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ABSTRACT

We are interested in discovering those patterns from data with
an empirical frequency that is significantly differently than expec-
ted. To avoid spurious results, yet achieve high statistical power,
we propose to sequentially control for false discoveries during the
search. To avoid redundancy, we propose to update our expect-
ations whenever we discover a significant pattern. To efficiently
consider the exponentially sized search space, we employ an easy-
to-compute upper bound on significance, and propose an effective
search strategy for sets of significant patterns. Through an extens-
ive set of experiments on synthetic data, we show that our method,
Spass, recovers the ground truth reliably, does so efficiently, and
without redundancy. On real-world data we show it works well on
both single and multiple classes, on low and high dimensional data,
and through case studies that it discovers meaningful results.
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1 INTRODUCTION

A cornerstone of many scientific problems is discovering statist-
ically significant associations between features from data. In the
biomedical domain, for example, researchers are interested in identi-
fying combinations of genetic markers that are associated with
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Figure 1: Our method recovers the ground truth where com-
petitors struggle. We show the number of statistically signi-
ficant patterns discovered at an FWER of 0.05 on two-class
data where we vary the probability of associating 50 ground
truth patterns with its classes.

specific phenotypes [22, 23, 45], studying combinations of muta-
tions caused by cancer [40], or analyzing correlated markers that
together indicate a high survival chance of a patient [32]. Statistic-
ally significant pattern mining is a branch of data mining in which
we are after those patterns that are statistically significant with
regard to some null hypothesis. Thus, it is particularly well-suited
to meet the needs of many scientific domains.

A key issue plaguing significant pattern mining is the multiple
hypothesis testing problem: If we test a single pattern for significance,
the probability of falsely rejecting the null hypothesis is bounded
by its p-value. This probability quickly converges to 1 as we test
more hypotheses, however, and since the pattern search space is
exponential in the number of binary features, we drown in spurious
results unless we use some form of false discovery control. One
option is to limit risk of making at least one false discovery, also
known as controlling the Family-Wise Error Rate (FWER), and
another is to limit the expected number of false discoveries, which
is known as controlling the False Discovery Rate (FDR). Most work
in the field focuses on finding a good balance between statistical
power and computational efficiency.

Although recent work achieves impressive results, it falls short
when it comes to reporting succinctly and without redundancy. To
illustrate this problem, we run three recent statistically significant
pattern miners, Lamp [37], WYLIGHT [24], and SPUMANTE [29],
on synthetic two-class data using only 50 ground truth patterns,
randomly associated to each class. The higher the class association
probability, the more patterns participate in generating the class. At
100%, for example, all 50 patterns are used to generate each classes
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(see Sec. 5 for more details). In Fig. 1, we show the number of pat-
terns discovered by Lamp, WYL1GHT, SPUMANTE, and our method
at a significance level of 0.05. There, LamP, WYLIGHT, SPUMANTE
identify orders of magnitude more patterns as significant as we
originally used to generate the data. Although not incorrectly, since
subsets or combinations of ground-truth patterns might also be
significant. However, these redundant results drown the analyst in
patterns.

To achieve concise and informative, rather than redundant res-
ults, we propose to test patterns for significance against our expect-
ation, based on the patterns we have discovered so far. To prevent
spurious results, yet achieve high statistical power, we sequentially
control for either family-wise error rate or false discovery rate. That
is, we iteratively adjust the significance level @ during the search,
factoring in what part of the space we explored and what hypo-
theses we have rejected. Our method, Spass (significant Pattern
Associations), automatically associates patterns to those classes
for which they are significant, thereby immediately exposing the
similarities and differences between the classes. This allows us to
handle data with one or more classes, while existing methods can
only handle data with one or two classes.

Through an extensive set of experiments, we show that Spass
performs well in practice. While its competitors drown the analyst
in large numbers of highly redundant patterns, we demonstrate
that Spass reliably recovers the ground truth in synthetic data and
discovers succinct and non-redundant patterns in real-world data.
In two detailed case studies on real-world data, we illustrate that
the patterns identified by Spass are also meaningful. Furthermore,
Spass is very fast, taking only seconds up to a few minutes in our
experiments where competitors take hours, days, or even weeks.

Our main contributions are as follows. In particular, we

(1) suggest to iteratively test for significance against a probabil-
istic model of the data based on our most current knowledge
of the data,

(2) propose a novel sequential FWER control and introduce the
first pattern mining procedure under sequential online FDR
control,

(3) introduce the Spass algorithm to efficiently discover non-
redundant sets of statistically significant patterns using an
easy-to-compute Chernoff bound, and

(4) provide an extensive empirical evaluation on synthetic and
real-world data.

The remainder of the paper is structured as follows. In Section 2,
we state our problem formally. Next, we introduce and analyze our
method Spass in Section 3. Related work is discussed in Section 4,
and we empirically evaluate Spass in Section 5. After discussing
our method in Section 6, we conclude our paper in Section 7. We
provide additional details for reproducibility in the supplementary,
and make all code and data publicly available!

2 SIGNIFICANT PATTERN SETS

In this section we define our problem, starting with notation, after
which we informally describe the problem. We then move to the
statistical test for one hypothesis, its efficient inference, and after-
wards introduce a sequential hypothesis testing procedure.

!eda.mmci.uni-saarland.de/spass
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2.1 Notation

We consider data X of n samples over m binary features, or items,
I, where every sample y € X is independently drawn from the
powerset 27 of all possible samples, or itemsets. We assume that
the X is partitioned into k > 1 classes {Xj, ..., X }. Each class X;
in itself is a multiset of |Xj| independently drawn itemsets.

