
Towards Concept-Aware Large Language Models

Chen Shaniℵ, Jilles Vreeken⋆, Dafna Shahafℵ
ℵ The Hebrew University of Jerusalem, Israel

⋆ CISPA Helmholtz Center for Information Security, Germany
ℵ {chenxshani,dshahaf}@cs.huji.ac.il

⋆ vreeken@cispa.de

Abstract

Concepts play a pivotal role in various human
cognitive functions, including learning, reason-
ing and communication. However, there is very
little work on endowing machines with the abil-
ity to form and reason with concepts. In par-
ticular, state-of-the-art large language models
(LLMs) work at the level of tokens, not con-
cepts.

In this work, we analyze how well contempo-
rary LLMs capture human concepts and their
structure. We then discuss ways to develop
concept-aware LLMs, taking place at different
stages of the pipeline. We sketch a method for
pretraining LLMs using concepts, and also ex-
plore the simpler approach that uses the output
of existing LLMs. Despite its simplicity, our
proof-of-concept is shown to better match hu-
man intuition, as well as improve the robustness
of predictions. These preliminary results under-
score the promise of concept-aware LLMs.

1 Introduction

Concepts are the glue that holds our mental model
of the world together. It is hard to see how any
intelligent agent could do without them. While
there is no agreed-upon definition of concepts, one
can think of them as the mental representations
that enable us to identify objects and events as be-
longing to certain categories, communicate about
them, and comprehend new situations in terms of
previous ones: when we encounter a new situa-
tion (e.g., restaurant), we draw inferences about it
using concepts we have already formed (“menu”,
“waiter”).

Concepts can be concrete (“soup”) or abstract
(“tasty”). They can also be complex, e.g., “good
winter beach destinations”. While there is a lively
debate on their exact nature, researchers agree con-
cepts play a pivotal role in various cognitive
skills such as reasoning, categorization, learning,
planning, and decision-making (Murphy, 2004).

Thus, they are of interest to AI researchers wishing
to endow machines with such abilities.

The representation of concepts has been studied
in NLP, ML, and knowledge representation (Fuma-
galli and Ferrario, 2019; Davis and Marcus, 2015;
Gardenfors, 2014; Speer et al., 2017), where they
often view concepts as fixed, shallow structures
representing some set of entities. For example, in
the work on Chen et al. (2020) concepts are flat sets
of context-independent entities. However, recent
studies suggest concepts are more flexible and dy-
namic (Gabora et al., 2008); unfortunately, AI still
struggles with accounting for the creative, context-
sensitive manner in which people employ concepts.

In this work we focus on adding concepts to
large language models (LLMs). Recently, LLMs
(Yang et al., 2019; Raffel et al., 2020; Thoppilan
et al., 2022; Scao et al., 2022; Zhang et al., 2023;
Bubeck et al., 2023) gained immense popularity,
achieving SOTA results across the board. However,
they all work at the level of tokens, not concepts.

This is problematic for even the most fundamen-
tal LLM task – perplexity-based text completion.
Ranking by string probability is distorted by sur-
face form competition: different tokens compete
with each other, even if they represent the same
concept (“mother” and “mom”) (Holtzman et al.,
2021). In other words, the probability mass of a
concept is distributed across many different tokens,
distorting the ranking.

The problem runs deeper than mere synonyms.
For example, consider the sentence “I can’t get
home for the holidays because of the [MASK].”
The completions “snow”, “blizzard”, “weather”,
and “slippery roads” are not synonyms per se, but
they correspond to the same concept – bad weather
leading to hazardous driving conditions – and we
believe that an LLM should treat them as such.

We stress that concepts are context-dependent;
for example, while “snow” and “blizzard” are sim-
ilar in the context of the sentence above, they



are very different for the sentence “I love eating
[MASK] cones.”1 Thus, we cannot rely on knowl-
edge bases (such WordNet (Miller, 1995)) for gen-
erating static, context-free concepts to be used for
training LLMs.

We take the first step towards concept-aware
LLMs, exploring the following questions:

RQ1: How well do LLMs capture concepts?
RQ2: How well do LLMs match human organi-

zation of concepts?
RQ3: How can we enhance an LLM in terms of

concepts, with or without retraining?
We first show that contemporary LLMs capture

human concepts to some extent, but they are still
far from humans (RQ1). We then find that LLMs
violate many of the principles of human concept
organization, exhibiting some inconsistency (RQ2).

Lastly, we explore RQ3 from two different an-
gles: first, we sketch a method to pretrain concept-
aware LLMs. Next, we implement a proof-of-
concept model-agnostic method to shift any off-the-
shelf pretrained LLM from token- to concept-level
with no further training. Our method improves both
the ranking and robustness of the underlying LLM.

