
Why Are We Waiting? Discovering Interpretable Models
for Predicting Sojourn and Waiting Times

Boris Wiegand◦ • Dietrich Klakow• Jilles Vreeken∗

Abstract
Queueing models explain waiting times, predict sojourn
times and help to identify and avoid bottlenecks. Domain ex-
perts usually create these models by intensive handcrafting,
often resulting in idealized models not fitting the actual pro-
cess behavior well. Discovering queueing models from data
can alleviate this effort, but existing methods do not suffice
as they are unable to model complex queueing behaviors.

We propose a novel approach to discover queueing mod-
els for interpretable waiting time prediction using a rich
modeling language to fit complex processes. We formalize
the problem in terms of the Minimum Description Length
(MDL) principle, by which the best model gives the best
lossless compression. The resulting optimization problem
is computationally hard, and hence we propose the greedy
CueMin algorithm to efficiently find good queueing models
from data. Through an extensive set of experiments includ-
ing a case study on call center data, we show it discovers
inherently interpretable models, which explain and predict
behavior of waiting lines better than the state of the art.

1 Introduction

We have all stood in a waiting line, wondering why is
it taking so long and how much longer we have to wait.
Explaining and predicting waiting times is a highly
relevant topic in service-oriented and manufacturing
processes. Process time prediction methods [18, 25]
usually assume independence between jobs and neglect
varying waiting times due to queueing. On the contrary,
waiting time is the core concept of queueing models [21],
in which servers process incoming jobs. If all servers
are busy, arriving jobs must wait until a server becomes
available. Although queueing models have been used in
many domains such as customer service, traffic control,
manufacturing and healthcare [8], modeling processes
typically involves intensive handcrafting by domain
experts, which often results in idealized models that do
not fit the actual process behavior well [26].

Existing approaches to discover queueing models
from observational data [23, 24] are restricted to first-
come first-serve order, which results in poor fitness

◦Stahl-Holding-Saar, Dillingen, Germany.

boris.wiegand@stahl-holding-saar.de

•Saarland University, Saarbrücken, Germany.
dietrich.klakow@lsv.uni-saarland.de

∗CISPA Helmholtz Center for Information Security, Germany.
jv@cispa.de

on processes with different behavior. They generally
discover only one specific part of a queueing model, such
as number of servers [11] or batch sizes [14], and require
expert knowledge for the remaining parts. Neural
networks can predict service times with high accuracy
[17]; however, they require large training datasets and
extensive hyperparameter tuning. Their black box
nature impedes what-if analysis like what happens if
we increase the number of available servers.

In practice, we frequently face datasets with arrival
and departure times of jobs, but without any knowledge
about the underlying waiting and service times [23].
We propose a novel approach to discover interpretable
queueing models with rich modeling language from such
data. To this end, we formalize the problem in terms
of the Minimum Description Length (MDL) principle,
by which we identify the best model as the one giving
the shortest lossless description of the data. Since the
resulting optimization problem is computationally hard,
we propose our greedy algorithm CueMin (a pun of
the spice cumin and cue miner) to find good queueing
models in practice. CueMin discovers the key parts of
a queueing model, i.e. service order, number of servers,
batch sizes and service time. Furthermore, CueMin
considers additional features in the data, such as the
type of product in manufacturing, to explain service
order and to predict service time.

Through extensive experiments on synthetic and
real-world data including a case study on call center
data, we show that CueMin in contrast to the state of
the art discovers inherently interpretable models, which
explain and predict behavior of waiting line processes.
Our main contributions are as follows. We
(a) formulate the problem of discovering queueing

models in terms of the MDL principle,
(b) propose an efficient heuristic to find interpretable

yet accurate models to predict waiting and sojourn
time from data,

(c) perform an extensive empirical evaluation,
(d) make code, data and additional details of our em-

pirical evaluation available in the supplementary.1

1https://eda.rg.cispa.io/prj/cuemin

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited

https://eda.rg.cispa.io/prj/cuemin

2 Preliminaries

Before we formalize the problem, we introduce necessary
notation and basic concepts we use in the paper.

2.1 Univariate Discrete Distributions We model
time intervals and batches of jobs using univariate dis-
crete distributions [10]. Favoring a concise notation,
we write, whenever clear from context, Pr(x) instead
of Pr(X = x) when we mean the probability mass
function (pmf). Below, we consider four distributions
which are particularly commonly used in queueing the-
ory. We note, however, that our theory accepts any
distribution with a pmf of a finite set of parameters.
The simplest distribution we consider is a degenerate,
or fixed distribution F(k). We use it to model con-
stant values, because it has only support for a single
value k ∈ N, i.e. Pr(k) = 1 ∧ ∀x ̸= k : Pr(x) = 0.
As a more flexible distribution, we denote the Poisson
distribution with expected value k as P(k) with pmf

Pr(x) = e−kkx

x! . For a geometric distribution with suc-
cess probability p and pmf Pr(x) = (1−p)x−1p, we write
G(p). The negative binomial distribution NB(k, p) with
number of successes k and success probability p has pmf
Pr(x) =

(
x+k−1
k−1

)
pk(1− p)x.

2.2 Queueing Models In queueing theory [8, 21], a
queueing model M consists of c servers that process
incoming jobs. We denote the arrival time of the i-th
job as ai ∈ N. If all servers are busy, jobs must wait
until a server is available. We use wi ∈ N to refer to
the waiting time of job i. Servers can process jobs in
batches. We refer to B as the univariate discrete batch
size distribution. If the current batch size is k, a server
waits until k jobs are available to get served. Servers
process waiting jobs in service order R. We consider
first-come, first-served (FCFS), last-come, first-served
(LCFS) and priority queueing (PQ), where jobs own
priority classes and jobs with same priority are either
served FCFS (PQ + FCFS) or LCFS (PQ + LCFS).