As patterns, we consider itemsets x C 7, i.e. the powerset 27
is the set of all possible patterns. A data point y € X supports a
pattern x iff x C y. The empirical frequency g of an itemset x in a
class X; is

ax;(x) =y € Xi | x C y}l /1Xil .

A pattern set S C 27 is simply a set of patterns. We will main-
tain one pattern set S; for each class X;. A pattern x € §; is said
to be associated with class X;. Combined with empirical frequen-
cies, a pattern set S; is the sufficient statistics of our probability
distribution p over 27 .

With our notation in place, we are now ready to informally state
the problem.

2.2 The Problem, Informally

Overall, our goal is to discover those patterns whose empirical
frequencies in the data differ significantly from what we would
expect, based on what we already know about the data. We strive
to do this for datasets with one or multiple classes over the same
set of binary features, such that we find not only patterns that are
distributed significantly differently in general but also patterns that
are distributed significantly differently in one or multiple classes.

We explicitly seek to prevent redundant results, and hence re-
quire that every reported pattern is significant in light of all previ-
ously discovered patterns. This formulation has the benefit that it
allows us to sequentially control for false discoveries by adjusting
the significance threshold during the search, based on what part of
the search space we have considered so far.

Existing statistical pattern mining approaches are reporting
every significant pattern, often including the subsets or combina-
tions of true pattern, which introduces redundancy. The key idea of
our approach is that we discover non-redundant results by testing
each pattern for significance against a model of the data based
on prior discoveries, and do so using an appropriately adjusted
significance level.

A bit more formally, our goal is to discover one pattern set S;
for each class X;, such that the empirical frequency g, (x) of each
pattern x € S; diverges significantly from our expected frequency
Ps;\{x} (x) based on patterns already accepted prior to x, while
controlling for false discoveries.

With this intuition in mind, we next describe our probabilistic
model and the statistical test for one hypothesis. Afterwards, we
will show how to sequentially control for false discoveries when
testing multiple hypotheses using either family-wise error rate
(FWER) or false discover rate (FDR).

2.3 Testing for Significance

To infer an expected frequency ps, (x), we need a probability distri-
bution p. We choose p by the principle of maximum entropy [20],
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which states that the distribution f which uses no additional inform-
ation beyond what it was explicitly provided, is the distribution
that satisfies the given constraints, but otherwise maximizes Shan-
non entropy. Accordingly, we define the expectation pg, (x) as the
expected probability

Belxl= Y fylS),
yeZI
xCy

under the distribution f that maximizes the Shannon entropy
arg max — Z fxlog fx,
f

subject to linear equality constraints E¢[x] = gx,(x) for all ele-
ments in S;. We know from Csiszar [9] that f has the form

fals)=6 [] 6=

ijS

where 1 is the indicator function. Although convex, finding the
maximizer requires exponentially many inferences, is known to be
a PP-hard problem [36], and thus cannot easily be approximated.
To still allow for efficient inference, we factorize p into independent
and fast-to-infer factors [11, 12], starting as the product of marginal
frequencies. Since these marginals are the building blocks of our
factorization, we explicitly model the frequencies of each singleton
y € T per class.

Formally, we state the null hypothesis that the distribution of an
x C T in class X; follows the expectation p given S; € 27 as

H: qx,(x) =ps,(x),
and the alternative hypothesis that it is distributed differently as

H*:  qx,(x) # ps,(x) .

A pattern x either occurs in a sample in X; or it does not, and
under the null hypothesis it is hence Bernoulli distributed with
success probability ps, (x). By convention, we assume that each
sample in X; is independently drawn, by which the number of
samples in which x occurs becomes binomially distributed. Under
the null hypothesis, the p-value P[H] of observing a pattern x with
a more extreme frequency gy, (x) than our expectation pg, (x) is

P[”x2ﬁx|H]a

where ny = |X;j| - qx, (x) is the observed number of data points that
supports x, and fix = |Xj| - ps, (x) is the expected number of such
data points. To infer these p-values exactly, we can use the binomial
cumulative distribution function
N n k n—k
Famp) =) 1]k -pr )
k=s

for the number of successes s, number of trials n, and success probab-
ility p. More precisely, if gx, (x) > ps, (x) we can infer P[H] by com-
puting F(ny, |Xi|; ps,(x)), or else, we do so with F(0, ny; ps, (x)).
Although mathematically convenient, as we may have to infer the
CDF exponentially often, computing F exactly during our search
is impractical. We therefore propose to approximate F using the
easy-to-compute Chernoff bound [8],

F(n-a,n;b) < exp[-nD(alb)] ,

KDD ’°22, August 14-18, 2022, Washington, DC, USA.

n=1000
0 0
' w
S _j5 o
I I -500
R ®
= _ - - Binomial = - - Binomial
= 10 / \ %
) /= Chernoff \ e —1,000 — Chernoff
) / \ S .
- / — Gaussian \ - — Gaussian
—15 / \ /
| B R B E— | B R B E—
0 02 04 06 08 1 0 02 04 06 08 1
q q

Figure 2: Chernoff closely approximates the binomial CDF.
For the fixed probability p(x) of 0.5, we show p-values for
Chernoff, Gaussian, and the exact binomial CDF over 10 (left)
and 1000 (right) samples.

where D(al|b) is the Kullback-Leibler divergence
aloga/b+(1-0b)log(1—-a)/(1-b)

of the two Bernoulli distributions a and b. To illustrate how well
the Chernoff bound approximates the binomial CDF in comparison
to the popular standard normal approximation, we show p-values
for 10 and 1 000 samples for a success probability of 0.5 in Fig. 2.
There, we see that the Chernoff bound tightly approximates exactly
computed p-values, even for few samples.

