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ABSTRACT

We study the problem of succinctly summarizing a database of
event sequences in terms of generalized sequential patterns. That
is, we are interested in patterns that are not exclusively defined
over observed surface-level events, as is usual, but rather may addi-
tionally include generalized events that can match a set of events.
To avoid spurious and redundant results we define the problem in
terms of the Minimum Description Length principle, by which we
are after that set of patterns and generalizations that together best
compress the data without loss. The resulting optimization problem
does not lend itself for exact search, which is why we propose the
heuristic Flock algorithm to efficiently find high-quality models in
practice. Extensive experiments on synthetic and real-world data
show that Flock results in compact and easily interpretable models
that accurately recover the ground truth, including rare instances of
generalized patterns. Additionally Flock recovers how generalized
events within patterns depend on each other, and overall provides
clearer insight into the data-generating process than using state of
the art algorithms that only consider surface-level patterns.
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1 INTRODUCTION

Succinctly summarizing a database in easily understandable terms
is one of the key problems in data mining. Pattern set mining, where
we mine a small sets of patterns that together model the data well,
has proven to be particularly successful [9, 30, 33]. Existingmethods,
however, only consider what we call surface-level patterns. These
are patterns that are exclusively defined over observed events, and
therewith also only match exact instances in the data.
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To illustrate the limitations of surface-level patterns, let us con-
sider a toy example. The two sentences ‘the cat meows’ and ‘the dog
barks’ share only the event ‘the’. Any method that only considers
surface-level events would either just report ‘the’ as a common
pattern, or, if they occur frequently often enough in the data report
both sentences as patterns, neither of which is particularly useful.
In contrast, any human would immediately see that these sentences
are both instances of the general statement ‘the [pet] [makes noise]’,
and would be annoyed to get a summary that would both explic-
itly report all variants of this general pattern (e.g. mice squeaking,
horses whinnying) as well as fail to report rare instances (e.g. fishes
saying blub). For natural language, there exist high-quality word
ontologies that we can use to analyse text through a more general
lens [1, 12]. However, for event sequence data in general, this is
not the case. This raises the question, how can we automatically
discover a set of patterns that succinctly describes the data in terms
of more general patterns?

In this paper we consider the problem of discovering generalized
events and generalized patterns from event sequence data. A gen-
eralized event is a symbol that can match different observed events
e.g. 𝛼 = {𝑎, 𝑏} matches 𝑎 and 𝑏. A generalized pattern is a sequen-
tial pattern that is defined over observed and generalized events,
e.g. pattern 𝑐, 𝛼, 𝑑 matches 𝑐, 𝑎, 𝑑 and 𝑐, 𝑏, 𝑑 . This more expressive
pattern language allows us not only to more effectively summarize
event sequence data, but also provide deeper insight as it is less
prone to under or over-fitting as compared to a pattern language
of surface-level patterns. In this context underfitting means that
patterns are either not reported or only partially, overfitting means
semantically identical patterns are reported multiple times.

We define the problem of discovering the best set of generaliza-
tions and patterns in terms of the Minimum Description Length
principle [13]. Loosely speaking, we are after those that together
provide the best lossless compression. The search space for this
problem is vast, triply-exponential, and is not favourably structured,
which is why we propose the Flock algorithm to heuristically mine
good models from data. Flock finds high-quality generalizations
by considering those events that frequently appear in the same
(pattern) context, and finds high-quality generalized patterns by
iteratively merging patterns and extending them with discovered
generalizations.

Flock aside, very few methods consider sequential patterns
beyond surface level patterns, and either require a beforehand
known structure [1, 12, 27] or can only model ‘generalizations’
that are limited to a single location in a pattern [3]. As we will
see, methods that only consider surface-level patterns are prone
to highly redundant results – after all, they cannot generalize and
are hence bound to report every sufficiently frequent variation of
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a true generating pattern – but also to underfitting, because they
only report sufficiently frequent instances rather than the more
rare but important variants.

Through an extensive set of experiments and comparisons to a
wide array of competitors, we show that our method works well in
practice. On synthetic data, we show that Flock recovers surface-
level patterns as well as the state of the art, but that it outperforms
these competitors by a large margin in recovering generalized pat-
terns and generalizations. On real-world data, we show that the
small sets of highly expressive patterns that Flock discovers pro-
vide clear insight into the data-generating process that goes far
beyond what surface-level patterns can provide.

2 PRELIMINARIES

In this section, we discuss preliminaries and introduce the notation
we use throughout the paper.

2.1 Notation

We consider a database𝐷 of |𝐷 | event sequences. An event sequence
𝑆 ∈ 𝐷 consists of |𝑆 | events drawn from an alphabet Ω𝑜 of observed
events 𝑒 ∈ Ω𝑜 . We write 𝑆 [ 𝑗] to refer to the 𝑗𝑡ℎ event in 𝑆 and
𝑆 [ 𝑗 : 𝑘] to mean a subsequence 𝑆 [ 𝑗] . . . 𝑆 [𝑘]. Note, we do not allow
multiple events to occur at time point 𝑗 .

In addition to observed events 𝑒 ∈ Ω𝑜 , we also consider gener-
alized events 𝛼 ∈ Ω𝑔 . Generalized events are special in that they
match multiple observed events 𝑒 ∈ Ω𝑜 , e.g. 𝛼 = {𝑎, 𝑏} will match
either 𝑎 or 𝑏. We allow generalizations to be nested, e.g. 𝛽 = {𝛼, 𝑐}
will match any out of 𝑎, 𝑏, or 𝑐 . We can flatten a generalized event,
fl (𝛼), to obtain all observed events that 𝛼 can match.

As patterns we consider serial episodes. A serial episode 𝑝 ∈ Ω |𝑝 |
is a sequence of |𝑝 | events over an alphabet Ω = Ω𝑜 ∪ Ω𝑔 . We say
that a sequence 𝑆 contains an instance of a pattern 𝑝 if there exists a
window 𝑆 [ 𝑗 : 𝑘] that matches 𝑝 . We explicitly allow gaps between
the events in 𝑝 . To avoid spurious matches we consider windows
up to a length of |𝑝 | + |𝑝 |𝑛, where 𝑛 is a user-chosen parameter.
The support of a pattern in 𝐷 is the number of unique matches of
𝑝 , note that one pattern can match multiple times per sequence.

During search we iteratively refine the generalized alphabet Ω𝑔

by adding and removing (events from) generalizations 𝛼 ∈ Ω𝑔 .
We write (𝛼, 𝑅, ⊕) to denote that refinement of Ω𝑔 where we add
event set 𝑅 ⊂ Ω to existing generalization 𝛼 ∈ Ω𝑔 , or adding a
new generalization 𝛼 = 𝑅 to Ω𝑔 if 𝛼 ∉ Ω𝑔 . Analogously, we write
(𝛼, 𝑅, ⊖) whenever we want to remove (events from a) generaliza-
tion 𝛼 . Wherever clear from context we do not write the ⊕ and ⊖.
To denote a set of additive refinements for Ω𝑔 we write Ω⊕𝑔 , and
analog Ω⊖𝑔 to denote a set of removal refinements.

2.2 Minimum Description Length

The Minimum Description Length (MDL) principle [13] is a com-
putable and statistically well-founded model selection criterium
based on Kolmogorov Complexity [17]. For a given model classM,
it identifies the best model𝑀 ∈ M as the one that minimizes the
number of bits needed to describe both model and data without loss,
or formally, 𝐿(𝑀) + 𝐿(𝐷 |𝑀) with 𝐿(𝑀) the length of model𝑀 and
𝐿(𝐷 |𝑀) the length of data 𝐷 given𝑀 . This is known as two-part,
or crude MDL—in contrast to one-part, or refined MDL [13], which
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Figure 1: Toy example showing two ways to encode the same

sequence 𝑆 . Cover 1 uses only singletons, while Cover 2 uses

the entire model𝑀 . A cover 𝐶 consists of (up to) three differ-

ent code streams: 𝐶𝑝 contains codes for patterns, 𝐶𝑚 defines

how these interleave, and𝐶𝑠 specifies which observed events

𝑒 ∈ Ω𝑜 the generalized events 𝛼 ∈ Ω𝑔 in the cover map to.

is not computable for arbitrary models. We use two-part MDL be-
cause we are particularly interested in the model: the patterns and
generalizations. In MDL we are never concerned with materialized
codes, we only care about code lengths. To use MDL we have to
define a model classM, and encodings for data and model, which
we present next.

3 MDL FOR GENERALIZED SEQUENTIAL

PATTERNS

We will now define the problem we aim to solve. As model class
M for a dataset 𝐷 over observed alphabet Ω𝑜 , we consider tuples
that define a generalized alphabet Ω𝑔 , and a set of patterns 𝑃 over
Ω = Ω𝑜 ∪ Ω𝑔 . To ensure that every model 𝑀 ∈ M can validly
encode 𝐷 we require 𝑃 to always include all singleton patterns,
i.e. 𝑃 ⊇ Ω𝑜 . By MDL, we are interested in that 𝑀 ∈ M that most
succinctly describes 𝐷 without loss.

3.1 Decoding a Sequence

Before we define how we encode a dataset given a model𝑀 , we first
give the intuition on its main components by explaining how to
decode an already encoded sequence 𝑆 . We give an example in Fig. 1.
In Cover 1, 𝑆 has been encoded using singleton patterns only. To
decode it, we simply iteratively read pattern codes from the pattern
stream 𝐶𝑝 , and use model𝑀 to decode these to the correct events.

