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Zusammenfassung

Kern der empirischenWissenschaft ist die Gewinnung von Erkenntnis-
sen aus komplexen Daten. Durch den Aufstieg der computationellen
Wissenschaft werden zunehmend zahlreichere, umfangreichere und
reichhaltigere Datensätze verfügbar, mit deren Hilfe wir unser Wissen
erweitern können. Gleichzeitig erschwert ein Mangel an geeigneten
computationellen Werkzeugen die Analyse dieser Datensätze durch
Domänenexperten. Insbesondere fehlt es an Methoden zur Identi-
fizierung von aufschlussreichen Mustern (insightful patterns), d.h., Men-
gen von stark assoziierten Merkmalsausprägungen (feature values),
die informativ, kontrastierend, probabilistisch fundiert, statistisch fundiert
und durch skalierbare Algorithmen auffindbar sind. Diese Dissertation
nutzt Ideen und Konzepte aus Pattern-Set Mining, Maximum-Entropy
Modeling, statistischen Testverfahren und Matrixfaktorisierung, um
Methoden zu entwickeln, die aufschlussreiche Muster identifizieren.
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Abstract

Empirical science revolves around gaining insights from complex data.
With the advent of computational science, increasingly more, larger,
and richer datasets are becoming available to expand our scientific
knowledge. However, the analysis of these datasets by domain experts
is often impaired by a lack of suitable computational tools. In particular,
there is a shortage of methods identifying insightful patterns, i.e., sets
of strongly associated feature values that are informative, contrasting,
probabilistically sound, statistically sound, and discoverable using scalable
algorithms. This thesis leverages ideas and concepts from pattern-set
mining, maximum-entropy modeling, statistical testing, and matrix
factorization to develop methods for discovering insightful patterns.
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1
Introduction

Empirical science aims to understand how the world works based on
observational and experimental data. One strategy to gain insights
from such data is to discover sets of co-occurring feature values that are
associated with an effect. In genetics, for example, sets of co-expressed
genes might provide evidence for the presence of certain proteins that
together could cause a disease (e.g., breast cancer), facilitating the
development of targeted treatments [10, 12, 123]. And in neuroscience,
sets of co-activated brain regions might point to potential peculiarities
in neuralwiring that could advance our understanding of healthy brain
functioning as well as of neural disorders or diseases (e.g., autism or
Alzheimer’s) [14, 88, 178].

With the advent of computational science, increasinglymore, larger,
and richer datasets are becoming available to expand our scientific
knowledge. However, the analysis of these datasets by domain experts
is often impaired by a lack of suitable computational tools. In this
thesis, we set out to develop such tools.

1.1 Motivation

As experts in algorithms and data analysis, computer scientists spe-
cializing in data mining or machine learning seem ideally positioned
to design computational methods for discovering salient associations
from complex data. While supervised machine learning is a powerful
approach for tackling many prediction problems, unsupervised ap-
proaches are often better-suited for the exploratory settings we are
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Introduction

interested in, where the goal is to generate understanding. In partic-
ular, the task of identifying insightful sets of co-occurring feature
values, called patterns, has been studied extensively in the data-mining
subfield called pattern mining [1]. However, existing pattern mining
methods fail to meet the requirements of domain scientists, as we
elaborate below.

The classic motivating application of pattern mining methods,
calledmarket-basket analysis, is commercial, rather than scientific: Given
a dataset of customer transactions in a store, where each transaction is
a row (observation) and each purchasable item is a column (feature)
of the data, identify items that are frequently bought together—e.g.,
to optimize product placement in physical stores or to recommend
products in virtual stores, with the ultimate goal of increasing sales,
profits, or customer satisfaction. Following the assumption that the
more oftenwe observe a pattern, themore interesting it is to the analyst,
the goal here is to identify frequent patterns, i.e., sets of feature values
that co-occur in a user-specified number or fraction of observations
(absolute or relative co-occurrence frequency, respectively) [2, 71].

Traditionally, the goal of pattern mining algorithms has been to
return all frequent patterns. As by definition, all subsets of a frequent
pattern must also be frequent, these patterns can be mined very effi-
ciently by gradually growing patterns from individual feature values
[5]. However, the result is a highly redundant set of exponentiallymany
patterns, only few of which are actually interesting to the analyst. To
address the pattern explosion in frequent-pattern mining, pattern-set
mining associates interestingness not with individual patterns but with
sets of patterns. One influential approach here is to directly mine a con-
cise set of non-redundant patterns that together describe the data well
[68, 145]. Focusing on patterns that are conjunctive, i.e., that manifest
as positive associations, we adopt this approach in our work, aiming to
directly mine sets of patterns that are informative.

Butwhile a single set of informative patterns summarizing a dataset
could provide a basis for action in commercial settings, such a set does
not generally suffice to advance our scientific knowledge.

14



Motivation

Firstly, in scientific settings, subsets of observations (groups) often
exhibit partially different feature-value distributions, corresponding
to known or unknown covariates (e.g., biological sex, age, or medical
conditions in the biomedical domain). This implies that one set of non-
redundant patterns cannot describe the data succinctly. As traditional
pattern miners ignore covariate groupings, they are hence prone to
discovering spurious patterns that appear when considering all data at
once but disappear when considering groups individually. Addressing
this shortcoming of the status quo, wewould like to identify individual
sets of patterns per group in the data, rather than ignoring covariates.
Our goal here is to discover a set of informative pattern sets highlight-
ing (1) what is characteristic of a group, (2) what is common between
groups, and (3) how to tell groups apart—regardless of whether the
groups are known beforehand. That is, we seek to discover, both with
andwithout prior knowledge of groups in the data, a set of informative
pattern sets that is also contrastive.

Secondly, in scientific applications, the process by which we iden-
tify the pattern sets that describe a dataset matters. This diminishes
the value of existing pattern-set miners, which are largely based on
heuristics, and motivates us to develop methods that discover pattern
sets in a theoretically well-founded way. More precisely, our goal is
to model the data using the unique probability distribution that fits
the data and does not incorporate any additional assumptions, i.e.,
the distribution with the maximum Shannon entropy [160] among
all distributions fitting the data (maximum entropy distribution [85]).
We then seek to mine patterns by identifying sets of features that are
probabilistically independent of one another under this parsimonious
distribution, thus ensuring that our pattern sets are probabilistically
sound.

Thirdly, scientists are mostly dealing with noisy data, and hence,
they require the pattern sets describing their data to be robust to minor
fluctuations. This motivates us to use well-established model selec-
tion criteria (e.g., the Bayesian Information Criterion, BIC), statistical
hypothesis testing under rigorous false discovery control (e.g., sequen-
tial false discovery rate adjustment), or a combination of the two (i.e.,
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Introduction

testing model selection criteria for significance) to ensure the statis-
tical soundness of our results. Drawing inspiration from statistically-
significant pattern mining, we thus aim to discover pattern sets that are
statistically sound.

Finally, scientific data is often very large and high-dimensional,
with many orders of magnitude more features (columns) than observa-
tions (rows). In this setting, pattern-set mining becomes computation-
ally prohibitive, especially when we also ensure probabilistic sound-
ness using maximum-entropy modeling and judge myriad individual
patterns for statistical significance to ensure statistical soundness. To
still gain insights from very large and high-dimensional scientific data,
instead of deciding on individual patterns, we build and improve upon
inherently scalablematrix factorizationmethods to model the data more
efficiently. Treating the output of these methods as an assignment of
patterns to data, we ensure that even for very large and very high-
dimensional datasets, our pattern sets are discoverable using scalable
algorithms.

In a nutshell: Motivated by the requirements of scientific applica-
tions, in this thesis, we set out to develop methods for discovering
insightful patterns: sets of conjunctive patterns that are informative,
contrasting, probabilistically sound, statistically sound, and discover-
able using scalable algorithms. To this end, we draw on ideas from
pattern-set mining, maximum-entropy modeling, statistical testing,
and matrix factorization, as sketched in the following summary of our
contributions.

1.2 Contributions

The chapters of this thesis have in common that they fulfill the require-
ments described in our motivation. Each chapter, however, focuses
on different questions. In the following, we provide an overview of
the questions asked in each chapter and how we answer them, thus
outlining the remainder of this thesis.

16



Contributions

Explainable Data Decompositions.

Pattern sets are easily interpretable models that are informative, even
when considered in isolation. In the context of groups in data, they
can explain differences and commonalities of such groups. Thus, they
are contrasting, and even more informative in the biomedical domain.
There, sets of feature interactions might explain deviating properties
in a group (cancer) given the other group (healthy). Contrasts like
these are thus highly informative to the researcher—if the groups
are known beforehand. If no groups are known, however, there may
still be groups in the data, corresponding to different data-generating
processes that are potentially intertwined. Motivated by this scenario,
in Chapter 2, we ask

How can we identify unknown groups in Boolean data by
leveraging their characteristic patterns?

Our goal here is to identify the unknown groups from the data. Simi-
lar to clustering or graph partitioning, we want to discover regions in
the data that show significantly different distributions. Unlike these
approaches, however, we not only contrast feature distributions (flat),
but also contrast pattern distributions, thus also comparing many po-
tentially higher-order interactions. We summarize this concept as the
innovative grouping objective to identify statistically significantly diverg-
ing pattern distributions. This objective provides a rich, informative,
and inherently interpretable test statistic, enabling us to statistically
guarantee that each group is (tested-to-be) differently distributed from
the others. Based on patterns, we can precisely and interpretably char-
acterize why certain parts of the data constitute separate groups, we
can explain how these groups are different from one another, and we
can identify which properties the groups share among them.

Our approach to identifying statistically significantly diverging pat-
tern distributions consists of two parts: Firstly, to parameterize groups
with their pattern distribution, we formally introduce our algorithm
Desc. Starting information-theoretically, we discuss a sub-modular
optimization scheme from which we derive an efficient pattern-set
mining algorithm, ensuring contrastiveness, probabilistic soundness,
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Introduction

and statistical soundness. Secondly, based on Desc’s parameterization
and our innovative grouping objective, we propose the Disc algorithm
to discover high-quality groupings via an alternating optimization
approach, enabling contrastiveness.

In brief, our main contributions here are:
1. We introduce the pattern distribution, which captures individual

as well as higher-order interactions within one objective function.
2. We propose to group data into statistically significantly diverging

clusters, thus guaranteeing contrastiveness.
3. We introduce an efficient search algorithm derived from our sub-

modular optimization function.

Differentially Describing Groups of Graphs.

In Chapter 2, we considered tabular data, but not every dataset lends it-
self to a meaningful tabular representation. Notably, datasets designed
to capture relationships between entities, such as interactions between
proteins, are more naturally modeled as graphs (also called networks).
In graphs, patterns are sets of edges that capture characteristic struc-
ture in the relationships observed, and as such, they are highly useful
to the analyst. Thus, we ask:

How can we describe known groups in graph data through
their characteristic patterns?

Our setting is similar to that in Desc, with the difference that our input
data are groups of graphs, rather than groups of rows in tables. More
precisely, in Chapter 3, we are given a set of graphs and a partition of
these graphs into groups, and our goal is to describe similarities and
differences between graph groups by means of statistically significant
subgraphs—a task we call graph group analysis.

To perform graph group analysis, we introduce the Gragra al-
gorithm. Gragra combines maximum-entropy modeling with an
information-theoretic model selection criterion and a statistical test to
identify connected subgraphs that are significantly associated with
individual groups.

In brief, our main contributions here are:
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Contributions

1. We propose graph group analysis as a task formalizing the discov-
ery of informative and contrastive patterns in sets of graphs with
known covariates.

2. We develop the theory to identify statistically significant subgraphs
as patterns associated with one or more groups of graphs.

3. We use this theory to introduce an efficient algorithm solving the
graph group analysis task.

Discovering Significant Patterns under Sequential False Dis-
covery Control.

Although patterns convey insights into the data, they do not neces-
sarily translate into scientific discoveries, as their feature interactions
have to survive manual scientific scrutiny first. Since researchers are
notoriously short on time, they should not be allocated tasks that are
unlikely to convey useful knowledge, such as scrutinizing myriad pat-
terns. As it is ultimately uncertain which patterns are worth their time,
domain experts deem information criteria alone insufficient to make
this decision. Rather, they require statistical certainty from rigorous
hypothesis testing to make this call. The demand for statistical hypoth-
esis testing is particularly high in the biomedical domain. Therefore,
in Chapter 4, we ask

How can we sequentially discover pattern sets such that each
newly added pattern comes with statistical guarantees?

To answer this question while ensuring our general requirements, we
introduce the first-of-its-kind framework for sequentially significant
pattern-set mining. This framework combines the best of pattern-set
mining with statistically significant pattern mining. Its novelty lies
not only in this unique union, but also in further generalizations that
allow us to do more than just discover contrasting and shared pattern-
sets on arbitrarily many datasets. In particular, within this framework,
we develop a new method to report those patterns that exhibit an
empirical frequency that deviates significantly from our expectation.
To this end, we sequentially control for false discoveries during the
search (to avoid spurious results, yet achieve high statistical power), we

19



Introduction

update our expectations whenever we discover a significant pattern (to
avoid redundancy and achieve informativeness), we upper-bound the
?-value computation using an easy-to-compute, yet accurate Chernoff
(upper) bound (i.e., for efficiency), and we efficiently search for sets of
significant patterns within the exponentially-sized search space.

In brief, our main contributions here are:
1. We introduce the new sequentially significant pattern-set mining

problem.
2. We define a novel online search-aware Bonferroni correction tar-

geting the family-wise error rate.
3. We propose to use an online sequential false discovery control

targeting the false discovery rate.

The Relaxed Maximum Entropy Distribution.

The maximum entropy principle uniquely identifies the distribution
that satisfies the observed pattern distributions but is otherwise maxi-
mally unbiased, thus ensuring our probabilistic soundness guarantees
directly. Since inferring the maximum entropy distribution for pat-
tern sets is exponentially complex in the number of patterns, exact
inference quickly becomes intractable for all but trivial sets.

Prior work avoids the intractability of the inference problem by
artificially prohibiting otherwise informative patterns whose inclu-
sion would result in a high inference complexity. In Chapter 5, this
motivates us to ask:

How can we design a maximum entropy distribution that
is both unconstrained and efficiently inferable?

Rather than limiting the distribution, we relax the distribution, intro-
ducing the novel relaxed maximum entropy distribution that permits
efficient inference of unlimited distributions by dynamically factoriz-
ing the maximum entropy distribution into maximally entropic factors
that we can learn from data. Formally, we show that the relaxed maxi-
mum entropy distribution is both PAC-learnable and consistent with
standard maximum entropy.

In brief, our main contributions here are:
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Contributions

1. We define the new family of relaxed maximum entropy distribu-
tions.

2. We introduce an efficient member of this family.
3. We formally show that this distribution is PAC-learnable and con-

sistent with standard maximum entropy.

Efficiently Factorizing Boolean Matrices.

If the dataset is reasonably large, pattern-set mining methods (such as
the methods discussed in Chapter 2) provide a high degree of detail.
That level of detail is achieved by relying on computationally costly
search algorithms in an exponentially-sized search space. If the dataset
is too large, they struggle to report meaningful results. In Chapter 6,
we ask

How can we discover groups in Boolean data and express
them in terms of common concepts at scale?

This problem is commonly addressed using variants of matrix fac-
torization, such as Non-Negative Matrix Factorization (NMF) or Prin-
cipal Component Analysis (PCA), which achieve highly interpretable
results—unless the data is Boolean. In the Boolean case, which is ubiq-
uitous in the real world, the results returned by NMF are hard to
interpret, because the input domain differs from the output domain.
Addressing the interpretability problem of NMF on Boolean data,
Boolean Matrix Factorization (BMF) uses Boolean algebra to decom-
pose the input into low-rank Boolean factor matrices. These matrices
are highly interpretable and very useful in practice, but they come
at the high computational cost of solving an NP-hard combinatorial
optimization problem.

To reduce the computational burden, we propose to relax BMF
continuously using the innovative elastic-binary Elb regularizer, from
which we derive a proximal gradient algorithm. Regularization alone,
however, does not directly result in Boolean factors. Where prior work
uses a constant regularization along with heavy and expensive post-
processing, we propose to use a regularization rate, which achieves
Boolean solutions without expensive post-processing.
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In brief, our main contributions here are:
1. We introduce the novel elastic-net based elastic-binary Elb regular-

izer.
2. We define a regularization rate to achieve Boolean factors without

post-processing.
3. We develop the Elbmf algorithm to efficiently factorize Boolean

matrices.

1.3 Publications

The contributions laid out in this thesis were developed in a series
of papers, as detailed below. The material presented in the following
chapters is adapted from these papers. All our data, code, results, and
additional details needed for reproducibility are publicly available,
and we provide the links to the corresponding digital objects under
the paper references below.

In all publications included in this thesis, the author of this thesis
was involved as a first author, contributing to the main ideas, theory
building, algorithm design, algorithm implementation, experimental
evaluation, and preparation of the manuscript. For the contribution
featured inChapter 3, the first authorshipwas shared, and both authors
contributed equally to the work, taking part in each of the previously
mentioned steps.