The service time of a job is drawn from the service
time model S. In its simplest form, S is a univariate dis-
crete distribution. If service time depends on additional
features like heavier products in manufacturing need
more time, S can be a regression function fS : Rm → R,
plus an additive error distribution ES . Load on the sys-
tem may lead to different service times. Therefore, S
can consist of k submodels S′

1, · · · , S′
k, where k− 1 load

thresholds τ1, · · · , τk−1 ∈ N define when to use which
submodel. If the number of jobs in the queue is be-
tween τj−1 and τj , service time is predicted by S′

j . We
denote the service time of the i-th job as si.

When a job has been served, it leaves the system.
We denote the departure time of the i-th job as di =

i :
a :

1

2

2

3

3

4

4

6

5

7

6

9
?

o :

d :

1

8

2

8

4

14

5

14

6

15

3

24

M1 :

R = LCFS

B = P(2)

S = G(0.2)

c = 1

C1 CS : 5 6 1 9

CB : 2 2 1 1

CE : 0 0 0 0 0 0

M2 :

R = FCFS

B = F(1)

S = G(0.2)

c = 2

C2 CS : 6 5 16 6 1 1

CB : 1 1 1 1 1 1

CE : 0 0 0 0 − 1 − 1

Figure 1: [Data Encoding] Toy example of jobs (top)
with arrival times a, departure times d, and two possible
processing models M1 and M2 and their corresponding
data encodings C1 and C2.

ai+wi+si. The sojourn time v is the time span between
arrival and departure, i.e. vi = di − ai = wi + si.

2.3 MDL The Minimum Description Length (MDL)
principle [7,19] is an information theoretic approach for
model selection. MDL identifies the best model as the
one that provides the shortest lossless description of the
given data. Formally, given a set of models M, the
best model is defined by argminM∈M L(M) + L(D |
M), with L(M) being the number of bits required to
describe M , and L(D |M) being the length of the data
encoded with the model. This form of MDL is known
as two-part or crude MDL. One-part or refined MDL
provides stronger theoretical guarantees; however, it is
only computable in specific cases [7]. Therefore and
because we are especially interested in the model, we use
two-part MDL. In MDL, we only compute code length,
but are not concerned with actual code words.

3 MDL for Queueing Models

We favor queueing models that are simple and inter-
pretable yet at the same time are sufficiently rich to fit
real-world process behaviors. Therefore, we formalize
the problem of discovering a queueing model in terms of
the MDL principle. We encode the data given a model
with codes in a code stream or cover C, where we spec-
ify how the model serves arriving jobs. Conceptually, we
split C into three streams: CB encodes the batch sizes
in which jobs are served, CS encodes service times, and
CE encodes errors to ensure a lossless encoding.

We show a toy example of data, model and cover

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited

in Figure 1. Model M1 consists of a single server that
processes jobs in LCFS order, batch sizes are Poisson
and service times are geometrically distributed. Now,
we decode the departure times d from the arrival times
a using cover C1. We start by reading the size of the
first batch from CB , which tells us the next two jobs
are served in a batch. Then, we read the service time
of this batch from CS . Now, we know the server waits
until the first two jobs arrive and needs five time steps
to serve this batch, which results in a departure time
of eight for both jobs. For each of the jobs, we read a
code from CE to correct the departure time if necessary.
In this example, we read 0, i.e. the observed departure
time equals the departure time given by the model.

We continue by reading the next batch size, two,
from CB . When the server becomes free at time step
eight, job 3, 4 and 5 are waiting. Due to LCFS order,
job 4 and 5 are served next. We read the code for service
time six from CS , which results in departure time 14.
The next two codes in CE tell us that 14 is correct. We
decode the remaining two jobs as before and are done.

In model M2, we have two servers processing jobs
in FCFS order with batch size one. Now, we use cover
C2 to decode departure times of the arriving jobs. Job 1
and job 2 are served in batches of size one using separate
servers. After the first two jobs leave, job 3 blocks one
server until the end of our example, and when job 4
leaves at time step 14, job 5 requires zero service time.
However, the geometric service time distribution of M2

does not allow zeros. Therefore, CS contains a code for
service time one, which is corrected by two codes in CE ,
giving us sign and magnitude of the error. We decode
job 6 analogously by which we decoded all jobs.

3.1 Data Encoding We define length of the data
encoding as the sum of the code lengths in the code
stream C. Formally, we have

L(D |M) =−
∑
b∈CB

log PrB(b)−
∑
s∈CS

log PrS(s)

+
∑
e∈CE

L(e),

where we first encode the batch sizes with optimal
prefix-free codes using the model’s batch size distribu-
tion, then we encode the service times also with optimal
prefix-free codes using the service time model, and we
encode the errors of the modeled departure times, which
ensures a lossless encoding as required by MDL.

We encode the error e by first encoding its sign
sgn e ∈ {−1, 0, 1} and then its magnitude. If we knew
the distribution of the signs beforehand, we could com-
pute lengths of optimal prefix-free codes with Shannon
entropy. To avoid any arbitrary choices in the model en-

coding, we use prequential codes [7], which are asymp-
totically optimal without requiring initial knowledge of
the code distribution. We start encoding with a uniform
distribution and update the counts after every received
message, such that at any point of time we have a valid
probability distribution for optimal prefix-free codes [4].
Formally, we define the encoded length of the error by

L(e) = − log
usg(sgn e) + ϵ∑

usg(·) + ϵ
+

{
0, if e = 0

LN(|e|), otherwise,

where usg(sgn e) denotes how often the code for sgn e
has been used before, ϵ with standard choice 0.5 is for
smoothing, and LN is the MDL-optimal encoding for
integers z ≥ 1 [20], defined as LN(z) = log∗ z + log c0,
with log∗ z = log z+ log log z+ . . . and we sum only the
positive terms, and c0 = 2.865064 is set such that we
satisfy the Kraft-inequality – i.e. ensure it is a lossless
code. This gives us a lossless encoding of the data.