Cover 2 utilizes model𝑀 better. We again iteratively read codes
from 𝐶𝑝 . The first code is for pattern 𝑝 , and we can immediately
append its first event (a ‘𝑑’) to the decoded sequence. To determine
whether there is a gap or not, we read a code from the meta stream
𝐶𝑚 . This happens to be a fill-code ! , meaning we can write the
next event of 𝑝 . This is the generalized event 𝛼 that can match
either 𝑒 or 𝑓 . To determine which of these two events we have to
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emit, we read a code from the specification stream 𝐶𝑠 , and proceed
accordingly. We then continue as before, reading another fill code,
and writing a ‘𝑏’. Next, we read a gap-code ? from the meta-
stream, which informs us that there is a gap in pattern 𝑝 . To fill
this gap, we have to read the next code from the pattern stream.
We read the code for pattern 𝑞, and hence write its first event to
the sequence. We now have two patterns that could emit the next
event. We therefore read as many meta codes as there are active
patterns. If all of these are gap codes, we read from the pattern
stream, and otherwise we emit the next event for that pattern for
which we read a fill code. Here, the latter is the case for 𝑝 , we write
the corresponding ‘𝑐’, and are finished decoding 𝑝 . To wrap things
up, we read the next meta-code for 𝑞, which is a gap that we fill
according to the next pattern code (‘𝑑’) and finally read two fill
codes for 𝑞 and hence emit ‘𝑒’ and ‘𝑎’, after which we have decoded
𝑆 without loss.

3.2 Calculating the Encoded Length

Now that we know what we need to encode, we define how many
bits these codes should cost.

Encoding the data. We start by defining how to compute the
encoded cost of a database 𝐷 given a model𝑀 . Formally, we have

𝐿(𝐷 |𝑀) = 𝐿N ( |𝐷 |) + ©­«
∑︁
𝑆𝑖 ∈𝐷

𝐿N ( |𝑆𝑖 |)ª®¬
+ 𝐿(𝐶𝑝 ) + 𝐿(𝐶𝑚) + 𝐿(𝐶𝑠 ) .

(1)
We first encode the number of sequences, and then the length of
each sequence in the database. We then encode the pattern stream
𝐶𝑝 , meta stream 𝐶𝑚 , and specification stream 𝐶𝑠 . We encode the
number and length of the sequences using 𝐿N, the MDL-optimal
encoding for integers 𝑧 ≥ 1 [26]. It is defined as 𝐿N (𝑧) = log∗ 𝑧 +
log 𝑐0 where log∗ 𝑧 is the expansion log 𝑧+log log 𝑧+· · · where we
only include the positive terms. To ensure a valid lossless encoding,
i.e. one that satisfies the Kraft inequality, we set 𝑐0 = 2.865064 [26].

We next discuss the three code streams. We start with the pattern
stream 𝐶𝑝 , Eq. (2). Because the occurrences of pattern codes in the
pattern stream are independent, we encode these using optimal
prefix codes. Formally, we have

𝐿(𝐶𝑝 ) = −
∑︁
𝑝∈𝑀

usg (𝑝) log
(

usg (𝑝)∑
𝑝′∈𝑀 usg (𝑝′)

)
, (2)

where usg (𝑝) is the number of times the code for 𝑝 appears in
pattern stream 𝐶𝑝 . To use optimal prefix codes we will have to
explicitly encode the usages in the model.

In contrast, the occurrences of codes in the meta stream 𝐶𝑚 , Eq.
(3), are dependent on which patterns we are currently decoding,
meaning we need to know (many) conditional probabilities. To
avoid having to make arbitrary choices on how to explicitly encode
these in the model, we propose to use prequential codes [13]. Pre-
quential codes work by assuming an initial usage of 𝜖 = 0.5 [13]
for all possible codes, and updating these counts with every trans-
mitted (resp. received) code. This way we not only ensure that we
always have a valid coding distribution, but also achieve asymptotic
optimality without having to transmit the counts beforehand [13].

Formally, we have

𝐿(𝐶𝑚) =
∑︁
𝑝∈𝑃

©­«
−
fills(𝑝 )∑︁
𝑖=1

log

(
𝜖 + 𝑖
2𝜖 + 𝑖

)
−

gaps(𝑝 )∑︁
𝑖=1

log

(
𝜖 + 𝑖

2𝜖 + fills(𝑝) + 𝑖

)ª®¬
,

(3)
where fills (𝑝) and gaps (𝑝) refers to the number of fills resp. gaps
of pattern 𝑝 in meta-stream 𝐶𝑚 .

This leaves the encoding of the specification stream 𝐶𝑠 , Eq. (4).
Because specification codes depend on the context of the generaliza-
tion at hand, we will again use prequential codes. Generalizations
within a pattern 𝑝 , however, can additionally be dependent on each

other. for example, cats meow, dogs bark. To exploit and reveal
such structure, we allow for dependencies between generalizations
within a pattern. We provide the details in the model encoding be-
low. For now, what matters is that we encode the specification code
for an event 𝑒 ∈ fl (𝛼) for the current generalization 𝛼 of pattern 𝑝
conditioned on an earlier emitted event 𝑑 of 𝑝 . Formally, the length
in bits of the entire stream is

𝐿(𝐶𝑠 ) =
∑︁
𝑝∈𝑃

∑︁
𝛼 ∈𝑝

usg(𝑝 )∑︁
𝑖=1

− log
(

𝜖 + usg𝑖 (𝑒 |𝑑)
|fl (𝛼 ) |𝜖 +∑

𝑐∈fl (𝛼 ) usg𝑖 (𝑐 |𝑑)

)
,

(4)
where for each pattern 𝑝 ∈ 𝑃 (first sum), and each generalization
𝛼 ∈ 𝑝 (second sum), we encode the surface-event 𝑒 conditioned on
the value of event 𝑑 using prequential codes (third sum). Note that
if a generalization 𝛼 ∈ 𝑝 is not dependent on an earlier emitted
generalization 𝛽 ∈ 𝑝 , 𝑑 will be a fixed constant by which the above
becomes a standard unconditional prequential code.

Encoding the model. Next, we define how to compute the encoded
cost of a model. We start by defining the encoded cost for the
generalized alphabet Ω𝑔 . We have

𝐿(Ω𝑔) = 𝐿N ( |Ω𝑜 |) + 𝐿N ( |Ω𝑔 | + 1) +
|Ω𝑔 |∑︁
𝑘=1

(
log𝑘 + log

(
𝑘 − 1
𝑙

)
+ log (|Ω′𝑜 |) + log

( |Ω′𝑜 |
𝑚

))
,
(5)

where we first encode the sizes of the observed1 resp. generalized
alphabets using 𝐿N. We then encode the generalizations 𝛼 ∈ Ω𝑔

in turn. For each generalization 𝛼𝑘 ∈ Ω𝑔 , we first transmit how
many nested generalizations it includes, denoted as 𝑙 , and then
identify which these are using a data-to-model code over the 𝑘 − 1
generalizations transmitted so far. We then transmit the number
of observed events, denoted as𝑚, in Ω𝑜 that 𝛼 includes, which are
not already defined by its nested generalizations. Once we know
this number, encode which events out of Ω′𝑜 these are, where Ω′𝑜 is
the set of observed events excluding events already defined by its
generalizations, formally Ω′𝑜 = Ω𝑜 \

⋃
𝛽∈𝛼𝑘 fl (𝛽).

Given the generalizations, we can next encode the pattern set
𝑃 and their respective usages, i.e. the code table, Eq. (6). We first
transmit the number |𝑃 ′ | of non-singleton patterns 𝑃 ′ ⊂ 𝑃 , and
then the combined usage of all patterns. We finally encode each

1Note that as the size of Ω𝑜 is constant for anymodel of the same data, it is unnecessary
to include the first term for optimization, but we include it to have a lossless code.
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pattern 𝑝 ∈ 𝑃 ′. We have
𝐿(𝐶𝑇 ) = 𝐿N ( |𝑃 ′ |) + 𝐿N (usg (𝑃)) +

log

(
usg (𝑃) + |Ω𝑜 | − 1
|𝑃 ′ | + |Ω𝑜 | − 1

)
+

∑︁
𝑝∈𝑃 ′

𝐿(𝑝) . (6)

To encode a pattern 𝑝 ∈ 𝑃 ′, Eq. (7), we first transmit its length using
𝐿N. We then encode which events and generalizations it includes,
and finally for each 𝛼 ∈ 𝑝 we encode whether and if so on which
earlier generalization it depends (the plus one corresponds to a
dummy symbol that represents independence). Formally,

𝐿(𝑝) = 𝐿N ( |𝑝 |) + |𝑝 | log( |Ω |) +
|𝑝 |∑︁
𝑖=1

log(𝑘 + 1) , (7)

with 𝑘 is |{ 𝑗 | 𝑝 [ 𝑗] ∈ Ω𝑔, 𝑖 < 𝑗}| if 𝑝 [𝑖] ∈ Ω𝑔 else 𝑘 = 0. By which
we have a lossless encoding for model𝑀 , 𝐿(𝑀) = 𝐿(Ω𝑔) + 𝐿(𝐶𝑇 ),
and data 𝐷 , by which we can now formally state the problem.
TheMinimal Generalized Pattern Set ProblemGiven a sequence

database 𝐷 over an event alphabet Ω𝑜 , find the smallest pattern set 𝑃
and generalization set Ω𝑔 such that the total encoded size

𝐿(𝐷,𝑀) = 𝐿(𝑀) + 𝐿(𝐷 |𝑀)
is minimal.

For a given database 𝐷 over observed alphabet Ω𝑜 there exist expo-
nentially many patterns sets 𝑃 , exponentially many generalization
sets Ω𝑔 , and exponentially many possible covers𝐶 . Worst of all, the
search space of neither the overall nor of the subproblems exhibits
any structure such as (weak) monotonicity or submodularity that
we can exploit for our search. Hence, we resort to heuristics.