Chapter 2

Sebastian Dalleiger and Jilles Vreeken. “Explainable Data Decomposi-
tions”. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence,
AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelli-
gence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational
Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, Febru-
ary 7-12, 2020. AAAI Press, 2020, pp. 3709–3716
Replication Material: doi.org/10.5281/zenodo.7548821
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Publications

Chapter 3

Corinna Coupette, Sebastian Dalleiger, and Jilles Vreeken. “Differen-
tially Describing Groups of Graphs”. In: Thirty-Sixth AAAI Conference
on Artificial Intelligence, AAAI 2022, Thirty-Fourth Conference on Innova-
tive Applications of Artificial Intelligence, IAAI 2022, The Twelveth Sympo-
sium on Educational Advances in Artificial Intelligence, EAAI 2022 Virtual
Event, February 22 - March 1, 2022. AAAI Press, 2022, pp. 3959–3967
Replication Material: doi.org/10.5281/zenodo.6342823

Chapter 4

Sebastian Dalleiger and Jilles Vreeken. “Discovering Significant Pat-
terns under Sequential False Discovery Control”. In: KDD ’22: The
28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining,
Washington, DC, USA, August 14 - 18, 2022. Ed. by Aidong Zhang and
Huzefa Rangwala. ACM, 2022, pp. 263–272
Replication Material: doi.org/10.5281/zenodo.7548831

Chapter 5

Sebastian Dalleiger and Jilles Vreeken. “The Relaxed Maximum En-
tropy Distribution and its Application to Pattern Discovery”. In: 20th
IEEE International Conference on Data Mining, ICDM 2020, Sorrento, Italy,
November 17-20, 2020. Ed. by Claudia Plant et al. IEEE, 2020, pp. 978–
983
Replication Material: doi.org/10.5281/zenodo.7548837

Chapter 6

Sebastian Dalleiger and Jilles Vreeken. “Efficiently Factorizing Boolean
Matrices using Proximal Gradient Descent”. In: Thirty-Sixth Conference
on Neural Information Processing Systems (NeurIPS). 2022, pp. 4736–4748
Replication Material: doi.org/10.5281/zenodo.7187021

23

https://doi.org/10.5281/zenodo.6342823
https://doi.org/10.5281/zenodo.7548831
https://doi.org/10.5281/zenodo.7548837
https://doi.org/10.5281/zenodo.7187021




2
Explainable Data Decompositions

In this chapter, we seek to discover and describe regions in binary
tabular data that exhibit a characteristic pattern distribution. For exam-
ple, given gene-expression data from cancer patients, we might seek
to identify distinct cancer subtypes to facilitate the development of
targeted treatments. Our goal is to discover the groups in such data,
characterize why we deem these groups, explain how these groups are
different from one another, and identify what properties they share
among one another. Since we seek interpretable justifications for why
we deem each region a group, we use sets of characteristic and com-
mon patterns. Rather than considering dense regions, as is common in
clustering, we consider regions to be groups if they have statistically
significantly different distributions, which we describe by means of
insightful patterns that are informative for one or more groups.

We define the pattern composition problem in terms of a regular-
izedmaximum likelihood, in whichwe leverage themaximum entropy
principle to model each group in the data using a concise set of pat-
terns that characterizes it. As the search space of patterns and groups
is large and unstructured, we propose the deterministic Disc and Desc
algorithms, which together discover the pattern composition from
data via an alternating-optimization approach. Empirical evaluation
on synthetic and real-world data shows that Disc efficiently discovers

This chapter is based on the publication: Dalleiger and Vreeken [43].
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Explainable Data Decompositions

groups and descriptions that accurately characterize the difference
and the norm in easily understandable terms.

2.1 Introduction

Suppose we are analyzing gene expression data from cancer patients
admitted to a hospital. Likely, our patients suffer fromdifferent (sub)types
of cancers, each associated with its own characteristic genetic muta-
tions. For example, breast cancer patients may exhibit mutations in
BRCA1 or BRCA2 genes [151], while blood cancer patients may exhibit
mutations in the CEBPA gene [137], and brain cancer patients may
exhibit mutations in the IDH1 gene [13]. That is, the data consist of
different components, i.e., parts that show significantly different pattern
distributions.

Certain patterns may be characteristic of more than just one group;
for example, a commonly mutated gene in all cancer patients is TP53
[143]. Therefore, the set of patterns that characterize the data can
also be partitioned: Each such pattern group consists of those patterns
that are characteristic of a distinct set of data groups. Together, the
pattern groups give detailed yet easily interpretable insights into the
justification of data groups, how they are different from one another,
and what properties are shared among them.

Our goal is to jointly discover the groups of the data and those
pattern groups that optimally characterize their similarities and differ-
ences—and we would like to do so both efficiently and in a statistically
well-founded manner, where we only have to set a significance thresh-
old 
. We now seek to discover the pattern composition of a given binary
tabular dataset. To this end, we model a group given a set of pat-
terns using the Maximum Entropy principle [86]. That is, we use a
maximum entropy estimator that satisfies the empirically observed
frequencies of the given patterns but otherwise makes no further as-
sumptions. We can then formulate the problem in terms of a likelihood
maximization problem, where we are after that composition which
achieves the highest overall likelihood. To avoid overfitting, we rely
on the BIC model selection criterion. In other words, we are after the
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Introduction

most succinct way to summarize the data by partitioning it such that
the parts exhibit significantly different distributions, and we would
like to describe these distributions non-redundantly using only small
and interpretable pattern sets.

Unfortunately, the search space for this problem is enormous: For
a given dataset, there exists an exponential number of patterns, an
exponential number of pattern sets, and an exponential number of par-
titions. Moreover, this space is not structured, barring efficient search
for the optimum. We therefore introduce Disc, a deterministic method
that heuristically discovers a good pattern composition. The main idea
is that we split the problem into two parts and iterate between them
until convergence. That is, for a given data decomposition, we propose
to approximate the pattern groups using Desc, and then pass those
pattern groups to Disc to discover refined data groups. In both steps,
we rely on statistical tests to prune the search space and to ensure that
we do not discover any spurious patterns or groups.

Through extensive experiments, we show that Desc and Disc work
well in practice. Desc outperforms the state of the art in pattern-set
mining, discovering succinct models with great efficiency, while Disc
recovers meaningful groups. In case studies for which ground-truth
data is available, we confirm that the groups and their characteriza-
tions make sense: The ecological niches and commonalities that Disc
discovers correspond to the ground truth.

In summary, our contributions are
1. defining the pattern composition problem,
2. developing a fast method for discovering pattern groups,
3. introducing a fast method for discovering pattern compositions,

and
4. validating both methods through extensive experiments on syn-

thetic and real data.
The remainder of this chapter is structured as follows. After set-

tling the preliminaries in Section 2.2, we introduce the maximum
entropy distribution in detail in Section 2.3 (which we will refer back
to throughout this thesis). We then state our problem formally in Sec-
tion 2.4, and develop our algorithms, Desc and Disc, in Section 2.5.
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Having discussed related work in Section 2.6, we empirically evaluate
ourmethods in Section 2.7 before concluding the chapter in Section 2.8.

2.2 Preliminaries

We write 2� for the powerset of any finite set �, and
(�
:

)
for the set of

all subsets of � of size : ∈ N. The set �
a

� is the symmetric difference
of � and �, and we denote their disjoint union as �t �. For any = ∈ N,
we write [=] = {1, 2, . . . , =}. The indicator function is 1. All logarithms
are to base 2, and by convention, we use 0 log 0 = 0.

As data -, we consider multisets over 3 binary features ℐ, where
each element G ∈ - is independently drawn from the set of all possible
elementsΩ = 2ℐ . WewriteΠ ∈ +(-) for a partitioning of data - into :

non-empty pairwise disjoint subsets (classes), whereΠ = {-1 , . . . , -:},
such that ⋃

-9∈Π
-9 = - .

As patterns, we consider itemsets G ⊆ ℐ, and call ( ⊆ Ω a pattern
set, which is simply a set of patterns. We say that a data point C ∈ -

supports an itemset G ∈ ℐ iff G ⊆ C, which, if counted, results in the
empirical frequency

@-8
(G) = |{C ∈ -8 | G ⊆ C}| /|-8 |

of G in -8 . We will maintain one pattern set (8 for each class -8 , and
each pattern G ∈ (8 is said to be associated with class -8 . Combined
with empirical frequencies, a pattern set (8 is the sufficient statistic to
define a probability distribution ? over Ω.

2.3 The Maximum Entropy Distribution

First introduced by Jaynes in 1957 [85, 86], the principle of entropy
maximization is intended for inferring probability distributions based
on incomplete information. It does so by selecting the most uninformed
probability distribution that satisfies all constraints given by the in-
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formation available about the distribution. In other words, we choose
the distribution that is least informative, subject to the known con-
straints. Originally, the principle is widely used to choose probability
distributions in a variety of applications ranging from physics (e.g.,
in statistical thermodynamics [49] and quantum mechanics [18]), to
economics (cf. [157]), to biology (e.g., to study protein-protein interac-
tions [191], as the foundation of a precursor of Alpha Fold [120], and
in computational enzyme design [196]). Due to its desirable property
of shaping distributions without introducing a bias, the maximum
entropy principle has also been applied in pattern mining, e.g., on
binary tabular data [22, 194], real-valued data [91, 92], or networks [47,
165]. In the following, we motivate the maximum entropy distribution
and introduce it succinctly.

The maximum entropy distribution is the distribution with the
highest entropy subject to constraints imposed by available informa-
tion. This principle in all its generality allows us to analytically derive
a broad family of maximum entropy distributions from different kinds
of constraints that we wish to impose (in addition to our restriction
to probability distributions). It is common to do so algebraically in
terms of its Lagrange relaxation of the linear program, which often
results in many well-known probability distributions. Two canonical
univariate examples are the uniform distribution (subject to no addi-
tional constraints) and the normal distribution (subject to constraints on
mean and variance).

Our scenario, however, is more complicated: We are interested in
distributions over sets of discrete random variables that maximize the
entropy and satisfy the empirically observed frequencies of patterns
and singletons (i.e., sets and elements) alike. To obtain this discrete
and multivariate maximum entropy distribution that is constrained to
match a given set of empirical frequencies, we consider distributions
from the polytope of all feasible distributions,

P-
( ≡

{
5 ∈ Ω→ [0, 1]

�� E 5 [G] = @-8
(G) ∀G ∈ (, ∑

C 5 (C) = 1
}
,

which contains all, infinitely many distributions consistent with the
empirical frequency @ of patterns G ∈ ( in -8 .
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However, not all distributions in P-
(

suit our needs: We need a
distribution that does not introduce additional assumptions beyond
the information that ( specifies. From an information-theoretic point
of view, additional assumptions correspond to additional information.
We can measure the amount of information in a distribution using
Shannon entropy,

�(?) = −
∑
G

?(G) log ?(G) .

The lower the information content of a distribution ?, the higher its
Shannon entropy. We want to identify the feasible distribution that
makes the fewest additional assumptions as the one with the highest
entropy, i.e.,

5 ≡ arg max
5 ∈P-

(

H ( 5 ) , (2.3.1)

which is the formalization of the principle of maximum entropy [86].
As our constraints are linear—as in the univariate case—we can

easily state its Lagrangian [39]

�(?) −
∑
8

�8(?(G8) − @(G8)) − �0

(∑
8

?(G8) − 1

)
.

Simplifying its derivative algebraically yields the general exponential
model as our family of maximum entropy distributions. That is, given
that the constraints ofP-

(
are linear, the distribution ? over transactions

C ∈ Ω takes an exponential form

5 (C) = 5 (C | () = �0
∏
G8∈(

�1[G8⊆C]
8

, (2.3.2)

where 1 is the indicator function, for appropriately chosen coefficients
� ∈ R|( |+1 [39]. There are countless ways to estimate the globally opti-
mal coefficients � ∈ R|( |+1 of this convex function, for example using
gradient descent or Newton methods such as L-BFGS. We choose the
specialized coordinate-descent optimization algorithm called gener-
alized iterative scaling (GIS) [45], which was developed particularly
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Algorithm 2.1: Iterative Scaling
Input: Itemsets ( ⊆ Ω, empirical frequencies @ ∈ (→ [0, 1]
Output: Maximum entropy distribution ? satisfying @

1 Start with arbitrary �8 ∀G8 ∈ (
2 Compute normalization constant �0
3 while has not converged
4 for G8 ∈ (
5 �8 ← E 5 [G8] =

∑
H∈Ω
G8⊆H

5 (H | ()

6 �8 ← @(G8)
7 �8 ← �8 ·

�8
�8

8 return �

for estimating such coefficients for maximum entropy distributions.
We summarize generalized iterative scaling as pseudocode in Algo-
rithm 2.1.

As in the univariate case, we constrain the expectation of our dis-
tribution. Unlike in the univariate case, however, inferring the multi-
variate expectation

E 5 [G] =
∑
H∈Ω

5 (H | () 1{G ⊆ H} , (2.3.3)

is defined over the exponentially-sized universe Ω containing all possi-
ble combinations of elements from ℐ. Inferring the expectation quickly
becomes computationally intractable as the number of unique items
in ℐgrows, if done naïvely, and unless we take extra care. To make this
inference tractable in practice, we use the following two key computa-
tional tricks.

The first trick is to factorize the distribution ?( over independent
subsets of ( [118].

Example 2.1. As an example, suppose that our dataset - is over items
ℐ = {0, 1, 2, 3, 4}. Without the trick above, we have to sum over
|Ωℐ | = 2ℐ = 32 transactions, regardless of (. Now suppose that
( = {01, 23, 34}. Assuming a pairwise disjoint partitioning of ( into
(̄1 = {01} and (̄2 = {23, 34}, we can factorize ?( as ?(̄(G) = ?(̄1(G′1) ×
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?(̄2(G′2). To infer this factorized distribution, we only need to consider
|Ω01 | + |Ω234 | = 12 transactions. Moreover, we can skip any factor
distributions ?(̄8 that are irrelevant for inferring G (when G′

8
= ∅). In

the above example, for G = 24, we only have to infer ?(̄2 , as ?(̄1 can be
ignored.

That is, we partition ( into pairwise disjoint subsets (̄1 , . . . , (̄:

of ( that contain statistically independent pattern sets such that ( =⊔
(̄8 . As the subsets are statistically independent, we can factorize

the expectation ?((G) =
∏

8 ?(̄8 (G′8) into the product of independent
expectations, where we infer each term ?(̄8 for the G′

8
= C ∩ (⋃G∈(̄8 G)

subset of G which is covered by elements from (̄8 .
This factorization simplifies not only the inference of ?, but it also

reduces the number of coefficients � per factor, thus shrinking the size
of the convex problems drastically. As an additional benefit, factorizing
thus immediately addresses the relatively slow convergence rate of
GIS when the problems are sufficiently large.

The second trick partitions every Ω into sets of equivalent itemsets,
where a pair D, E ∈ Ω is equivalent if ?(D) = ?(E). For each class
of equivalent itemsets, we only have to infer the maximum entropy
probability 58(G) once, and then we can scale the result by the size of
the equivalence class. The computation of equivalence classes can be
done efficiently in practice [118].

2.4 The Pattern Composition Problem

Having introduced the maximum entropy distribution as our work-
horse, we are now ready to define our problem. Starting informally, our
goal is to discover a partitioning Π of - by its characteristic pattern
distributions, whose characteristics and commonalities we seek to
identify in terms of informative patterns. That is, we aim to decompose
the dataset - into disjoint subsets -1 , . . . , -: , such that every subset
-9 ⊆ - has a significantly different pattern distribution ? 9 , which we
characterize in terms of informative patterns.

We achieve this goal in two steps. Firstly, for a given partitioningΠ,
we work under the assumption that partitions are pairwise indepen-
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dent. This allows us to introduce a distribution ? 9 for each partition
-9 ∈ Π. Using the maximum entropy principle for our distributions,
we need to select their constraints in the form of patterns ( 9 ⊆ Ω and
their frequencies @ 9 in partition -9 . In brief, for a given partitioning
Π, we want to identify a succinct set ( 9 ⊆ Ω of patterns per part. Sec-
ondly, given a set of patterns ( ⊆ Ω, we seek to identify the partition
Π ∈ +(-) such that each ? 9 has a characteristic distribution, given
patterns in (.

As neither ( nor Π is given to us for free, we jointly seek a decom-
position Π ∈ +(-) of -, a succinct, non-redundant set of patterns (,
and an assignment matrix � that associates patterns to groups in Π,
such that we maximize the regularized likelihood

ℓ (Π, (, �) = −
∑
-9∈Π

log ?(-9 | ( 9) + A(Π, (, �) .

Here, ( 9 ⊆ ( is the subset of ( that � indicates to be relevant for -9 ,
and A(Π, (, �) is a regularization term that steers the problem away
from trivial solutions, such as decomposing the data into singleton
groups or including every possible pattern.

Regularization for Informative Patterns Our goal is to discover the maxi-
mally succinct,maximally non-redundant pattern set ( of characteristic
patterns. We say that a pattern G is informative for - with respect to
( if we see a significant increase in likelihood if we include G in (. To
determine whether a pattern is informative about -, we use a model
selection criterion. Here, we opt for BIC as it is simple, efficiently com-
putable, and—as we will see—works well in practice [158]. For a single
group, we have |( | degrees of freedom (df), and hence,

A(() = 1
2 |( | log |- | .

It is straightforward to generalize the above to multiple groups.
Given a partitioning Π with : groups and a pattern set (, we need
to determine which patterns G ∈ ( are characteristic for which group
-8 ∈ Π. This is what our assignmentmatrix� ∈ {0, 1} |( |×|Π| is for. It is a
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binarymatrix over groups and patterns, where �8 9 = 1 if pattern G8 ∈ (
is informative for group-9 . The set of patterns that are informative for a
group-9 is defined as ( 9 = {G8 ∈ ( | �8 9 = 1}. If a pattern is informative
for multiple groups, we call it common or shared among those groups.
For multiple groups, we need account for the assignment matrix �

(|( | · |Π| df), the coefficients � for |Π| distributions ([|( | + |ℐ|] · |Π| df),
and the partitioning as label per data point (|- | df, constant), which
amounts to

A(Π, (, �) = 1
2 [|Π| · (2 |( | + |ℐ|) + |- |] log |- | ,

as our BIC cost A for multiple groups. With the BIC score now fully
defined, we combine the above into our the problem statement.

Problem 2.1 (The Pattern Composition Problem). Given a transac-
tional dataset - over items ℐ, our goal is to jointly discover
1. the partitioning Π ∈ +(-) of - into the fewest parts,
2. the smallest pattern set ( ⊆ Ω, and
3. the assignment matrix � ∈ {0, 1} |( |×|Π|
such that

ℓ (Π, (, �) = −
∑
-9∈Π

log ?(-9 | ( 9) + A(Π, (, �) ,

is minimal.

Unsurprisingly, this is a difficult problem with a very large search
space. Firstly, there exists a Bell number �|- | of possible partitioningsΠ.
Secondly, the number of possible pattern sets is doubly exponential in
the number of unique items in -, as ( ∈ 22ℐ . Finally, the joint objective
does not exhibit structure that we can exploit directly for an efficient
search, i.e., it is neither (anti-) monotone nor submodular. This raises
the question: Can we still efficiently discover high-quality solutions in
practice? The answer is affirmative—as we shall demonstrate in the
following.
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2.5 Algorithms

To efficiently discover good solutions to the pattern composition prob-
lem in practice, we separate the problem into two parts and take an
alternating optimization approach. That is, starting from a partitioning
�0 in which all of - is in one part, we iterate between the following
two steps until convergence. First, given a partitioningΠ, we efficiently
discover a high-quality pattern set ( and assignment matrix �. Sec-
ond, given a pattern set (, assignment matrix �, and partitioning Π,
we discover a refined partitioning Π′ that improves the value of our
objective function.

Below, we discuss each of these steps in turn.