3.2 Model Encoding We encode all model parts
separately. For the service order R, we use log 3 bits
to encode whether we have FCFS, LCFS or PQ. In case
of PQ, we additionally encode, which of the categorical
features in our dataset contains the priority classes, and
encode the order of the categories by an index over all
possible orders. Since multiple waiting jobs can have the
same priority class, we use one bit to encode whether
the default order is FCFS or LCFS. This results in

L(R) = log 3 +

{
logmcat + log k! + 1, if R = PQ

0, otherwise,

where mcat denotes the number of categorical features
and k the number of categories of the chosen feature.

For the batch size distribution B, we specify the
type of the distribution and encode its parameters.
Distinguishing between four types of univariate discrete
distributions costs two bits. In general, the distribution
parameters have arbitrary values. Therefore, we encode
integer parameters with LN and real parameters with
LR [16], where we encode a real number z up to a user-
specified precision p by the smallest integer shift s such
that z · 10s ≥ 10p. We then encode shift, shifted digit
and sign, i.e. LR(z) = LN(s) + LN(⌈z · 10s⌉) + 1.

We defined three types of service time models S, i.e.
encoding the type costs log 3 bits. If S is a distribution,
we encode it like the batch size distribution. In case of a
regression function, we encode the parameters using LR
and encode the error distribution as before. If service
time is load-dependent, we encode the number and
values of the load thresholds using LN, and encode the
submodels accordingly. We define the encoded length
of the model by L(M) = L(R) + L(B) + L(S) + LN(c),
which gives us a lossless encoding of the model.

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited

3.3 Formal Problem Definition We now have all
necessary parts to formally state the problem.

Minimal Queueing Model ProblemGiven a dataset
D of arrival and departure times, find the minimal
queueing model M and cover C, such that the total
encoded cost L(D,M) = L(D |M) +L(M) is minimal.

Finding the optimal cover for a given model is compu-
tationally hard: There is no product-form solution to
compute the future state of our queueing models [12],
i.e. whenever we choose batch size and service time at
one point of the cover, we have to compute the impact
on all later time steps. Due to many valid choices of
batch size and service time at each step, this results in
an intractable, exponentially growing search space.

Finding the optimal model is not easier. Without a
product-form solution for queueing states, every change
in the model requires re-computation of the cover. We
cannot search for different parts of a model indepen-
dently: Different service orders lead to completely dif-
ferent service times, and a change of batch sizes requires
adapting service times or the number of servers. Hence,
we resort to heuristics.

4 The CueMin Algorithm

Since solving the minimal queueing problem is difficult,
we divide it into two and propose greedy solutions for
finding a cover and discovering a model separately.

4.1 Finding a Cover To find a good cover, we first
need to know which jobs are served as one batch,
such that we can estimate corresponding service times.
Similar to the existing BatchMiner [14], we discover
batches by jobs with the same departure time; however,
we restrict batch sizes to values that we can explain by
the batch size distribution B of the model.

We give the pseudocode of FindBatches as Al-
gorithm 1. Initially, all servers j have empty batches
at any time t (line 1). To consider all changes in the
model state, we iterate over all arrival and departure
times (line 2). In each iteration, we try to find a suit-
able batch for each job in the waiting line. We first
check if we should add the job to an already exist-
ing batch (line 4): We add the job to a batch if the
model demands a higher batch size (PrB(|btj |) = 0), or
if the job has the same departure time as the jobs in the
batch (bdi

j ̸= ∅) and the model supports a larger batch

(PrB(|btj |+1) > 0). In this case, we mark the job to be
part of batch bj blocking server j until departure time
di (line 5). If we could not add the job to an existing
batch, we create a new batch if there is a free server
(line 6-7). Whenever a batch has been processed, we
add it to our list of detected batches (line 10).

Algorithm 1: FindBatches

input : dataset D, queueing model M
output: list of detected batches Z

1 btj ← ∅ ∀j, t;
2 foreach t ∈ {a1, . . . , dn} do
3 foreach job i waiting for M at time t do
4 if ∃j : btj ̸= ∅ and i should be in btj then
5 bkj ← bkj ∪ {i} ∀k = t, . . . , di;

6 else if ∃j : btj = 0 then
7 bkj ← {i} ∀k = t, . . . , di;

8 foreach j ∈ {1, . . . , c} do
9 if bt+1

j = ∅ then
10 add btj to Z;

11 return Z

Algorithm 2: FindCover

input : dataset D, queueing model M
output: cover (CB , CS , CE)

1 CB ← ∅, CS ← ∅, CE ← ∅, t← 0;
2 foreach b ∈ FindBatches(D,M) do

3 append |b| to CB ;

4 s← db1 − t;
5 if PrS(s) = 0 then
6 s← argmaxPrS(·);
7 append s to CS ;
8 foreach i ∈ b do
9 ei ← s+ t− di;

10 append sgn ei to CE ;

11 if ei ̸= 0 then

12 append |ei| to CE ;

13 t← service start time of next batch;

14 return (CB , CS , CE)

With the help of FindBatches, computing the
cover is fairly easy. We provide the pseudocode of
FindCover as Algorithm 2. Starting with an empty
cover, we iterate over all batches. We add the batch
size to CB (line 3) and compute the required service
time s (line 4), where t denotes the current time.

If the model cannot produce the required service
time s, we replace s with the most likely service time of
the model (line 5-6). Next, we add the code of s to CS

(line 7). Then, for each job in the batch, we compute the
error on the departure time and add its code to CE (line
8-12). At the end of each iteration, we set the current
time t to the service start of the next batch (line 13).