4 ALGORITHM

To find good models in practice we propose to break the problem
into two parts: 1) given a model𝑀 find a good cover𝐶 , and 2) given
a cover 𝐶 find a good model𝑀 . We discuss these in turn.

4.1 Covering the Data

We start by determining a good cover 𝐶 given a model𝑀 . A valid
cover is a set of windows that covers each event in database 𝐷
only once. To find a 𝐶 that minimizes 𝐿(𝐷 |𝑀) we first need for
each pattern 𝑝 ∈ 𝑃 all windows in 𝐷 that match 𝑝 . To find these
efficiently, we use an inverted index.

Next, we describe how we find a cover 𝐶 given a set of win-
dows. Given that there are exponentially many possible covers
[3], determining the optimal cover is computationally not fea-
sible, therefore we approach this problem greedily. To this end,
we define an order over all windows where we consider window
𝑤1 > 𝑤2 if, in order of priority, |𝑝1 | > |𝑝2 |, gaps (𝑤1) < gaps (𝑤2),
support (𝑝1) > support (𝑝2), and finally lexicographically, where
𝑤1 is a window of pattern 𝑝1, analogously for𝑤2. Intuitively, we
prefer patterns that cover many events with as few gaps as possible,
as these will likely result in the shortest description of 𝐷 . To find a
cover given a window set, we consider each window𝑤 . If there does
not exist a higher ranked window that conflicts, i.e. overlaps, with
𝑤 , all windows that conflict with𝑤 are discarded. We repeat this
process until all conflicts have been resolved, resulting in a valid
cover of 𝐷 . We provide the pseudo-code and details in Appx. A.1.

Algorithm 1: Refine
input :pattern 𝑝 and current cover 𝐶
output : set of candidates 𝑄

1 𝐹 ← FreqentFollowers(𝑝,𝐶)
2 𝑄 ← 𝑝 × {𝑞 ∈ 𝐹 | |𝑞 | > 1}
3 𝑄 ← {𝑞 ∈ 𝑄 | Δ𝐿(𝑞) > 0}
4 𝑄 ← 𝑄 ∪ ExtendPattern(𝑝, {𝑞 ∈ 𝐹 | |𝑞 | = 1})
5 return 𝑄

4.2 Finding Good Models

Given a sequence database 𝐷 , our overall goal here is to discover
a set of generalizations Ω𝑔 and a set of patterns 𝑃 that together
describe 𝐷 well. The general idea of our proposed algorithm is to
start with an ‘empty’ model 𝑀0 that only includes the observed
eventsΩ𝑜 and to iteratively and greedily refine this model by adding
patterns and generalized events that improve the total encoded
length. In each iteration, we generate a set of candidate patterns
based on the current model, evaluate these, and if a candidate
improves the model, we add it to the model. To avoid getting stuck
with stale patterns and generalizations, we clean up at the end of
each iteration by flattening generalizations and merging similar
patterns. We now explain these steps in detail.

Generating Candidates. A key part of our proposed algorithm is
to find improved or refined versions of a given pattern 𝑝 . We provide
the pseudocode as Algorithm 1. The general idea for refining a
pattern 𝑝 is to checkwhether there is any structure in the events and
patterns that often occur soon after 𝑝 in cover𝐶 . We then generate
candidate patterns by concatenating pattern 𝑝 with patterns 𝑞 (line
2) that occur within the maximum number of allowed gaps 𝑛 |𝑝 | (l.
1). We discard all candidates for which we estimate that they will
not lead to any gain (l. 3). With Δ𝐿(𝑞) we denote how many bits we
actually save (or lose) by adding 𝑞 to our model, but as computing
this exactly is computationally costly we instead use an efficiently
computable optimistic estimate Δ𝐿 that we define below.

It is relatively straightforward to see how to instantiate the above
strategy for refining an existing pattern with a singleton or pattern
𝑞 ∈ 𝑃 , as it essentially amounts to counting how often in 𝐶 every
possible 𝑞 occurs within the maximum window length around 𝑝 . It
is much less clear how to discover good candidate generalizations 𝛼 ,
however. The first idea that comes to mind is to ‘simply’ first use the
above strategy to find a model𝑀 that only includes patterns over
Ω𝑜 , and then to merge those patterns in 𝑀 that are most similar,
replacing the events where they differ with a new generalized event
𝛼 . While this strategy works to a certain extent, it can only discover
the most frequent generalized events and patterns, and will not
truly solve the problem at hand.

We therefore propose an improved strategy for discovering gen-
eralizations, where for a given pattern 𝑝 we consider the distri-
bution of when which events happen close to 𝑝 in 𝐶 . We provide
pseudocode in Algorithm 2. The main idea is that if two or more
events 𝑎 and 𝑏 often occur within a similar number of time steps
after pattern 𝑝 , they are good candidates to be included in a new
generalized event as there is evidence they have a similar contex-
tual (possibly, semantic) relation to 𝑝 . Specifically, we propose to
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Algorithm 2: ExtendPattern
input :pattern 𝑝 and delay distributions 𝐹
output :Candidate pattern 𝑝∗

1 𝐹 ← ExtendWithGeneralizations(𝐹 )
2 𝑒′ ← argmax𝑒∈𝐹

counts (𝑒 )
𝐸

3 𝑝′ ← 𝑝 × 𝑒′, 𝑝∗ ← 𝑝

4 Ω⊕𝑔 ← ∅
5 Q ← [(𝑒, ( |𝑝 |, 𝑒′)) |𝑒 ∈ 𝐹 ]
6 while Δ𝐿(𝑝′) > Δ𝐿(𝑝∗) increasing do
7 𝑝∗ ← 𝑝′
8 e, (𝑖, 𝑒′) ← top(𝑄)
9 𝑝1 ← cp𝑖 (𝑝, 𝑖−1, 𝑒) if 𝐸<𝐸′ else cp𝑖 (𝑝, 𝑖, 𝑒)

10 if 𝑒′ ∈ Ω𝑔 then

11 𝛼 ← 𝑒′

12 Ω⊕𝑔
′ ← Ω⊕𝑔 ∪ {(𝛼id , {𝑒})}

13 else

14 𝛼 ← ∅
15 Ω⊕𝑔

′ ← Ω⊕𝑔 ∪ {(𝛼id , {𝑒′, 𝑒})}
16 𝑝2 ← cp𝑟 (𝑝, 𝑖, 𝛼)
17 𝑝′ ← argmax𝑝∈{𝑝1,(𝑝2,Ω⊕𝑔 ′ ) } Δ𝐿(𝑝)
18 Ω⊕𝑔 ← Ω⊕𝑔

′
if 𝑝′ = 𝑝2

19 update 𝑄
20 return (𝑝∗,Ω⊕𝑔 )

generate candidate generalized events based on the similarity of
the distributions of delays between pattern 𝑝 and occurrences of
events 𝑒 ∈ Ω. A delay distribution of event 𝑒 ∈ Ω relative to pattern
𝑝 captures how often and how many times steps after 𝑝 event 𝑒
occurs; technically we implement this non-parametrically using
a histogram with one bin per time step. We construct these delay
distributions in line 1 of Alg. 1 for all 𝑞 ∈ Ω that occur within the
𝑛 |𝑝 | time steps after 𝑝 in 𝐶 .

To maximize the chance that the resulting generalization will im-
prove the overall cost, we start extending a pattern 𝑝 with the event
𝑒′ that has the highest delay probability mass, i.e. occurs frequently
with the same delay after 𝑝 , formally 𝑒′ = argmax𝑒∈𝐹 counts (𝑒)/𝐸,
where 𝐸 is the median delay between 𝑝 and 𝑒 (l. 2-3). Next, we seek
if there are other events that together with the just added 𝑒′ would
instead form a promising generalization 𝛼 . We do this by testing
events 𝑒 ∈ 𝐹 in order of the most similar delay distribution to 𝑒′ nor-
malized by frequency. That is,𝑊 1(𝐸′, 𝐸)/counts (𝑒) where 𝐸′ and
𝐸 refer to the respective distributions, and𝑊 1 is the Wasserstein
distance [32] between two delay distributions, defined as

𝑊 1(𝐸1, 𝐸2) = min
𝑁

∑︁
𝑖∈𝐸1

∑︁
𝑗∈𝐸2

𝑛𝑖, 𝑗𝑑𝑖, 𝑗 ,

where 𝑛𝑖, 𝑗 refers to the probability mass that has to be moved
between 𝑖 and 𝑗 and 𝑑𝑖, 𝑗 to the distance. By counts (𝑒) we refer to
the frequency within 𝑛 |𝑝 | time steps after 𝑝 .

This may once again seem like a sound strategy, but comes
with the problem that events that are next to each other will have
similar delay distributions. That means we have to additionally test

Algorithm 3:Merge
input :Pattern set 𝑃 and generalization Ω𝑔 , cover 𝐶
output :Pattern set 𝑃 and generalization Ω𝑔 , cover 𝐶

1 𝑄 ← []
2 forall 𝑝 ∈ 𝑃 do

3 𝑞 ← argmax{𝑞∈𝑃 | |𝑞 |= |𝑝 | } overlap between 𝑝 and 𝑞
4 if overlap between 𝑝 and 𝑞 > 1 then 𝑄.add (𝑝, 𝑞);
5 forall 𝑝, 𝑞 ∈ 𝑄 do in order of 1. overlap 2.combined usage
6 𝑝′,Ω⊕𝑔 ← merge 𝑝 and 𝑞
7 if Δ𝐿(𝑝′) > 0 then

8 𝑃 ← (𝑃 ∪ {𝑝′}) \ {𝑝, 𝑞}
9 apply Ω⊕𝑔 to Ω𝑔

10 replace all 𝑝 and 𝑞 with 𝑝′ in 𝐶

11 return 𝑃,Ω𝑔,𝐶

whether event 𝑒 is truly part of a generalization together with 𝑒′
or is simply a regular neighbor to that event or generalization. We
therefore, evaluate the gain in compression by either extending the
generalization with a new event (l. 16) or by extending the pattern
directly with the event left or right (l. 9). Note with cp𝑖 (𝑝, 𝑖, 𝑒) we
create a new pattern where event 𝑒 is inserted behind the 𝑖𝑡ℎ event
of pattern 𝑝 , and analog with cp𝑟 (𝑝, 𝑖, 𝛼) we create a new pattern
where the 𝑖𝑡ℎ event is replaced by 𝛼 . Given both extensions, we
take the one for which our estimated gain is higher (l. 17). After
each added event we update the priority queue. Here we described
the procedure of extending a pattern by adding events or patterns
to the back; we do the same with preceding events and patterns.
This concludes the description of how we create a set of pattern
candidates and generalization candidates given a pattern and the
current cover.