While we present here merely a promising proof-
of-concept, our underlying objective of endowing
LLMs with concepts holds tremendous promise
for the next-generation of LLMs. We hope our
work will spur further research, paving new roads
into this exciting new territory.

2 RQ1: How well do LLMs capture
concepts?

In this section, we explore to what extent LLMs
grasp concepts. While concepts can be abstract and
complex, here we focus on concrete and simple
ones, since these are the basic building blocks of
human concepts (Varela et al., 2017).
Dataset. To probe LLM abilities, we use the 100
everyday things (ETs) dataset (Gu et al., 2022),
containing natural and man-made items everyone
should be familiar with (egg, dog, elevator, table,
etc.).

Perhaps the most basic relation between con-
cepts is TypeOf(also called IsA). This relation
governs the hierarchical organization of concepts
humans possess. For example, we all know that a
sandal is a type of shoe (denoted as TypeOf(sandal,
shoe)).

1Snow cones are shaved-ice desserts. Blizzard cones are
apparently beak-shaped face masks from the 1930s.

To automatically extract TypeOf-relations we
extracted the direct hypernyms and hyponyms of
the 100 ETs’ first sense using WordNet.2 This
results in data of the following form (ET in bold):

• {footwear} ← shoe ← {anklet, baby shoe,
moccasin, oxford, sandal, running shoe, ...}

• {canine, domestic animal}← dog← {new-
foundland, hunting dog, dalmatian, corgi, ...}

On average, each ET had 9.5 hyponyms and 1.1
hypernyms. Note that WordNet is noisy, and some-
times the first sense is not the intended one. We
added a human baseline to show the data is of sat-
isfactory quality.

LLM probing. We test the concept-TypeOf hi-
erarchy of four representative LLMs: BERT-base-
uncased, T5-large, GPT-davinci-003 (Legacy), and
GPT-4.3

Since GPT-based models support question-
answering, we use binary questions: “Is <ET> a
type of <hypernym>?”, and “Is <hyponym> a type
of <ET>?”4

BERT and T5 are not optimized for question-
answering; thus, we query them as follows: “<ET>
is a type of [MASK].”, and “<hyponym> is a type
of [MASK].”, and search for the desired hypernym
and ET respectively along the top-k completions.
The LLM is correct only if the answer is within the
top-k completions.5

As a sanity check, we added a human baseline
using a random sample of 100 TypeOf(ET, hyper-
nym) and 100 TypeOf(hyponym, ET) questions
used for querying the GPT models. To balance a
bit the answer distribution, We added 20 negative
examples per question type (of the form: “Is <ET>
a type of <another ET’s hypernym>?”, “Is <hy-
ponym> a type of <different ET>?”). The negative
examples were not part of our analysis and were
included to avoid annotators seeing only positive
examples. We used six members of our research
group for the annotation. Their mean response vari-
ance is 0.18 for the hyponyms and 0.07 for the
hypernyms, showing they are calibrated.

2https://wordnet.princeton.edu/
3We ran the GPT-4 experiments on October 2023.
4We queried both GPT models on 200 random combina-

tions of “Is <ET1> a type of <ET2>?” (“Is dishwasher a type
of tent?”). It returned “yes” 0(!) times.

5We are aware that this task is potentially harder than
GPT’s. However, testing GPT as if it were a masked LLM
would likely lead to sub-optimal performance. We hence
prefer to explore two different scenarios, increasing the ro-
bustness of the analysis, rather than artificially leveling the
playing field.

https://wordnet.princeton.edu/


Figure 1: [Higher means better] LLMs concept retrieval as a function of K. For each ET, we measure how well it
retrieves in its top-k completions the ET’s hypernyms (left plot) and hyponyms (right plot). Since GPT and humans
answer yes/no questions, their performance does not change as a function of K.

Figure 2: [Higher means better] LLMs’ asymmetry preservation as a function of K. For each ET, we measure
how well it preserves asymmetry by not returning the relevant item in its top-k completions (measured only using
TypeOf relations the LLMs correctly retrieved in RQ1). We probe both for hypernyms (left plot) and for hyponyms
(right plot). Since GPT supports question-answering, its performance does not change as a function of K.

Results. We plot the accuracy (or concept retrieval,
as all examples are positive), as a function of k
for all four LLMs and humans (Figure 1). The re-
sults indicate that LLMs capture concepts to some
extent, but it is far from perfect and human base-
line. Models achieved (at k=50) 30%-83% retrieval
for the hypernyms (human baseline is 88%) and
43%-60% for the hyponyms (human baseline is
96%). Interestingly, the GPT-based models seem
to grasp more general concepts better (hypernym
level), whereas BERT and T5 perform better on
more specific concepts (hyponym level).

3 RQ2: How well do LLMs match human
organization of concepts?

In this section, we explore concept organization.
We focus on three agreed-upon organization princi-

ples of the human TypeOf hierarchy of concepts:
asymmetry, transitivity, and property inheritance.