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited

Algorithm 3: BruteForce

input : dataset D, service order R, upper
bound on number of servers cmax

output: queueing model M
1 M ← ∅;
2 foreach c ∈ {1, . . . , cmax} do
3 M̂ ← (R,B, S, c);
4 foreach S,B ∈ FitService(D,R, c) do

5 if L(D, M̂) < L(D,M) then

6 M ← M̂ ;

7 return M

4.2 Discovering a Good Queueing Model With
FindCover, we are able to compute our MDL score,
which we now use for model selection. The overall idea
is to discover a model for each possible service order
and take the one with the lowest total encoding cost.
While FCFS and LCFS are non-parametric, we select
the most promising categorical attribute for priority
queueing PQ. To this end, we choose the attribute and
the permutation of its categories π that interpreted as
priority classes minimize the conditional entropy on the
departure order of jobs for the observed arrival order.
Formally, if Y is a random variable of the category of
the next leaving job and X is a random variable of
the predicted category by the order of π, we minimize

H(Y | X) = −∑
x∈X,y∈Y Pr(x, y) log Pr(x,y)

Pr(x) .

We restrict the search space by a simple yet effective
upper bound on the number of servers, which is the
smallest number of servers such that all jobs can be
served without waiting time. Any greater number leads
to unused servers and cannot be inferred from data. For
reference, we give the pseudocode of our basic search
algorithm in the supplementary.

BruteForce We propose two different strategies to
discover a model with a given service order. The first
one is a naive brute-force search, for which we give the
pseudocode as Algorithm 3. We generate service time
and batch size distribution candidates for each possible
number of servers, and select the model with the best
score. We always generate the batch size distribution
candidate F(1), i.e. batch size is constantly one. In
addition, we use maximum likelihood estimation to fit a
candidate for each type of distribution we introduced in
Section 2 on the number of jobs with the same departure
time. We then use the batch size distribution candidates
to compute required service times for each job as we did
in line 4 of FindCover in Algorithm 2.

Next, we generate service time candidate models.
We fit distributions by maximum likelihood estimation.

Algorithm 4: CueMin

input : dataset D, service order R, upper
bound on number of servers cmax

output: queueing model M
1 M ← ∅;
2 c← 1, δ ← 1;
3 repeat
4 foreach S,B ∈ FitService(D,R, c) do

5 M̂ ← (R,B, S, c);

6 if L(D, M̂) < L(D,M) then

7 M ← M̂ ;

8 if L(D,M) improved then
9 δ ← δ · 2;

10 else if δ = 1 then
11 δ ← −1;
12 else
13 δ ← ⌈ δ2⌉;
14 c← max {1,min {cmax, c+ δ}};
15 until δ = 0;
16 return M

For regression models with an error distribution, we first
fit the regression model and then fit a distribution on
the residuals. We generate load dependent service time
models by finding τ1, . . . , τk−1 for multiple values of k,
and then fit k submodels, i.e. distributions or regression
models. For given k, we choose τ1, . . . , τk−1 such that

we minimize
∑k

i=1

∑
s∈Ki

(s − K̄i)
2, with Ki being the

i-th cluster of service times implied by τ1, . . . , τk−1 and
K̄i the average service time of the cluster.

CueMin We propose CueMin as an efficient al-
ternative to BruteForce. Although our score is not
strictly convex, it does exhibit convex-like behavior that
we can exploit towards discovering good models. In
particular, whenever a model contains too few servers,
it will incur a heavy penalty because it has trouble
serving jobs on time; adding more servers will reduce
this penalty. In contrast, when a model has too many
servers, it also incurs a heavy penalty because it serves
jobs too early; reducing servers reduces this penalty.

We give the pseudocode of CueMin as Algorithm 4.
We start by finding the best model for one server.
Whenever the current number of servers leads to an
improvement, we increase the step size δ (line 7-8),
which determines the next candidate number of servers
(line 13). This way, if the number of optimal servers is
large, we quickly jump over values, which are much too
low. At some point, large steps do not lead to better
models. We then start to decrease the step size (line

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited

12). If increasing the number of servers does not have
an effect anymore, we repeat the search in the opposite
direction in case we jumped over the optimum (line 10).

As we show in Section 6, CueMin works well.
It finds models as good as those by BruteForce,
while being significantly faster. Domain experts can, if
wanted, easily include knowledge into the search: They
can restrict the number of servers to speed up the search
or adapt any part of the model to their expectation. For
instance, they can create a domain-specific service order
or service time distribution.

4.3 Runtime complexity FindBatches has run-
time O(nc), i.e. it scales linearly with the number of
observed jobs n and the number of servers c. Hence,
it is fast enough to compute sufficiently many covers
during model search. The runtime of FindCover is
mainly driven by FindBatches, i.e. O(nc).

The runtime of BruteForce is strongly depen-
dent on the upper bound on the number of servers cmax.
In each of the cmax iterations, we compute our score
with runtime O(nc), which results in a total runtime of
O(nc2max). Depending on the dataset and the underlying
data generating process, cmax is so large that this run-
time becomes unacceptable. In practice, we can either
restrict the number of servers with domain knowledge
or use heuristics to speed up the search.

Instead of exhaustively searching over all possible
number of servers, CueMin uses an adaptive step size
δ to skip unpromising candidates. Since our score is not
convex, in the worst case, every second search candidate
improves the score. This means, δ alternates between
one and two, and we test all cmax possible values of c. In
practice, however, CueMin is significantly faster than
BruteForce as we show in Section 6.

5 Related Work

Before we show our evaluation, we first give an overview
of related work. Predicting event duration in business
processes is closely related to our problem. Polato et
al. [18] predict future events of running process instances
based on a Näıve Bayes classifier and use support vector
regression to estimate event duration. Deep learning
leads to more accurate predictions; however, existing
approaches [3,25] equally neglect dependencies between
jobs and thus cannot consider increased waiting times
due to queueing effects in the process.