2.5.1 Discovering Patterns given a Partitioning

The first problem we consider is that of discovering a high-quality set
of informative patterns ( ∈ 2Ω and assignment matrix � for a given
partitioning Π ∈ +(-). Like our overarching problem, this problem
is also too hard to solve exactly: There exist doubly exponentially
many pattern sets, and our hard-to-compute score does not show any
structure we can exploit. We hence choose to approximate the optimal
result through an iterative greedy approach.

For a single dataset, Mampaey, Vreeken, and Tatti [118] showed
that finding the set ( with minimal ℓ is equivalent to finding the set
that has the highest gain in likelihood in comparison to the empty
pattern set (∅. That is, minimizing

ℓ 9(() = −
∑
G∈-9

log ? 9(G)

is equivalent to maximizing the information divergence

arg max
(

D (?( ‖ ?∅) (2.5.1)
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measured as the Kullback-Leibler (KL) divergence

D(@‖?) =
∑
G

@G log(@G/?G) . (2.5.2)

This allows us to obtain a greedy solution to Eq. (2.5.1), which is equiv-
alent to iteratively minimizing ℓ 9(() directly. Our algorithm iteratively
selects a candidate G ∈ � from the set of candidates � with the highest
marginal gain. To ensure that this procedure (under idealized circum-
stances) produces a result that is close to the optimum, we bound the
error of our greedy solution.

Lemma 2.1. Eq. (2.5.1) is a Submodular Function Maximization problem.
The greedy solution ( is in the 4−B/B

∗-radius of the optimal solution (∗,
where B = |( | and B∗ = |(∗ |.

To prove this, we use the framework of submodular function opti-
mization, beginning with Theorem 6.1 from Mampaey, Vreeken, and
Tatti [118].

Theorem 2.1 (Theorem 6.1 [118]). For the given consistent distribution
@ which has same support as ?(, the following holds true.

arg min
G∈Ω

ℓ (- | (8 ∪ {G}) = arg max
G∈Ω

D (?(8∪G ‖ @) ,

In other words, the candidate with the highest marginal likelihood
gain is identical to the candidate with the highest divergence,

5 (() = D (?( ‖ @) .

This function is monotonic and submodular.

Proof (Monotonicity). We write the polytope of feasible distributions ?
as

P( ≡ {? ∈ Ω→ [0, 1]|
∑

? = 1, ?G = @G∀G ∈ (} .

By consistency of @, we know that P(∪{G} ⊆ P(. By tightening the
constraints around ? for any G ∈ 2) , we are reducing the distance
between any ? ∈ P( and @, and hence 5 (() ≥ 5 (( ∪ {G}). �
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Note that 5 is not necessarily strictly monotonic, since G might not
carry additional information at all, and hence, P(∪{G} = P(. However,
this is not a problem, and in practice, we would not consider adding
these uninformative candidates to our solution anyway.

Proof (Submodularity). A function 5 is a submodular set function if for
all ( ⊆ ) ⊆ 2) , it holds that

5 (( ∪ {G}) − 5 (() ≥ 5 () ∪ {G}) − 5 ()) ,

or equivalently [94], for all (, ) ⊆ 2) ,

5 (( ∩ )) + 5 (( ∪ )) ≤ 5 (() + 5 ()) .

With this definition,we can derive that theKullback-Leibler divergence,
which defines our objective function, is submodular:

5 (( ∪ )) + 5 (( ∩ )) = D(?(∪) ‖ @) +D(?(∩) ‖ @)
≤ D(?( ‖ @) +D(?) ‖ @)
−D(?(∩) ‖ @) +D(?(∩) ‖ @)

= D(?( ‖ @) +D(?) ‖ @)
= 5 (() + 5 ()) .

Here, we factorized the divergence between ?(∪) and @ into the diver-
gences of ?( and ?) and subtracted the divergence to the distribution
?(∩) concerned with the intersection. �

Proof (Quality of Greedy Approximation). Observe that inserting patterns
(8 into the optimal sufficient statistics (∗ does not gain information, i.e.,
5 ((∗) ≤ 5 ((∗ ∪ (8). Therefore, we can simplify the term 5 ((∗ ∪ (8). For
this, we expand the right-hand side by a sequence of terms excluding
iteratively more optimal elements from (∗. That is, letting : = B∗ = |(∗ |,
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we consider

5 ((∗ ∪ (8) + 5 ((8 ∪ (∗ \ ∅) − 5 ((8 ∪ (∗ \ ∅)

+ 5 ((8 ∪ (∗ \ {G∗:}) − 5 ((8 ∪ (∗ \ {G∗:})

+ 5 ((8 ∪ (∗ \ {G∗:−1 , G
∗
:}) − 5 ((8 ∪ (∗ \ {G∗:−1 , G

∗
:})

. . .

+ 5 ((8 ∪ (∗ \ (∗) − 5 ((8 ∪ (∗ \ (∗)

until we reach the final term 5 ((8) = 5 ((8 ∪ ((∗ \ (∗)) of the empty
set. In other words, we create a sequence of canceling term pairs by
shrinking (∗ until it is empty. Next we simplify this expansion by
reordering terms, in such a way that neighbors differ by one element
(see underlining). After reordering the terms, and defining (∗	 9 =

(∗ \ {G∗1 . . . G∗9}, we obtain

5 ((∗ ∪ (8) = 5 ((∗ ∪ (8) − 5 ((∗ ∪ (8 \ ∅) + 5 ((8 ∪ ((∗ \ (∗))
+

∑
9

5 ((8 ∪ (∗	 9−1) − 5 ((8 ∪ (∗	 9)

= 5 ((8) +
∑
9

5 ((8 ∪ (∗	 9−1) − 5 ((8 ∪ (∗	 9) .

Using 5 ’s submodularity, we bound the residuals 5 ((8 ∪ (∗	 9−1) <

5 ((8 ∪ {G∗9}) and 5 ((8 ∪ (∗	 9) < 5 ((8) to then obtain

5 ((∗) ≤ 5 ((8) +
∑
9

5 ((8 ∪ (∗	 9) − 5 ((8 ∪ (∗	 9−1)

≤ 5 ((8) +
∑
9

5 ((8 ∪ {G∗9}) − 5 ((8) .

In the 8th iteration, we denote the candidate with the highest marginal
gain as Ĝ8 , and we define (8+1 = (8 ∪ {Ĝ8}. Bounding 5 ((8 ∪ {G∗9}) ≤
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5 ((8+1), we simplify further as

5 ((∗) ≤ 5 ((8) +
∑
9∈[:]

5 ((8 ∪ {G∗9}) − 5 ((8)

≤ 5 ((8) +
∑
9∈[:]

5 ((8+1) − 5 ((8)

= 5 ((8) + : · ( 5 ((8+1) − 5 ((8)) .

Now combining the left-hand side and the right-hand side, we get the
following simple bound on the optimal solution:

5 ((∗) ≤ 5 ((8) + : · ( 5 ((8+1) − 5 ((8)) ,

for which a sequence of equivalences leads step-by-step to the bound
stated in Lemma 2.1:

1/: ( 5 ((∗) − 5 ((8)) ≤ 5 ((8+1) − 5 ((8)
⇔ 1/: 5 ((∗) + (1 − 1/:) 5 ((8) ≤ 5 ((8+1)
⇔ (1 − 1/:) 5 ((8) ≤ 5 ((8+1) − 5 ((∗) + (1 − 1/:) 5 ((∗)
⇔ 5 ((∗) − 5 ((8+1) ≤ (1 − 1/:)( 5 ((∗) − 5 ((8))
⇔ 68+1 ≤ (1 − 1/:)68 .

By induction, for step ;, we bound 6; ≤ (1−1/:); 60. Using (1+ G) ≤ 4G ,
we derive 6; ≤ 4−;/: 60, which further simplifies to

5 ((∗) − 5 ((;) ≤ 4−;/: 5 ((∗) ,

as 60 ≤ 5 ((∗). In otherwords, the solution (; lieswithin the 4−;/: radius
of 5 ((∗), such that denoting : = |(∗ | = B∗ and ; = |( | = B for ( = (; , we
obtain the bound as stated in Lemma 2.1. By setting ; = :, for example,
our solution lies within the 1/4 ≈ 0.368 radius of (∗. Setting ; = 2:,
however, our solution lies within the 0.135 radius. For our practical
purposes, this bound is good enough. �

Summarizing the above, we now know that maximizing the di-
vergence D is a submodular function maximization problem that can
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be solved with approximation guarantees, and that the estimates of
greedily optimizing ℓ and D are equivalent.

However, the greedy algorithm to minimize Eq. (2.5.1) is still pro-
hibitively slow in practice: It repeatedly has to evaluate the Kullback-
Leibler divergences D(?( ‖ ?(∪{G}) to measure the information gain
of adding an itemset G to (, and this computation relies on the com-
putationally costly inference of frequencies using ?. Nonetheless, this
formulation does allow us to derive a computationally efficient admis-
sible heuristic.

To reduce the complexity of computing D, we want to reduce the
number of queries it makes to ?. In its full computation, it considers
the frequencies of both pattern G itself and its exponentially many
subsets H ⊂ G. Ignoring these subsets permits the lower bound

ℎ(G | () = =@(G) log @(G)/?((G) ,

where we use the fact that ?(G | () is equivalent to @(G) for G ∈ (.
Interpreting this score, we see that ℎ favors patterns with the fol-

lowing three properties. Firstly, ℎ favors sufficiently frequent patterns
(i.e., with high @(G)). Secondly, ℎ favors insufficiently well-explained
patterns (i.e., with high difference @(G) − ?((G)). That is, because ℎ is
‘large’ whenever @(G) � ?((G), we favor candidates that increase our
likelihood significantly. Upon closer inspection, we notice that this
part of ℎ essentially decides whether

@(G) 0 ?((G)

in terms of information gain under our BIC cost. In other words, we see
that ℎ probabilistically soundly decides on the independence between
G and elements in ( via @(G) and ?((G), if ? is faithful to the available
information in @(. For example, if this holds, then ℎ decides whether
@(01) ≈ @(0)@(1) or not, for any two elements 0 ≠ = ∈ ℐ. To ensure this
probabilistic interpretation, we need to provide our distributions ? 9
with the available information for each element in ℐ, or in other words,
the marginal distribution of each item. Combined with the maximum
entropy property of @(G) = ?((G) ∀G ∈ (, this ensures probabilistically
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sound decision-making using ℎ. In practice, it suffices to include all
elements from ℐ in each ( 9 implicitly.

Due to the decomposition of the data, this admissible heuristic
easily generalizes to an admissible normalized lower-bound informa-
tion gain over multiple groups ℎ(G) as E(9

[
ℎ(G | ( 9)

]
. In general, our

pattern-set discovery strategy is hence as follows. In the current itera-
tion 8, the last pattern set (8−1 is known and fixed. We use ℎ to select
that itemset G in the set of candidates � ⊆ Ω which has the highest
marginal gain. That is, until convergence of ℓ , we iterate

(8 ← (8−1 ∪ arg max
G∈�

ℎ(G | (8−1) .

This leaves us to specify the candidate set �. Naïvely, we could set � =

Ω. However, this is not practical:Ω is typically prohibitively large, and
it contains exponentially many candidates that will be uninformative
with regard to patterns in (. To copewith this search space, we propose
a more effective search strategy, that takes into account what ( can
already explain well. In a nutshell, we iteratively generate candidates
by merging pairs of patterns G, H ∈ ( ∪ ℐ into a candidate G ∪ H ∈ �.
Because � contains candidates with more than one element, we need
to ensure that our heuristic ℎ can (at least) probabilistically soundly
assess dependencies between pairs of singletons. To do so, we need to
make available the marginal distributions for each singleton ℐ to each
? 9 , i.e., we need to provide singletons ℐ to each set ( 9 = ℐ for every
-9 ∈ Π.

However, we only want to consider the subset of candidates that
will surely reduce our objective ℓ . Those are candidates I ∈ � for
which ℎ(I | () > A(I), where A(I) = A(Π, ( ∪ {G}) − A(Π, (). Similarly,
we assign a candidate 8 to a group 9 if it yields a gain in ℓ 9 , i.e.,

�8 9 = 1 ⇐⇒ A 9(G8) < ℎ(G8 | ( 9) , (2.5.3)

where the cost A 9(I) is A(Π, (, �′) − A(Π, (, �). Here �′ is equivalent to
�, but with �8 9 = 1.

Putting the above together, we have algorithm Desc, whose pseu-
docode we give as Algorithm 2.2. In short, starting with the singleton-
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Algorithm 2.2: Desc for Characterizing Groups
Input: Data -, partitioning Π

Output: Distributions ? 9 , pattern set (, assignment �
1 (← {G ∈ ℐ}
2 ? ← infer ?(· | ( 9) for each group -9

3 �← {I = G ∪ H | G, H ∈ (, A(I) < ℎ(I)}
4 while � ≠ ∅
5 I ← arg maxG∈� ℎ(G)
6 �′← according Eq. (2.5.3) wrt I
7 (′← ( ∪ {I} if I assigned to a group
8 ?′← infer ?(· | (′

9
) for each group -9

9 if ℓ (Π, (′, �′) < ℓ (Π, (, �)
10 �← �′; (← (′; ? ← ?′

11 �← {I = G ∪ H | G, H ∈ (, A(I) < ℎ(I)}
12 else
13 �← � \ {I}
14 return (?, (, �)

only model (ll. 1–3), we generate our initial batch of candidates � (l. 4).
We consider these candidates in descending order of ℎ (l. 6) and evalu-
ate each I ∈ � (l. 7–9). If the objective improves, we keep the candidate
(ll. 11–12)—otherwise, we reject it (l. 13).

The computational complexity of Desc depends on the number
of candidates in �, which is quadratic in the number of patterns in
(, and can grow up to |Ω|. In practice, however, the properties of the
maximum entropy distribution together with the BIC regularizer keep
the size of ( small, in the order of tens to hundreds of patterns, say
(max. The worst-case complexity of Desc is dominated by the inference
of the distributions ? 9 , and is hence in PP. The average complexity �

of ? is much lower [118], however, in that the average complexity of
Desc is O(� · |(max |2).

2.5.2 Discovering the Composition

Next, we consider the orthogonal problem of discovering a high-
quality partitioning Π given a pattern set ( and assignment matrix �.
As there is no effective exact search for the optimal partitioning, we
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again rely on heuristics. In particular, we take a top-down approach,
where we iteratively refine the current partitioning Π using the pat-
terns in (.

Our strategy is based on the idea that significantly different distri-
butions of patterns are an indicator for the presence of latent factors of
unknown groups. In other words, we say that a group was generated
using a latent data source that left a distinctly distributed fingerprint
of patterns in the data. By narrowing down a given group to a subset
with a distribution that stands out from the rest of the data, we can
refine the current partitioning to identify these latent parts as separate
groups. We can also use this observation in reverse: When we narrow
down a group and find that the pattern distribution we so obtain is
not significantly different from the remainder or the other groups, we
do not want this candidate group to be part of our solution.

We write ?G
9
for the pattern distribution we infer on that part of

group -9 where pattern G occurs. Likewise, we consider ? 6G
9
over that

part of -9 where G does not occur. Wemeasure the divergence between
two distributions with the same support using the Jensen-Shannon
divergence

JS(%, &) = D (% ‖ ") +D (& ‖ ") ,

where " = (% +&)/2. The scaled JS(?G
9
, ?
6G
9
) statistic is asymptotically

"2 distributed with |( | − 1 df [124]. From this, we get a ?-value for
a single test. However, as we test many hypotheses, i.e., candidate
refinements, we need to control for multiple hypothesis testing. Hence,
we correct for the family-wise error rate (FWER) by adjusting the
significance level 
 using Bonferroni correction [25].

For a given ( and for any partitioning Π ∈ +(-), we write �(Π, ()
as the assignment matrix that characterizes the partitioning Π with
( and minimizes our objective function with respect to Eq. (2.5.3).
Formally, for a given (, the problem of discovering groups is

arg min
Π∈+(-)

ℓ (Π, (, �(Π, ())

subject to ?8 , ? 9 significantly JS-divergent ∀8 ≠ 9
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This is, again, a hard problem, and again, the search space is large
and unstructured. We therefore employ a greedy top-down approach.
Starting with a single group -9 ∈ Π, we decompose -9 into two subset
-1

9
and -2

9
such that these are significantly differently distributed from

each other as well as from the other groups in Π. Following the notion
that latent factors are identifiable by distinct pattern distributions, we
start the refinement process of a given group -9 ∈ Π with a pattern
G ∈ ( × ℐ by separating a group into two children

-G
9 ≡ {C ∈ -9 | G ⊆ C} and -

6G
9
≡ -9 \ -G

9 .

The corresponding refinement of Π is written as

refineΠ(G, 9) ≡ {Π′, �(Π′)} ,

where the new partitioning Π′ is Π \ {-9} ∪ {-G
9
, -
6G
9
}.

As real data is noisy and distributions are complex, it is unlikely
that an individual pattern G perfectly identifies a latent group. That
is, after splitting a group, it may be that the overall assignment of
transactions to groups is suboptimal with regard to the likelihood. Just
like in the EM algorithm, we therefore iteratively reassign transactions
to those groups where they achieve the highest likelihood. That is, in
each iteration, we ensure for every C ∈ - that

C ∈ -ŷ ⇐⇒ ŷ = arg max
9∈[:]

?(C | ( 9) , (2.5.4)

re-estimate the distribution ?, re-compute �(Π, (), and repeat until
convergence. Starting with Π = {-}, we iteratively refine the current
partitioning by selecting the JS-significance refinement ofΠwith high-
est marginal gain, until convergence of ℓ . Formally, out of the set � of
candidates{

(9 , G) ∈ [:] × ( 9 ∪ ℐ
�� refineΠ(G, 9) is significant

}
, (2.5.5)
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Algorithm 2.3: Disc for Discovering the Composition
Input: Data -, significance threshold 

Output: Partitioning Π, pattern set (, assignment �

1 Π← {-}
2 (, �← Desc(-,Π)
3 �← according Eq. (2.5.5)
4 while � ≠ ∅ and ℓ has not converged
5 (, �← Desc(-,Π)
6 2 ← arg min2∈� ℓ (refineΠ(2), () cf. Eq. (2.5.6)
7 Π′, �′← refineΠ(2)
8 while ℓ has not converged
9 let Π′ satisfy Eq. (2.5.4)

10 �′← �(Π′) according to Eq. (2.5.3)
11 let (′

9
= {G8 ∈ ( | �′8 9 = 1}

12 ? ← infer ?(· | (′
9
) for each group -9 ∈ Π′

13 if ℓ (Π′, (, �′) < ℓ (Π, (, �)
14 Π← Π′, �← �′

15 �← according to Eq. (2.5.5)
16 else
17 �← � \ {2}
18 return (Π, (, �)

we select the refinement candidate that reduces ℓ most

arg min
(G,9)∈�

ℓ (refineΠ(G, 9), () . (2.5.6)

Putting all the above together, we have the Disc algorithm, whose
pseudocode we give as Algorithm 2.3. In a nutshell, starting from the
trivial partitioning Π = {-}, we characterize groups with patterns
usingDesc, use these patterns to find the best refinement ofΠ, reassign
the rows to optimize the likelihood, and only accept this refinement
if it is significant. We repeat this until convergence. Disregarding the
complexity of inferring our distribution, Disc scales linearly with the
size of the candidate set �. In the worst case, this means |Ω| × |- |.
However, since in practice, both ( and Π tend to be small, Disc is
feasible on real-world data.
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2.6 Related Work

The vast majority of the literature has been devoted to either finding
clusters of transactions or finding patterns that characterize a dataset.
Surprisingly, there exists no technique to discover the pattern composi-
tion of the data.