Fine-Tuning Candidates. The overall algorithm takes the candi-
dates generated above, and tests, in order of estimated gain, for
addition to the model. Testing a candidate for addition involves
computing 𝐿(𝐷,𝑀) and therewith a new cover𝐶′. That is, we now
know where and which instances of 𝑝 are used, and can take advan-
tage of that information and further refine the pattern to minimize
the total encoded length. We do so by pruning the generalized
events to only include those instances that are used in a way that
aids compression. To this end, we test for each event in Ω⊕𝑔 whether
removing it will improve the gain in bits (PruneGen). As we allow
for gaps in the occurrences, we can further take advantage of the
cover 𝐶′ by extending pattern 𝑝 with events that frequently occur
in these gaps (RefineInterleaving). This includes generalized
events that are built from multiple observed events that occur in
the gaps of 𝑝 . We provide the pseudocode for both procedures, as
well as a more detailed description, in Appx. A.4.

Simplifying the Model. By iteratively adding more specialized
patterns and generalizations to the model, previously discovered
patterns and generalizations may no longer positively contribute to
the MDL score. We therefore prune the model after each iteration
by merging similar patterns and by flattening generalizations. We
discuss these in turn.
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Algorithm 4: Flatten
input :Pattern set 𝑃 and generalization Ω𝑔

output :Pattern set 𝑃 and generalization Ω𝑔

1 forall 𝛼 ∈ Ω𝑔 do

2 if 𝛼 used in just one other 𝛽 ∈ Ω𝑔 then

3 extend 𝛽 with fl (𝛼 )
4 forall 𝑝 ∈ 𝑃 do

5 replace 𝛼 with 𝛽 in 𝑝

6 Ω𝑔 ← Ω𝑔 \ {𝛼 }
7 if 𝐿(𝐷,𝑀) did not decrease then
8 revert all changes

9 return 𝑃,Ω𝑔

We provide pseudocode of the merge procedure as Algorithm 3.
We consider merging two patterns 𝑝 and 𝑞 if they have the same
length (l. 3) and have an overlap of at least two events (l. 4) where we
say an event overlaps if 𝑝 [𝑖] = 𝑞 [𝑖]. To prioritize pattern mergers
likely to improve compression and meaningful generalizations, we
merge patterns in order of overlap and combined pattern usage, both
decreasing (l. 5).Whenmerging two patterns we create for all events
where 𝑝 [𝑖] ≠ 𝑞 [𝑖] a new generalization 𝛼 = {𝑝 [𝑖], 𝑞[𝑖]}. Through
this process it is possible to create the same generalization twice, if
that happens we replace all instances with the same generalization
and delete the other one. Since the new pattern will match all
windows that the source patterns matched, we do not have to
recompute a new cover and can directly compute by how many
bits our encoding will change (l. 7). If we have a positive gain we
keep the new pattern, and the corresponding generalization, and
discard the two source patterns (l. 8).

Next, we discuss how we simplify the generalizations. We pro-
vide the pseudocode as Algorithm 4. If a generalization 𝛼 is used
in only one other generalization 𝛽 , we consider merging it with
its parent(s) (l. 3), meaning we add all events 𝑒 ∈ fl (𝛼 ) to 𝛽 and
replace 𝛼 with 𝛽 in all patterns 𝑝 ∈ 𝑃 (l. 5). Similar to above, as
the updated patterns match the same positions as before we can
compute the total encoded size without recomputing the cover. If
we obtain a gain, we keep the change, otherwise we revert (l. 8).

As both types of simplification steps can create new candidates
for the other, we call Merge and Flatten alternating until con-
vergence (Appx. A.4, Alg. 9). The Simplify algorithm can also be
applied to post-process the results of traditional sequential pattern
miners in order to reveal generalizations from surface-level patterns.
We will use it as such in the experiments to permit a comparison
to the state of the art.

Estimating Gains. Exact computation of our MDL score requires
computing the cover, which is a computationally costly operation.
Rather than always relying on the exact score, we use an optimistic

estimator Δ𝐿(𝑝,Ω⊕𝑔 ) of the gain in compression where possible. We
can estimate the gain Δ𝐿 by breaking it down into two parts: the
cost of pattern 𝑝 in the model and the change to the encoding of
the data by the updated model. The bits needed to describe a new
pattern or generalization can be computed efficiently as shown in
Sec. 3, and no estimation is necessary; when extending an existing

Algorithm 5: Flock
input : sequence database 𝐷 over alphabet Ω𝑜

output :pattern set 𝑃 , generalization set Ω𝑔

1 𝑂, 𝑃 ← Ω𝑜 , Ω𝑔 ← ∅, 𝐶 ← 𝐷 , gain ← +∞
2 while gain > 0 do

3 𝑃𝑄 ← [], gain ← 0

4 foreach 𝑝 ∈ 𝑂 do

5 𝑃𝑄.addAll (Refine(𝑝,𝐶))
6 𝑂 ← ∅
7 while not 𝑃𝑄.empty () do in order of Δ𝐿(𝑝′,Ω⊕𝑔 )
8 𝑝′,Ω⊕𝑔 , 𝑝 ← top(𝑃𝑄)
9 gain′,𝐶′ ← Δ𝐿(𝑝,Ω⊕𝑔 )

10 if gain′ > 0 then

11 Ω⊕𝑔 ,𝐶 ← PruneGen(𝑝′,Ω⊕𝑔 ,𝐶′)
12 𝑝′,Ω⊕𝑔 ,𝐶 ← RefineInterleaving(𝑝′,Ω⊕𝑔 ,𝐶)
13 𝑂 ← 𝑂 ∪ {𝑝′, 𝑝}
14 apply Ω⊕𝑔 to Ω𝑔

15 𝑃 ← 𝑃 ∪ {𝑝′}
16 gain ← max(gain, gain′)
17 𝑃,Ω𝑔,𝐶 ← Simplify(𝑃,Ω𝑔,𝐶)
18 return Prune(𝑃,Ω𝑔,𝐶)

generalization we simply consider the difference in encoding cost
between the old generalization and extended generalization. We
propose to optimistically estimate the encoded cost of the data
given the updated model, by using the usage statistics of the previ-
ous cover. To give the intuition, suppose we create a new pattern
𝑝 by concatenating 𝑞 and 𝑟 , we then estimate the usage of 𝑝 by
the minimum usage of 𝑞 and 𝑟 , and estimate the new usages of
these patterns by subtracting exactly that amount. We then sim-
ply compute 𝐿(𝐷 |𝑀) with these estimated usages. We give further
details on how we estimate the new usages and how to compute
Δ𝐿(𝑝′,Ω⊕𝑔 ) in Appx. A.3.

4.3 The Flock Algorithm

Now that we have seen all the individual parts, we can explain the
Flock algorithm in detail.2 The general idea is to start with an empty
pattern set 𝑃 and an empty generalization set Ω𝑔 and iteratively add
patterns and generalizations until adding new patterns no longer
improves our model𝑀 . We give the pseudocode in Algorithm 5. To
keep track of patterns we want to extend to a more refined version
we maintain a set 𝑂 , and initialize 𝑂 with all singletons (line 1). At
each iteration, we refine all 𝑝 ∈ 𝑂 to pattern candidates (l. 5). A
candidate base on pattern 𝑝 consists of two parts, a more specific
pattern 𝑝′ and a generalization extensionΩ⊕𝑔 . All pattern candidates
are added to a priority queue that we order by the estimated gain.

Next, we test each candidate. If the candidate gives us an actual
gain, we fine-tune the candidate (PruneGen, l. 11, and RefineIn-
terleaving, l. 12) and add it to the model (l. 15). To allow for
different refinements of source 𝑝 and further refinements of pattern

2The name Flock comes from the expression ‘birds of a feather flock together’, which
was the inspiration for how we search for generalizations.
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𝑝′ we add both to the open set 𝑂 . Iteratively adding candidates to
the model does not necessarily result in the most succinct represen-
tation, therefore we simplify the model after each iteration (l. 17).
As patterns can become superfluous as more specific patterns are
added, we test for each pattern whether removing it will decrease
the total number of bits, before returning the model (l. 18).

Complexity. Finally, we consider the time complexity of Flock.
In the worst case, we have to find all windows for all possible
sequential patterns over alphabet Ω to cover the data. We can find
all windows of a pattern 𝑝 in O(||𝐷 | |2) [3], where | |𝐷 | | denotes the
total number of events in 𝐷 . To cover the data, in the worst case, we
have to sort all windows, O(||𝐷 | | log | |𝐷 | |) and check each window
against all already selected O(||𝐷 | | |𝐶 |). Combined, this gives us
an overall complexity of O(||𝐷 | | |F |( | |𝐷 | | + log( | |𝐷 | |) + |𝐶 |)).