2.4 Controlling for False Discoveries

If we test a single hypothesis, the probability of falsely rejecting
the null hypothesis H is bounded by its p-value P[H]. The more
hypotheses we test, the probability of falsely rejecting at least one
null hypothesis converges to 1, that is, unless we carefully control
for testing multiple hypotheses. We consider two approaches to
false discovery control, namely, one targeting the family-wise error
rate and one targeting the false discovery rate. Both have in common
that, rather than testing each hypothesis at the same significance
level a, they test hypotheses at adjusted significance levels a; < a.
In a nutshell, in both cases, we consider a sequence of hypotheses

Hy,H,...,
for which we compute the corresponding sequence of p-values
P[H],P[H2],... .

We decide to reject the ™ hypothesis Hy if its p-value P[H; ] is less
than the adjusted test level a4, i.e.,

P[H¢] < ar,

and denote the set of all rejections as R = {H; € H | P[H;] < o},
where H is the set of all hypotheses. Regardless of how we control
a;, we ideally want to maximize the statistical power, also known
as the true discovery rate (TDR)
R NHE
max{1, [H[} |’
where H* = {H € H | H* = 1} is the unknown set of truly altern-

ative hypotheses. In the following, we discuss how to determine a
test level sequence «; that achieves a high TDR while controlling
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for false discoveries, starting with the conservative family-wise er-
ror rate and then moving on to the less conservative false discovery
rate.

Controlling FWER. We start with the adjustment of the signific-
ance levels a; to guarantee a FWER of at most a. The Family-Wise
Error Rate, or FWER for short, is the probability

P[IRNHol|] > 0

of making at least one false discovery, where Hy = {H € H | H =
1} is the unknown set of all hypotheses that are truly null. We can
keep the FWER below « by testing against an adjusted significance
threshold @; = a/N, where we simply divide o by the number
N of hypotheses in H. This is known as Bonferroni correction [6].
While Bonferroni correction works well when testing relatively
few hypotheses, in our case, N = k - 2™ is exponential in m, and
hence, for any non-trivial value of m, the adjusted values a; will
be so low that the probability of a true discovery is (almost) zero.

In statistically significant pattern mining, one common approach
to increase the TDR is by outright excluding hypothesis if their min-
imally attainable p-value is above the significance threshold [35].
This is Tarone’s exclusion principle [27]. Since, the minimally at-
tainable p-value in our case shrinks exponentially with number of
samples in a class (cf. the infimum of Eq. (1)), it becomes so small
that we cannot excluding many hypotheses in advance. We can,
however, exploit the fact that we typically do not test all patterns
but rather a much smaller set C of candidate patterns. Hence, it
suffices to adjust a by the size of C, rather than N, since [C| <« N.
Unfortunately, we do not know C in advance. But fortunately, we do
know how we generate C. We, therefore, make our significance level
adjustment search space aware [4, 42, 43]. That is, we sequentially
adjust the significance levels a; while we iteratively generate C.

To do so, we need to impose structure on the search space. That
is, we organize the hypotheses (i.e., patterns) as a lattice, such that
layer I contains all patterns of length I [2]. If we now search for
significant patterns layer by layer, we only have to correct for up
to and including the current layer I, which is at most the sum of
all binomials up to I. While easy to compute for small /, for larger
values, this sum is computationally costly, and hence, we resort to
the upper bound

1 1 k

m m

Z(k) <ZF <elm/nt. @)
k=1 k=1

To obtain the adjustment factor we need for the tth hypothesis, we
multiply the right-hand side of Eq. (2) with the number of classes

k. We summarize the above in the following lemma.

Lemma 1. For any sequence of p-values, we control for the FWER
by adjusting the test levels, for the tth hypothesis using

@ = ming<; {as, alk- el(m/l)’]—l} , 3)

where [ is the highest layer in the search lattice explored so far,
m = |I| is the number of features which coincides with the highest
lattice level, and k is the number of classes under consideration.

ProOF. At each level I € {1,...,m}, we adjust for all possible
hypotheses up to that layer, which grows to at most [ = m. By
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summing Eq. (2) up to m, we achieve equality with Bonferroni
correction. m]

Although many domains require FWER, there are problems do
not need such strict error control. In such cases, we therefore control
for the less conservative FDR, which we describe in the following.

Controlling FDR. The False Discovery Rate [5], or FDR for short,
is an alternative approach to false discovery control. To permit a
higher statistical power than FWER, the FDR is controls for the
expected number of false discoveries

IR N Hol
max{1, |R|}

rather than the probability of at least one false discovery.