Asymmetry

TypeOf(A, B) =⇒ ¬ TypeOf(B, A)

The human TypeOf relation between concepts
is asymmetric; if sandals are shoes, shoes are not
sandals. To measure how well an LLM preserves
asymmetry we take all the TypeOf relations it iden-
tified in RQ1 and query the other direction. If
an LLM correctly retrieved TypeOf(sandal, shoe),
we now query for TypeOf(shoe, sandal) using the
same querying methods and LLMs. If the LLM
did not retrieve this other direction – it successfully
preserved the asymmetry principle.

In Figure 2 we see that all four LLMs preserve



asymmetry better for hyponyms compared to hyper-
nyms (stronger trend for BERT and T5). Overall,
LLMs do preserve asymmetry, but they are still far
from a complete understanding of directionality.

Transitivity

TypeOf(A, B) ∧ TypeOf(B, C)
=⇒ TypeOf(A, C)

TypeOf is a transitive relation; if
TypeOf(shoes, footwear) and TypeOf(sandals,
shoes), then TypeOf(sandals, footwear). To mea-
sure whether LLMs preserve transitivity, we collect
for each LLM all the pairs it correctly identified
both {TypeOf(ET, hypernym), TypeOf(hyponym,
ET)}. We then query the LLM for the relation
between the hyponym and the hypernym directly
(skipping the middle level of the ET). We use the
queries “Is <hyponym> a type of <hypernym>?”
(for GPT), and “<hyponym> is a type of [MASK]”
(BERT and T5; we then search for the hypernym
along the top-k=50 completions).

Figure 3 depicts the results. All models exhibit
some level of transitivity, with GPT performing
best, followed closely by BERT (starting around
k=15). Interestingly, GPT-3.5 performs slightly
better than GPT-4.

Figure 3: [Higher means better] Transitivity as a func-
tion of K for TypeOf relations correctly retrieved.

Property inheritance

TypeOf(A,B) ∧ R(B) =⇒ R(A)

If a property is true for a concept, it should hold
for concepts below it in the TypeOf hierarchy. For
example, if all footwear is manufactured, then all
sandals are manufactured as well.6

6Note this has exceptions, e.g., penguins are birds and

LLM
R(hyper)
?−→ R(ET)

R(hyper)
?−→ R(hypo)

R(hyper)
?−→ R(hypo)
| R(ET)

BERT 0.85 0.80 0.92
T5 0.56 0.68 0.93

GPT-3.5 0.73 0.72 0.85
GPT-4 0.73 0.73 0.85

Table 1: [Higher means better] Property inheritance:
when the LLM knows that property R holds for a hyper-
nym of an ET, we check how often it knows that R holds
for the ET (left), for its hyponyms (middle) and for its
hyponyms given that it knows R(ET) holds (right).

To test for LLMs’ property inheritance, we first
enrich our dataset with attributes of the hypernyms.
We used Quasimodo, a commonsense knowledge
base that focuses on salient properties that are typ-
ically associated with certain objects or concepts
(Romero et al., 2019). It consists of (object, predi-
cate, subject) triplets, e.g., “(footwear, affect, skele-
tal system)”, “(footwear, has property, manufac-
tured)”. To ensure high-quality properties, we set
the triplet saliency score threshold to 0.9. We col-
lected 771 triplets for 37 ETs. The mean number
of triplets per ET is 20.84 (STD=26.14).

We use the first paraphrase of wordtune7 to
turn triplets into sentences and mask the object:
“(footwear, affect, skeletal system)”→ “The skele-
tal system is affected by footwear.” → “The
[MASK] is affected by footwear.”.

For each sentence, we query the LLMs to see if
they believe it to be true (k=50 for BERT and T5).
For each LLM, if it believes a hypernym triplet
holds, we also query it by replacing the hypernym
with the ET (Table 1 left column) and with its hy-
ponyms (middle column).

We modified the sentences to questions for GPT
by adding “?” at the end of the paraphrased sen-
tence, and taking the first proposed paraphrase
(“Does footwear affect the skeletal system?”).

Overall, all models show some level of property
inheritance (Table 1). Interestingly, all models are
more likely to transfer a relation from the hypernym
to its hyponym if they correctly transferred it from
the hypernym to its ET (middle vs. right columns),
showing some robustness in LLMs’ understanding
of transitivity. Also worth noting – BERT seems to
preserve property inheritance better than the rest of

birds can fly, but we have yet to discover a flying penguin.
7https://www.wordtune.com/

https://www.wordtune.com/


Figure 4: Overview of our sketch for a method to pretrain concept-aware LLMs. The model is trained to choose the
categories that will best assist it in predicting the missing token(s).

the models.
To conclude RQ2, GPT models seem consis-

tently better than BERT/T5 for asymmetry and tran-
sitivity (for inheritance property BERT takes the
lead), but all models do violate principles of human
organization and exhibit some inconsistencies.