Surprisingly little work deals with the discovery
of queueing models from data. Senderovich et al.
[24] coined the term Queue Mining and pioneered in
synthesizing data mining and queueing theory to predict
delays in service processes. In addition to arrival
times and departure times, they assumed availability

of observations on the waiting times as well.
Later, Senderovich proposed K-PHF for waiting

time prediction from arrival and departure times only
[23]. Under the assumption of FCFS order, K-PHF
clusters sojourn times by k-means and infers a phase-
type distribution for each cluster. The clusters corre-
spond to different load states (e.g. low, moderate, high).

Unfortunately, K-PHF does not provide any infor-
mation about batch service or the number of servers.
Keith et al. [11] developed COrder to estimate the
number of servers in a FCFS queue. They also pro-
posed a LCFS version of COrder; however, one needs
to know the service order to choose the right version.

Klijn and Fahland [14] detected service batch sizes
through jobs with close departure time, but did not
consider other queue modeling aspects. Ojeda et al. [17]
combined queueing theory and adversarial deep learning
with Wasserstein loss [1] to predict sojourn times and
their distribution from an embedding of arrival times [6]
and covariates of jobs in a queue.

In contrast to the above, CueMin finds models for
the prediction of process behavior, where all parts of the
model are based on interpretable building blocks from
queueing theory. To the best of our knowledge CueMin
is the first method that jointly discovers batch service,
service order, number of servers and service time.

6 Experiments

Now, we evaluate CueMin on both synthetic and real-
world datasets. We conducted all our experiments on a
PC with an Intel i7-6700 CPU and 32 GB of memory,
running Windows 10. We report wall-clock running
times for single-threaded execution, except for RAS,
which used our GeForce RTX 2080 Ti during training.

6.1 Synthetic Data We start with experiments on
synthetic data. We sample 1000 ground-truth models
with R ∈ {FCFS,LCFS}, c ∈ [1, 30], B = F(1) and
a large set of different service time distributions. We
generate data by sampling job arrivals from several in-
terarrival distributions from which we sample departure
times with the ground-truth models.

First, we evaluate CueMin’s ability to find the
ground-truth number of servers c compared to Brute-
Force, COrder [11] and a naive baseline DeltaMax
[11]. Since intuitively more servers are needed to ex-
plain a greater difference between arrival and departure
order, DeltaMax enumerates arriving jobs from 1 to
n, and estimates c by the maximal index difference of
consecutively leaving jobs. For a fair comparison, we
feed our knowledge of the ground-truth service order
into COrder, whereas CueMin and BruteForce ad-
ditionally have to discover the service order.

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited

0 20 40 60 80 100

0

5

10

15

20

25

jobs per server

M
A
E

CueMin BruteForce COrder DeltaMax

M1 M2 M3

0

5

10

15

20

25

Type of model
M

A
E

Figure 2: [Number of servers estimation] Mean
absolute error (MAE) on estimating the number of
servers c ∈ [1, 30] of a R ∈ {FCFS,LCFS} queue with
B = F(1) dependent on the number of observed jobs
per server n

c (left) and MAE dependent on the type of
model (right). M1 is the model of the left plot, M2

extends M1 by Poisson batch sizes, and M3 serves jobs
with R = PQ. We show standard error in both plots.

We report the mean absolute error (MAE) on es-
timating the number of servers on the left of Figure 2.
Evaluating the MAE dependent on the number of ob-
served jobs only would overpenalize complex models
with more servers, which need more jobs to utilize all
servers. We therefore normalize the number of jobs by
the number of ground-truth servers. As expected, all
methods improve with more data. Although we gave
COrder the advantage of knowing the ground-truth
service order, we see CueMin and BruteForce have
a competitive MAE and significantly beat the naive
DeltaMax baseline. CueMin produces almost equiv-
alent results to the exhaustive search by BruteForce.

Next, we show the MAE dependent on the type of
ground-truth queueing model on the right of Figure 2.
The left group of bars (M1) refers to the left line plot,
i.e. the assumptions of COrder still hold. If we add
Poisson batch size distributions to the ground-truth
models, both COrder and DeltaMax significantly
lose accuracy as we show in the middle bar group (M2),
whereas CueMin successfully detects batch service.
Service order based on priority classes, i.e. R = PQ,
heavily violates the assumptions of COrder. We add
three uniformly distributed categorical features with
three categories each to the jobs and randomly select
one of the features as the priority class. In this scenario
(M3), we see COrder has an even higher increase
of MAE. CueMin considers the service order in its
search for the number of servers, and thus shows stable
performance under varying service order and batch size.

Finally, we report accuracy and runtime on dis-
covering the ground-truth service order for CueMin

0 20 40 60 80 100

0

0.2

0.4

0.6

0.8

1

jobs per server

A
c
c
u
ra

c
y

CueMin BruteForce

0 20 40 60 80 100

0

50

100

150

200

250

jobs per server

a
v
e
ra

g
e
ru

n
ti
m
e
[s
]

Figure 3: [Service order discovery] Accuracy on
discovering service order R in synthetic data dependent
on the number of observed jobs per server n

c (left) and
average runtime in seconds (right) for CueMin and
BruteForce. We show standard error in both plots.

and BruteForce in Figure 3. We see that CueMin
achieves accuracy equivalent toBruteForce, while be-
ing magnitudes faster.

6.2 Real-World Data Next, we show practical ap-
plicability of CueMin by evaluating on six real-world
datasets of different domains. The Callcenter dataset
[2] contains service calls along with customer priority,
weekday and daytime of an Israeli bank. Laser and
Lapping consist of arrival and departures times together
with product category and work order quantity at two
stations of a production process [15]. With relatively
few jobs, they test the ability to learn from little data.
Finally, Steel A, Steel B and Steel C correspond to three
stations in the rolling mill of a German steel producer.