To ensure an FDR of at most @, we can determine a; using so-
called generalized a-investing (GAI) rules [3]. These rules “invest”
a fraction of our available “a-budget” in each significance test we
perform, thus decreasing the available a-budget, and reward each
discovery by increasing the available a-budget. In short, we start
with a budget of 0 < wy < a, decrease the budget when testing the
tth hypothesis with a penalty ¢;, and increase the budget with a
reward ¢y when we reject it. Thus, we can continue testing as long
as we make discoveries. Formally, our budget develops as

w1 — w — ¢y + 1[P[H;] < ar] - Y . (4)

Since our p-values are statistically dependent, and we seek high
statistical power, we employ a variant of the Lorp-update rules
proposed by Javanmard and Montanari [19]. We start with an initial
budget of wyp = a/2. For every discovery, we receive a constant
reward i = a — wy. To prevent that we use all available budget
on a single hypothesis, we set the penalty ¢; and the level a; to a
fraction

>

at < Yt - Wr
of the budget w; available at the most recent discovery time
r=argmax 1{P[H;] < as} =1,
s<t
using a non-increasing sequence (y;);>1 as the fraction of our
budget w; that invest into the test in iteration t. To choose such a
sequence (y¢)¢>1 for arbitrarily dependent p-values, we resort to
Thm. 3.7 from Javanmard and Montanari [19]. In essence, this the-
orem states that any non-increasing sequence (y;);>1 guarantees a

bounded FDR if
Z ye(1+logt) < a/wo,
t

holds. In particular, this is true for the sequence
6 a/wo
Ve = o e I+loat)
272 (1 +logt)
which we summarize in the following lemma.

_6 __alw
22 (1tlog D)’
described above control FDR for arbitrarily dependent p-values.

Lemma 2. Fory; = the generalized a-investing rules

Proor. By substituting y; in Thm. 3.7 from [19], we observe that
the factor 1 + log ¢ cancels out. Since }}3° # converges to 1, the
series converges exactly to a/wy. O
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Algorithm 1: Spass

Algorithm 2: SEARCH

Input: classes X, ..., Xy, test level a € [0,1]
Output: patterns sets Sy, ..., Sg

1 S —0Vie{l,...,k}

: Ce—{xCTI||x|=2}

3 te1

1+ while C * 0

5 X, C < SEArcH(C)

6 foreach class X; do

7 te—t+1

8 adjust test level a; < [Eq. (3) or Eq. (4)]
5 hypothesize H; : ps, (X) = qx, (%)
10 if P[Ht] < ar

11 Si «— S; U {J?}

12 estimate coefficients for pg;,

13 return Sy, ..., Sk

3 THE SPASS ALGORITHM

Now, we introduce our algorithm Spass for efficiently discovering
significant, non-redundant patterns under false discovery control.
We give the pseudocode of Spass in Algorithm 1.

We start with an empty pattern set S; for each class X; (L. 1), an
initial search space C that contains all itemsets of length two (1. 2),
and set the significance tests counter to 1 (L. 3). Then, we expand
the search-space C using the SEARCH algorithm, detailed below,
selecting that candidate

X e arg rgin Elps(x) = qx (x)] ®)

which has the lowest expected chance (1. 5)

Elps(x) = qx (x)] = ) | Plps,(x) = qx,(x)]
i=1

of resulting in false discoveries, across all distributions. We test the
significance of x (L. 9) for every class X (1. 6) against a significance
level that is appropriately adjusted according to either FWER or FDR
(1. 7-8). If the candidate is significant, we reject the null hypothesis,
add x to S;, and re-infer the distribution pg, (-) (L. 10-11). We iterate
until convergence, and finally return the k pattern sets (1. 12).

To identify the next pattern to test, we use Algorithm 2. Given the
current search space C, we first find the most promising candidate
X € C using Eq. (5) (1. 1). We then expand C with all combinations of
X and singletons y € I (1. 2). Note that this corresponds to exploring
(part of) layer I + 1 of the lattice, where [ = |%| is the layer which
X resides. If there exists an x in the now-expanded search space C
that is better than X, we recurs (L. 4), and otherwise, we return the
best candidate x and the search space C (1. 6) we explored so far.

The computational complexity of Spass depends on the size
of C, which grows binomially with each layer of expansion, and
can reach up to 2™ elements in total. By assuming that the com-
plexity of inferring the expectations p is bounded by a constant,
the worst-case complexity is hence in O(2™). Since in practice we
never explore the entire lattice, so Algorithm 1 has a complexity of
O(el (m/D!) after reaching the jth layer of the lattice. As we do not
expand layers fully either, Spass is still more efficient in practice.

Input: search space C C 27
Output: candidate X and expanded search space C

1 £ — argminE[ps(x) = gx(x)]
xeC

2 C—CU{xU{y}|yeTl}
s if I;leiIClE[Ps(x) =qx(0)] < E[ps(®) = gx(%)]

4 return SEARCH(C)
s else
6 return x,C \

4 RELATED WORK

Pattern mining is arguably one of the most important and well-
studied areas of data mining. Traditional approaches, such as fre-
quent itemset mining [2], aim for completeness, and return all pat-
terns that satisfy some user-defined constraints. By scoring patterns
individually, the results of traditional methods are typically very
large, highly redundant, and mostly spurious [1].

Pattern set mining aims to search only a small and non-redundant
set of patterns that together generalize the data well. Typical qual-
ity measures include probabilistic [14] or information-theoretic
scores [41], and algorithms have been used for characterizing data
with one [13] or multiple classes [7, 11]. Although these meth-
ods discover succinct, non-redundant sets of patterns that have
been proven useful, the results come without statistical guaran-
tees, which bars their application in critical domains, such as genet-
ics [22, 23, 40, 45] or survival analysis [32], or network analysis [34].