Our problem relates to mixture modeling [46], where data is mod-
eled as a mixture of several probability distributions. Mixture model-
ing, however, requires us to assume a probability distribution, whereas
the true distribution is unknown. Similarly, clustering [117] is related,
as it groups data points, but it relies on an assumed distance measure.
Additionally, in contrast to our approach, many existing approaches
are stochastic or require us to choose the number of groups up front,
and none characterize the commonalities and differences between the
groups in interpretable terms.

In this sense, co-clustering, also known as bi-clustering, is more
closely aligned with our goal. In co-clustering, we simultaneously
cluster rows and columns, and we can interpret the column cluster-
ing as an implicit characterization of row clusters. Moreover, there
exist parameter-free methods like information co-clustering [48] and
cross-associations [30]. However, these techniques only discover non-
overlapping rectangles in the data that are exceptionally dense or
sparse, rather than data groups with significantly different pattern
distributions.

Boolean matrix factorization [125, 127, 135] is closely related to our
problem and bi-clustering [132], in that it seeks to express the data
in terms of a pre-determined number of patterns. Although we can
use the available information to partition the data [42], this does not
necessarily result in significantly differently distributed groups. It is
also not clear how to choose the right number : of to-be-identified
patterns, although there exist strategies which involve various model
selection criteria [7, 8, 11, 67, 81, 82, 195]. In practice, the right choice
often results in a coarse-grained representation of the data that lacks
details. Our method, on the other hand, not only identifies the right
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number of patterns and significantly differently distributed groups, it
also provides the necessary details for groups.

There also exist methods that can provide (post-hoc) explanations,
for example using a consistent set of decision rules for predicting a
single class [97], multiple classes [34, 147, 148], or a clustering [32,
89]. These rules together characterize the decision boundary for a
cluster, whereas we are interested in those patterns that characterize
the similarities and differences between groups. In other words, rather
than explaining the clustering after the fact, our models directly discover
and justify the clustering.

By nature, pattern mining methods are strongly related to Disc.
Frequent pattern mining [5, 133] is well-known to discover far too
many patterns for the result to be interpretable. opus [187, 189] curbs
the pattern explosion through the use of statistical tests. Slim [164], iim
[59], and mtv [118] are examples of techniques that discover concise
and non-redundant pattern sets. These methods all only provide a
single pattern set for a single database. DiffNorm [27] is the only
method we know that, for a given data partitioning, can characterize
differences and similarities between the pattern distributions.

2.7 Experiments

In our experiments, we evaluate Desc and Disc on synthetic data as
well as on 17 real-world datasets that together span a wide variety of
domains, sizes, and dimensionalities. All datasets we use are publicly
available. We took BMS VW, Adult, Page Blocks, DNA Ampl., Letter
Recog. Anneal, MCADD, Led 7, Mammals, ICDM Abstracts, Waveform,
Plants from the UCI Machine Learning Repository and Chess, Mush-
room, Pumsb* from the Mining Dataset Repository.¹ The DQ dataset
of lemmatized Deep-Learning and Quantum-Theory arXiv abstracts
can be found in our online material. In Table 2.1, we provide basic
information about the datasets and the minimum support used in our
experiments. We implement Disc in C++, run experiments on a 12-Core
Intel Xeon E5-2643 CPU, and report wall-clock time.

¹https://archive.ics.uci.edu/ml, http://fimi.ua.ac.be/data/
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In many of the following experiments, we compare the likelihood
ℓ of the estimated model with the likelihood ℓ ∅ of the initial model,
that is, (∅ = ℐ, for a single groupΠ = {-}. We measure the likelihood
ratio ℓ/ℓ ∅, in percent, where a lower value corresponds to a higher
regularized likelihood of the data under the model. In all experiments,
we use the same significance level 
 = 0.01.

Table 2.1: The sizes, dimensionality, number of classes, and the minimum
support of patterns for datasets used in our experiments.

Dataset |- | dim- : Min Support

BMS WV 1 59,602 497 1 32
Mushroom 8,124 23 2 10
Adult 48,842 15 2 5
Page Blocks 5,473 11 5 1
DNA Amp. 4,590 392 1 5
Chess Big 3,196 37 18 319
Let. Recog. 20,000 17 26 1
DQ 9,993 433 1 99
Anneal 898 71 5 1
Pumsb Star 49,046 7,116 1 12,500
MCADD 31,924 198 2 50
Chess 28,056 7 2 5
Led 7 3,200 8 10 40
Mammals 2,183 121 1 5
ICDM 859 3,932 1 10
Waveform 5,000 22 3 5
Plants 34,781 68 1 5

2.7.1 Describing Groups

First, we study our pattern-set miner Desc on real-world datasets.
Before we characterize datasets for a given partitioning, we start with
the special case of discovering a pattern set for a given composition.
In this setup, we compare with mtv [118] and DiffNorm [27]. For
efficiency reasons, these methods only consider frequent patterns, i.e.,
patterns for which @(I) > � according to a user-defined minimum
frequency threshold � (minimum support). It is trivial to constrain
Desc to consider frequent patters only, and to compare fairly, we use
the same thresholds for all methods in the following experiments.
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We consider 9 labeled datasets, which we partition based on their
class labels. DiffNorm characterizes a pre-partitioneddatasetΠ, whereas
mtv does not make use of any partitioning, i.e., it can only be applied to
a complete dataset. As Desc can do both, we apply it to the partitioned
data where a partition is available, and otherwise to the complete data.

In Figure 2.1a, we show that mtv and Desc discover pattern sets
in the order of tens of patterns, while the pattern sets returned by
DiffNorm are often one order of magnitude larger. In Figure 2.1b, we
report the wall-clock runtime of all methods.We see that Desc requires
an order of magnitude less time than mtv to achieve its results. On
average, Desc requires just 13% of the runtime of DiffNorm, and only
0.24% of the runtime of mtv. As mtv and Desc optimize the same score,
we can fairly compare their results. In Figure 2.1c, we show that Desc
outperforms mtv in almost all cases when measured by the likelihood
ratio of its results.

BMS WV 1
DNA Amp.

DQ
Pumsb Star

Mammals
ICDM
Plants

DiffNorm MTV Desc

100 101 102 103 104 105
Mushroom

Adult
Page Blocks

Chess Big
Let. Recog.

Anneal
MCADD

Chess
Led 7

Waveform

(a) Number of Patterns |( |
102103104105106107

(b) Elapsed Time [ms]

0 25 50 75 100
(c) Likelihood Ratio [%]

Figure 2.1: Desc efficiently discovers concise pattern sets. We show the num-
ber of discovered patterns (log scale) in Figure 2.1a, the runtime (seconds,
log scale) in Figure 2.1b, and the likelihood ratio ℓ/ℓ∅ (lower is better) in
Figure 2.1c. Each subfigure consists of two panels for unlabeled data (top
panel) and labeled data (bottom panel).
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2.7.2 Discovering the Composition

Now, we study the full algorithm: Simultaneously discover both the
pattern sets and the partitioning of the dataset using Disc. First, we test
and verify Disc on synthetic data with 128 items in ℐ. For this, we gen-
erate synthetic datasets such that we have access to the ground truth.
In each trial, we randomly sample a dataset -, containing 1, 2, 4, 8
groups. For each group -9 ∈ Π, we randomly generate and insert 5
characteristic patterns into ( 9 . For any disjoint pair -8 , -9 , we generate
3 shared patterns with probability of 20% that are inserted into both
(8 and ( 9 . Every pattern has a randomly chosen frequency associated
with it. Each group -9 consists of 256 rows. In each row, we insert
each pattern from ( 9 with its corresponding frequency uniformly at
random. Lastly, we introduce additive noise, by randomly inserting
items into each row independently with probability of 5%. For each
:∗, we sample 20 datasets and compare the ground-truth with Disc
and Desc. On average, Disc reaches a likelihood ℓDisc within 2% of the
ground truth, i.e., ℓDescΠ∗ ± 2%, and always recovers the ground-truth
number of groups :∗.

Having verified that Disc works on synthetic examples, we now
study Disc on the real-world datasets. To do so, we measure how
similar data within a group is, using ℓ , and how differently distributed
the groups are, using the pairwise symmetric KL-divergence (PSKL)

1
2
(:
2
) ∑
8 9∈([:]2 )

D
(
?8 ‖? 9

)
+D

(
? 9 ‖?8

)
,

which averages the divergence between pairs of distributions.
Next, we compare Disc to clustering. While options include :-

means, and Expectation-Maximization, these are not a good fit for our
case as they are stochastic, require a number of clusters, and neither is
the concept of a centroid well-defined on discrete spaces, nor is it clear
what efficiently queryable distribution to use. In contrast, Dbscan [53]
relies on a distance measure, which we can appropriately define as

3(B, C) = 1 − |B ∩ C | /max(|B | , |C |) .
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Our approach is as follows: First, we cluster the dataset using Db-
scan and get Π ∈ +(-). Next, we use Desc to describe the clusters
Π post-hoc by means of (, ?, and �(Π, (). Since Dbscan relies on a
hyperparameter, we optimize ℓ using a grid search over 7 &-candidates,
and we do not constrain cluster sizes. We call this algorithm Dbdesc3.
Similarly, we define Dbdesc3′ , which uses a different distance measure

3′(B, C) = 3(2(B), 2(C)) ,

where 2(C) contains patterns from ( that are subsets of C, i.e.,

2(C) = {B ∈ ( | B ⊆ C} .

We apply Disc, Dbdesc3, and Dbdesc3′ to all 17 datasets without
using any class labels, and summarize results in Figure 2.2. Note,
for example, the much better likelihood ratio of Disc’s composition
in comparison to Dbdesc3 and Dbdesc3′. Overall, we see that Disc
discovers diverging groups that have higher likelihood in comparison
to the cluster-based composition from Dbscan.

We further compare Disc with DiffNorm, Desc on the full data,
and DescΠ given the class-label decomposition on 9 labeled datasets,
showcasing the results in Table 2.2. Almost always, we observe a signif-
icantly lower PSKL-divergence between classes than between groups.
Additionally, Disc’s model usually has a significantly lower objective
function ℓ than the class-based result from Desc. This suggests that
classes are not always a good indicator for groups. Furthermore, we
see a higher likelihood for decomposed data in comparison to Desc
without decomposing the data on class labels, shown in Table 2.3.
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BMS WV 1
DNA Amp.

DQ
Pumsb Star

Mammals
ICDM
Plants

Dbdesc3 Dbdesc3′ Disc

100 101 102 103 104
Mushroom

Adult
Page Blocks

Chess Big
Let. Recog.

Anneal
MCADD

Chess
Led 7

Waveform

(a) Divergence

0 25 50 75 100
(b) Likelihood Ratio [%]

100 101 102 103

(c) # Components

Figure 2.2: Disc discovers informative and interpretable compositions. We
show the PSKL (higher is better) in (a), the likelihood ratio ℓ/ℓ∅ (log scale,
lower is better) in (b), and the number of discovered groups (log scale) in
(c). Each subfigure consists of two panels for unlabeled data (top panel) and
labeled data (bottom panel).
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Table 2.3: For 8 unlabeled datasets without class labels, for Desc and Disc,
we report the number of patterns (|( |) and runtime (s), and for Disc, we ad-
ditionally report the number of groups discovered (:̂), the gain in likelihood
(ℓ/ℓ∅) in percent, and the PSKL-divergence between the discovered groups.

Desc Disc

Dataset |( | ℓ/ℓ∅ :̂ |( | ℓ/ℓ∅ PSKL Time

BMS WV 1 16 97.1 25 28 84.3 14.8 3h21m
DNA Amp. 76 73.1 3 84 73.6 50 1m6s
DQ 43 96.9 5 55 91.3 51.4 11m45s
ICDM 16 99.5 1 16 99.5 0 2m0s
MCADD 95 94 18 104 91.2 41.2 1h13m
Mammals 59 80.4 9 64 66.1 78.1 7m34s
Plants 58 61.2 52 60 42.4 125.3 13h5m
Pumsb Star 53 84.9 10 53 64.6 268.4 1h34m

2.7.3 Qualitative Study

Finally, we study the interpretability of the composition discovered by
Disc and evaluate it qualitatively by manually inspecting the pattern
composition of two datasets.

European Mammals

First, we consider the Mammals dataset provided by the European
Mammal Society. This dataset consists of presence records of 124 Eu-
ropean mammals within areas of 50-by-50 kilometers. Additional geo-
graphical information was not used during the experiments.

Disc discovers 9 groupswith 64patterns in total.We geographically
depict the groups it identifies in Figure 2.3. Although Disc does not
know the spatial locations of the data points, it discovers (almost
completely) contiguous areas in Europe that correspond to ground-
truth habitats. Moreover, the patterns it discovers for these groups
are meaningful: For example, although the combination of species
as Wolverine and Norway Lemming are highly characteristic for both
“Scandinavian” groups, their distribution differs between these groups.
For the Iberian Peninsula, the Common Genet and Mediterranean Pine
Vole are discovered to be very characteristic. The habitation zone of the
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Figure 2.3: Disc discovers meaningful partitions. We show results of Disc
(left) on the Mammals dataset. The 9 groups represent contiguous areas that
correspond to known habitats. Dbscan (right) essentially only discovers
Ireland.

latter spreads to Southern France, and this is reflected by this pattern
being shared between these two groups. Further, Disc discovers that
the co-occurrence of Eurasian beaver, Red squirrel is descriptive across
Europe. Last but not least, Disc finds that the Eurasian Harvest Mouse,
European Mole, Eurasian Water and Pygmy Shrew, Stoat, Field Vole are all
very common across Europe, and includes them in a single pattern
shared among most groups spanning Europe.

Topic Analysis

Next, we study the composition of theDQ dataset. This is a dataset that
consists of 10 000 abstracts crawled from arXiv. Half of the abstracts
is from papers on Deep Learning, the other half is from papers on
Quantum Theory.

From these abstracts, we remove stop words, extract and lemma-
tize nouns and verbs, erase words with a frequency lower than 0.05,
and remove the class labels. Overall, we have a dataset over 433 items.
The composition that Disc discovers on this data consists of 5 groups
and 224 patterns. The “Deep Learning” class is covered by 3 groups,
spanning 36%, 53%, and 10% of the papers on deep learning, respec-
tively. The “Quantum” class consist of 2 groups which cover 39.9%
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Table 2.4: Disc discovers interpretable compositions. We show a selection
from the pattern composition discovered on the Deep Quantum dataset. Over-
all, Disc discovers 223 characteristic and common patterns as well as 5 groups,
two ofwhich consist ofmostly “QuantumPhysics” papers, and three ofwhich
of mostly of “Deep Learning” papers.

Quantum Physics

(1,2 local entanglement, Bell inequality, standard model
(1 standard approach, learn data, research paper
(2 probability distribution, computer computation, search algorithm

Deep Learning

(3,4,5 neural networks, hidden layer, computer vision
gradient descent, adversarial attack

(3,4 information prediction, space representation
(3 neural processing, reinforcement environment agent
(4 feature representation, learning challenge, training optimization

Commonalities

(1–5 experimental results, lower bound, Hilbert space

and 59.9% of the quantum papers. Overall, the groups have a total
purity of more than 99.5%. In Table 2.4, we give examples of patterns
discovered by Disc. Common patterns across all papers include experi-
mental results, lower bound, and Hilbert space, whereas a pattern such as
reinforcement agent environment is only characteristic for one group of
the deep learning papers.

2.8 Conclusion

We studied the novel problem of discovering the composition, that is,
a partitioning of the dataset and its description using locally character-
istic patterns and patterns shared across sets of groups. We formalized
this problem in terms of the family of maximum entropy distributions
over itemsets, and defined the best composition as the one that gives
the most succinct description of the data.

We introduced a highly efficient pattern miner for single and mul-
tiple datasets, Desc, to succinctly describe one or more data groups,
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Conclusion

beating the state of the art in descriptiveness, conciseness and runtime.
We also demonstrated how Desc can be used to describe the result of
a clustering algorithm. This allowed us to observe that jointly optimiz-
ing for interpretability and likelihood is doable in practice, and that
it can outperform clustering algorithms like Dbscan with a post-hoc
explanation.

Building on Desc, we developed Disc to discover the pattern com-
position of a dataset. Experimental evaluation showed that Disc ef-
ficiently discovers interesting, meaningful, and easily interpretable
pattern compositions from data. The data groups we identify are de-
scribed concisely, by characteristic and shared patterns. Disc explains
why there are groups in binary tabular data, what makes them special,
and what is common among them—via insightful patterns.
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3
Differentially Describing

Groups of Graphs

In the previous chapter, we sought insightful patterns in binary
tabular data with unknown groups, and we found such patterns in
the pattern composition of those data. Shifting gears toward a more
complicated, yet equally relevant data type, in this chapter, we will
seek insightful patterns in groups of graphs. In particular, this chap-
ter is motivated by questions like: How does neural connectivity in
autistic children differ from neural connectivity in healthy children
or autistic youths? What patterns in global trade networks are shared
across classes of goods, and how do these patterns change over time?
To answer such questions, we seek to differentially describe groups
of graphs: Given a set of graphs and a partition of these graphs into
groups, discover what graphs in one group have in common, how
they systematically differ from graphs in other groups, and how mul-
tiple groups of graphs are related. We refer to this task as graph group
analysis, which seeks to describe similarities and differences between
graph groups by means of statistically significant subgraphs. To per-
form graph group analysis, we introduce Gragra, which uses maxi-
mum entropy modeling to identify a non-redundant set of subgraphs
with statistically significant associations to one or more graph groups.
Through an extensive set of experiments on a wide range of synthetic

This chapter is based on the publication: Coupette, Dalleiger, and Vreeken [35].
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Differential Graph Group Descriptions

and real-world graph groups, we confirm that Gragra works well in
practice.