We split all datasets into a train timespan followed
by a test timespan with roughly 20% of all jobs. Then,
we use CueMin to discover a queueing model on the
training data and run 1000 simulations on all arrivals
to predict a distribution of sojourn times for each job.
We do the same for a re-implementation of the ideas
from K-PHF [23] and set hyperparameters as suggested
by the authors. Furthermore, we compare to RAS [17]
for which we conducted an extensive hyperparameter
search and selected the best performing. As an addi-
tional baseline, we train a random forest (RF) to pre-
dict sojourn times just by the features of jobs and thus
ignoring any dependence between jobs and system load.
We also train a random forest (AW+RF) on the in-
terarrival times and features in a window of k jobs to
consider system load. We select hyperparameters of the
random forests by grid search and cross-validation.

To compare across datasets with different time
scale, we evaluate predicting sojourn time of individual
jobs by the mean absolute scaled error (MASE). MASE

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited

Callcenter Laser Lapping Steel A Steel B Steel C
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Dataset

M
A
S
E

o
n

te
st

se
t

CueMin K-PHF RAS RF AW+RF

Figure 4: [Sojourn time predictions] Mean absolute
scaled error (MASE, lower is better) with standard error
on predicted sojourn times of six real-world datasets for
CueMin, RAS, K-PHF, RF and AW+RF.

Callcenter Laser Lapping Steel A Steel B Steel C
0.0

0.2

0.4

0.6

0.8

1.0

Dataset

K
S

o
n

te
st

se
t

CueMin K-PHF RAS RF AW+RF

Figure 5: [Distribution fitting] KS distance (lower
is better) between predicted and actual sojourn time
distribution of six real-world datasets for CueMin,
RAS, K-PHF, RF and AW+RF.

is the mean absolute error (MAE) of the individual
predictor divided by the MAE of the naive predictor
that predicts the mean of the training data. We show
the MASE on the test set for all methods in Figure 4.
We see CueMin always beats the naive baseline, i.e.
MASE < 1. On all datasets, it performs on par or better
thanK-PHF, and with exception to the Steel C dataset,
performs on par or better than RF and AW+RF.

During process performance analysis, domain ex-
perts are especially interested in the distribution of so-
journ times and not in individual jobs. We report the
Kolmogorov-Smirnov (KS) statistic between predicted
and actual sojourn time distribution in Figure 5. We
clearly see that the random forests suffer from regres-
sion to the mean. K-PHF and CueMin provide a much
better approximation of the distribution than RF and
AW+RF. Between the two, CueMin outperforms K-
PHF especially on the Steel A and Steel B dataset.

6.3 Case Study: Call Center We finish evaluation
with a case study on the Callcenter dataset, in which

0 1 2 3

0

200

400

600

800

Relative arrival rate

v̄
[s
]

0 1 2 3

0.0

0.01

0.02

0.03

0.04

Relative arrival rate

µ
[1
/
s
]

CueMin K-PHF RF AW+RF

Figure 6: [CueMin ably extrapolates] Mean pre-
dicted sojourn time v̄ (left) and predicted departure rate
µ (right) dependent on down- or up-sampled arrival rate
in the Callcenter dataset. We expect v̄ to grow exponen-
tially with system load, whereas µ should flatten when
the maximal capacity of the call center is reached.

we highlight the insight we can gain from the model
discovered by CueMin. CueMin finds a FCFS queue
with nine servers, batch size one and a load-dependent
service time. Although the dataset contains an attribute
for customer priority, we see CueMin favors FCFS over
PQ. According to the dataset description, customers are
served by their waiting time. Prioritized customers are
assigned 1.5 minutes of initial waiting time. CueMin
discovers that this is a neglible advantage and FCFS
captures the actual behavior of the process.

We see batch size one is the correct description for
calls being served one after another. Nine servers almost
perfectly match the eight agents in the call center. The
service time distribution is NB(1.4, 0.007) if six or fewer
customers are in the line, and changes to NB(2.2, 0.007)
if there are more calls. A former study on this dataset [2]
confirms increased service time due to system load.

Finally, we evaluate how well the models discovered
by CueMin, K-PHF, RF and AW+RF extrapolate.
We down- and up-sample the number of arriving jobs in
the test set to simulate decreased and increased system
load. We show the mean predicted sojourn time v̄
and the departure rate µ, i.e. the number of leaving
jobs per second, in Figure 6. RF and AW+RF do
not capture the expected increase of waiting time for
a higher arrival rate: They predict a constant sojourn
time and a linearly increasing departure rate. We see
that K-PHF does slightly better: Its predicted sojourn
time increases with growing arrival rate. However, since
it does not model the number of servers, it misses that
exceeding a certain load threshold leads to exponentially
increasing waiting and thus sojourn times [9].

In contrast to all other methods, CueMin models
the dependency between system load and performance

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited

that we by human intuition would expect. It predicts
the expected explosion of waiting times and a limit on
the departure rate, if servers are constantly overloaded.
This makes CueMin a valuable tool for analyzing
different scenarios in waiting line processes.

7 Conclusion

We studied discovering queueing models for inter-
pretable waiting and sojourn time prediction from data.
We formalized the problem in terms of the MDL princi-
ple, by which the best model gives the best lossless com-
pression of the data. Due to hardness of the resulting
optimization problem, we proposed the greedy CueMin
algorithm to find good models in practice. Through an
extensive set of experiments and a case study on call
center data, we showed it ably discovers inherently in-
terpretable models of queueing processes.

While we achieved reasonable prediction accuracy
on real-world processes by using general building blocks
from queueing theory, we expect that domain-specific
extensions lead to an even better performance. For in-
stance, our service order model could be extended by
earliest-deadline-first [5], or by priority auctions [13],
where customers bid for priority. Discovery of impa-
tience, i.e. customers leave before served, would increase
insights on service-oriented processes. Another en-
hancement would consider varying availability of servers
over time due to vacation or machine breakdown.