Significant pattern mining provides statistical guarantees by
using statistical tests to prune out spurious results. There exist
many significance tests, and hence almost as many dedicated stat-
istically significant pattern mining methods, e.g., for Fisher’s ex-
act [17, 37], Mann-Whitney-Wilcoxon [37], conditional permuta-
tion [45], Westfall-Young permutation [24, 30], Cochran-Mantel-
Haenszel [28], Barnard’s unconditional [29], Poisson [21], swap
randomization [16], or the Likelihood ratio test [33]. Each of these
methods corrects for multiple hypothesis testing mostly target-
ing FWER and using Bonferroni [6] correction. Some methods
use Tarone’s exclusion principle [35] to increase the statistical
power. Another approach to cope with the low statistical power
exhibited under Bonferroni correction is to make the adjustment
“search-aware” [4, 42, 43] and directly adjust it, without necessarily
knowing the total number of hypotheses to adjust for in advance.
A search-aware significance level adjustment is also used for the
search of non-redundant top-k statistically tested-to-be informative
patterns [44].

Although these methods rigorously control for false discoveries,
they still test against a static null hypothesis and as a result report
every significant pattern, and consequently, they tend to discover
many and highly redundant results—often orders of magnitude
more than there are samples in the data.

Our goal with Spass is to discover concise, non-redundant sets
of statistically significant patterns. Here, we combine the best of
pattern set mining and statistical significant pattern mining. Our
approach is unique in that it marries sophisticated probabilistic
modelling to rigorous statistical testing, while accounting for the
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Figure 3: Our method efficiently recovers the ground truth with high precision and recall. Given is the (a) number of significant
discoveries, (b) precision, (c) recall, and (d) runtime, for LAMP, WYLIGHT, SPUMANTE, and our method, Spass, on synthetic data
over 500 unique items, with two classes of 5 000 samples each, in which we plant up to 100 ground truth patterns overall. We
vary the association probability p, by which we independently associate patterns per class; for p, = 0 no patterns are planted

at all, while for p, = 1 every pattern is present in both classes.

multiple hypothesis testing problem using a sequential and search-
aware significance level adjustment that can target either FWER or
FDR.

5 EXPERIMENTS

We implement Spass in C+, and run experiments on an Intel Xeon
E5-2643 CPU, reporting wall clock time. To differentiate between
FWER and FDR control, we write SPASS-FWER and SPASS-FDR, re-
spectively. We provide the source code, datasets, synthetic dataset
generator, and additional information needed for reproducibility?
We compare Spass to three methods for significant pattern mining,
Lamp [37], WYLIGHT [24] and SPUMANTE [29]; two methods for
non-redundant pattern set mining, MTVv [26] and DEsc [11]; and to
one statistically non-redundant pattern miner opus [44]. All our
competitors represent the state-of-the-art in their respective fields.
We report results at a significance level « of 0.05.

5.1 Synthetic Data

To validate that Spass recovers true patterns, we start by evaluating
the algorithm on two-class data with known ground truth. To this
end, we generate synthetic data as follows. First, we sample 100
random patterns of up to 5 items from an alphabet of | 7| = 500
items and insert them into ground truth pattern set S} with an
“association” probability varying in between 0% (no patterns planted
at all) and 100% (all patterns are shared among all S}). Then, we
randomly draw 5 000 samples for each class Xj, in such a way
that the ground truth patterns x € S} all have a randomly chosen
frequency of in between 15% and 30%. Afterwards, we add additive
noise of 5% and destructive noise of 1%. To account for random
fluctuations, we average over 10 samples per 10% increment in
probability.

We run significant pattern miners on each dataset and report the
average number of statistically significant discoveries in Fig. 3a. At
0% association probability (i.e., no patterns, pure noise) SPUMANTE
is the only method that wrongfully discovers patterns. Across the
board, we see that Lamp, WYLIGHT, and SPUMANTE all report orders

2eda.mmci.uni-saarland.de/spass

of magnitude more patterns as significant as the number of patterns
used to generate the data. As subsets or combinations of significant
patterns are often significant as well, this is not incorrectly per
se. SPAss, in contrast, almost matches the ground truth in number.
At 100% association probability, there are no contrasting patterns
and only shared patterns. Lamp and WYLIGHT only identifies that
there are almost no contrasting patterns, whereas Spass correctly
identifies that we have shared all patterns with all classes.

To assess the quality of the discovered patterns, we measure
precision and recall with respect to the ground truth as follows. We
match each discovered pattern x with the best-matching ground
truth pattern y in terms of set similarity |x N y| /|x U y|. Reporting
precision in Fig. 3b and recall in Fig. 3¢, we see that all methods ob-
tain good recall, but due to their huge result sets, LAmp, WYLIGHT,
and SPUMANTE have very low precision. The sequential redund-
ancy control of Spass, however, prevents the exponential growth in
the cardinality of its output, and consequently is both precise and
often orders of magnitude faster than the competition (see Fig. 3d).

High-Dimensional Synthetic Data. Having ensured that Spass
results in non-redundant discoveries under either FDR or FWER

100--------- S
o
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=
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& 60
l=}
g 40
’g SPASS-FWER
5 20
Z ° SPASS-FDR
0
T T ——rrr T
10! 10? 103 10%

Number of Samples

Figure 4: FWER is more conservative than FDR. We show
the number of significant patterns discovered by Spass con-
trolling for resp. FWER (blue) and FDR (green) at o = 0.05,
on synthetic data over 20 000 items with 100 ground truth
patterns (dashed line) while varying the number of samples.
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Figure 5: Unlike competitors, Spass efficiently discovers concise pattern sets, and only Spass-FDR can handle high-dimensional
genomics data. We show the number of significant discoveries (a) and runtime needed (b) by SPUMANTE, WYLIGHT, LamMP and
Spass for eight real-world, two-class datasets. In panel (c), we show the number of discoveries on high-dimensional, one-class
and multi-class cancer-genomics data from SPass-FWER and SpPaAss-FDR only, since no competitor discovered patterns.

control, we investigate how much of a difference FWER and FDR
can make on high-dimensional synthetic data.