3.1 Introduction

Differentially describing groups of graphs lies at the heart of many
scientific and societal challenges. Neuroscientists, for example, want to
characterize brain activity in healthy subjects, elucidate how it differs
from brain activity in subjects diagnosed with certain disorders or
diseases (e.g., autism or Alzheimer’s), and investigate whether their
findings are the same across different groups of subjects (e.g., children,
adolescents, and adults; or men and women). Policymakers, security
experts, and epidemiologists alike could seek to understand patterns
of human mobility, be it to improve the resilience of traffic infrastruc-
ture to random failures and targeted attacks, or to curb the spread
of infectious diseases. And international economists might want to
investigate patterns of world trade, e.g., imports and exports between
countries, and ask how these vary across different years and product
classes.

We refer to the common task underlying these scenarios as graph
group analysis: Given a set of graphs and a partition of this set into
graph groups, succinctly summarize the commonalities and differences
between graphs in the same group, between graphs in different groups,
and between the relationships connecting the groups. In this chapter,
we formalize graph group analysis as a maximum likelihoodmodeling
problem, using significant subgraphs as graph patterns to factorize our
probability distribution. We introduce Gragra (Graph group analysis)
as an algorithm to solve this problem, which jointly discovers a set of
graph patterns and an assignment of these patterns to graph groups.

As a real-world example of graph group analysis, consider Fig-
ure 3.1. Here, we show the top shared (left) and specific (right) patterns
identified in resting-state functional brain networks of adolescentswith
and without autism spectrum disorder, where nodes in the graphs
correspond to brain regions, and edges signal strong connectivity be-
tween regions. On the right, patterns with red edges are characteristic
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L R L R

Figure 3.1: Gragradiscovers common and contrastive graphpatterns in noisy,
heterogeneous groups of graphs, capturing, e.g., systematic similarities (left)
and differences (right) between the functional brain networks of adolescents
with and without autism spectrum disorder. Here, nodes represent centers of
mass for brain regions from the AALAtlas, and edge color classes correspond
to significant subgraphs shared between (left) or specific to (right) groups,
with individual edges signaling strong connectivity between regions.

of autistic adolescents, and patterns with blue edges are characteristic
of non-autistic adolescents. They indicate over- and underconnectivity,
respectively, in the brains of autistic adolescents when compared to
typically developed controls. Although there is no consensus regard-
ing the relationships between autism and neural connectivity [79],
our method identifies graph patterns that permit neuroscientific inter-
pretation: For example, the dark blue pattern in Figure 3.1 indicates
underconnectivity between the visual cortex, responsible for process-
ing visual information, and the lingual gyrus, involved in vision and
word processing.

Graph group analysis is related to graph classification [e.g., 101], but
we are interested not only in what is different but also in what is similar
among our graph groups. Our task further shares some of its moti-
vation with significant subgraph mining [e.g., 168], graph summarization
[e.g., 105], and data clustering with graphs as data points [e.g., 130].
However, we focus on a complete characterization of a set of graphs
under a given partition—a cornerstone of scientific discovery involving
graph data.

The remainder of this chapter is structured as follows. After set-
tling our basic notation in Section 3.2, we describe the theoretical
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foundations of our method in Section 3.3 and introduce our algorithm
in Section 3.4. Having covered related work in Section 3.5, through
experiments on synthetic and real-world data, we demonstrate that
Gragra works well in practice in Section 3.6, before rounding up with
discussion and conclusions in Section 3.7.

3.2 Preliminaries

We consider a set G = {�1 , . . . , � |G|} of |G| node-aligned graphs �8 =

(+, �8)with = = |+ | nodes and<8 = |�8 | edges, omitting the subscripts
when clear from context. A partition Π = {G1 , . . . ,G:} is a set of :
non-empty subsets of G8 ⊆ G, called graph groups, of cardinalities
28 = |G8 |, whose disjoint union is G. Our graphs can be undirected or
directed, loopy or non-loopy, and unweighted, edge-labeled, or integer
weighted, where for the purposes of our model, we treat distinct edge
labels or edge weights as a set, of categories, and edges 4 ∈ �8 are
drawn from the set ℰ = + ×+ ×, of all possible weighted edges.

The empirical frequency of edge set G ⊆ ℰ in group G8 is

@8(G) = |{(+, �) ∈ G8 | G ⊆ �}| /28 ,

and we denote by +G the set of nodes incident with at least one edge
in G.

Observing that our edge sets contain discrete variables, we reuse
the maximum entropy distribution introduced in Section 2.3, thus
benefitting from an unbiased and information theoretically sound
probabilistic modelling. That is, we model the expected frequency of G
in G8 under a given set of edge sets ( ⊆ 2ℰ as ?8(G | () = E 5 [G | (] for
the maximum entropy distribution 5 corresponding to G8 .

3.3 Theory

We now lay the theoretical foundations of our method, introducing
our probabilistic model, our objective function, and our statistical test.
At a high level, our goal in graph group analysis is to discover a set (
of graph patterns, i.e., edge sets of connected subgraphs, and an association
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Theory

matrix � assigning graph patterns to graph groups, such that ( and
� together reveal the similarities and differences between graphs in
the same group, between graphs in different groups, and between the
relationships connecting the groups. A pattern is specific if we assign
it to only one graph group, and it is shared if we assign it to several
graph groups.We choosewhich patterns to include in ourmodel based
on the information we gain from them, testing whether this gain is
statistically significant to rule out spurious results.

To avoid redundancy, we assign a pattern G to a group G8 iff G is
informative for G8 , given what we already know about all groups. More
precisely, using G as a column index of � in a slight abuse of notation,
we set �8G = 1 iff G is informative for G8 under our current model ((, �).
We assess this by comparing the empirical frequency of G in group G8 ,
@8(G), to its expected frequency in that group under our current model,
?8(G | (8), where (8 = {G ∈ ( | �8G = 1}, and ?8 is obtained from a
practical approximation of the maximum entropy distribution with
constraint set (8 . G is informative for G8 iff @8(G) is significantly different
from ?8(G | (8), as judged by a statistical test, and we add G to ( (and
column G to �) if G is informative for some G8 ∈ Π.

To identify a suitable set of graph patterns ( and an adequate
association matrix �, we exploit the interplay between two steps. First,
we discover the best pattern G to add to (, given the current ((, �), and
second, we identify the best assignment of G to graph groups to update
�, given the current ((, �) and a new pattern G. We now describe each
step in more detail.

3.3.1 Identifying Informative Graph Patterns

To measure the likelihood of a set ( ⊆ 2ℰ of graph patterns, we use
the Bayesian Information Criterion (BIC),

BIC(() = ℓ (() + (: · |( |)/2 log |G| [158],
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where : · |( | is the number of coefficients in our model, and

ℓ (() =
∑
8

ℓ8(() = −
∑
8

∑
�∈G8

log ?8(� | (8) ,

is the log likelihood of ( (with (8 ⊆ ( derived from �), assuming that
the graphs in a group are independent and identically distributed.
This allows us to identify a good set of graph patterns by minimizing
the BIC score, i.e.,

arg min
(⊆2ℰ

{BIC(()} .

Solving this problem exactly poses significant challenges in practice
due to its combinatorial nature and the explosion in the number of
solution candidates. Therefore, we employ a greedy search strategy,
iteratively selecting the graph pattern G ⊆ ℰ that best improves our
current model. That is, for a given ((, �), we select the graph pat-
tern G that maximizes our likelihood, or equivalently, maximizes the
difference

BIC(() − BIC(( ∪ {G}) ,

which we write as

Δ(G) = ℓ (() − ℓ (( ∪ {G}) − :/2 log |G| .

In a nutshell, the core of our approach is the procedure

(← ( ∪
{

arg max
G⊆ℰ , Δ(G)>0

{Δ(G)}
}
, (3.3.1)

by which we iteratively and greedily insert into ( the pattern G ⊆ ℰ
that locally maximizes our information gain.

If we only have a limited number of samples, we cannot tell if our
information gain is due to random fluctuations or due to signal, using
a model selection criterion alone. To ensure that we have significant
patterns, we add G to ( only if its information gain Δ(G) is statistically
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significant. Therefore, we test whether we can reject the null hypothesis

�0 : BIC(() = BIC(( ∪ {G}) .

To this end, we use Vuong’s closeness test [182], a likelihood ratio
test designed for model selection problems under BIC. Vuong’s test
statistic is defined as 2Δ(G), which is asymptotically "2-distributed
with dfΔ(G) = df ?8( · | ( ∪ {G}) − df ?8( · | () degrees of freedom. To
calculate dfΔ(G), we count the coefficients � that must be changed in
every distribution if we insert G into (. As we add one coefficient for G,
and update at least |G | edge coefficients per group, we arrive at |G | + 1
additional degrees of freedom.

3.3.2 Discovering Differential Pattern Associations

Once we have selected a new pattern G ⊆ ℰ to add to (, given the
current ( and �, we identify a good assignment of G to graph groups
G8 ∈ Π to update �. Here, the significance of Δ(G), which is used to
accept G into (, signals that G is informative for some G8 ∈ Π, but it
does not tell us for which G8 . To assign G to a group G8 , we hence rely
on the partial information gain of G for G8 ,

Δ8(G) = ℓ8((8) − ℓ8((8 ∪ {G}) − :/2 log |G| .

Again, we use Vuong’s closeness test to decide whether Δ8(G) is signif-
icant; and if it is, we set �8G = 1.

3.4 Algorithm

Having established its theoretical groundwork, we now introduce Gra-
gra as an algorithm to differentially describe groups of graphs using
sets of significant subgraphs. Gragra, whose pseudocode is given as
Algorithm 3.1, revolves around the procedure stated in Eq. (3.3.1), a
greedy process that iteratively selects the graph pattern candidate that
best enhances our model. Hence, rather than exhaustively searching
for the best graph patterns, we propose to grow graph patterns by
systematically adding edges to candidates.
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To enable ourmodel to infer all possible graphs, we initialize it with
the set ℰ of all possible edges. As our initial graph to grow, we then
select the most promising graph pattern from our initial candidates,
i.e., the connected triples

� = {{G, H} | G, H ∈ ℰ , G ≠ H, +{G} ∩+{H} ≠ ∅} .

Starting with a graph pattern
-, we explore all its expansions,

((+G ×+ ×,) ∪ (+ ×+G ×,)) \ G ,

from which we select the best candidate pattern to grow further, as
long as we gain information and Δ(G) is significant. We summarize
these steps in the function Grow of Algorithm 3.1 (l. 13–21).

Grow requires many inferences of Δ, which involve inferring many
more expected frequencies ?8 , rendering exact computation impracti-
cal. We thus design a practical, pessimistic heuristic that only considers
the information gain from graphs � ∈ G in which G is fully present:
Starting with Δ(G), and abbreviating the constant model cost delta

:/2 · |( ∪ {G}| · log |G| − :/2 · |( | · log |G| = :/2 log |G|

as 2, we obtain

Δ(G) = ℓ (() − ℓ (( ∪ {G}) − 2

= −
∑
8

∑
�∈G8

log ?8(� | () − log ?8(� | ( ∪ {G}) − 2

= −
∑
8

∑
�∈G8

log
?8(� | ()

?8(� | ( ∪ {G})
− 2 .

Now, by constraining the sum to include only graphs in which G is
fully present, we get

−
∑
8

∑
�∈G8 ,G⊆�

log
?8(G | ()

?8(G | ( ∪ {G})
?8(� \ {G} | ()

?8(� \ {G} | ( ∪ {G})
− 2 ,
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using a factorization of ? and �. By assuming that

log
?8(� \ {G} | ()

?8(� \ {G} | ( ∪ {G})
≈ 0 ,

and since ?8(G | ( ∪ {G}) = @8(G) holds, we can further simplify the
above to

−
∑
8

28 · @8(G) log
?8(G | ()
@8(G)

− 2 =
∑
8

28 · @8(G) log
@8(G)

?8(G | ()
− 2 ,

thus arriving at our heuristic

ℎ(G) ≡
∑
8

ℎ8(G) =
∑
8

28 · @8(G) log
@8(G)
?8(G)

− :/2 log |G| .

Subsequently, we use ℎ(G) instead of Δ(G) because it involves inferring
only one expected frequency per graph group.

To summarize, Gragra proceeds as follows. Starting with an initial
set of candidates � (l. 3), we select (l. 14) and grow (l. 15) the best
candidate, and retain all significant expansions (l. 16), until we have
grown G to its fullest potential (l. 18–19). Afterwards, we test if the
information gain provided by G is significant, and if so, we keep track
of its graph group associations (l. 8), and insert G into ( (l. 9).

The computational complexity of Gragra depends on the number
of candidates, which can grow to at most |2ℰ |. In practice, Gragra’s
complexity depends on the number of times we grow graph patterns,
which is data-dependent and bounded by the size � of the largest
connected component observed in an input graph, as growing beyond
that reduces the information gain. Multiplying � by the initial set
of candidates, Gragra achieves a complexity of O

( (=
3
)
|, |�

)
for all

practial purposes, where we assume that the complexity of inferring
the expected frequency is bounded.
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3.5 Related Work

To the best of our knowledge, we are the first to differentially describe
groups of graphs through sets of significant subgraphs. Our method is
inspired by advances in graph similarity description (Momo, [36]) and
explainable pattern-set mining using maximum-entropy modeling as
described in Chapter 2 (Disc, [43, 44]). However, Momo focuses on
pairs and unpartitioned sets of graphs; DISC is designed for itemset
data, ignores graph structure, and does not scale on graphs; and nei-
ther method uses a statistical test to select patterns. Further related

Algorithm 3.1: Gragra
Input: groups of graphs G1 , . . . ,G:

Output: set of graph patterns (, association matrix �

1 (← ℰ
2 �← empty binary matrix with : rows and 0 columns
3 � ← {{G, H} | G, H ∈ ℰ , G ≠ H, +{G} ∩+{H} ≠ ∅}
4 while � ≠ ∅
5 Ĝ , � ← Grow(�)
6 if ∃8 ∈ [:] s.t. ℎ8(Ĝ) is significant
7 resize �

8 �8 Ĝ = 1 ⇐⇒ ℎ8(Ĝ) is significant ∀8 ∈ [:]
9 (← ( ∪ {Ĝ}

10 estimate ?8( · | (8) ∀8 ∈ [:] s.t. �8 Ĝ = 1
11 return ( \ ℰ , �
12

13 Fn. Grow(�)
14 G ← arg max

G∈�
{ℎ(G) s.t. ℎ(G) is significant}

15 � ← � ∪ (((+G×+×,) ∪ (+×+G×,)) \ G)
16 � ← {G ∈ � | ℎ(G) is significant }
17 Ĝ ← arg max

G∈�
{ℎ(G)}

18 if ℎ(Ĝ) > ℎ(G)
19 return Grow(�)
20 else
21 return Ĝ , � \ {Ĝ}
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work broadly falls into two categories: statistical inference on network
populations, and graph mining for groups of graphs.

Statistical Inference on Network Populations. In the statistics literature,
the task of analyzing multiple graphs simultaneously is typically
framed as an inference problem for network-valued random variables
[51, 111, 114]. Here, Ghoshdastidar et al. [62] establish limits for distin-
guishing two population distributions given small sample sizes, and
Lunagómez, Olhede, and Wolfe [114] propose notions of mean and
dispersion for a single population of networks, where the population
mean is itself a network. Maugis et al. [122] use subgraph counts to test
if all graphs in a sample are drawn from the same distribution, and
Signorelli and Wit [161] propose a model-based clustering approach
to describe subpopulations within a population of networks. Finally,
Durante, Dunson, and Vogelstein [51] extend latent space approaches
designed for single graphs to capture the probabilistic mechanism that
generates multiple graphs from a single population distribution. Their
model has been used to characterize and test for differences between
groups of brain networks [52]—an actively studied application for
which numerous statistical methods, mostly focusing on testing for
differences, have been developed [63, 96, 102, 112, 113, 184].

Prior work in the statistics literature has centered on describing
one network population or distinguishing two populations. In contrast,
with Gragra,we aim to construct a differential description of any number
of populations. Furthermore, we ask not only if these populations are
different, but also how they are different and how they are similar.

Graph Mining for Groups of Graphs. In the graph mining literature,
groups of graphs have been studied in contexts as diverse as signif-
icant subgraph mining [107, 168], graph classification [98, 180, 197],
graph clustering with graphs as data points [130], anomalous graph
detection [65], and graph summarization for time series of graphs
[159]. Significant subgraph mining commonly considers small, node-
labeled graphs with unaligned node sets, and hence, does not target
our problem. However, our setup (medium-sized graphs with aligned
node sets) has received heightened attention in the graph classification
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community, again inspired by challenges from neuroscience [98, 180,
197].

The methods that are closest to our work are contrast subgraphs
[98] and signal subgraphs [180], both designed for two groups of node-
aligned graphs. Contrast subgraphs discover the densest subgraph in
the difference of the summary graphs of the input groups (obtained by
adding the graphs in each group separately and then subtracting the
results), where the size of this subgraph depends on a user-specified
regularization parameter 
. Signal subgraphs assume edge indepen-
dence as a prior to rank edges by the ?-values of an edge-wise sta-
tistical test for distributional difference (e.g., Fisher’s exact test). Like
signal subgraphs, Gragra combines ideas from structural and statistical
pattern mining to produce interpretable results that—unlike contrast
subgraphs—are based on a statistical foundation. Gragra is more ex-
ploratory and more flexible than both competitors, however, because
it treats graph group description as an end in itself and can handle
any number of graph groups.

3.6 Experiments

We now present an extensive evaluation of our algorithm. To this
end, we implement Gragra in C++ and expose a Python interface to
facilitate experimentation. We run our experiments on Intel E5-2643
CPUs with 128 or 256 GB RAM, testing at a conservative significance
level of 1×10−7 (or 1×10−5 when operating with less than 50 samples).
Our experiments revolve around two questions:
1. Can Gragra reliably recover the ground truth from groups of

synthetic graphs?
2. DoesGragradiscovermeaningful patterns in groups of real graphs?