4 RQ3: How can we enhance an LLM in
terms of concepts, with or without
retraining?

In the previous sections, we have shown that LLMs’
understanding of concepts is still limited. As we
noted earlier, concepts play a pivotal role in var-
ious human cognitive skills, including reasoning,
categorization, planning, and decision-making; we
strongly believe that equipping LLMs with a notion
of concepts can significantly expand their capabili-
ties, bringing them closer to human performance.

Endowing LLMs with concepts can take many
forms, and may occur at different stages (pretrain-
ing, fine-tuning, post-processing). We now lay the
ground for future studies on concept-aware LLMs.
We start by proposing a sketch of a method for
training concept-aware LLMs. We then take the
simpler, proof-of-concept approach of building con-
cepts on top of the output of existing LLMs.

Approach 1: Rethinking LLM training
We envision training a model to choose a subset
from a closed set of concepts that will assist it
the most in completing a missing sequence of text.
Potential concepts could come from Wikipedia cat-
egories, or perhaps some knowledge graph.

See our suggested approach in Figure 4. Given
an input sentence, we sample a span of text T that
can be linked to a Wikipedia article (similar to Wu
et al. (2019)), such as “ice cream”, and mask it. We
denote by S the masked sentence. We compile a
subset of Wikipedia categories that the missing text
T belongs to and their parent categories, filtering

out categories that are too narrow (“Independence
Day (US) foods”) or too wide (“World cuisine”),
resulting in a set of candidate concepts C.

Next, we iterate over all possible subset com-
binations of C (or perhaps sample from them, if
the set is too big) and interleave them with the text
using a special token, resulting in augmented sen-
tences {S′

i} such as “At the party we had cake and
<Dairy food, Frozen desserts> ice cream”. We then
mask T in all augmented sentences {S′

i} and filter
out sentences that do not reduce the prediction loss
over T , compared to the non-augmented masked
sentence S. That is, we only keep the original
(non-masked) sentences augmented with subsets of
concepts that help predict the missing text T .

We suggest to train an LLM over the augmented,
non-masked sentences {S′

i} corresponding to con-
cepts that do reduce the loss, resulting in a model
that teaches itself when and which concept(s)
to predict, and how to best incorporate the pre-
dicted concept(s) into future token prediction.

The above suggestion is merely a sketch of the
approach, and there are many possible variants.
We can treat the problem of concept prediction
as a probabilistic multi-class classification (over a
closed set of categories) or as free text generation;
we can even take an approach similar to Toolformer
(Schick et al., 2023) and use external tools.

The sketch is inspired by the recent success of
approaches that augment LLMs with additional
information during pretraining (Aghajanyan et al.,
2021; Schick et al., 2022; Izacard et al., 2022), and
in particular by Toolformer (Schick et al., 2023),
that adds additional information only if it is helpful.

Approach 2: Building on top of existing LLMs

We consider Approach 1 to be promising, but im-
plementing it requires significant resources. Rather
than rethinking LLM architecture and training, we
now consider the other end of the spectrum, build-



Figure 5: Overview of our algorithm for extracting concepts from pretrained LLMs. We augment the input sentence
by paraphrasing and predict the top k completions for each paraphrase. Next, we filter out rare and unlikely tokens
(strikethrough) and perform agglomerative clustering using the LLM’s token-contextual embeddings (centroid in
bold). We assign new weights to each node in the dendrogram (darker ranked higher, sorted according to weight).

ing a concept-aware LLM on top of existing LLMs,
without any further training or external data.

Previous works showed improved results of pre-
trained LLMs without further training on tasks such
as word sense disambiguation, factualness and con-
sistency (Levine et al., 2020; Liu et al., 2022). We
believe our post-hoc method could similarly en-
hance downstream tasks.

Concept-completion task. We start by testing
our ideas on the fundamental LLM task of text
completion (fill-mask). Given a masked sentence
S and an LLM, our goal is to return a ranked list
of concepts C1, ..., CN . Each concept Ci is a non-
empty set of tokens T . Ideally, concepts and their
ranking should correspond to human intuition.

Figure 5 illustrates our main idea. In short, given
a masked sentence S0 (“I went to the parent teacher
conference with my [MASK].”), we retrieve the
LLM top completions, paraphrasing S0 as an aug-
mentation technique to increase robustness. To
form concepts, we perform agglomerative cluster-
ing using the LLM contextual embeddings.

For clarity of presentation, Figure 5 shows only
a segment of the dendrogram, rather than going all
the way to singletons. Nodes in the dendrogram
have scores based on their tokens’ weights and fre-
quency in paraphrases (darker means higher). The
bottom layer is sorted according to score. The first
(bold) token in each node is the cluster centroid.