Last but not least, we see the opportunity to apply
our approach in a network of process stations [22]. In
contrast to regression-based remaining time prediction
[18, 25], we expect our queueing model to identify
congestion effects in these networks.

References

[1] M. Arjovsky, S. Chintala, and L. Bottou. Wasserstein
generative adversarial networks. In ICML, pages 214–
223, 2017.

[2] L. Brown, N. Gans, A. Mandelbaum, A. Sakov,
H. Shen, S. Zeltyn, and L. Zhao. Statistical analysis
of a telephone call center: A queueing-science perspec-
tive. JASA, 100(469):36–50, 2005.

[3] M. Camargo, M. Dumas, and O. González-Rojas.
Learning accurate LSTM models of business processes.
In BPM, pages 286–302. Springer, 2019.

[4] T. M. Cover and J. A. Thomas. Elements of Informa-
tion Theory. Wiley-Interscience New York, 2006.

[5] B. Doytchinov, J. Lehoczky, and S. Shreve. Real-
time queues in heavy traffic with earliest-deadline-first
queue discipline. Ann. Appl. Probab., pages 332–378,
2001.

[6] N. Du, H. Dai, R. Trivedi, U. Upadhyay, M. Gomez-
Rodriguez, and L. Song. Recurrent marked temporal

point processes: Embedding event history to vector. In
KDD, pages 1555–1564, 2016.

[7] P. Grünwald. The Minimum Description Length Prin-
ciple. MIT Press, 2007.

[8] R. W. Hall. Queueing Methods: For Services and
Manufacturing. Prentice-Hall, 1990.

[9] O. Handel and A. Borrmann. The relationship between
the waiting crowd and the average service time. In
Traffic and Granular Flow ’15, pages 209–216. 2016.

[10] N. L. Johnson, S. Kotz, and A. W. Kemp. Univariate
discrete distributions. John Wiley & Sons, 2005.

[11] A. Keith, D. Ahner, and R. Hill. An order-based
method for robust queue inference with stochastic
arrival and departure times. Computers & Industrial
Engineering, 128:711–726, 2019.

[12] J. F. C. Kingman. The first erlang century – and the
next. Queueing Systems, 63(1):–12, 2009.

[13] T. Kittsteiner and B. Moldovanu. Priority auctions
and queue disciplines that depend on processing time.
Management Science, 51(2):236–248, 2005.

[14] E. L. Klijn and D. Fahland. Performance mining for
batch processing using the performance spectrum. In
BPM, pages 172–185, 2019.

[15] D. Levy. Production analysis with process mining
technology. 2014. 10.4121/uuid:68726926-5ac5-4fab-
b873-ee76ea412399.

[16] A. Marx and J. Vreeken. Telling cause from effect
by local and global regression. Knowl. Inf. Sys.,
60(3):1277–1305, Sep 2019.

[17] C. Ojeda, K. Cvejoski, B. Georgiev, C. Bauckhage,
J. Schuecker, and R. J. Sanchez. Learning deep
generative models for queuing systems. In AAAI, pages
9214–9222, 2021.

[18] M. Polato, A. Sperduti, A. Burattin, and M. de Leoni.
Time and activity sequence prediction of business
process instances. Computing, 100(9):1005–1031, 2018.

[19] J. Rissanen. Modeling by shortest data description.
Automatica, 14(1):465–471, 1978.

[20] J. Rissanen. A universal prior for integers and esti-
mation by minimum description length. Annals Stat.,
11(2):416–431, 1983.

[21] T. L. Saaty. Elements of Queueing Theory: With
Applications. McGraw-Hill Book Company, 1961.

[22] A. Senderovich, J. C. Beck, A. Gal, and M. Weidlich.
Congestion graphs for automated time predictions. In
AAAI, pages 4854–4861, 2019.

[23] A. Senderovich, S. J. Leemans, S. Harel, A. Gal,
A. Mandelbaum, and W. M. P. van der Aalst. Dis-
covering queues from event logs with varying levels of
information. In BPM, pages 154–166, 2016.

[24] A. Senderovich, M. Weidlich, A. Gal, and A. Mandel-
baum. Queue mining – predicting delays in service
processes. In CAiSE, pages 42–57, 2014.

[25] F. Taymouri, M. La Rosa, and S. Erfani. A deep adver-
sarial model for suffix and remaining time prediction of
event sequences. In SDM, pages 522–530, 2021.

[26] W. M. P. van der Aalst. Process Mining – Data Science
in Action. Springer, second edition, 2016.

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited

Algorithm 5: DiscoverQueueingModel

input : dataset D, search strategy
ϕ ∈ {CueMin,BruteForce}

output: queueing model M
1 M ← ∅;
2 foreach R ∈ {FCFS,LCFS,FitPQ(D)} do
3 cmax ← UpperBoundC(D,R);

4 M̂ ← ϕ(D,R, cmax);

5 if L(D, M̂) < L(D,M) then

6 M ← M̂ ;

7 return M

A Appendix

Here, we include supplementary material which could
not be part of our main paper.

A.1 The CueMin Algorithm We give the pseu-
docode of the base algorithm for queueing model dis-
covery as Algorithm 5. The overall idea is to discover a
model for each possible service order and take the one
with the lowest total encoding cost. We restrict the
search space by a simple yet effective upper bound on
the number of servers, which is the smallest number of
servers such that all jobs can be served without waiting
time. Any greater number leads to unused servers and
cannot be inferred from data.

For a given service order, we propose two different
search strategies. BruteForce exhaustively searches
over all possible number of servers. CueMin is an effi-
cient alternative to BruteForce and skips unpromis-
ing candidates using an adaptive step size.