3.6.1 Recovering Ground Truth from Synthetic Graphs

To assess the reliability of Gragra, we run it on groups of synthetic
graphs with planted patterns. We consider three scenarios, namely,
1. summarizing one group of graphs,
2. differentially describing two groups of graphs, and
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3. differentially describing four groups of graphs.
In all three scenarios, each graph group consists of 100 graphs with
100 nodes, and our configurations differ in their planted patterns (type,
prevalence, and position) and noise levels.

For each configuration from Table 3.1, we generate 100 graph group
datasets with : ∈ {1, 2, 4} graph groups. Each group consists of 100
graphs with = = 100 nodes (labeled from 0 to 99), and edges are sam-
pled randomly using a �(=, ?) random graph model, edge probability
? ∈ {0.1, 0.2}, and different seeds. We then plant cliques (i.e., com-
plete graphs) of size 5, stars (i.e., one hub node connected to pairwise
nonadjacent spoke nodes) of size 10, and balanced bicliques (i.e., two
equally sized independent node sets � and � such that every node
in � is connected to every node in �) of size 10 as patterns into these
random graphs, using the prevalence and position parameters given
in the fourth and fifth columns of Table 3.1. Here, each column in the

Table 3.1: Synthetic graph group configurations. : is the number of groups,
? is the edge probability in a �(=, ?) random graph model, % is the pattern
(clique, star, or biclique), and |% | is the size of (the node equivalence classes in)
the pattern. Prevalence is the occurrence probability of the pattern in the graph
group, position is the label of the first node in the pattern, and t indicates the
pattern type, i.e., whether it is shared, overlapping, or contrastive between
graph groups.

: ? %(|% |) Prevalence Position C

1 0.2
[

cl(5)
st(1, 9)
bc(5, 5)

]
[0.2 0.2 0.2])

[ 0
5

15

]
–0.1 [0.1 0.2 0.3])

2 0.2 st(1, 9)
[0.2 0.2] [0 0] s
[0.2 0.4] [0 0] c
[0.4 0.4] [0 10] c

2 0.2 cl(5) [0.2 0.2]
[0 0] s
[0 2] o
[0 5] c

4

0.2 
cl(5)
cl(5)

st(1, 9)
st(1, 9)
bc(5, 5)




0.2 0.2 0 0 0
0 0.2 0.2 0 0
0 0 0.2 0.2 0
0 0 0 0.2 0.2


)


0
5

10
20
30

 ∗ 4

c
s
s
s
c


0.1


0.1 0.2 0 0 0
0 0.1 0.2 0 0
0 0 0.3 0.2 0
0 0 0 0.3 0.2


)
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Figure 3.2: Gragra reliably recovers the ground truth from synthetic data.
We show precision, recall, and F1-score distributions for Gragra, GragraBIC,
contrast subgraphs (CSG), and signal subgraphs (SSG), separately for all exper-
iments in our three different settings: one-group setting (left), two-group
setting (middle), and four-group setting (right). Subscripts of CSG labels
correspond to different choices of their regularization parameter 
, and sub-
scripts of SSG labels indicate different requirements for the ?-values obtained
from their edge-wise distributional difference test.

prevalence and position matrices corresponds to a graph group, and
repeated columns in the four-group setting are condensed as [·] ∗ 4.

For example, for the second one-group setting (Table 3.1, Row 2),
we plant a clique starting at node 0 with prevalence 0.1, a star starting
at node 5 with prevalence 0.2, and a biclique starting at node 15 with
prevalence 0.3, into 100 graphs generated using �(100, 0.1).

For each scenario, we report the distribution of precision, recall,
and F1 score, computed separately for each group of graphs, for the
edges of the planted patterns across 100 graph group datasets sampled
with different seeds. In all scenarios, we compare Gragra, which uses
BIC with Vuong’s closeness test for pattern selection, with a variant
using only BIC and no statistical test to select patterns (GragraBIC).
For configurations in the second scenario, we also compare our results
with those from contrast subgraphs (CSG) and signal subgraphs (SSG),
described in the previous section.

As we show in Figure 3.2, GragraBIC delivers better results in the
four-group scenario but generally has worse precision than Gragra,
by treating noise as signal. CSG and SSG identify only constrastive
patterns, and fail even for contrastive patterns if the individual edges
in planted patterns have similar occurrence probabilities across groups.
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Gragra, however, reliably recovers the ground truth across scenarios
and configurations, which allows us to hope that it will also work in
practice.

3.6.2 Discovering Meaningful Patterns in Real Graphs

TodeterminewhetherGragradiscoversmeaningful patterns in groups
of real graphs, we run 29 experiments on data of various graph types
from three domains: functional brain networks (undirected, unweighted),
air transportation networks (directed, weighted), and international
trade networks (directed, weighted).

The functional brain network data stem from the Autism Brain
Imaging Data Exchange (ABIDE). In the graphs representing these
data, each node corresponds to a region of interest (ROI) from the
automated anatomical labeling (AAL) atlas, and each unweighted,
undirected edge corresponds to a relatively strong blood-oxygen-level
dependent (BOLD) signal correlation between the time series of these
regions obtained during a resting-state functional magnetic resonance
imaging (fMRI) scanning session. Here, our data consists of one graph
per subject. Subjects can be partitioned by their diagnostic status (either
ASD if diagnosed with autism spectrum disorder or TD if typically
developed), and they can be grouped or selected by other attributes,
such as sex (the only options being male and female), age, or scanning
modality (eyes open or eyes closed).

The air transportation network data are taken from the website of
the Bureau of Transportation Statistics (BTS). In the graphs represent-
ing these data, nodes correspond to airports in the United States, and
weighted, directed edges correspond to volumes of passenger flows.
Here, our data consists of one graph per carrier class and month from
2005 to 2020 (374 graphs in total).

The international trade network data are sourced from the World
Integrated Trade Solution (WITS) provided by the World Bank. In the
graphs representing these data, each node corresponds to a country
(or similar unit), and each weighted, directed edge corresponds to the
value of a trade flow. Here, our data consists of one graph per product
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class (Animals, Vegetables, Food Products, Minerals, or Chemicals)
and month from 1989 to 2018 (3 976 graphs in total).

We run Gragra on different subsets and splits of our datasets as
shown in Table 3.2 and present a quantitative overview of our results
in Figure 3.3. We observe that, in line with expectations derived from
theory, more graphs or graphs with more potential edges, partitioned into
fewer groups, generally yield more patterns.
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Table 3.2: Real-world graph group data used in our experiments. = is the
number of nodes, [<] specifies the range of the number of edges per graph,
: is the number of graph groups, and [28] specifies the range of the group
cardinalities. TD stands for Typically Developed, and ASD stands for Autism
Spectrum Disorder. For the brain networks, which are sparsified during pre-
processing, we use a minimum support of 2, and for the airline transportation
networks and the international trade networks, we use an adaptive threshold
of 0.1 times the cardinality of the smallest group in the experiment for sparsi-
fication. In all experiments, we use Vuong’s test at a conservative significance
level of 1 × 10−7 (or 1 × 10−5 when operating with less than 50 samples).

Dataset Description : [28]

Functional Brain Networks (undirected, unweighted)
= = 116; < ∈ [1 320, 1 348]

fbn-a TD vs. ASD, age [15, 20] 2 [116, 121]
fbn-a1 ASD, age [15, 20] 1 [116]
fbn-c TD vs. ASD, age ≤ 9 2 [49, 52]
fbn-c1 ASD, age ≤ 9 1 [49]
fbn-ac TD vs. ASD × a vs. c 4 [49, 121]
fbn-e TD vs. ASD, eyes closed 2 [136, 158]
fbn-e1 ASD, eyes closed 1 [136]
fbn-m TD vs. ASD, males only 2 [418, 420]
fbn-m1 ASD, males only 1 [420]

Air Transportation Networks (directed, weighted)
= = 300; < ∈ [335, 3 533]

atn all (2005–2020) 1 [374]
atn-m major carriers 1 [191]
atn-n national carriers 1 [183]
atn-c carrier classes 2 [183, 191]
atn-q quarters [12, 3, 6, 9) 4 [92, 95]
atn-y four-year intervals 4 [86, 96]

International Trade Networks (directed, weighted)
= = 250; < ∈ [256, 11 415]

itn all (1989–2018) 1 [3 976]
itn-p product class 5 [210, 1 530]
itn-y ten-year intervals 3 [1 314, 1 332]
itn-py product class × intervals 15 [70, 510]
itn-a animals 1 [210]
itn-ay animals in intervals 3 [70, 70]
itn-v vegetables 1 [796]
itn-vy vegetables in intervals 3 [247, 262]
itn-f food products 1 [1 137]
itn-fy food products in intervals 3 [377, 380]
itn-m minerals 1 [330]
itn-my mineral in intervals 3 [110, 110]
itn-c chemicals 1 [1 530]
itn-cy chemicals in intervals 3 [510, 510]
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Functional Brain Networks

Network neuroscience has emerged as a promising approach to under-
standing neurological disorders and diseases [16, 28, 58]. One of its
fundamental questions is whether certain disorders are systematically
associated with structural or functional connectivity alterations in the
brain [77]. In particular, there is considerable uncertainty surround-
ing the neurological footprint of autism (and the delineation of its
subtypes), and small sample sizes as well as covariates make many
published findings hard to replicate [72, 90]. This calls formethods that
can detect signal in the presence of considerable noise and heterogene-
ity, identifying connectivity patterns that are statistically significantly
associated with one or more groups of brain networks.

Motivated by this application, we obtain graphs from preprocessed
functional connectomes provided by the Autism Brain Imaging Data
Exchange [38]. In these graphs, each node corresponds to one of the
116 regions of interest from the automated anatomical labeling atlas
[AAL, 152], and each edge indicates relatively strong connectivity
between two regions, as measured by their blood-oxygen-level de-
pendent signal correlation during resting-state functional magnetic
resonance imaging. To facilitate comparisons, the data is processed
and grouped as described by Lanciano, Bonchi, and Gionis [98], but
we remove the self-loops (corresponding to perfect self-correlations)
that are present in their data.

We experiment with Gragra in four two-group settings (individ-
uals with autism spectrum disorder [ASD] and typically developed
controls [TD] in the categories adolescents, children, eyes closed during
scan, and males), four one-group settings (autistic individuals in each
category only), and one four-group setting (autistic and non-autistic
children and adolescents), operating on graphs with < ∈ [1 320, 1 348]
edges and graph groups G8 with 28 ∈ [49, 420] graphs. Our four-
group experiment identifies significant overconnectivity across mul-
tiple brain regions as characteristic of ASD children versus all other
groups, paralleling the neuroscience literature [134, 169]. However, as
shown in Figure 3.4, most of the patterns we identify in the two-group
setting yield similar information gains across both groups (left), and
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Figure 3.4: Gragra unveils shared and contrastive patterns in noisy and
heterogeneous data. Here, we display the distribution of information gains
per pattern in the one-group setting (left), and the distribution of information
gain differences per pattern in the two-group setting (right), for our experi-
ments on functional brain networks.

there is significant structure to be exploited even within individual
groups (right). This indicates that the differences between autistic and
non-autistic brains in the settings under study are rather subtle, and
that there is considerable heterogeneity also in the one-group data.
To explore this heterogeneity and delineate neurosubtypes of autism
[cf. 78], our results could be used as inputs to multivariate subgroup
discovery or clustering algorithms, where Gragra would effectively
serve as a dimensionality reduction technique.

Air Transportation Networks

We obtain data on passenger flows between domestic airports in the
United States for each month over the sixteen years from January 2005
to December 2020 from the website of the Bureau of Transportation
Statistics [29]. Restricting our analysis to United States mainland air-
ports and carriers classified as national (100 million to 1 billion USD
revenue in the previous year) or major (over 1 billion USD revenue in
the previous year), we create one air transportation network per year,
month, and carrier class. To this end, for each year and month, we
aggregate the passenger flows between two airports by carrier class
and filter edges corresponding to fewer than 3 000 passengers, which
leaves edges between = = 300 airports (identified by three-letter IATA
codes). Excluding graphs with fewer than = − 1 = 299 edges, we arrive
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Figure 3.5: Gragra discovers large, meaningful graph patterns. Here, we
depict some of the patterns discovered in the air transportation networks of
national carriers (left, five patterns shown), major carriers (right, two patterns
shown), and both carrier classes (bottom, one pattern shown). Gray nodes
represent airports, and node labels identify airports contained in at least one
of the displayed patterns by their three-letter IATA codes. Directed edges
represent flight segments, and edge colors are proportional to their weight
bins, following different color maps (reds, blues, or grays) where necessary
to make them visually distinguishable. All drawn patterns are among the top
fifteen in terms of information gain for their respective experiment, and the
pattern in the middle is the top shared pattern, corresponding to the United
States air transportation backbone.

at 374 graphs, whose edges we discretize into ten weight categories
using equal-width binning.

We are interested in discovering patterns that are shared across
all graphs, identifying structures of connected routes that are specific
to individual carrier classes, and unveiling both seasonal and tem-
poral trends. Therefore, we run Gragra in six different settings: on
all graphs as one group, on the graphs corresponding to each car-
rier class separately, on all graphs with carrier classes as groups, on
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all graphs with quarters as groups (starting from December to cap-
ture the winter holiday season), and on all graphs with consecutive
four-year intervals as groups. Thus, our setup contains graphs with
< ∈ [335, 3 533] edges and graph groups G8 with 28 ∈ [86, 374] graphs.
In Figure 3.5, we depict a subset of our results from the experiments
involving the distinction between carrier classes. Gragra reveals an
air transportation backbone jointly serviced by both carrier classes
(middle), and it uncovers routes that are characteristically served by
national or major carriers (left and right). Overall, we find that patterns
corresponding to national carrier routes are often smaller and cover
shorter distances than those corresponding to major carrier routes,
mirroring the relatively smaller role of national carriers in the air traffic
market.

International Trade Networks

We obtain data on international trade flows from the website of the
World Integrated Trade Solution [192], for the thirty years from 1989
to 2018 (inclusive). The raw data correspond to exports of goods be-
tween (mostly) countries, classified using the Harmonized System
at the four-digit level (HS-4), whose trade values we aggregate per
(source, destination, HS-4 code) triple. For each year and HS-4 code,
we construct one directed, weighted graph with (roughly) countries
as nodes and exports as edges, discretizing the edge weights into ten
categories using equal-width binning. We eliminate all trade entities
above the country level but retain trade entities below the country
level (and countries that do not exist anymore) if they have an ISO3
code. Restricting our attention to the WITS product groups Animals,
Vegetables, Food Products, Minerals, and Chemicals, we arrive at 3 976
graphs with = = 250 nodes and at least = − 1 = 249 edges.

Leveraging the richness of our data, we ask not only what graph
patterns are characteristic of international trade as a whole, but also
what structures emerge when we group trade networks by product
class, ten-year interval, or product class and ten-year interval. As Gra-
gra allows us to inspect our data at different scales, we further in-
vestigate the trade patterns it unveils when considering each product
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class separately, either treating all graphs from one product class as
one group or splitting them by ten-year interval. Thus, we run our ex-
periments on graphs with < ∈ [256, 11 415] edges and graph groups
G8 with 28 ∈ [70, 3 976] graphs. In Figure 3.6, we illustrate five pat-
terns discovered in the experiments that explore all graphs together,
grouped by product class and ten-year interval. Although the input
consists of fifteen classes, Gragra discovers not only meaningful pat-
terns but meaningful patterns with meaningful assignments to graph
groups which, as highlighted by the pattern labels in Figure 3.6, can
be summarized succinctly. Across all experiments, we observe that the
patterns yielding the largest information gains are often composed
entirely of edges in the top two weight bins. This suggests that the
ranking of exporter-importer pairs is most stable on the upper end of
the trade-value spectrum, which aligns with interdisciplinary research
findings that international trade is highly stratified [54, 110, 156].
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3.7 Conclusion

We studied the graph group analysis problem: Given a set of graphs
and a partition of this set into graph groups, succinctly summarize the
commonalities and differences between graphs in the same group,
between graphs in different groups, and between the relationships
connecting the groups.We introducedGragra as an algorithm to solve
the problem, which uses maximum likelihood modeling, paired with
a model selection criterion and a statistical test, to jointly discover a set
of significant subgraphs, called graph patterns, and an assignment of
these patterns to graph groups. In our experiments, we demonstrated
that Gragra differentially describes synthetic and real-world graph
groups, even when faced with heterogeneity, noise, or large group
numbers. As a byproduct, we introduced two novel datasets of node-
aligned graphs, which might be of independent interest to the graph
mining community.

Our work is naturally limited. First, we model edge weights as
categories, which works well for binned edge weights in practice but is
theoretically dissatisfying. Hence, a natural enhancement of Gragra
would be able to handle real edge weights, possibly using a maximum
entropy model on its edge weight distribution. Second, Gragra is
limited to groups of node-aligned graphs, and extending it to other
graph types constitutes an open opportunity for future work. Third,
we currently test all our graph patterns at the same significant level

. While this is theoretically defensible, given that we combine our
statistical test with a model selection criterion, dynamically adjusting
our alpha level could make our patterns even more powerful.
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4
Discovering Significant Patterns under
Sequential False Discovery Control

In Chapter 3, we sought to discover insightful patterns in graph data,
for which we relied on a statistical test, and we concluded with the
thought that dynamically adjusting the alpha level of that statistical
test could further improve our results. Now, we embrace statistical
significance in the setting from Chapter 2, i.e., we consider binary tabu-
lar data, but this time with the goal to discover statistically significant
patterns.

We are interested in discovering those patterns from data with an
empirical frequency that is significantly different than expected. To
avoid spurious results, yet achieve high statistical power, we propose
to sequentially control for false discoveries during the search. To avoid
redundancy, we propose to update our expectations whenever we
discover a significant pattern. To efficiently consider the exponentially-
sized search space, we employ an easy-to-compute upper bound on
significance, and propose an effective search strategy for sets of signif-
icant patterns. Through an extensive set of experiments on synthetic
data, we show that our method, Spass, recovers the ground truth reli-
ably, does so efficiently, and without redundancy. On real-world data,
we show Spass works well on single and multiple groups as well as
on low-dimensional and high-dimensional data, and through case
studies, we demonstrate that it discovers meaningful results.

This chapter is based on the publication: Dalleiger and Vreeken [41].
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4.1 Introduction

A cornerstone of many scientific problems is the discovery of statisti-
cally significant associations between features in data. In the biomed-
ical domain, for example, researchers are interested in identifying
combinations of genetic markers that are associated with specific phe-
notypes [106, 109, 198], studying combinations of mutations caused
by cancer [179], or analyzing correlated markers that together indicate
a high survival chance of a patient [150]. Statistically significant pattern
mining is a branch of data mining in which we are after those patterns
that are statistically significant with regard to some null hypothesis.
Thus, it is particularly well-suited to meet the needs of many scientific
domains.