From Eq. (3), it follows that for a very large number of features
m or a particularly high search depth I, FWER control becomes
very strict. This means that a high dimensionality or very large
patterns are particularly challenging. We generate data as above,
but now over an alphabet 7 of 20 000 items in which we plant 100
random patterns. We run Spass with FWER resp. FDR on data with
varying numbers of samples, and report the number of significant
discoveries in Fig. 4. We see that both variants converge to the cor-
rect number of patterns, but SPAss-FDR does so much more quickly,
requiring between one and two orders of magnitude less data. As
expected, FDR seems to be better-suited for high-dimensional data.

5.2 Real World Data

Now that we have validated that Spass works well on synthetic data,
we explore how it performs in a wide range of real-world scenarios.
Without access to the ground truth, we cannot compute precision
and recall. We can, however, assess the number of discoveries and
runtime of Spass relative to its competitors Lamp, WYLIGHT, and
SPUMANTE, which we report in Fig. 5. In Fig. 5a, we see that the
competitors deem orders of magnitude more patterns as significant
as Spass. Furthermore, we find that our method discovers fewer
patterns when controlling for the more conservative FWER instead
of the FDR. From Fig. 5b, we observe that this tendency is reflected
in the runtime of SPASs-FWER, which is typically lower than that of
Spass-FDR. Regardless of the control method, Spass is also almost
always faster than its competitors.

Having ascertained that Spass efficiently discovers concise pat-
tern sets from real-world datasets, we turn to case studies to answer
three specific questions: (i) Does Spass work on high-dimensional
real-world data? (ii) Does Spass discover meaningful patterns in
real-world data? (iii) Can Spass compete with the state-of-the-art
in statistical pattern mining on one-class real-world data?

5.2.1 High-Dimensional Real-World Data. To verify whether Spass
works on high-dimensional real-world datasets, we consider ten
gene-expression datasets concerning Ovarian, Lung, Kidney, Brain,

and Breast cancer? Together, these data span a wide range of dif-
ferent sizes, numbers of classes, and numbers of samples, with the
shared trait that they are high-dimensional. We run Lamp, WYLIGHT,
SPUMANTE, and Spass on each dataset, but LaAmp, WYLIGHT, and
SPUMANTE did not finish within 24 hours of runtime, thus reporting
no significant patterns. In Fig. 5¢, we report the number of discov-
eries by Spass. Here, as in our experiments on high-dimensional
synthetic data, we see that FWER is much more stringent than FDR.
For the Lung A. dataset, SPAss-FWER only discovers 3 significant
patterns—its highest achievement—while when we control for FDR,
it makes substantially more discoveries and discovers 1 353 patterns.
In the Brain Cancer dataset, for example, SPASs-FDR discovers 1 471
patterns. According to a high-level analysis, the top pattern in the
Brain Cancer dataset consists of genes involved in neural activities

{ A2BP1, CAMK2A, GABRA1, GABRB2, NRGN, PACSIN1,
SLC12A5, SNAP25, SULT4A1, SYN2, TMEM130, VSNL1 } .

In contrast, the top pattern from the Breast Cancer dataset

{ AOC3, AQP7, BINL9Y, CIDEC, ERG, GYG2, HSPB6, ITGA7,
KCNIP2, LPL, PLIN1, PPPIR1A, SLC19A3, TUSC5 },

represents high co-expression of 14 membrane-related genes. We
conclude that Spass manages to discover interpretable patterns also
on high-dimensional real-world data.

5.2.2  Sentiment Analysis. Next, we take a closer look at the quality
of the patterns that Spass discovers. To this end, we consider the
IMDb movie review dataset [25], which consists of positive and
negative movie reviews as text. We run Spass on this data and report
associations of natural language patterns to positive or negative
sentiments. After eliminating stop words, lemmatizing the corpus,
and removing infrequent words, the dataset consists of 50 000
rows with 8 124 features, in which Spass discovers 215 significant
patterns under FWER control, which we rank according to their
significance. The top-3 patterns,

{great fantastic}, {music sound}, {film plot twist},
are uniquely positive, whereas the most contrasting top-4 patterns

between the two classes are

3https://www.cancer.gov/tcga
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{seen worst}, {piece crap}, {world reality}, {painful watch] .

Regardless of the sentiment, reviewers are concerned with special
effects, which is the highest-ranked shared pattern.

5.2.3 Clinical Survival Analysis. To further analyze the interpretab-
ility of our results, we consider the problem of clinical survival
analysis. In particular, we analyze the METABRIC breast cancer
dataset [10]. It consists of 2 000 samples (patients) over 124 bin-
arized features, with binary labels marking the survival status of
each patient. By using Spass, we discover 65 patterns at an FDR of
at most 0.05. On average, these patterns consist of 4.5 + 2.3 items,
with the longest pattern having length 12. Among the patterns that
are easiest to understand, we identify

{ Relapse: Recurred, Patient Died of Disease } and
{ Relapse: Not Recurred, Patient Died of Other Causes } ,

as only significant for the deceased class, and
{ Survival of 49 Months, Relapse Free for 31 Months },

as significant for the class of survivors.