5 RELATEDWORK

While not technically pattern mining, research in Natural Language
Processing (NLP) on finding synonyms, computing similarities, and
constructing ontologies over words are related to our work. Exten-
sive ontologies have been constructed that capture relationships
between words [21] but only little work exists on automatically
discovering high-quality ontologies directly from data. Neural net-
works have been shown to produce embeddings that place semanti-
cally similar words close to each other [5, 20] yet unlike our patterns
these embeddings do not allow for a straightforward interpretation.
In the experiments we will compare Flock to Word2Vec with resp.
to the bag-of-words and skip-gram architecture [20].

Process mining is more closely related to sequential pattern min-
ing as it also considers event sequences. Instead of mining insightful
patterns, it however focuses on discovering process models with ex-
plicit temporal semantics for reconstructing sequences from start to
finish [35]. As these processes can get very complex, methods have
been proposed to abstract sub-processes into high-level activities
[14, 29, 31], whereas we aim to find generalizations over individual
events. The key difference to process mining is that we focus on
event sequence data in general, and are interested in patterns that
characterize these sequences without requiring that every sequence
has been produced by the same process.

Our work fits within the rich history of sequential pattern min-
ing. Traditionally, the field focused on discovering all frequent
patterns [16, 19, 34]. Such methods can be adapted to only report
patterns that match predefined constraints, including or-structures
through regular expressions [11, 22, 23], in contrast to our method
the specific or-structures have to be provided beforehand and are
not discovered. As reporting all frequent patterns often results in
overly large and highly redundant results, modern approaches in-
stead focus on discovering patterns that are either significant with
regard to some null-hypothesis [15, 24, 25] or discovering sets of
patterns that together generalize the data well [9, 30]. For the latter,
the MDL criterion has been particularly successful [2, 10, 30]. Out
of these approaches, we compare to Skopus [24], Sqs [30], Ism [9].

Mining generalized sequential patterns has been studied in the
seminal work of Srikant and Agrawal [27, 28] they however require
a taxonomy and suffer from the well-known pattern explosion of
frequent pattern mining. Closer to our method are the proposals of
Grosse and Vreeken [12] and Beedkar and Gemulla [1] who both

study the problem of summarizing data given an ontology. We,
on the other hand, aim to discover both the generalizations and
patterns without prior knowledge.

Sqish [3] comes closest to our approach, as it is able to discover
patterns that include or-structures and follows a similar MDL based
approach. Sqish discovers or-structures in a post-processing step
where it combines discovered pattern instances that are exactly the
same except for one event. In contrast, we jointly search for gener-
alizations and generalized patterns, by which we can identify much
richer (more subtle) generalizations. We allow generalizations to be
re-used between patterns, as well as explicitly model dependencies
between generalizations within a pattern in order to obtain highly
informative models. We compare to Sqish [3] in the experiments.

6 EXPERIMENTS

In this section, we empirically evaluate Flock on synthetic and
real-world data. We implemented Flock in C++ and provide the
source code for research purposes, along with the used datasets in
the supplementary material.3 We compare to Sqs [30], Sqish [3],
Ism [9], Skopus [24], and Word2Vec [20].

As Sqs, Ism, and Skopus only consider surface-level events, we
post-process their results using the Simplify Algorithm, to extract
generalized patterns and generalized events from their results. We
consider both the bag-of-words and skip-gram defined versions
of Word2Vec [20], clustering the embedding using DBScan [7],
merging events part of the same cluster into a new generalized
event, and finally apply Sqs on the resulting data to find generalized
sequential patterns. As per default, we set the gap parameter of
Flock to 𝑛 = 10, in Appx. B.3 we provide a sensitivity analysis that
shows that Flock is robust against the parameter choice. For data
with very low structure we see that a low 𝑛 produces better results.
We give a more detailed description of the experimental setup, and
an ablation study on parts of the algorithm, in Appendix B.

6.1 Synthetic Data

To evaluate how well Flock recovers the ground truth we consider
synthetic data. We sample, uniformly at random, databases 𝐷 con-
sisting of 100 sequences 𝑆 , each of length 200, over an alphabet Ω𝑜

of size 500. We additionally consider between 0 to 6 generalized
events 𝛼 ∈ Ω𝑔 , each of which, unless stated otherwise, consists of
five observed events 𝑒 ∈ Ω𝑜 that are sampled uniformly at random.
We plant patterns of length 10. We ensure 10% of all planted in-
stances are interleaved in the data, meaning the next pattern starts
before the last one ends. We ensure that each planted instance does
not collide (overwrites) with an earlier planted instance.

All results on synthetic data are averaged over ten independently
generated datasets. In terms of runtime Flock is comparable to
Sqs and Sqish; for all reported experiments all three finish within
seconds to minutes. The competing methods take much longer: for
Skopus, which is a top-𝑘 method, we had to set 𝑘 to 50 and limit
the pattern length to 10 to keep the run-time under 24h.

We evaluate the reported pattern sets with standard 𝐹1 score.
As to not only reward exact recovery of planted patterns, we map
planted patterns to reported patterns. We allow a pattern to map
to at most one other pattern, and only map it when it is a sub or
3https://eda.rg.cispa.io/prj/flock/

https://eda.rg.cispa.io/prj/flock/
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super-sequence of the other. We do the same for generalizations,
where we allow a mapping if the planted is a subset of reported
generalization, or vice versa. For both, we pick the mapping that
results in the maximum number of pairs.

First, as a sanity check, we run Flock on data without any struc-
ture, i.e. no planted patterns. Flock correctly reports no patterns.
Next, we consider the setting where we start with 30 independent
patterns without any generalization, and in each subsequent ex-
periment we replace five of these with one generalized pattern 𝑝 ,
where one event in 𝑝 is a generalized event. Colloquially speaking,
we answer the question: “How well does Flock pickup generalized
patterns compared to surface level patterns?”. We show the results
in Figure 2a. We observe in the initial setting without any gener-
alization we are on par with Sqs and Sqish, theWord2Vec based
approaches are next best, while Ism and Skopus perform worst.
However, as we increase the number of generalized patterns, Flock
maintains a high 𝐹1 score throughout while the score of all other
methods decreases significantly.

Next, we consider a more difficult setting. We sample five gener-
alized events and plant 5 patterns each containing 2 generalizations.
Note that this means different patterns share the same general-
ization. To investigate performance under decreasing support, we
decrease the total number of planted pattern instances from 400
to 50 in steps of 50. This setup aims to answer the question: “How
frequent have patterns to be to be discovered?”. We show the results
in Figure 2b. We observe that Flock beats the other methods by
a wide margin, with Sqs and Sqish in second place. Flock per-
forms very well up to 100 planted instances, at 50 the score drops
significantly; as an individual instance of a pattern on expectation
then only occurs 0.4 times this is unsurprising.

To test how Flock behaves when the pattern frequency stays
the same, but the individual instances get less frequent, we consider
the case where we increase the number of events per generalization
(cf. Figure 2c). We observe a very wide margin to all other methods.
An increase in generalization size only has a very small effect on
Flock’s ability to recover the planted patterns.

Finally, we evaluate the quality of the reported generalizations
(cf. Figure 2d). To do so we generate data containing two patterns,
sharing one generalization. To see how well we recover the gen-
eralization if some events are much less frequent, we decrease
the usage of events in the generalization linearly to zero, and in
each subsequent experiment we increase the number of events per
generalization. With that, we aim to answer the question: “How
accurately does a generalized event get recovered?”. We again re-
port the 𝐹1 score, this time computed over how well the individual
events within the generalization are recovered. We omit Skopus
from this experiment as a single run did not terminate within 24h.
We see that Flock recovers the generalization well, while Sqish
and Sqs do well in a simpler setting, they are however not robust
against larger generalizations, unlike Flock.

On the synthetic data experiments we have seen that Flock
outperforms all other methods clearly. In some simple settings Sqs
and Sqish are on par with Flock. TheWord2Vec approaches only
do reasonably well on data with no or very few generalizations,
inspecting the results this is likely mostly due to Sqs. Ism and
Skopus do worst throughout the experiments.

Flock Sqs Sqish
Dataset |Ω𝑜 | |𝑃 | |Ω𝑔 | |𝑃 | |Ω𝑔 | |𝑃 | |Ω𝑔 |
ECG 200 4 1 128 12 88 6
Short-ECG 200 3 2 3 0 4 1
BPI-2015 192 189 53 400 6 525 35
Rolling Mill 836 195 56 430 35 554 73
Moby 10276 239 1 231 0 202 26
JMLR 3845 466 5 580 0 480 87

Table 1: Results on real datasets. We given alphabet size |Ω𝑜 |,
and the number of reported patterns |𝑃 |, and number of gen-

eralization |Ω𝑔 |, for each method. Overall we observe that

Flock reports fewer patters and more generalizations, mak-

ing the model easier to interpret.

6.2 Real-World Data

To evaluate if Flock finds meaningful structure in real-world data,
we test Flock on five distinct datasets, electrocardiograms (ECG),4 a
business event log (BPI-2015),5 a rolling mill production log (Rolling
Mill [35]), and two text datasets (JMLR andMoby [30]). We compare
Flock to the two best performing competitors, Sqs and Sqish.
Since the ECG and text datasets have a very low amount of structure
we set 𝑛 = 2. We run all three methods on each dataset and report
the number of discovered patterns and generalizations in Table 1.

First, we consider the ECG dataset, we note that compression
rates are similar (Appx. B.4) but there is a big difference in the
number and quality of patterns. Flock can capture the key structure
in just four patterns, while Sqs reports 128 patterns and Sqish
reports 88 patterns. As this dataset contains enough events such that
each individual instance is still strongly represented we reduced
the number of events drastically, from 100k to 3k (Short-ECG). We
find that Sqs and Sqish report shorter patterns than Flock, Flock
is able to discover generalized events enabling it to find longer
patterns over this extended alphabet.