A key issue plaguing significant pattern mining is the multiple
hypothesis testing problem: If we test a single pattern for significance,
the probability of falsely rejecting the null hypothesis is bounded by
its ?-value. This probability quickly converges to 1 as we test more
hypotheses, however, and since the pattern search space is exponential
in the number of binary features, we drown in spurious results unless
we use some form of false discovery control. One option is to limit the
risk of making at least one false discovery, also known as controlling
the Family-Wise Error Rate (FWER), and another option is to limit the
expected number of false discoveries, which is known as controlling
the False Discovery Rate (FDR). Most work in the field focuses on
finding a good balance between statistical power and computational
efficiency.

Although recent work achieves impressive results, it falls short
when it comes to reporting succinctly and without redundancy. To
illustrate this problem, we run three recent statistically significant
pattern miners, Lamp [175], WYlight [108], and SPuManTE [141], on
synthetic two-group data using only 100 ground truth patterns, ran-
domly associated to each group. The higher the group association
probability, the more patterns participate in generating the group. At
100%, for example, all 50 patterns are used to generate each group (see
Section 4.6 for more details). In Figure 4.1, we show the number of
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Figure 4.1: Spass recovers the ground truth where competitors struggle. We
show the number of statistically significant patterns discovered at an FWER of
0.05 on two-group data over 500 unique items, where we vary the probability
of associating 100 ground truth patterns with its groups.

patterns discovered by Lamp, WYlight, SPuManTE, and our method
at a significance level of 0.05. There, Lamp, WYlight, and SPuManTE
identify orders of magnitude more patterns as significant than we orig-
inally used to generate the data—although technically not incorrectly,
since subsets or combinations of ground-truth patterns might also be
significant. However, these redundant results drown the analyst in
patterns.

To achieve concise and informative, rather than redundant results,
we propose to test patterns for significance against our expectation,
based on the patterns we have discovered so far. To prevent spurious
results, yet achieve high statistical power, we sequentially control for
either family-wise error rate or false discovery rate. That is, we iter-
atively adjust the significance level 
 during the search, factoring in
what part of the space we have already explored and what hypotheses
we have rejected. Ourmethod, Spass (Significant Pattern ASSociations),
automatically associates patterns to those groups for which they are
significant, thereby immediately exposing the similarities and differ-
ences between the groups. This allows us to handle data with one or
more groups, while existing methods can only handle data with one
or two groups.

Through an extensive set of experiments, we show that Spass per-
forms well in practice. While its competitors drown the analyst in large
numbers of highly redundant patterns, we demonstrate that Spass reli-
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ably recovers the ground truth in synthetic data and discovers succinct
and non-redundant patterns in real-world data. In two detailed case
studies on real-world data, we illustrate that the patterns identified by
Spass are also meaningful. Furthermore, Spass is very fast, taking only
seconds up to a few minutes in our experiments where competitors
take hours, days, or even weeks.

Our main contributions are that we
1. suggest to iteratively test for significance against a probabilistic

model of the data based on our most recent knowledge of the data,
2. propose a novel sequential FWER control and introduce the first

pattern mining procedure under sequential online FDR control,
3. show how to sequentially control for either FWER or FDR,
4. introduce the Spass algorithm to efficiently discover non-redundant

sets of statistically significant patterns using an easy-to-compute
Chernoff bound, and

5. provide an extensive empirical evaluation on synthetic and real-
world data.
The remainder of this chapter is structured as follows. After set-

tling the preliminaries in Section 4.2, we state our problem formally in
Section 4.3. Next, we introduce and analyze our method Spass in Sec-
tion 4.4. Related work is discussed in Section 4.5, and we empirically
evaluate Spass in Section 4.6. We discuss the merits of our method in
Section 4.7, and conclude the chapter in Section 4.8.

4.2 Preliminaries

As in Chapter 2, we consider binary tabular data. Therefore, our nota-
tion largely follows Section 2.2. In brief, we write 2� for the powerset
of any finite set �, and

(�
:

)
for the set of all subsets of � of size : ∈ N.

The set �
a

� is the symmetric difference of � and �. For any = ∈ N,
we write [=] = {1, 2, . . . , =}. The indicator function is 1. All logarithms
are to base 2, and by convention, we use 0 log 0 = 0.

We consider binary data - over 3 features ℐ. A dataset - is a
multiset of = samples from the set Ω = 2ℐ , of all possible samples.
Like in Section 2.2, for a given partitioning of Π ∈ +(-), we denote
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the : ≥ 1 groups in Π by {-1 , . . . , -:} and let =8 = |-8 |. Our method
requires an underlying probabilistic model, for which we again choose
the maximum entropy distribution introduced in Chapter 2.

4.3 Significant Pattern Sets

In this section, we state our problem. We first do so informally, after
which we move to the statistical test for one hypothesis, describe its
efficient inference, and introduce our sequential hypothesis-testing
procedure.

4.3.1 The Problem, Informally

Our goal is to discover those patterns whose empirical frequencies in
the data differ significantly from what we expect, based on what we
already know about the data. We strive to do this for datasets with one
or multiple groups over the same set of binary features, such that we
find not only patterns that are distributed significantly differently in
general but also patterns that are distributed significantly differently
in one or multiple groups.

We explicitly seek to prevent redundant results, and hence require
that every reported pattern is significant in light of all previously
discovered patterns. This formulation has the benefit that it allows us
to sequentially control for false discoveries by adjusting the significance
threshold during the search, based on what part of the search space
we have considered so far.

Existing statistical pattern-mining approaches report every signifi-
cant pattern, often including subsets or combinations of true patterns,
which introduces redundancy. The key idea of our approach is that we
discover non-redundant results by testing each pattern for significance
against a model of the data based on prior discoveries, and do so using
an appropriately adjusted significance level.

A bit more formally, our goal is to discover one pattern set (8 for
each group -8 , such that the empirical frequency @(8 (G) of each pattern
G ∈ (8 diverges significantly from our expected frequency ?(8\{G}(G)
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based on patterns already accepted prior to G, while controlling for
false discoveries.

With this intuition in mind, we next describe our probabilistic
model and the statistical test for one hypothesis. Afterwards, we show
how to sequentially control for false discoveries when testing multi-
ple hypotheses using either family-wise error rate (FWER) or false
discovery rate (FDR).

4.3.2 Testing for Significance

To infer an expected frequency ?(8 (G), we need a probability distribu-
tion ?. We again choose the maximum entropy distribution introduced
in Section 2.3, which models the data precisely and does not introduce
any bias. Accordingly, we rely on inferring the expected frequency
of a maximum entropy distribution (cf. Eq. (2.3.3)), and define our
expectation as ?((G) = E 5 [G | (].

Formally, we state the null hypothesis that the distribution of an
G ⊆ ℐ in group -8 follows the expectation ? given (8 ⊆ Ω as

� : @-8
(G) = ?(8 (G) ,

and the alternative hypothesis that it is distributed differently as

�0 : @-8
(G) ≠ ?(8 (G) .

A pattern G either occurs in a sample in -8 or it does not, and
under the null hypothesis, it is hence Bernoulli distributedwith success
probability ?(8 (G). By convention, we assume that each sample in -8

is independently drawn, such that the number of samples in which
G occurs is binomially distributed. Under the null hypothesis, the ?-
value P[�] of observing a pattern G with a more extreme frequency
@-8
(G) than our expectation ?(8 (G) is

P [=G ≥ =̂G | �] ,

where =G = |-8 | · @-8
(G) is the observed number of data points that sup-

ports G, and =̂G = |-8 | ·?(8 (G) is the expected number of such data points.
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To infer these ?-values exactly, we can use the binomial cumulative
distribution function

�(B, =; ?) =
=∑

:=B

(
=

:

)
?:(1 − ?)=−: , (4.3.1)

for the number of successes B, number of trials =, and success probabil-
ity ?. More precisely, if @-8

(G) ≥ ?(8 (G), we can infer P[�] by comput-
ing �(=G , |-8 | ; ?(8 (G)), or else, we do so using �(0, =G; ?(8 (G)). Although
mathematically convenient, as we may have to infer the CDF expo-
nentially often, computing � exactly during our search is impractical.
We therefore propose to approximate � using the easy-to-compute
Chernoff bound [33],

�(= · 0, =; 1) ≤ exp [−=�(0‖1)] ,

where �(0‖1) is the Kullback-Leibler divergence

0 log 0/1 + (1 − 1) log(1 − 0)/(1 − 1)

of the two Bernoulli distributions 0 and 1. To illustrate how well the
Chernoff bound approximates the binomial CDF in comparison to the
popular standard normal approximation, we show ?-values for 10 and
1 000 samples for a success probability of 0.5 in Figure 4.2. There, we
see that the Chernoff bound tightly approximates exactly computed
?-values, even for few samples.

4.3.3 Controlling for False Discoveries

If we test a single hypothesis, the probability of falsely rejecting the
null hypothesis � is bounded by its ?-value P[�]. As we test more hy-
potheses, the probability of falsely rejecting at least one null hypothesis
converges to 1—that is, unless we carefully control for testing multiple
hypotheses. We consider two approaches to false discovery control,
namely, one targeting the family-wise error rate and one targeting the
false discovery rate. Both have in common that, rather than testing
each hypothesis at the same significance level 
, they test hypotheses
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Figure 4.2: The Chernoff bound closely approximates the binomial CDF. For
the fixed probability ?(G) of 0.5, we show ?-values for the Chernoff bound,
the Gaussian approximation, and the exact binomial CDF over 100 (left) and
1 000 (right) samples.

at adjusted significance levels 
C < 
. In a nutshell, in both cases, we
consider a sequence of hypotheses

�1 , �2 , . . . ,

for which we compute the corresponding sequence of ?-values

P[�1], P[�2], . . . .

We decide to reject the Cth hypothesis �C if its ?-value P[�C] is less than
the adjusted test level 
C , i.e.,

P[�C] < 
C ,

and denote the set of all rejections as ℛ = {�C ∈ ℋ | P[�C] < 
C},
whereℋ is the set of all hypotheses. Regardless of how we control 
C ,
we ideally want to maximize the number of true discoveries (statistical
power), also known as the true discovery rate (TDR)

E

[
|ℛ ∩ℋ 0 |

max{1, |ℋ 0 |}

]
,

where ℋ 0 = {� ∈ ℋ | �0 = 1} is the unknown set of truly alterna-
tive hypotheses. In the following, we discuss how to determine a test
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level sequence 
C that achieves a high TDR while controlling for false
discoveries, starting with the conservative family-wise error rate and
then moving on to the less conservative false discovery rate.

Controlling FWER We start with the adjustment of the significance
levels 
C to guarantee a FWER of at most 
. The Family-Wise Error Rate,
or FWER for short, is the probability

P[|ℛ ∩ℋ0 |] > 0

of making at least one false discovery, whereℋ0 = {� ∈ ℋ | � = 1} is
the unknown set of all hypotheses that are truly null. We can keep the
FWER below 
 by testing against an adjusted significance threshold

C = 
/# , where we simply divide 
 by the number # of hypotheses
in ℋ . This is known as Bonferroni correction [25]. While Bonferroni
correction works well when testing relatively few hypotheses, in our
case, # = : · 2< is exponential in <, and hence, for any non-trivial
value of <, the adjusted values 
C will be so low that the probability
of a true discovery is (almost) zero.

In statistically significant pattern mining, one common approach
to increase the TDR is by outright excluding hypotheses if their mini-
mally attainable ?-value is above the significance threshold [171]. This is
Tarone’s exclusion principle [128]. Since the minimally attainable ?-value
in our case shrinks exponentially with number of samples in a group
(cf. the infimum of Eq. (4.3.1)), it becomes so small that we cannot
exclude many hypotheses in advance. We can, however, exploit the
fact that we typically do not test all patterns but rather a much smaller
set � of candidate patterns. Hence, it suffices to adjust 
 by the size
of �, rather than # , since |� | � # . Unfortunately, we do not know
� in advance. But fortunately, we do know how we generate �. We,
therefore, make our significance level adjustment search-space aware [17,
186, 188]. That is, we sequentially adjust the significance levels 
C while
we iteratively generate �.

To do so, we need to impose structure on the search space. We
propose to organize the hypotheses (i.e. patterns) as a lattice, such that
layer ; contains all patterns of length ;. If we now search for significant
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patterns layer by layer, we only have to correct for up to and including
the current layer ;, which is at most the sum of all binomials up to
;. While easy to compute for small ;, for larger values, this sum is
computationally costly, and hence, we resort to the upper bound

;∑
:=1

(
<

:

)
<

;∑
:=1

<:

:! =

;∑
:=1

(</;): ;:
:! ≤ (</;);

∞∑
:=1

;:

:! = e;(</;); . (4.3.2)

To obtain the adjustment factor we need for the Cth hypothesis, we
multiply the right-hand side of Eq. (4.3.2) with the number of groups
:. We summarize the above in the following lemma.

Lemma 4.1. For any sequence of ?-values, we control for the FWER by
adjusting the test levels, for the Cth hypothesis using


C = minB<C
{

B , 
[: · e;(</;);]−1} , (4.3.3)

where ; is the highest layer in the search lattice explored so far,< = |ℐ|
is the number of features which coincides with the highest lattice level,
and : is the number of groups under consideration.

Proof. At each level ; ∈ {1, . . . , <}, we adjust for all possible hypothe-
ses up to layer ;, which grows to at most <. By summing Eq. (4.3.2)
up to <, we achieve equality with Bonferroni correction. �

Althoughmany domains require FWER, there are problems that do
not need such strict error control. In these cases, we therefore control
for the less conservative FDR, described next.

Controlling FDR The False Discovery Rate [21], or FDR for short, is
an alternative approach to false discovery control. To permit a higher
statistical power than FWER, the FDR is controls for the expected number
of false discoveries

E

[
|ℛ ∩ℋ0 |

max{1, |ℛ|}

]
,

rather than the probability of at least one false discovery.
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To ensure an FDR of at most 
, we can determine 
C using so-
called generalized 
-investing (GAI) rules [6]. These rules “invest”
a fraction of our available “
-budget” in each significance test we
perform, thus decreasing the available 
-budget, and reward each
discovery by increasing the available 
-budget. In short, we start with
a budget of 0 < F0 < 
, decrease the budget when testing the Cth
hypothesis with a penalty )C , and increase the budget with a reward
#C when we reject it. Thus, we can continue testing as long as we make
discoveries. Formally, our budget develops as

FC+1 ← FC − )C + 1[P[�C] < 
C] · #C . (4.3.4)

Since our ?-values are statistically dependent, and we seek high sta-
tistical power, we employ a variant of the lord-update rules pro-
posed by Javanmard and Montanari [84]. We start with an initial
budget of F0 = 
/2. For every discovery, we receive a constant re-
ward #C = 
 − F0. To prevent that we use all available budget on a
single hypothesis, we set the penalty )C and the level 
C to a fraction


C ← �C · F�

of the budget F� available at the most recent discovery time

� = arg max
B<C

1{P[�B] < 
B} = 1 ,

using a non-increasing sequence (�C)C≥1 as the fraction of our budget
FC that we invest into the test in iteration C. To choose such a sequence
(�C)C≥1 for arbitrarily dependent ?-values, we resort to Thm. 3.7 from
Javanmard and Montanari [84]. In essence, this theorem states that
any non-increasing sequence (�C)C≥1 guarantees a bounded FDR if

∞∑
C

�C(1 + log C) ≤ 
/F0 ,
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holds. In particular, this is true for the sequence

�C =
6

C2�2

/F0
(1 + log C)

which we summarize in the following lemma.

Lemma 4.2. For �C = 6
C2�2


/F0
(1+log C) , the generalized 
-investing rules

described above control FDR for arbitrarily dependent ?-values.

Proof. By substituting �C in Thm. 3.7 from [84], we observe that the
factor 1 + log C cancels out. Since

∑∞
C

6
C2�2 converges to 1, the series

converges exactly to 
/F0. �

4.4 Algorithm

Now, we introduce our algorithm Spass for efficiently discovering
significant, non-redundant pattern sets under false discovery control.
We give the pseudocode of Spass as Algorithm 4.1.

Starting with an empty pattern set (8 for each group -8 (l. 1) and an
initial search space � that contains all itemsets of length two (l. 2), we
set the counter tallying significance tests to 1 (l. 3). Then, we expand the
search space � using the Search algorithm, detailed below, selecting
that candidate

Ĝ ← arg min
G∈�

E(8 [?(8 (G) = @-8
(G)] (4.4.1)

which has the lowest expected chance (l. 5)

E(8 [?(8 (G) = @-8
(G)] =

<∑
8=1
P[?(8 (G) = @-8

(G)]

of resulting in false discoveries, across all distributions. We test the
significance of Ĝ (l. 9) for every group -8 (l. 6) against a significance
level that is appropriately adjusted according to either FWER or FDR
(ll. 7–8). If the candidate is significant (l. 10), we reject the null hypothe-
sis, add Ĝ to (8 , and re-infer the distribution ?(8 (·) (ll. 11–12). We iterate
until convergence, and finally return the : pattern sets (l. 13).
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Algorithm 4.1: Spass
Input: groups -1 , . . . , -: , test level 
 ∈ [0, 1]
Output: patterns sets (1 , . . . , (:

1 (8 ← ∅ ∀8 ∈ {1, . . . , :}
2 � ← {G ⊆ ℐ | |G | = 2}
3 C ← 1
4 while � ≠ ∅
5 Ĝ , � ← Search(�)
6 foreach group -8do
7 C ← C + 1
8 adjust test level 
C ← [Eq. (4.3.3) or Eq. (4.3.4)]
9 hypothesize �C : ?(8 (Ĝ) = @-8

(Ĝ)
10 if P[�C] < 
C

11 (8 ← (8 ∪ {Ĝ}
12 estimate coefficients for ?(8
13 return (1 , . . . , (:

To identify the next pattern to test, we use Algorithm 4.2. Given
the current search space �, we first find the most promising candidate
Ĝ ∈ � using Eq. (4.4.1) (l. 1). We then expand � with all combinations
of Ĝ and singletons H ∈ ℐ (l. 2). Note that this corresponds to exploring
(part of) layer ; + 1 of the lattice, where ; = |Ĝ | is the layer which Ĝ

resides. If there exists an G in the now-expanded search space � that
is better than Ĝ, we recurse (ll. 3–4), and otherwise, we return the best
candidate Ĝ and the search space � (ll. 5–6) we explored so far.