In this example, the most likely concept (left)
contains tokens such as “mom”, “mother” and

“dad”, followed closely by a concept containing
“parents” and “family”. Next concepts refer to chil-
dren and other family members. As we go higher,
concepts become more general; the top node in the
figure roughly corresponds to “family member”.

4.1 Algorithm

Figure 5 depicts our implementation.8 We give a
succinct overview, for details see the Appendix.

Augmentation. To augment the input sentence S0
we first retrieve the LLM top-k completions.9 We
replace the “[MASK]” token with the first com-
pletion that is not a stopword or a sub-word and
paraphrase using wordtune.7 We then re-mask
the input sentence S0 and mask its paraphrases
{S1, ...,SM−1}, resulting in M masked sentences.

Top-k completions retrieval. We retrieve the
top-k (k=100) completions for each sentence in
{S0, ...,SM−1}. We count how often completions
appear and remove infrequent ones.9 We extract
the contextual embeddings (the token embedding
from the last hidden layer using the masked in-
put sentence S0 with the corresponding token as
completion). We use the contextual embedding, as
different tokens may belong to the same concept
or not, depending on the context. The fact that
the LLM’s embedding yields meaningful clusters
hints it somewhat captures concepts, which is in

8Our code can be found at https://github.com/
chenxshani/Towards-Concept-Aware-LLMs

9See details in the Appendix.

https://github.com/chenxshani/Towards-Concept-Aware-LLMs
https://github.com/chenxshani/Towards-Concept-Aware-LLMs


line with our findings from RQ1.

Clustering & Ranking. We reduce the dimension-
ality using PCA and t-SNE,9 and use agglomerative
clustering to cluster the completions into concepts.
We use agglomerative clustering as different thresh-
olds yield different concept-granularity, similar to
the flexibility of concepts in humans. Each clus-
ter is assigned with a weight that corresponds to:
1) the token with the maximal soft-max score, to
avoid problems related to surface form competi-
tion, and 2) the token with the maximal number of
repetitions across augmentations’ top-100 comple-
tions, to increase robustness (a token that repeated
frequently is probably very relevant).9

4.2 Evaluation

To evaluate our method, we focus on fill-mask task
(completing a masked sequence of text).

Experiments. We use the ProtoQA dataset, consist-
ing of questions regarding prototypical situations
(e.g., “Name something you are likely making if
you buy milk, eggs, sugar and cream.”) (Boratko
et al., 2020). We believe this setting is relevant for
our use case, as there are usually multiple relevant
answers. To make the input similar to the language
LLMs are usually trained on, we manually changed
the questions to first-person statements (“I bought
milk, eggs, sugar and cream to make a [MASK].”).
We used 63 sentences to set our hyper-parameters
and an additional 100 sentences for evaluation.9

We used BERT-base-uncased, the most popular
fill-mask model (Devlin et al., 2018).10 We com-
pute both BERT’s top 100 completions and our
manipulation, which we call concept-BERT, on top
of BERT’s output, resulting in ranked concepts.

4.2.1 Cluster quality
We measure the semantic coherence of clusters
using the cosine similarity of word2vec’s token em-
bedding (first ten clusters for all sentences). The
mean within-cluster similarity is 0.41, whereas
the mean inter-cluster similarity is 0.12. For refer-
ence, BERT’s top-ten completion similarity is 0.22.
Hence, our clusters are coherent and distinct.

A closer examination highlights the distinction
between the next-token-prediction approach and
ours. Consider the sentence “I can’t get home
for the holidays because of the [MASK].” and
its cluster: {blizzard, cold, temperature, snowfall,

10Most common according to Hugging Face: https://
huggingface.co/models?pipeline_tag=fill-mask.

Figure 6: [Higher means better] Concept-BERT’s and
BERT’s mean score at k=10. K denotes the number of
clusters for Concept-BERT and the number of tokens for
BERT. Our method’s mean score at k=1 is 95% whereas
BERT’s is 84%. Concept-BERT is consistently better
than BERT.

weather, snow}. While the concept is coherent
(i.e., cold weather conditions), some tokens are less-
natural completions without their cluster-context
(e.g., “temperature”).

4.2.2 Ranking quality
We evaluate the quality of ranking by annotating all
completions in the top-10 concept-BERT clusters
and top-10 BERT tokens for all 100 input sentences.
Three crowdworkers received the masked sentence
and a possible completion, and were asked to clas-
sify the completion as either: likely (score=1)/
possible but unlikely (score=0.5)/does not make
sense (score=0). See qualifications, compensation,
and instructions in the Appendix. Note this evalua-
tion cannot be automated, as we wish to see if our
concept-aware modification aligns the LLM’s out-
put with humans. A completion’s aggregated score
is its mean score across the three annotators (mean-
variance across annotations=0.17). For concepts,
we average all tokens in the cluster. Our score at
k=1 is 95% whereas BERT’s is 84% (see Figure
6). Moreover, for all k values, concept-BERT is
consistently better than BERT.