The Nottingham Prognostic Index (NPI) is an estimate of the
survival chance after breast surgery, with low numbers indicating a
high chance of survival. Spass discovers that a low NPI, combined
with small and early-stage tumors,

{ NPI: [1.0,3.04), Tumor Size: [1,15), Tumor Stage: [0,1) },

is associated with survivors, while high values of NPI, together
with a cancerous lymph system,

{ NPI: [5.06,7.2), Lymph Nodes Positive: [3,45) },

are associated with deceased patients. Significant for both classes
is the association of radiotherapy and surgery type,

{ Surgery: Conserving, Radiotherapy: Yes},
{ Surgery: Mastectomy, Radiotherapy: No},

which corresponds to clinical practice.

We further discover that cancer cells which do not respond well
to hormone therapy, ER:- (by IHC), are typically treated with Chemo-
therapy: Yes. SPAss returns two variants of this pattern: one with
Overall Survival < 49 months and one with Inferred Menopausal
State: Pre, both significant for the class of deceased patients. It also
discovers a pattern significant for deceased patients that character-
izes the situation in which cancer cells that are hard to differentiate
from regular cells (i.e., they have a high histological grade) do not
respond to hormone therapy,

{ ER:- (by IHC), ER:-, PR:-, Neoplasm Hist. Grade: 2 } .

In these cases, hormone therapy tends to fail, surgery is very hard
to perform, and hence, patients have low survival rates.

Overall, our experiments on real-world data from different do-
mains therefore demonstrate that SpAss not only efficiently discov-
ers non-redundant sets of significant patterns, outperforming even
specialized state-of-the-art methods, it also identifies meaningful
patterns in practice.

5.24 One-Class Real-World Data. Finally, we want to evaluate how
well Spass works on one-class data. Methods like LAMp, WYLIGHT,
or SPUMANTE all require two classes, and are not applicable in
this setting. We therefore compare to opus [44], which discovers
self-sufficient patterns from data using Fisher’s exact test while
bounding FWER. Self-sufficient patterns are those with a frequency
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Figure 6: Self-sufficiency is insufficient to discover non-
redundant patterns. We show the number of statistically
tested-to-be non-redundant discoveries of MTV, DESC, OPUS,
and Spass on one-class datasets

that is statistically significant compared to the frequencies of all
subsets. opUs requires the user to set a maximum number k of
how many patterns it may report. As we are primarily interested
in how well opus filters redundant patterns, we set k = 10000,
which is high enough for it to discover any truly significant and
non-redundant pattern.

By considering one-class data, we are in the application domain
of pattern set mining, which strives to discover a non-redundant
set of patterns to identify informative feature co-occurrences. We
compare to two state-of-the-art methods, MmTv [26] and DEsc [11],
that also rely on maximum entropy modeling.

In Fig. 6, we show the number of patterns discovered by mTv,
DESC, OPUS, and SPASs on 9 one-class datasets. There, we see that
opus almost always reports all k patterns as significant, whereas
the dedicated pattern set miners MTV and DESC, as well as Spass, all
report similarly concise results. Closer inspection confirms that des-
pite a rigorous FWER control, opus still returns subsets of patterns
as significant discoveries. That means, testing for self-sufficiency
alone is insufficient to discover a set of non-redundant and signi-
ficant patterns. We attribute this observation to the fundamental
limitation of the self-sufficiency property, which tests each pattern
independently of prior discoveries and conclude that the usage of
past discoveries helps to alleviate redundant results.

6 DISCUSSION

In our experiments, we demonstrated that Spass discovers concise
pattern sets and scales well to high-dimensional data. It works well
in practice, it still leaves see room for future work.

Our method is essentially a framework which permits to (i) plug
in a data-appropriate probabilistic model that dependents on past
discoveries; (ii) choose a statistical test; and (iii) select one of the
myriad FWER or FDR control techniques [18, 19, 31, 38, 39, 43].
As such, it is easily adaptable: One can simply exchange building
blocks to accommodate different types of data, such as graphs,
sequences, or continuous data, or to incorporate background know-
ledge beyond pattern frequencies. Replacing the binomial test with
the standard normal approximation, for example, yields the Z-test.

Albeit our sequential FWER control is much less conservative
than Bonferroni correction, we see room for increasing the stat-
istical power even further. Recent work, for example, introduces a
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novel online FWER control [39], which might yield a statistically
powerful sequential FWER control. However, since this work still
controls for the strict FWER, it will not replace the online FDR
control, which could also be improved further. For example, we
might overburden our “a-budget” by paying for each test, includ-
ing tests of hypothesis that have very high p-values, and thus will
almost surely never result in discoveries. Therefore, we might as
well outright discard (not reject) these hopeless hypotheses [38].
Furthermore, we want to maintain one FDR for all classes. It
is nevertheless straightforward to adapt Spass to maintain inde-
pendent FDR budgets per class. Since in our experiments, we have
not noticed a practical performance difference from maintaining
independent budgets, we present the slightly simpler version.

