,
all parameters matter and can make the existence of a LT unlikely. Extreme
sparsity can pose significant challenges to pruning algorithms, as we also see
in our experiments with planted solutions.

Next, we discuss all relevant parameters and set-ups to reproduce the
experimental results. Furthermore, we provide additional results obtained
for singleshot learning spanning different architectures and pruning schemes.
All source code to run pruning algorithms and to generate the data is made
publicly available.

a.7.3 other pruning approaches
Finetuning Recent results indicated that finetuning discovered subnetworks
yields better models than training these subnetworks from scratch (Liu et al.,
2021a). In particular, they proposed to use iterative (magnitude) pruning and
skip the resetting of the parameters to their initial values, but rather continue
training the current parameter set, which incurs no additional computational
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Figure 11: Visualization of lower bound. Bound on SLT existence probability for ϵl = 0.005,
ki = 2, L = 3, nl = 2, and nl,0 = 105. In each plot, one single variable is varied while the
remaining ones are kept fixed.
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Figure 12: Finetuning vs initialization. Performance for Circle (top), ReLU (middle), and
Helix (bottom) for 10 rounds of alternating pruning and training. Visualized are weak
ticket performances (i.e. training on initialized weights) against finetuned subnetworks
(i.e. no reset of weights after final pruning round). Baseline ticket performance in black.
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overhead. Here, we investigate how finetuning affects results on our benchmark
data for all considered methods. We repeat the multishot learning experiments
in combination with finetuning and visualize the results in Fig. 12. For the
considered classification task, finetuning matches the performance of classical
’weak ticket’-training with parameter reset, achieving almost perfect accuracy
levels for up to .01 target sparsity. For even sparser target networks, we see a
marginal improvement of Magnitude and Synflow by using finetuning, which
is however within the confidence of the original prediction. For the regression
tasks we get a slightly different view: here, the original weak tickets already
detoriate in performance for relatively dense target networks of .5 or .1 target
sparsity. Notably, for the ReLU task, finetuning does improve ticket performance
for those sparsity levels, such that the algorithms can match the performance
of the ground truth ticket. For more extreme sparsity levels, we see a drastic
improvement forMagnitude pruning, but no improvement for other algorithms
or at ground truth ticket performance. For Helix, the results are mixed, where
we observe an improvement at dense target sparsities of .5 similar to before, but
no improvement or even a decrease of performance for smaller target sparsity
levels. In summary, on our benchmarks, finetuning helps to improve perfor-
mance at relatively large target sparsity levels (> .1), but does not provide an
advantage compared to the common training after parameter reset for extreme
sparsities.

RigL While the main focus of our paper are lottery tickets, we here briefly
discuss results for RigL (Evci et al., 2020), a state-of-the-art dynamic sparse
training approach, which results in sparsified and trained network architectures
which are comparable to trained ’weak’ tickets. For our benchmark data, we
construct similar networks as for the multishot experiments – i.e. depth 6 and
width 100 fully connected networks – and run the available implementation of
RigLwith default parameters as suggested in the paper, andAdam optimization
with the same parameter settings as for all other considered methods. We train
networks for 60 epochs, which results in a comparable amount of training time
as in the multishot experiments, and note that good performance is reached
much earlier.

The original results reported in Evci et al. (2020) indicate that for their
considered (classification) tasks, RigL outperforms other dynamic sparse train-
ing methods, and that for target sparsity levels of .1 and lower, performance
quickly deteriorates for all methods.4 In the original paper, there was no ex-
ploration of the more extreme sparsities considered here, nor a comparison
to ticket pruning other than SNIP. Our results on Circlematch those results,
with RigL being able to match ground truth ticket performance for sparsity .5
and .1. The performance decreases quickly with extremer sparsity levels (see

4Note that Evci et al. (2020) use percentage of pruned parameters for their plots, i.e.
1−sparsity in our paper.



217 Appendices

10−3 10−2 10−1

0

0.2

0.4

0.6

0.8

1

Sparsity

Ac
cu

ra
cy

RigL True Ticket

(a) RigL on Circle.

10−3 10−2 10−1

10−4

10−3

10−2

10−1

100

Sparsity

M
SE

(b) RigL on ReLU

10−3 10−2 10−1

10−3

10−2

10−1

100

Sparsity

M
SE

(c) RigL on Helix.