4.2.3 Completions in dispute
We now focus on completions for which BERT and
concept-BERT disagree – one predicts the comple-
tion is likely, while the other does not (and vice
versa). We believe these are the most interesting
regions to evaluate our manipulation on. See exam-
ples of disputed completions in Table 2.

We treat the middle 15% of the ranked lists as

https://huggingface.co/models?pipeline_tag=fill-mask
https://huggingface.co/models?pipeline_tag=fill-mask


Input sentence Completion BERT Concept-BERT
I bought a fake [MASK] from a street vendor. jersey 0.08 0.79
When I retired I started [MASK]. cycling 0.06 0.77

Whenever I suffer from cold I always [MASK].
shudder 0.04 1
rise 0.93 0.24

When I go to the beach I use [MASK]
to protect myself from the sun.

sticks 0.91 0.28
soap 0.74 0.03

I always take my [MASK] with me to the gym. laptop 0.76 0.29
I squeezed myself into the [MASK]. sand 0.71 0.23

Table 2: Examples of completions for which the weight BERT and concept-BERT assign are notably different. Our
manipulation increases the relative rank of appropriate completions and decreases the rank of inappropriate ones.
Relative rank calculation: (1− completion rank)/K where K=100 for BERT and k=number of outputted clusters
for concept-BERT. Color coding: red=low score, orange=intermediate, green=high.

Scenario Mean score Norm. score
Concept-BERT ↑

BERT ↓ 0.84 0.304

Buffer 0.74 -
Concept-BERT ↓

BERT ↑ 0.66 -0.142

Table 3: [Higher means better] Mean scores and normal-
ized (using the buffer) scores of the three scenarios in
the dispute evaluation. Tokens concept-BERT ranked as
probable while BERT as improbable (first row) are an-
notated significantly better than both the buffer (middle
row) and the tokens BERT ranked high and concept-
BERT low (bottom).

buffer and output tokens that are above the buffer
according to one model and below according to the
other. This way, we identified 282 disputed tokens.
In addition, we annotated completions that both
models ranked in the middle 15% (buffer). Volun-
teer computer science graduate students annotated
585 completions using the same setup as in §4.2.2
(282 disputed completions and 303 buffer com-
pletions). Each completion was annotated by two
students (mean-variance across annotations=0.1).9

We divide the annotated completions into three
groups and compute their mean annotation scores.
As some sentences have more good completions
than others, we also normalize the mean score per
sentence by subtracting the sentence buffer’s mean
score. Table 3 shows that when the models dis-
agree, concept-BERT is more often correct (also
refer to Figure A.7 in the Appendix)

Next, we compute the accumulated mean accu-
racy of completions as a function of rank given
by each of the models (Figure A.8). We expect
a negative correlation since the quality should de-

crease when going down the ranked list. While
concept-BERT does have a negative correlation,
BERT is actually positively correlated (meaning,
its top-ranked completions are on average worse
than the bottom-ranked ones). Both curves have
significant correlation (p-values<0.05), whereas
BERT’s is weaker (coefficient 0.54 versus 0.91).
We stress this is not a random sample, but rather
the disputed completions (and buffer). Thus, our
concept-aware manipulation reveals appropriate
completions and removes inappropriate ones, with
respect to the original LLM.

Lastly, we also analyze the mean accuracy of the
disputed completions as a function of how strict
the threshold for “in dispute” is. BERT’s accu-
racy decreases much more sharply compared to
concept-BERT (> 10% versus < 2%), hinting our
manipulation increases robustness (Figure A.9).

To conclude, our simple implementation led to
overall coherent and distinct concept-clusters with
meaningful ranking that improve the original rank-
ing in a robust manner. We see promising indica-
tions that similar techniques could enhance LLM
robustness.

5 Related Work

There is little work on endowing LLMs with a
notion of concepts. The work that is closest to ours
in spirit is SenseBERT (Levine et al., 2020), which
shifts BERT from the form- to the sense-level by
injecting WordNet token information, improving
word sense disambiguation. Unlike SenseBERT,
we suggest learning the categories in a context-
dependent manner (by using the categories that
best assist in predicting the missing text), rather
than their static, context-independent method.



Works on knowledge base embeddings learn rep-
resentations from knowledge graphs (Bordes et al.,
2013), but they are also limited to simple concepts
and KB relations, with no external context.

Aharoni and Goldberg (2020) showed that LLMs
capture the domain a sentence belongs to. While
domains can also be thought of as concepts, we are
after a different (and dynamic) granularity.

ConceptX is an interpretability framework to
analyze how latent concepts are encoded in repre-
sentations learned within pretrained LLMs (Sajjad
et al., 2022). They found that roughly 50% of the
encoded concepts adhere to their suite of human-
defined linguistic concepts, which aligns with our
results from RQ1. However, their method fails to
address complex, multi-faceted concepts.