The next two datasets we consider are event logs (BPI-2015 and
Rolling Mill), characterized by strongly repetitive and structured
behavior. Flock finds patterns that describe amore general behavior
which we do not observe for the other methods. To demonstrate
that Flock discovers generalizations with strong dependencies
between each other we show a pattern discovered on the Rolling
Mill dataset in Figure 3. The instance of 𝛼 has a strong influence on
𝛽 while 𝛽 determines the value of 𝛾 and finally the value of 𝛾 has a
strong influence on the value of 𝛿 , see zoom box. This pattern covers
14 possible instances within one pattern, including rare instances
where the usual procedure is not followed.

Finally, to see how well Flock handles settings with large al-
phabets we consider text data. We consider a set of abstracts from
the JMLR journal, and the novel Moby Dick by Herman Melville.
For the JMLR dataset, we see that Flock reports fewer patterns
than Sqs and Sqish while capturing the same amount of structure,
allowing for a more interpretable representation (see Table 1). We

4https://physionet.org/content/stdb/1.0.0/
5https://data.4tu.nl/collections/BPI_Challenge_2015/5065424/1
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Figure 2: F1 score for recovery of planted patterns (solid line, Fig. a-c) on synthetic data over (a) number of patterns containing

one generalized event, (b) total number of planted pattern instances, and (c & d) number of observed events per generalized

event. F1 score for recovery of generalized events (dotted line, Fig. a-c). In Plot (d) we evaluate (F1 score) the recovery of events

per generalization. Overall we see that Flock beats the other competitors by a wide margin.
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Figure 3: Example pattern discovered by Flock on theRolling
Mill dataset, of length 8 out of which 4 are generalized events

(𝛼, 𝛽,𝛾, 𝛿). We see the value of the previous generalization

strongly influences the next generalization (see zoom box):

e.g. if 𝛼 has value “kube”, 𝛽 has value “wsei” in 75 of 76 cases.

show a selection of the patterns discovered by Flock on JMLR,
Moby and BPI-2015 in Appendix B.4.

7 DISCUSSION

The experiments on real-world data show that Flock performs well
in practice. It recovers surface-level patterns as well as the state of
the art, but additionally is also able to recover ground-truth general-
izations, generalized patterns, as well as the dependencies between
generalizations within patterns. The models that Flock discovers
are smaller, less redundant, and the more expressive patterns it
discovers provide clear insight into the data-generating process.

It is worth commenting on interpretability. A single surface-level
pattern is arguably easier to interpret than a generalized pattern,
and if matching the ground truth, so is a set of surface-level pat-
terns compared to a set of generalized patterns. One of the key
strengths of Flock is that its MDL objective will automatically
determine if it is better to model the data at hand with surface-level
or generalized patterns; for the former, the experiments show that
it is as able as Sqs [30], Ism [9], and Sqish [3] in discovering true
surface-level patterns, while it is unique in its capability to discover
generalizations that allow it to show the forest for the trees.

As good as its results are, we do see ample opportunity to im-
prove Flock further. We currently penalize gaps uniformly per
pattern. It may well be, however, that for a given pattern gaps oc-
cur exclusively between the second and third event; extending the
pattern language and MDL encoding accordingly would provide
valuable additional insight. Second, we see enormous chances in
formulating the problem in differentiable rather than as a combi-
natorial term. Fischer and Vreeken [8] recently showed how to
discover sets of item sets using a binarized auto-encoder, and it
would be a break-through to achieve the same for sequential pat-
tern mining as this would allow considering datasets and alphabets
that are orders of magnitude larger than the current state of the art.
Third, we consider it very interesting to explore how to incorporate
background knowledge in the form of a given ontology, a set of
generalizations, i.e. sets of surface-level events that we know or
expect should behave similarly, or a similarity matrix over events.
To a certain extent, our current problem formulation already allows
for this: we can initialize Flock with a model𝑀 that includes the
corresponding generalizations. It is, however, not immediately clear
how to best continue from there; should Flock consider these given
generalizations as immutable parts that cannot be pruned, or as a
suggestion that can be refined?

8 CONCLUSION

We considered the problem of summarizing an event sequence
database with generalized sequential patterns. To that end, we
introduced the concepts of generalized events and generalized se-
quential patterns. To find succinct and non-redundant models, we
formalized the problem using the Minimum Description Length
principle, and presented the efficient Flock algorithm to find good
pattern sets in practice.

Experiments on synthetic and real world data showed that Flock
works well in practice and provides insight beyond what is possible
with existing surface-level pattern mining methods, even with post-
processing. To further improve Flock we plan, as future work, to
study how to best incorporate background knowledge as well as
how to scale up through continuous optimization based search.
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Algorithm 6: GreedyCover
input : set of windows𝑊 and 𝐷
output : list of ordered windows covering 𝐷

1 𝑖 ← 1

2 sort𝑊 by 𝑗1
3 while 𝑖 < |𝑊 | do
4 gw ← 𝑖

5 gws ← gw + 1
6 while𝑊 [gws] .first ≤𝑊 [gw ] .last do
7 if𝑊 [gws] >𝑊 [gw ]

and𝑊 [gws] in conflict with𝑊 [gw ] then
8 gw ← gws

9 gws ← gws + 1
10 if 𝑔𝑤 = 𝑖 then 𝑖 ← 𝑖 + 1 ;
11 wr ← 𝑖

12 while𝑊 [wr ] .first ≤𝑊 [gw ] .last do
13 if 𝑊 [wr ] in conflict with𝑊 [gw ] then
14 remove wr from𝑊

15 wr ← wr + 1
16 return𝑊

A ALGORITHM

A.1 Cover

Given a Model 𝑀 , we want to find the shortest description of se-
quence database 𝐷 given model𝑀 , i.e. that cover 𝐶 that minimizes
𝐿(𝐷 |𝑀). To this end we need for each pattern 𝑝 ∈ 𝐶𝑇 , all sub-
sequences 𝑆 [ 𝑗1, 𝑗2, . . . , 𝑗 |𝑝 | ] where 𝑝 matches, that is window set
𝑊 .

In the main body of the paper, we explained what a valid cover
is and what it means for two windows to be in conflict. Here we
describe how we actually find a valid cover 𝐶 .

We show pseudocode in Algorithm 6. Given a set of windows𝑊
we first sort𝑊 by 𝑗1. The general idea is now to move a pointer
𝑖 from left to right through𝑊 where all windows to the left of 𝑖
are conflict free whereas to the right we still have to resolve all
conflicts. We iterate over the window list𝑊 while maintaining
three pointers, the first pointer 𝑖 points to the lowest non conflict
free window. The second one, greatest window 𝑔𝑤 , is used to keep
track of the current greatest window after 𝑖 , that is not in conflict
with a greater window. The third one, greater window searcher
𝑔𝑤𝑠 , is used to find conflicting greater window then the current
greatest window 𝑔𝑤 .

We initialize 𝑖 with 0 such that it points to the first window in𝑊 ,
at this point this is, trivially, also the greatest window we have seen
so far. We now search for a greater window that overlaps with 𝑔𝑤 ,
line 6. If we find one we update our 𝑔𝑤 pointer. Once we can’t find
a greater window we remove all windows that overlap with 𝑔𝑤 . To
this end, we start again at position 𝑖 and increase a window remover
pointer wr until the first position of𝑊 [wr ] is larger than the last
position of𝑊 [gw ], at this point we can be sure to have considered
all windows that might overlap. If 𝑖 points to the greatest window
we increase 𝑖 by one. Note 𝑖 might overlap with 𝑔𝑤 in this case we

can still simply remove it, 𝑖 then just points to the next window,
which is exactly what we want. We repeat this process until 𝑖 points
to the last window in𝑊 , at this point each event in the database 𝐷
is covered by exactly one window.

Window Search. To efficiently find all windows given a pattern 𝑝
we use an inverted index. We add triples (𝑖, 𝑗, 𝑘) to a set 𝑂 , where 𝑖
refers to the sequence 𝑗 to the next event 𝑆𝑖 [ 𝑗] to be tested against
𝑝 [𝑘]. We initialize 𝑂 with all (𝑖, 𝑗 + 1, 2) where 𝑆𝑖 [ 𝑗] = 𝑝 [1]. We
increase 𝑗 until 𝑆𝑖 [ 𝑗] = 𝑝 [𝑘], this means we found the next event in
𝑆𝑖 that matches the next unmatched event in 𝑝 . Hence we increment
the 𝑗 and 𝑘 pointer by one, (𝑖, 𝑗 + 1, 𝑘 + 1), and additionally add
(𝑖, 𝑗 + 1, 𝑘) to 𝑂 . To illustrate why we add the second case, where
we do not increase 𝑘 , consider the case with sequence abbc and
pattern abc, to capture both windows, i.e. the one with the first
and the second b we need one instance to move over b without
matching it.

We continue this process until 𝑘 = |𝑝 | + 1, at this point we found
a window𝑤 that matches 𝑝 and can remove the triple form 𝑂 . We
also remove a triple from𝑂 if the respective windows grows larger
than the maximum window length of |𝑝 | + 𝑛 |𝑝 |. We continue this
process until 𝑂 is empty, at this point we have found all windows
of 𝑝 .