A.2 Source Code and Data To ensure and facili-
tate reproducibility of our results, we make our source
code and all the data we use in our experiments publi-
cally available.2 We give instructions in the README
file how to run the code and reproduce our results.

The real-world datasets in our evaluation have
different characteristics. For each dataset, we report
the number of jobs n, the number of all features m, the
number of numerical features mnum and mean sojourn
time of train v̄train and test timespan v̄test in Table 1.
We see from the difference between v̄train and v̄test
that any method learning from the training data must
generalize well to predict behavior of the test data.

A.3 Predictions for Individual Jobs We saw how
CueMin’s performance varied across different datasets

2https://eda.rg.cispa.io/prj/cuemin

Data n m mnum v̄train v̄test

Callcenter 21703 3 2 246s 191s
Laser 196 2 1 51h 28h
Lapping 224 2 1 79h 129h
Steel A 6969 4 3 82167 44739
Steel B 6961 4 3 1966 2232
Steel C 16458 4 3 440 635

Table 1: [Real-world datasets] Number of jobs n,
number of all features m, number of numerical features
mnum and mean sojourn time of train v̄train and test
timespan v̄test for six different real-world datasets.

when comparing sojourn time prediction errors for
individual jobs from real-world datasets in Figure 4.
Predicting sojourn times of individual jobs over a larger
time horizon is quite a challenging task. Increased
waiting time due to queueing often has a significant
impact; however, is only one of many possible causes
for high sojourn times. In real-world processes there are
many factors impacting sojourn time of which many are
not observable in the given datasets.

For instance, whether a new service call will take
a service time of two minutes or half an hour is unpre-
dictable unless we have further information about the
reason for the call. Service order in real-world manufac-
turing processes can be highly nondeterministic. Em-
ployees decide to postpone processing of products by
their own, often undocumented rules. Service order can
depend on many factors such as delivery date, avail-
ability of storage space, necessary post-processing due
to quality deficits, customer requests or machine setup
times for a change of product type.

We expect CueMin to produce more accurate pre-
dictions for individual jobs whenever service order tends
to follow simple, deterministic rules. The greater the
impact of queueing on the sojourn times in the observed
data, the better queueing models perform compared
to regression. Since CueMin produces interpretable
queueing models, domain experts can use the resulting
model as a starting point in their analysis and adapt
the model using their knowledge if necessary. Even if
the stochastic process behavior prevents accurate pre-
dictions for individual jobs, the queueing models discov-
ered by CueMin capture the uncertainty as we show in
the next section.

A.4 Case Study: Call Center In this section, we
extend our call center case study. We predict total
call duration, i.e. sojourn time, and waiting time of
customers in this dataset by conducting 1000 simulation
runs of the model discovered by CueMin. We show

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited

https://eda.rg.cispa.io/prj/cuemin

0 200 400 600 800 1,000 1,200 1,400 1,600

0.0

0.005

0.01

0.015

time [s]

P
r

waiting time

sojourn time

Figure 7: [CueMin provides detailed predictions]
Empirical predicted waiting time w and sojourn time
distribution of a single job in the Callcenter dataset for
1000 simulation runs of a model discovered by CueMin.

the predicted waiting and sojourn time distribution of a
single customer in Figure 7. We see CueMin reveals the
whole bandwidth of stochastic behavior of a service call.
This customer has a high chance to have no waiting time
at all, however, if the preceding calls take more time, the
waiting time increases. We see a small probability for
a call duration of a few seconds due to technical issues,
and we see the chance of a very long service call.

CueMin discovers queueing models that are inher-
ently interpretable. On top of that, domain experts can
modify the model to simulate different scenarios and to
find potential process optimizations. We vary the num-
ber of servers in the queueing model found by CueMin
and report the maximal predicted waiting time of cus-
tomers on the left of Figure 8. As we expected, reducing
the number of servers results in an exponential growth
of waiting time. If we assign costs to the usage of servers
and weight them against the risk of losing customers due
to high waiting times, we can run such an experiment
to find the optimal number of servers.

Finally, we show the impact of different service
orders on the waiting time of regular and prioritized
customers in the dataset on the right of Figure 8. We
see that the model with FCFS service order results in
equal and relatively low waiting times for both types of
customers. LCFS order increases the maximal waiting
time and does not make sense in a call center. If
the call center always served prioritized before regular
customers, regular customers would face a significant
increase of waiting time. This explains as we discussed
in Section 6, why in the actual process prioritized
customers gain a rather small advantage in waiting time.
Therefore, FCFS is a reasonable model.

Acknowledgment

We thank Stahl-Holding-Saar for providing the Steel
datasets. Furthermore, we thank Alexander Herzog

8 10 12 14

0

20

40

60

c

m
a
x
w̄

[m
in
]

FCFS LCFS PQ
0

200

400

600

800

Service order R

m
a
x
w̄

[s
]

regular prioritized

Figure 8: [How to influence waiting time] Maximal
predicted waiting time max w̄ with varying number of
servers c of the queueing model discovered by CueMin
(left) and max w̄ with varying service order R for
different classes of customers (right).

from TU Clausthal for sharing his valuable knowledge
on queueing theory and how domain experts describe
real-world process behavior with queueing models.

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited

	Introduction
	Preliminaries
	Univariate Discrete Distributions
	Queueing Models
	MDL

	MDL for Queueing Models
	Data Encoding
	Model Encoding
	Formal Problem Definition

	The CueMin Algorithm
	Finding a Cover
	Discovering a Good Queueing Model
	Runtime complexity

	Related Work
	Experiments
	Synthetic Data
	Real-World Data
	Case Study: Call Center

	Conclusion
	Appendix
	The CueMin Algorithm
	Source Code and Data
	Predictions for Individual Jobs
	Case Study: Call Center