Figure 13: RigL. Performance for Circle (top), ReLU (middle), and Helix (bottom)
for 60 rounds of training with default parameters. We report mean and minimum and
maximum values across 10 repetitions. Baseline ticket performance is indicated in black.
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Fig. 13). In comparison with the multishot results, we observe that Synflow,
SNIP, andMagnitude pruning outperform RigL on this task for the extreme
sparsity levels (compare Fig. 8.5). Note that the version of SNIP used in the
original paper is essentially the singleshot approach, which indeed performs
worse than RigL (compare Fig. 8.3). For regression tasks, we see a similar
trend, with RigL performing comparably good as SNIP for sparsity levels ≥ .1,
but the performance decreases rapidly for more extreme target sparsitiy levels.
Generally, for the regression tasks we observe that RigL is outperformed by
the state-of-the-art ticket pruner Synflow and iterative Magnitude pruning.
Yet, RigL allows for efficient computations, saving FLOPS by only infrequently
updating gradients, which render it the method of choice for target sparsities
of ≥ .1 in specific applications.

a.7.4 additional results on singleshot learning
Model depth In this section, we provide all results from the singleshot learn-
ing for depths 3, 10 and width 100 in Figure 14 and 15, respectively. We observe
that all methods have problems to deal with smaller networks, while the results
for the larger networks are consistent.

Model width To investigate the effect of layer size, we run an experiment
with a network of depth 6 and width 1000 on Circle – as the layer size is an
important factor for the theoretical probability of the existence of tickets – and
report the results in Figure 16. We observe that although the network is much
larger, there is barely any change in comparison to the previous results. Note
that the results after training of tickets of individual sparsities cannot be directly
compared directly to the other singleshot results, as the tickets are much larger
(due to the much larger number of parameters) and hence easier to train.

Multiple pruning rounds We report the results of running Synflow with 100
rounds of pruning on a network of depth 6 and width 100 for Circle in Figure
17. We find that there is again barely any change to the original singleshot
results after pruning, but there is a slight increase in performance after training
compared to the single-round singleshot results.

a.7.5 additional results on multishot learning
To test whether we can reach an improvement of the performance of tickets
discovered by GraSP using a multishot pruning approach and avoid layer
collapse, we ran additional experiments using a local pruning rate. In particular,
we used layer-wise pruning setting the target sparsity of the parameters of each
individual layer to the global sparsity level. We report results in Fig. 18.
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Figure 14: Singleshot results depth 3. Performance of discovered tickets for Circle,
ReLU, and Helix against target sparsities as mean and obtained intervals (minimum and
maximum) across 25 runs. In order of appearance from top to bottom: Circle, ReLU,
and Helix post pruning (left) and post training performance (right). Baseline tickets have
sparsities of .16, .01, and .29, and their performance is given by black dashed line.
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Figure 15: Singleshot results depth 10. Performance of discovered tickets for Circle,
ReLU, and Helix against target sparsities as mean and obtained intervals (minimum and
maximum) across 25 runs. In order of appearance from top to bottom: Circle, ReLU,
and Helix post pruning (left) and post training performance (right). Baseline ticket has
leftmost sparsity and its performance given by black dashed line.
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Figure 16: Singleshot results, depth 6 width 1000. Performance on test data are plotted for
Circle against target sparsities. We report mean and obtained intervals (minimum and
maximum) across 10 repetitions of ticket performance right after pruning (left) and after
training (right). The baseline ticket performance is indicated by the black line, leftmost
sparsity correspond to planted ticket sparsity.
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Figure 17: Singleshot results for Synflow with 100 pruning rounds. Performance on
test data are plotted for Circle against target sparsities. We report mean and obtained
intervals (minimum and maximum) across 10 repetitions of ticket performance right after
pruning (left) and after training (right). The original network is of depth 6 and width 100.
The baseline ticket performance is indicated by the black line, leftmost sparsity correspond
to planted ticket sparsity.
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Figure 18: Multishot with local pruning. Performance on test data are plotted for Circle
against target sparsities. We report mean and obtained intervals (minimum and maximum)
across 10 repetitions of ticket performance right after pruning (left) and after training
(right). The ground truth ticket performance is indicated by the black line, second to left
sparsity correspond to planted ticket sparsity.
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