A.2 Generalization refinement example

Example of applying a set of generalized refinements Ω⊕𝑔 to a set
of generalized events Ω𝑔 . Let us consider the following case we
have Ω⊕𝑔 = {(𝛼id , {𝑐, 𝑑}), (𝛾id , {𝛼, 𝑒, 𝑓 })} and Ω𝑔 = {𝛼, 𝛽} where
𝛼 = {𝑎, 𝑏} and 𝛽 = {𝑔, ℎ}. We now apply Ω⊕𝑔 to Ω𝑔 . Since Ω𝑔 already
contains a generalization 𝛼 we extend it with the specified events,
hence 𝛼 = {𝑎, 𝑏, 𝑐, 𝑑}. The generalization 𝛾 on the other hand not
does not yet exist, we hence add a new generalization 𝛾 to Ω𝑔 ,
hence Ω𝑔 = {𝛼, 𝛽,𝛾} where 𝛾 = {𝛼, 𝑒, 𝑓 }. As Ω⊕𝑔 does not specific
any additions for 𝛽 it is not affected.

A.3 Optimistic Gain Estimation

In this section, we will explain how we compute the gain estimation
Δ𝐿(𝑝,Ω⊕𝑔 ). That is we want to estimate by how our encoding cost
𝐿(𝐷,𝑀) changes by adding pattern 𝑝 to 𝐶𝑇 and applying a set of
generalization refinements Ω⊕𝑔 to Ω𝑔 .

The cost of encoding a new pattern, or generalized event, can be
directly computed as shown in Section 3. However, when extending
a generalization i.e adding new elements to an existing generaliza-
tion, we have to update the cost of this generalization. To compute
the difference in cost we subtract the cost of the old generalization
and add the cost of the new one. Since we allow generalization to
contain other generalization, and we encode these differently, we
also have to do so here. So when extending an existing generaliza-
tion 𝛼 with 𝑘′ new generalization 𝛽1, . . . , 𝛽𝑘 ′ and𝑚′ new events.
With that, we estimate the increased cost as,

Δ𝐿(𝛼 ) = − log
(
𝑖 − 1
𝑘

)
+ log

(
𝑖 − 1
𝑘 + 𝑘′

)
− log (|Ω∗𝑜 |) + log (

Ω′𝑜
)

− log
( |Ω∗𝑜 |
𝑚

)
+ log

(
Ω′𝑜

𝑚 +𝑚′
)
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where Ω∗𝑜 are those observed events not defined by the old nested
generalizations 𝛽 ∈ 𝛼 , i.e. Ω∗𝑜 = Ω𝑜 \

⋃
𝛽∈𝛼𝑖 fl (𝛽) and Ω′𝑜 those

observed events not defined by the extended generalizations i.e.
Ω′𝑜 = Ω∗𝑜 \

⋃𝑘 ′
𝑗=1 fl (𝛽 𝑗 ), 𝑘 is the number of generalizations in 𝛼 and

𝑚 the number of events in 𝛼 before the extension. This covers the
estimated cost on the model side.

Next, we consider the difference in the cover cost. To estimate
the gain of a new model we have to estimate how the cost of the𝐶𝑝 ,
𝐶𝑚 and𝐶𝑠 changes. To avoid recovering the data for each candidate
we estimate the effect a pattern extension, new generalization, or
extending a generalization has on the usage of all patterns and
singletons. We will later explain how we estimate these usages for
all cases. Given the estimated usage changes for all patterns, we can
compute the difference in bits needed for the pattern code stream
𝐶𝑝 ,

Δ𝐿(𝐶𝑝 ) =
∑︁

𝑝∈𝑃∪{𝑝′ }
usgnew (𝑝) ∗ log(usgnew (𝑝))

−usgold (𝑝) ∗ log(usgold (𝑝))
For the specification sequence. Given an estimation how often
each pattern instance will be used for each pattern, we can create
specification sequence 𝐶𝑠 new representing the new specification,
and with 𝐶𝑠 old we denote the old specification sequence.

As we can’t compute the pattern structure at this point we as-
sume all generalization to be independent, to more accurately es-
timate the gain we make the same assumption for the existing
patterns. The difference in encoding cost is then,

Δ𝐿(𝐶𝑠 ) = 𝐿(𝐶𝑠 new ) − 𝐿(𝐶𝑠 old ) .

As we do not have a good way to estimate the number of needed
gaps and fill codes we do not estimate the difference for the meta
stream. All operations we consider create a new pattern based on
an existing pattern. Importantly we do not remove the existing one
i.e. the old one is still in the 𝑃 . We infer a frequency estimate on the
number of instances we count in Algorithm 1. Next, we consider all
different refinement cases and describe how we estimate the new
frequencies for the specific cases.

Case 1 (New pattern): This case we already explained in the
paper and include it here, in extended form, for completeness. Creat-
ing one new pattern 𝑝∗ with 𝑝1 and 𝑝2 where 𝑝2 is another pattern.
From 𝐹 we get 𝑐 , how often 𝑝2 follows 𝑝1. The usage of our new
pattern 𝑝1 × 𝑝2 is simply 𝑐 , while we reduce the usage of 𝑝1 and 𝑝2
by 𝑐 . Hence usgnew (𝑝∗) = 𝑐 and usgnew (𝑝1) = usgold (𝑝1) − 𝑐 ,
usgnew (𝑝2) = usgold (𝑝1) − 𝑐 . If we extend a 𝑝1 by more than one
singleton 𝑐 is simply the minimum count out of all extensions, we
then subtract 𝑐 from all extensions. The frequency of how often
events of a generalization are used we adjust proportionally to the
pattern frequency. That is for each event 𝑒 ∈ fl (𝛼 ) where general-
ization 𝛼 in the patterns 𝑝1, respectively 𝑝2 we adjust the usage to
usg

𝑝1
new (𝑒) = usg

𝑝1

old
(𝑒) − 𝑐 usg

𝑝1
old
(𝑒 )

usgold (𝑝1 ) . Usage of same 𝑒 in the new

pattern 𝑝∗ is usg𝑝
∗

new (𝑒) = 𝑐 usg
𝑝1
old
(𝑒 )

usgold (𝑝1 ) .
Case 2 (New pattern, extended with Generalization): Next,

we consider the case where we extend a pattern with an existing or
newly formed generalization 𝛼 . To estimate the frequency of the

Algorithm 7: PruneGen
input :pattern 𝑝 , generalization extensions Ω⊕𝑔 , cover 𝐶
output :pruned generalization extensions Ω⊕𝑔 , updated

cover 𝐶
1 forall (𝛼𝑖𝑑 , 𝑅) ∈ Ω⊕𝑔 do in order of increasing usg (𝑒)
2 if Δ𝐿(𝑝′,Ω⊕𝑔 \ (𝛼𝑖𝑑 , 𝑅)) > Δ𝐿(𝑝′,Ω⊕𝑔 ) then
3 Ω⊕𝑔 ← Ω⊕𝑔 \ (𝛼𝑖𝑑 , 𝑅)
4 return Ω⊕𝑔 ,𝐶

patterns, we can treat this case analog to Case 1, 𝑐 is now just the
sum of all counts of events 𝑒 ∈ fl (𝛼 ). The usage of 𝑒 ∈ 𝛼 is set to
the count of 𝑒 , whereas existing generalizations are adjusted as in
Case 1.

Case 3 (Extending an existing Generalization): Extending an
existing generalization with new elements does effect all patterns
that use this generalization. The effects are hence not contained to
the pattern we refine. First we just consider 𝑝∗ which contains a
generalization 𝛼 which we extend with event 𝑒 . We increase the
the frequency of pattern 𝑝∗ by the number of counts of 𝑒 . Of course
we reduce the usage of 𝑒 by the same amount. The estimated usage
of event 𝑒 in 𝑝∗ is naturally also the same.

To estimate the usage of other patterns 𝑝′ that contain 𝛼 . We
search for all windows of 𝑝′ and assume that all new windows are
used. That is all windows that did not match 𝑝∗ before the extension
of 𝛼 with 𝑒 . From the windows we can directly infer the respective
frequency, which we use as a usage estimation.

A.4 Pattern search

In themain part of the paper, we describe themain search procedure,
in this section we will expand on that explanation, providing more
details.

Generalization pruning. We show pseudocode in Algorithm 7.
When we initially build new generalization and extend existing
ones we estimate the usage of the individual elements in the gener-
alization. Once we have actually computed a cover we have actual
usage counts. Hence we test, for each added event 𝑒 , if under these
counts we still get a gain when adding 𝑒 .

Refine Interleaving. Before adding pattern 𝑝 to our model, we
search within the gaps of 𝑝 for possible generalization. We provide
pseudocode in Algorithm 8. At this point, we have a cover 𝐶 that
includes pattern 𝑝 . We count for all gaps of pattern 𝑝 how frequent
each event is in each respective gap. The frequency of all events
between the 𝑖 − 1 and the 𝑖𝑡ℎ event in pattern 𝑝 is given by 𝑐𝑖 =
counts [𝑖]. We refine one gap at a time, we start with the gap with
the most frequent event. Per gap, we test all events in order of
frequency, if we add a second event we create a new generalized
event that matches the first and second event, analog for the third,
forth, etc. event.