Hanna and Mareček (2021) specifically explored
the extent to which BERT captures hypernymy,
exploring different prompts and evaluation metrics.
We note that their dataset was somewhat biased
towards Australian and New Zealand culture, and
also contained multiple errors.

6 Conclusions & Future Work

In this work we explored the possibility of concept-
aware LLMs, inspired by the importance of con-
cepts in human cognition. Today’s LLMs all work
at the level of tokens, not concepts; this is problem-
atic, as different tokens from the same underlying
concept compete for the probability mass. Instead,
we envision LLMs that first zero in on a likely
concept, and only then pick the best surface form
among the candidates.

We started by analyzing to what extent con-
temporary pretrained LLMs capture concepts and
match the human organization of concepts. We
showed that LLMs do capture concepts to some
(far-from-perfect) extent, while sometimes violat-
ing the human concept-organization principles of
asymmetry, transitivity, and property inheritance.

Next, we explored directions for augmenting
LLMs with concepts from two different angles.
We first sketched our vision for training concept-
aware LLMs. Next, we presented a model-agnostic
method to shift any off-the-shelf pretrained LLM
from the token- to the concept-level, without fine-
tuning or adding any external information. We
showed that our concept-BERT (built on top of
BERT) outputs a ranked list of concepts which
are relatively coherent and distinct, better match
human intuition, and are more robust compared to

the underlying model.
The notion of concepts has been extensively stud-

ied in psychology, and we believe many of the ques-
tions posed there could inspire directions for future
work. For example, Prototype theory states there is
a graded degree of belonging to a concept (Rosch,
1975), which we have not taken into account here.
Other works tackled the problem of complex con-
cepts and the composition of concepts. For exam-
ple, Rosch (1975) showed that concepts can be
combined (“tall” + “man”) in a context-dependent
way (e.g., the height for a man to be considered tall
is not the same as for a building). For this direction,
commonsense sources such as the distribution-over-
quantities dataset (Elazar et al., 2019) might prove
helpful.

While this is only preliminary work, we believe
that concept-aware LLMs hold immense promise
for the next-generation of LLMs, and could benefit
many downstream tasks around learning, planning,
and reasoning. One place where we believe this ap-
proach will be particularly useful is whenever there
is disambiguity (speech recognition, word sense,
spell check, etc.). Consider rare words that need
to be identified by automatic speech recognition:
by working at concept-level, these words could be
clustered together with completions that are likely
given the rest of the sentence but do not sound
similar to the audio, thus increasing the acoustic
model’s certainty score. We hope to draw the com-
munity’s attention to this exciting new research
area of concept-aware LLMs.

7 Limitations

In RQ1 & RQ2, for BERT and T5 we rely on ex-
act string matching. This entails that if the LLM
retrieved a synonym of the right answer, we do not
detect it as a successful retrieval.

Another limitation is the usage of noisy automa-
tion. We rely on WordNet’s first word-sense for
the 100 ETs, which might not be the original intent.
Quasimodo might also introduce wrong relations
(even when using a strict threshold, as we did).
Moreover, Wordtune’s paraphrasing is another pos-
sible source of noise. We note that throughout
the process we consistently sampled to verify the
quality of the automatic parts, and found them sat-
isfactory.

As for RQ3, our method heavily relies on the
input LLM, and thus might preserve some of the
LLM’s biases. One might try to overcome these



biases, e.g., by injecting external knowledge.
Another limitation of our method is the usage

of not just the LLM completions, but also their
embeddings. This does not let us apply our method
to LLMs that expose only their completion output
(e.g., accessible via API).

Lastly, as we run the LLM several times and
postprocess (paraphrasing extraction, dimensional-
ity reduction, clustering, etc.), computation of our
proof-of-concept model is somewhat slower than
that of the underlying LLM. We note, however, that
many of those operations are easily parallelizable.
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RQ2: Transitivity

Table 4 depicts the mean retrieval of the transitivity
property for the three LLMs.

RQ2: Property inheritance

BERT’s coverage is rather low, leaving us with 29
ETs and 709 triplets to consider. T5 covered 52
ETs with 262 triplets. Both GPT models’ coverage
is 51 ETs and 748 triplets.

RQ3: implementation details

LM. We used BERT-base-uncased with the default
parameters. We performed no training.

Augmentation. For this phase we first replaced
the missing token with the LLM’s most probable
completion that contains more than three letters and
is not a stop-word (using the stopwords list from
nltk.corpus package). We inserted S0 to AI21’s
Wordtune paraphrasing model using the default
parameters:



r e q u e s t s . p o s t (
" h t t p s : / / a p i . a i 2 1 . com / s t u d i o /
v1 / e x p e r i m e n t a l / r e w r i t e " ,
h e a d e r s ={ " A u t h e n t i c a t i o n " :
<a i21 − p r i v a t e − token >}
j s o n ={ " t e x t " : S_0 ,
" i n t e n t " : " g e n e r a l " } )

And extracted the text suggestions from the out-
put JSON file. We then searched for the original
completion and masked all sentences. Sentences
in which we were unable to automatically find the
word were dropped.