7 CONCLUSION

We considered the problem of discovering statistically significant
patterns under false discovery control. To avoid redundancy, we
proposed to statistically test whether observed frequencies match
with expectation, given past discoveries. To achieve high statistical
power, we proposed to sequentially control for either FWER or FDR.
To efficiently discover significant patterns, we introduced the Spass
algorithm that uses an easy-to-compute Chernoff bound to per-
mits efficient significance testing. Through extensive experiments,
we demonstrated that our method returns concise result sets, re-
covers the ground truth from synthetic data, works well on data
with many dimensions and any number of classes, and identifies
interesting and meaningful patterns in practice, and consistently
outperforming the state-of-the-art.
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A APPENDIX
A.1 Reproducibility

In our experiments, we compare to the statistically significant pat-
tern miners Lamp [37], WYLIGHT [24] and SPUMANTE [29]. For
SPUMANTE and WYLIGHT we use the original implementations
provided by the respective authors. To limit the impact of im-
plementation quality, we use the C+ implementation of LAMP by
Llinares-Lopez et al. [24]. In general, we use the hyperparameters
suggested by the respective authors. For SPUMANTE, we choose
a maximum sample size of 10000, and for WYLIGHT we set the
number of permutations to 10 000. We use the implementations of
DESC [11], MTV [26], opUs [44], SPUMANTE [29], and WYLIGHT [24]
by the respective authors, and the C++ implementation of Lamp by
Llinares-Lopez et al. [24]. We make our code, datasets, and synthetic
data generator available?

Dataset |X] dimX Avg.Row Density k
Higgs 11000 000 247 28.00 £ 0.00 0.1134 2
SUSY 5000000 178 18.00 £0.00  0.1011 2
Instacart 2620570 1235 3.14+2.18 0.0025 1
KDD Cup 99 1000000 135 16.00 £ 0.00 0.1185 1
Covtype 581012 64 11.95+0.23  0.1866 2
RNA 271617 16 8.00 £ 0.00 0.5000 2
News 127600 11489 13.63 £ 4.05 0.0012 4
JJCNN 91701 34 13.00 £0.00  0.3824 2
IMDb 49969 8125 63.95 £+ 42.56 0.0079 2
Pumsb* 49 046 2088 50.48 £ 1.98 0.0242 1
CORD-19 32907 2648 47.63 £23.87  0.0180 1
Adults 32561 123 13.87 £ 0.48 0.1128 2
Mushroom 8124 117 22.00 £0.00 0.1880 2
Breast Cancer 7325 397 11.67 +£13.06  0.0294 2
Metabric 1981 124 32.32 £1.03 0.2606 2
Breast 1218 20530 3036.89 +359.03 0.1863 1
Lung 1129 20530 3378.75+318.66  0.2043 2
Kidney 1020 20530 3325.43 +242.96 0.2097 3
Kidney Clear 606 20530 3496.35+371.08  0.2291 1
Lung Adeno. 576 20530 3053.31 + 347.88 0.1932 1
Lung Squamous 553 20530 3146.87 +333.37 0.1972 1
Brain 530 20530 3099.68 +£371.75  0.2146 1
Endo & Ovo 509 20530 3681.89 +290.47 0.2303 2
Ovarian 308 20530 3063.36 +£307.32 0.2025 1
Uterine 57 20530 3224.40+274.13  0.2253 1

Table 1: We show the number of data points, number of fea-
tures, the average number of 1s per row, the overall density,
and the number of classes k of the datasets used in our ex-
periments.

A.2 Datasets

All datasets that we have used in our experiments are publicly
available. We have taken the genomics data in Fig. 5 (c) from The
Cancer Genome Atlas Program? and binarized this dataset using a
specialized method for gene-expression data [15]. We have taken
Mushroom, and Pumsbstar from the Itemset Mining Dataset Re-
pository® The AG News dataset consists of news articles from 4

4eda.mmci.uni-saarland.de/spass
Scancer.gov/tcga
%fimi.ua.ac.be/data
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categories’ and the CORD 19 dataset consists of abstracts from
the CORD 19 open research dataset® We lemmatized the AG News,
CORD 19, and IMDV®, ArXiv, datasets and removed stop words and
words with a frequency of below 0.1%. All the remaining data-
sets are from the UCI Machine Learning Repository!? or from the
LIBSVM repository!! To reduce the number of features of the In-
stacart dataset, we have combined products from the same category,
e.g., we merged Spumante with Cremant to achieve the Champagne
meta categoryl? We binarized each real valued feature by binning
it into 5 bins of equal width, and we mapped each categorical and
ordinal attribute to multiple binary features, which is often referred
to as “one-to-k” (also called “one-hot”) encoding. In Table 1, we
provide basic statistics for the processed data.
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Figure 7: Our method efficiently discovers concise pattern
sets from large datasets. We show the number of significant
discoveries (a) and runtime needed (b) of SPass-FWER and
SPASS-FDR.

A.3 Large Real-World Data

As a next step, we want to examine the scalability of Spass for
datasets with a very large number of data points. For this, we
run SPUMANTE, Lamp, WYLIGHT, and Spass on 7 large real-world
datasets. However, since SPUMANTE, LAMP, and WYLIGHT could
not handle these datasets, we turned to Spass. According to Figure 7,
SpAss-FWER deems fewer patterns as significant as Spass-FDR. This
is reflected in the shorter runtime under FWER control. While
competitors have not finished in 2 days, Spass only took 2 minutes.

7 di.unipi.it/~gulli/AG_corpus_of_news_articles
8allenai.org/data/cord-19
%ai.stanford.edu/~amaas/data/sentiment
10archive.ics.uci.edu/ml
esie.ntu.edu.tw/~cjlin/libsvmtools/datasets
2instacart.com/datasets/grocery-shopping-2017


eda.mmci.uni-saarland.de/spass
cancer.gov/tcga
fimi.ua.ac.be/data
di.unipi.it/~gulli/AG_corpus_of_news_articles
allenai.org/data/cord-19
ai.stanford.edu/~amaas/data/sentiment
archive.ics.uci.edu/ml
csie.ntu.edu.tw/~cjlin/libsvmtools/datasets
instacart.com/datasets/grocery-shopping-2017
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