Simplify. The Simplify algorithm simply calls Merge and Flat-
ten until convergence. This algorithm is applicable to any kind of
pattern set 𝑃 . The required generalized alphabet Ω𝑔 is simply the
empty set, and the cover 𝐶 is computed using GreedyCover.
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Algorithm 8: RefineInterleaving
input :pattern 𝑝 , generalization extensions Ω⊕𝑔 , cover 𝐶
output : refined pattern 𝑝′, extended generalization

extensions Ω⊕𝑔 , updated cover 𝐶
1 for 𝑖 = 0; 𝑖 < |𝑝 | − 1; 𝑖 + + do
2 counts [𝑖] ← get frequencies for all events between 𝑝 [𝑖]

and 𝑝 [𝑖 + 1]
3 sort counts bymax counts [i]
4 forall 𝑐 ∈ counts do

5 sort 𝑐 by frequncy in decending order
6 forall 𝑒 ∈ 𝑐 do
7 𝑝′,Ω⊕𝑔

′ ← extend 𝑝 and Ω⊕𝑔 with 𝑒

8 if Δ𝐿(𝑝′,Ω⊕𝑔 ′) > 0 then

9 𝑝,Ω⊕𝑔 ← 𝑝′,Ω⊕𝑔
′

10 return 𝑝,Ω⊕𝑔 ,𝐶

Algorithm 9: Simplify
input :Pattern set 𝑃 and generalization Ω𝑔 , cover 𝐶
output :Pattern set 𝑃 and generalization Ω𝑔 , cover 𝐶

1 while 𝑃 changes do
2 𝑃,Ω𝑔,𝐶 ← Merge(𝑃,Ω𝑔,𝐶)
3 𝑃,Ω𝑔 ← Flatten(𝑃,Ω𝑔)
4 return 𝑃,Ω𝑔,𝐶

Algorithm 10: Prune
input :Pattern set 𝑃 and generalization Ω𝑔 , cover 𝐶
output :Pattern set 𝑃 and generalization Ω𝑔 , cover 𝐶

1 forall 𝑝 ∈ 𝑃 do

2 if 𝐿(𝐷, 𝑃) > 𝐿(𝐷, 𝑃 \ {𝑝}) then
3 𝑃 ← 𝑃 \ {𝑝}
4 update 𝐶 and Ω𝑔 accordingly

5 return 𝑃,Ω𝑔,𝐶

Pruning. The pruning step is only done once, as a final step. We
test for each pattern if removing it improves the model. If it does
we remove it otherwise we keep it.

Implementation Details. After we test 100 candidates back-to-
back without any actual gain we break the current search loop, i.e.
move on to the next iteration. In preliminary experiments, this did
not have an effect on the results.

A.5 Dependence structure

When adding a pattern to our model we compute its dependency
structure. Meaningwe choose for each generalized event that earlier
generalization that minimizes the specification cost for this gener-
alization. This is, essentially, equivalent to picking that generaliza-
tion with the lowest conditional entropy. More precisely when the
penalty of the prequential encoding is ignored the encoding cost is
equivalent to the conditional entropy. The specification cost of one

generalizationwithout the epsilon.
∑usage(𝑝 )
𝑖=1 − log

(
usg(𝑒 |𝑑 )∑

𝑐∈fl (𝛼 ) usg(𝑐 |𝑑 )
)

The inner part is just the probability of 𝑝 (𝑒 |𝑑). Using Bayes’ theo-
rem we can transform that into 𝑝 (𝑒,𝑑 )

𝑝 (𝑑 ) , summing over all usages is
equivalent to summing over all combinations each weighted by its
joined probability. Making it equivalent to the conditional entropy,
defined as 𝐻 (𝑌 | 𝑋 ) = −∑

𝑥∈𝑋,𝑦∈𝑌 𝑝 (𝑥,𝑦) log 𝑝 (𝑥,𝑦)
𝑝 (𝑥 ) . In practice

however we directly compute the bits needed by the prequential
encoding, which is asymptotical equivalent to picking that gener-
alization with the lowest entropy. In practice it can be cheaper to
encode a specifications of a generalization independently of any
previous generalization, hence we also allow that.

B EXPERIMENTS

In this section we give further details about the experiment setup,
evaluation and additional examples reported by Flock.

B.1 Experiment Setup

Skopus reports the top-𝑘 patterns, where 𝑘 is a hyperparameter. In
preliminary experiments we tested setting 𝑘 to the number of all
reported instances of Flock. The number instances of a generalized
pattern 𝑝 are the unique instances that match 𝑝 . In the setting we
considered these where between 100 and 200 instances. Skopus did
not terminate with 24h therefore we set 𝑘 to 50 and limited the
pattern length to 10.

The word2vec architecture [20] has been shown to be good at
training an embedding where items that occur in similar contexts
are placed close to each other, while originally proposed for text
the architecture lends itself to arbitrary sequences over a discrete
alphabet. In short, we train an embedding into 4 dimensions using
the word2vec architecture [20] with a window size of 10.

To extract generalizations from this embedding, we use DBScan
with a maximum distance of 𝜖 = 0.2 and with a minimum number
of samples of 3. Next, we replace elements in 𝐷 contained within
a cluster with a new generalized event, representing that cluster.
Finally, we apply Sqs on the modified dataset. The groups found
by DBScan we consider our generalizations and the pattern found
by Sqs are our patterns. We tuned the hyperparameters to produce
clusters as close as possible to the true planted generalizations while
also trying to avoid spurious clusters. We did this on synthetic
generated data where each generalization was only used within
one pattern.

The ECG dataset is based on the first record (id 300.1) of the
MIT-BIH ST Change Database.6 We subsampled the record, replac-
ing each 5 subsequent values with their average, and transformed
the result into a relative sequence by replacing each value with
the difference to the previous value. Finally, using SAX [18] we
discretize the sequence to 200 events.

On the datasets ECG, Short-ECG,Moby, and JMLR we run Flock
with gap parameter 𝑛 = 2, in B.3 we show that small values of 𝑛
works better for datasets with a low amount of structure.

B.2 Evaluation Metric

As metric to evaluate success we consider a mapping between
planted and discovered patterns [4]. Where we map each reported
6https://physionet.org/content/stdb/1.0.0/
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Patterns Generalizations

B
P
I
-
2
0
1
5

• send conf. receipt enter senddate ack. 𝛿

forward to the competent authority 𝛽 𝛾

enter senddate procedure conf.

• send confirmation receipt 𝛼 𝛽

𝛼 = { forward to the competent authority , enter senddate ack. }
𝛽 = { regular procedure without MER , start WABOprocedure }
𝛾 = { regular procedure without MER , send procedure confirmation }
𝛿 = { OLO messaging active , send conf. receipt , application received ,

term. on requ. , appl. is stakeholder , no permit or only notification }

M
o
b
y • funni sporti gami jesti joki hoki poki lad

• 𝛼 ago

𝛼 = { call , year , never , long , ship , more , minut ,

centuri , period }

J
M
L
R

• support vector machin svm

• princip compon analysi

• 𝛼 sourc separ

• 𝛽 diverg

𝛼 = { blind , nonlinear , specialis }
𝛽 = { matrix , contrast , neumann classic , displai , shannon ,

intercept distanc , bregman , near leibler , liebler }
Table 2: Selection of found patterns on real-world datasets. We see that Flock discovers rich generalization and patterns that

use multiple generalization. On the BPI-2015 dataset, we see two patterns using the same generalization.

𝑠

source

abcd

abe

fcd

fgh

planted

fd

ab

gh

found

𝑡

sink

Figure 4: Toy example of howwematch discovered to planted

patterns. A discovered pattern ab will be matched to either

abcd or abe , but not both; maximizing the flow gives us the

number of recovered patterns.

pattern to at most one planted pattern and to each planted pattern
to at most one reported pattern. To find the maximum number of
pairs we reformulate the problem as a flow network optimization
problem. We connect each planted pattern to our source and each
found pattern to the sink. We connect a planted to a found pattern
if the found pattern is a subsequence of the planted one or vice
versa. The capacity of all links is set to one. We then compute the
maximum flow [6] which maximizes the number of planted, found
pairs. This setup ensures that wematch at most one found pattern to
a planted pattern and vice versa. In Figure 4 we give a toy example
of such a flow network. We do the analog with generalizations.

B.3 Parameter Analysis

Flock comes with one user parameter 𝑛 the factor of how many
gaps we allow relative to the pattern length. We consider a setting
with patterns of different lengths, 3 to 12, each pattern contains
two generalization. We report the 𝐹1 of Flock given the respective
parameter 𝑛.
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Figure 5: Parameter sensitivity analysis: On seven datasets

with pattern lengths from 3 to 12, each pattern includes two

generalization. We see Flock is robust against the parameter

choice. The dataset with a pattern length of 4 stands out, with

half the events being generalization true patterns become

hard to distinguish from random correlations.

Flock Sqs Sqish
Dataset |𝐷 | | |𝐷 | | ¯|𝑆 | %𝐿 𝑡 %𝐿 %𝐿

ECG 1 107395 107395 97.2 17k 96.7 98.9
Short-ECG 1 3384 3384 98.2 1 98.3 98.7
BPI-2015 1199 51867 43.36 79.1 43k 60.7 63.2
Rolling Mill 1000 51390 51.39 63.2 1k 49.9 52.9
Moby 1 105719 105719 99.3 0.6k 99.3 99.4
JMLR 788 75646 96 96.7 0.7k 96.6 97.6
Table 3: Extended results on real datasets. We given number

of sequences, |𝐷 |, total number of events | |𝐷 | |, and average

sequence length
¯|𝑆 |. For each method we give the relative

length under our model. For Flock we provide the runtime

in seconds.

B.4 Real-World Pattern Examples

In Table 2 we show a selection of patterns and generalization re-
ported by Flock on real-world datasets. Note, the rich generaliza-
tion 𝛽 of the JMLR dataset was discovered with the default gap
parameter of 𝑛 = 10.



Below the Surface: Summarizing Event Sequences with Generalized Sequential Patterns KDD’23, August 2023,

2 4 6 8 10

0

0.2

0.4

0.6

0.8

1

Parameter 𝑛

F
1

3
4
5
7
9
11
12

Figure 6: Ablation study on syntheticwith subroutines turned

off. We observe that without RefineInterleaving and Sim-

plify the 𝐹1 score decreases by a large margin.

B.5 Ablation Study

Flock consists of several subroutines, we evaluate the impact of
disabling RefineInterleaving and Simplify. We evaluate the per-
formance on synthetic data, we use the same setting as for the ex-
periment shown in Figure 2(b), with 400 planted pattern instances.
We report the 𝐹1 score. The results show that RefineInterleav-
ing and Simplify provide key functionality that greatly improves
performance.
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