Top-k completions retrieval. We used k = 100
for each masked sentence. We drop each com-
pletion that did not appear in at least half of our
augmentations. Note: another possible implemen-
tation would be a function of unique completions.

Clustering & Ranking. As a latent space represen-
tation of contextual token, we extract the LLM’s
token embedding for this token from the last hid-
den layer with the input sentence S0. We reduce
the dimensionality of the embeddings from 768
to 100 using PCA (scikit learn implementation,
n_components=100, svd_solver=’full’) and from
100 to 10 using t-SNE (scikit learn implementa-
tion, n_components=10, init=’pca’, perplexity=10,
method=’exact’).

We cluster the embeddings after the dimen-
sionality reduction using agglomerative cluster-
ing using the distance metric cosine similar-
ity, linkage=’linkage’, distance threshold=0.45,
n_clusters=None, and compute_distances=True
(scikit learn implementation)

To rank the clusters, we used the following for-
mula:

weight(Ci) = α ·maxweight(weight(t) ∀t ∈ Ci)

+(1− α) ·maxrep(rep(t) ∀t ∈ Ci)

where α = 0.7.

RQ3: Human annotators
For both annotation tasks (computer science gradu-
ate students and Amazon Mechanical Turk), anno-
tators were presented with a sentence and a possi-
ble completion and were asked “Do you think this
completion makes sense?”. Possible responses are:
{likely, possible but unlikely, does not make sense}.

Precision at k. We used Amazon Mechanical Turk
with the following qualifications: {HIT Approval
Rate > 98, Number of HITs Approved > 5000,

Location is one of CA, GB, US (for English speak-
ers)}. We also used a custom qualification using
five example sentences and completions. Annota-
tors were allowed to make one error in order to
qualify. We paid annotators $0.02 per completion.
Overall, we had 39 unique annotators.

Full instructions:
You will be presented with a sentence containing

a missing word and a candidate word to fill-in the
blank. Your role is to determine for each comple-
tion whether it is likely / possible but not likely /
does not make sense at all. Note! If a completion
is not grammatically correct ("I enjoy *raining*"
instead of *rain*) that is fine, we do not care about
grammar here. But if the sentence + completion is
not a full sentence ("I enjoy *doing*") that is NOT
fine, as the sentence is meaningless.
Example 1
Sentence: I went to the parent teacher conference
with my _____.
Completion: parent
Desired response: Likely
Example 2
Sentence: I went to the parent teacher conference
with my _____.
Completion: schedule
Desired response: Does not make sense
Example 3
Sentence: I went to the parent teacher conference
with my _____.
Completion: grandfather
Desired response: Possible but unlikely
Explanation: While this is not the common sce-
nario, it is still possible.
Example 4
Sentence: I went to the parent teacher conference
with my _____.
Completion: mothers
Desired response: Likely OR Possible but unlikely

Completions in dispute. We recruited 8 vol-
unteers, all are graduate students from the com-
puter science department (same instructions as
the Amazon Mechanical Turk experiment, see in-
structions above). Each student annotated about
150 completions (cutoff at the end of the sen-
tence). Each completion was annotated by two
students. Mean-variance across annotation=0.1,
showing a fairly good quality of annotations (pos-
sible responses={0, 0.5, 1}). Students reported the
task to take about 15 minutes to complete.



Figure 7: Heat-map of the disputed completions (higher
means better). The y-axis represents concept-BERT’s
completion relative rank. The x-axis represents BERT’s
relative rank. The top-left part of the map received
higher scores compared to the middle (buffer) and the
bottom-right part. Meaning, our manipulation ranked
high appropriate completions and low inappropriate
ones.

Figure 8: Completions’ accumulated mean accuracy as
a function of rank given by each of the models. Both
curves have significant correlation (p-value < 0.05),
whereas BERT’s correlation is weaker (correlation coef-
ficient 0.54 versus 0.91). Interestingly, while concept-
BERT has a negative correlation, as expected since the
rank’s quality should decrease, BERT’s correlation is
positive. We stress this is not a random sample, but
rather the disputed completions (and the buffer). Thus,
this again strengthens our claim, that our manipulation
helps to reveal appropriate completions and remove in-
appropriate ones, with respect to the original LLM.

RQ3: Figures

Figure 9: Mean accuracy of the disputed completions
for both models as a function of how strict the threshold
for disagreement is. BERT’s accuracy decreases sharply
compared to concept-BERT, suggesting our manipula-
tion increases robustness.