Algorithm 4.2: Search
Input: search space � ⊆ Ω

Output: candidate Ĝ and expanded search space �

1 Ĝ ← arg min
G∈�

E(8 [?(8 (G) = @-8
(G)]

2 � ← � ∪ {Ĝ ∪ {H} | H ∈ ℐ}
3 if min

G∈�
E(8 [?(8 (G) = @-8

(G)] < E(8 [?(8 (Ĝ) = @-8
(Ĝ)]

4 return Search(�)
5 else
6 return Ĝ , � \ Ĝ
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The computational complexity of Spass depends on the size of �,
which grows binomially with each layer of expansion, and can reach
up to 2< elements. Assuming that the complexity of inferring the
expectations ? is bounded by a constant, the worst-case complexity is
O(2<). Algorithm 4.1 has a complexity of O(e;(</;);) after reaching
the ;th lattice layer, and in realistic applications, we never explore the
entire lattice. As we do not expand layers fully either, Spass is still more
efficient in practice.

4.5 Related Work

Pattern mining is arguably one of the most important and well-studied
areas of data mining. Traditional approaches, such as frequent itemset
mining [5], aim for completeness, and return all patterns that satisfy
some user-defined constraints. By scoring patterns individually, the re-
sults of traditional methods are typically very large, highly redundant,
and mostly spurious [3].

Pattern set mining aims to search only a small and non-redundant
set of patterns that together generalize the data well. Typical quality
measures include probabilistic objective functions [60] or information-
theoretic scores [181], and algorithms have been used for character-
izing data with one [57] or multiple groups [27, 43] (cf. Chapter 2).
Although these methods discover succinct, non-redundant sets of
patterns that have been proven useful, the results come without sta-
tistical guarantees, which bars their application in critical domains,
such as genetics [106, 109, 179, 198], survival analysis [150], or network
analysis [166].

Significant pattern mining provides statistical guarantees by using
statistical tests to prune out spurious results. There exist many sig-
nificance tests, and hence almost as many dedicated statistically sig-
nificant patternminingmethods, e.g., for Fisher’s exact [70, 175],Mann-
Whitney-Wilcoxon [175], conditional permutation [198],Westfall-Young
permutation [108, 142], Cochran–Mantel–Haenszel [138], Barnard’s un-
conditional [141], or the Likelihood ratio test [167]. Each of these meth-
ods corrects for multiple hypothesis testing mostly targeting FWER
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and using Bonferroni [25] correction. Somemethods use Tarone’s exclu-
sion principle [171] to increase the statistical power. Another approach
to cope with the low statistical power exhibited under Bonferroni
correction is to make the adjustment “search-aware” [17, 186, 188]
and directly adjust it, without necessarily knowing the total number
of hypotheses to adjust for in advance. A search-aware significance
level adjustment is also used for the search of non-redundant top-:
statistically tested-to-be informative patterns [190]. Although these
methods rigorously control for false discoveries, they still test against a
static null hypothesis. As a result, they report every significant pattern,
and consequently, they tend to discover many and highly redundant
results—often orders of magnitude more than there are samples in
the data.

Our goal with Spass is to discover concise, non-redundant sets of
statistically significant patterns. Here, we combine the best of pattern
set mining and statistically significant pattern mining. Our approach
is unique in that it marries sophisticated probabilistic modelling to
rigorous statistical testing, while accounting for the multiple hypothe-
sis testing problem using a sequential and search-aware significance
level adjustment that can target either FWER or FDR.

4.6 Experiments

We implement Spass in C++, and run experiments on an Intel Xeon E5-
2643 CPU, reporting wall clock time. To differentiate between FWER
and FDR control, we write Spass-fwer and Spass-fdr, respectively.
We compare Spass to three methods for significant pattern mining,
Lamp [175], WYlight [108] and SPuManTE [141]; two methods for
non-redundant pattern set mining, mtv [119] and Desc [43]; and one
statistically non-redundant pattern miner, opus [190]. All our competi-
tors represent the state of the art in their respective fields. We report
results at a significance level 
 of 0.05.
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Figure 4.3: Our method efficiently recovers the ground truth with high
precision and recall. Given are (a) number of significant discoveries, (b)
precision, (c) recall, and (d) runtime, for Lamp, WYlight, SPuManTE, and
our method, Spass, on synthetic data over 500 unique items, with two groups
of 5 000 samples each, in which we plant up to 100 ground-truth patterns
overall. We vary the association probability ?0 by which we independently
associate patterns to groups; for ?0 = 0, no patterns are planted, while for
?0 = 1, every pattern is present in both groups.

4.6.1 Synthetic Data

To validate that Spass recovers true patterns, we start by evaluating the
algorithm on two-group data with known ground truth. To this end,
we generate synthetic data as follows. First, we sample 100 random
patterns of up to 5 items from an alphabet of |ℐ| = 500 items and
insert them into a ground-truth pattern set (∗

8
with an “association”

probability varying in between 0% (no patterns planted at all) and
100% (all patterns are shared among all (∗

8
). Then, we randomly draw

5 000 samples for each group -8 , in such a way that the ground truth
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patterns G ∈ (∗
8
all have a randomly chosen frequency between 15%

and 30%. Afterwards, we add additive noise of 5% and destructive
noise of 1%. To account for random fluctuations, we average over 10
samples per 10% increment in probability.

We run the (two-group capable) significant pattern miners Lamp,
WYlight, SPuManTE, and Spass on each dataset and report the aver-
age number of statistically significant discoveries in Figure 4.3a. At 0%
association probability (i.e., no patterns, pure noise) SPuManTE is the
only method that wrongfully discovers patterns. Across the board, we
see that Lamp, WYlight, and SPuManTE all report orders of magni-
tude more patterns as significant than the number of patterns used to
generate the data. As subsets or combinations of significant patterns
are often significant as well, this is not incorrect per se. Spass, in con-
trast, almost matches the ground truth in number. At 100% association
probability, there are no contrasting patterns and only shared patterns.
Lamp and WYlight only identify that there are almost no contrasting
patterns, whereas Spass correctly identifies that all patterns are shared
among all groups.

To assess the quality of the discovered patterns, we measure preci-
sion and recall with respect to the ground truth as follows. We match
each discovered pattern G with the best-matching ground truth pat-
tern H in terms of set similarity |G ∩ H | /|G ∪ H |. Reporting precision
in Figure 4.3b and recall in Figure 4.3c, we see that all methods ob-
tain good recall, but due to their huge result sets, Lamp, WYlight,
and SPuManTE have very low precision. The sequential redundancy
control of Spass, however, prevents the exponential growth in the cardi-
nality of the output, and consequently, Spass is both precise and often
orders of magnitude faster than the competition (see Figure 4.3d).

High-Dimensional Synthetic Data Having ensured that Spass results
in non-redundant discoveries under either FDR or FWER control, we
investigate how much of a difference FWER and FDR can make on
high-dimensional synthetic data

From Eq. (4.3.3), it follows that for a very large number of features
< or a particularly high search depth ;, FWER control becomes very
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Figure 4.4: FWER is more conservative than FDR. We show the number of
significant patterns discovered by Spass controlling for FWER (diamond) or
FDR (triangle), respectively, at 
 = 0.05, on synthetic data over 20 000 items
with 100 ground-truth patterns (dashed line) while varying the number of
samples.

strict. This means that a high dimensionality or very large patterns
are particularly challenging. We generate data as above, but now over
an alphabet ℐ of 20 000 items in which we plant 100 random patterns.
We run Spass with FWER resp. FDR on data with varying numbers of
samples, and report the number of significant discoveries in Figure 4.4.
We see that both variants converge to the correct number of patterns,
but Spass-fdr does so much more quickly, requiring between one and
two orders of magnitude less data. As expected, FDR is better-suited
than FWER for high-dimensional data.

4.6.2 Real-World Data

Now that we have validated that Spass works well on synthetic data,
we explore how it performs in a wide range of real-world scenarios.

All datasets used in our experiments are publicly available. We
obtained genomics data from The Cancer Genome Atlas Program,¹ and
binarized it using a specialized method for gene-expression data [61].
Furthermore, we tookMushroom, and Pumsb* from the Itemset Mining
Dataset Repository.² The AG News dataset consists of news articles
from 4 categories,³ and the CORD 19 dataset consists of abstracts from

¹cancer.gov/tcga
²fimi.ua.ac.be/data
³di.unipi.it/~gulli/AG_corpus_of_news_articles

102

cancer.gov/tcga
fimi.ua.ac.be/data
di.unipi.it/~gulli/AG_corpus_of_news_articles


Experiments

the CORD 19 open research dataset.⁴ We lemmatized the AG News,
CORD 19, IMDb⁵, and ArXiv datasets and removed stop words and
words with a frequency below 0.1%. All the remaining datasets are
from the UCI Machine Learning Repository⁶ or from the LIBSVM
repository.⁷ To reduce the number of features of the Instacart dataset, we
combined products from the same category, e.g., wemerged Spumante
with Cremant to achieve the Champagne meta category.⁸ We binarized
each real-valued feature by binning it into 5 bins of equal width, and
we mapped each categorical and ordinal attribute to multiple binary
features, which is often referred to as “one-to-:” or “one-hot” encoding.
In Table 4.1, we provide basic statistics for the processed data.

Without access to the ground truth, we cannot compute preci-
sion and recall. We can, however, assess the number of discoveries
and runtime of Spass relative to its competitors Lamp, WYlight, and
SPuManTE, which we report in Figure 4.5.

In the left panel in Figure 4.5, we see that the competitors deem
orders of magnitude more patterns as significant than Spass. Further-
more, we find that our method discovers fewer patterns when control-
ling for themore conservative FWER instead of the FDR. From the right
panel in Figure 4.5, we observe that this tendency is reflected in the
runtime of Spass-fwer, which is typically lower than that of Spass-fdr.
Regardless of the control method, Spass is also almost always faster
than its competitors.

Having ascertained that Spass efficiently discovers concise pattern
sets from real-world data, we turn to case studies to answer three
specific questions:
1. Does Spass work on high-dimensional real-world data?
2. Does Spass discover meaningful patterns in real-world data?
3. Can Spass compete with the state of the art in statistical pattern

mining on one-group real-world data?

⁴allenai.org/data/cord-19
⁵ai.stanford.edu/~amaas/data/sentiment
⁶archive.ics.uci.edu/ml
⁷csie.ntu.edu.tw/~cjlin/libsvmtools/datasets
⁸instacart.com/datasets/grocery-shopping-2017
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Table 4.1: We show the number of data points, the number of features, the
average number of 1s per row, the overall density, and the number of groups
: for the datasets used in our experiments.

Dataset |- | dim- Avg. Row Density :

Higgs 11 000 000 247 28.00 ± 0.00 0.1134 2
SUSY 5 000 000 178 18.00 ± 0.00 0.1011 2
Instacart 2 620 570 1 235 3.14 ± 2.18 0.0025 1
KDD Cup 99 1 000 000 135 16.00 ± 0.00 0.1185 1
Covtype 581 012 64 11.95 ± 0.23 0.1866 2
RNA 271 617 16 8.00 ± 0.00 0.5000 2
News 127 600 11 489 13.63 ± 4.05 0.0012 4
IJCNN 91 701 34 13.00 ± 0.00 0.3824 2
IMDb 49 969 8 125 63.95 ± 42.56 0.0079 2
Pumsb* 49 046 2 088 50.48 ± 1.98 0.0242 1
CORD-19 32 907 2 648 47.63 ± 23.87 0.0180 1
Adults 32 561 123 13.87 ± 0.48 0.1128 2
Mushroom 8 124 117 22.00 ± 0.00 0.1880 2
Breast Cancer 7 325 397 11.67 ± 13.06 0.0294 2
Metabric 1 981 124 32.32 ± 1.03 0.2606 2

Breast 1 218 20 530 3 036.89 ± 359.03 0.1863 1
Lung 1 129 20 530 3 378.75 ± 318.66 0.2043 2
Kidney 1 020 20 530 3 325.43 ± 242.96 0.2097 3
Kidney Clear 606 20 530 3 496.35 ± 371.08 0.2291 1
Lung Adeno. 576 20 530 3 053.31 ± 347.88 0.1932 1
Lung Squamous 553 20 530 3 146.87 ± 333.37 0.1972 1
Brain 530 20 530 3 099.68 ± 371.75 0.2146 1
Endo & Ovo 509 20 530 3 681.89 ± 290.47 0.2303 2
Ovarian 308 20 530 3 063.36 ± 307.32 0.2025 1
Uterine 57 20 530 3 224.40 ± 274.13 0.2253 1

High-Dimensional Real-World Data

To verify whether Spass works on high-dimensional real-world data-
sets, we consider ten genomics datasets concerning Ovarian, Lung,
Kidney, Brain, and Breast cancer.⁹ Together, these data span a wide
range of different sizes, numbers of groups, and numbers of sam-
ples, with the shared trait that they are high-dimensional. We run
Lamp, WYlight, SPuManTE, and Spass on each dataset, but Lamp,
WYlight, and SPuManTE do not report any discoveries. In Figure 4.6,
we report the number of discoveries by Spass after 2 hours of run-
time. Here, as in our experiments on high-dimensional synthetic data,

⁹cancer.gov/tcga
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Number of Patterns Runtime [ms]
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Figure 4.5: Unlike its competitors, Spass efficiently discovers concise pattern
sets. We show the number of significant discoveries (left) and runtime needed
(right) by SPuManTE, WYlight, Lamp and Spass for eight real-world, two-
group datasets.

we see that FWER is much more stringent than FDR. For the Lung A.
dataset, Spass-fwer only discovers 3 significant patterns—its highest
achievement—while when we control for FDR, it makes substantially
more discoveries and discovers 1 353 patterns. In the Brain Cancer
dataset, for example, Spass-fdr discovers 1 471 patterns. According
to a high-level analysis, the top pattern in the Brain Cancer dataset
consists of genes involved in neural activities

{ A2BP1, CAMK2A, GABRA1, GABRB2, NRGN, PACSIN1,
SLC12A5, SNAP25, SULT4A1, SYN2, TMEM130, VSNL1 } .

In contrast, the top pattern from the Breast Cancer dataset
{ AOC3, AQP7, BTNL9, CIDEC, ERG, GYG2, HSPB6, ITGA7,

KCNIP2, LPL, PLIN1, PPP1R1A, SLC19A3, TUSC5 } ,
represents high co-expression of 14 membrane-related genes. We con-
clude that Spass manages to discover interpretable patterns also on
high-dimensional real-world data.

One-Class Real-World Data

Next, we evaluate how well Spass works on unlabeled (one-group)
datasets. Methods like Lamp, WYlight, or SPuManTE all require two
groups, and are not applicable in this setting. We therefore compare
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Figure 4.6: Of all competitors, only Spass-fdr can analyze high-dimensional
genomics data well. We show the number of discoveries on high-dimensional,
one-group and multi-group cancer genomics data from Spass-fwer and
Spass-fdr only, since no competitor discovered any patterns.

to opus [190], which discovers self-sufficient patterns from data using
Fisher’s exact test while bounding FWER. Self-sufficient patterns are
those with a frequency that is statistically significant compared to the
frequencies of all subsets. opus requires the user to set a maximum
number : of how many patterns it may report. As we are primarily
interested in howwell opus filters redundant patterns, we set : = 10 000,
which is high enough for it to discover any truly significant and non-
redundant pattern.

By considering unlabeled data, we are in the application domain
of pattern-set mining, which strives to discover a non-redundant set of
patterns to identify informative feature co-occurrences. We compare to
two state-of-the-art methods, mtv [119] and Desc [43] (cf. Chapter 2),
that also rely on maximum entropy modeling.

In the left panel of Figure 4.7, we show the number of patterns dis-
covered by mtv, Desc, opus, and Spass on 9 one-group datasets. There,
we see that opus almost always reports all : patterns as significant,
whereas the dedicated pattern set miners mtv and Desc, as well as
Spass, all report similarly concise results. Closer inspection confirms
that despite a rigorous FWER control, opus still returns subsets of
patterns as significant discoveries. This means that testing for self-
sufficiency alone is insufficient for discovering a set of non-redundant
and significant patterns. We attribute this observation to the funda-
mental limitation of the self-sufficiency property, which tests each
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Number of Patterns Runtime [ms]
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Figure 4.7: Self-sufficiency is insufficient for discovering non-redundant
patterns. We show the number of statistically tested-to-be non-redundant
discoveries and runtime of mtv, Desc, opus, and Spass on one-group datasets.

pattern independently of prior discoveries, and conclude that the usage
of past discoveries helps to curtail redundant results.

Multi-Class Real-World Data Classification

Finally, to objectively confirm that Spass discovers characteristic and
contrastive patterns that are relevant for the groups, we consider multi-
group classification. Spass is neither a specialized classifier, nor do we
optimize for accurate predictions. However, we can use our probabilis-
tic model to introduce a simple Bayesian classifier

Ĥ8 ← arg max
9

?8(G8 | (8) ,

where Ĥ8 is the likeliest prediction under Spass’s distributions ?1 . . . ?: .
While it would be too much to expect Spass to outcompete the state
of the art in classification, our goal here is to objectively check if the
patterns it discovers allow to separate the groups well: If they do, we
will see reasonably high accuracy.

We compare Spass to decision trees as examples of nonparamet-
ric and interpretable classifiers. To train trees, we use cart [26] as a

107



Sequentially Significant Patterns

baseline and the recent DL8.5 [4] for optimal trees. Since DL8.5 has
a high computational complexity, we limit its run time to 60 minutes
and its tree depth to at most 10, which is more generous than in the
original study [4]. We use a 5-fold stratified cross validation to apply
Spass, cart, and DL8.5 to the sampled training data (80%).

In the left panel of Figure 4.8, we report the average true positive
rate on the remaining test data (20%). Even though we do not directly
optimize for accuracy, we can see that Spass has a high precision in
both two-group and multi-group data. Its accuracy is in most cases
comparable to the results from cart. In our experiments, DL8.5 tends
to have the lowest accuracy, which is especially noticeable on multi-
group data.

Although we cannot directly interpret our pattern sets as trees, we
can get an idea of how the model sizes compare by considering the
number of rules the trees embed. To this end, we count the number
of leaves—or equivalently, the number of root-to-leaf paths—in the
trees, and show these together with the number of patterns that Spass
discovers in the right panel of Figure 4.8. We see that cart usually
requires the largest models and sometimes needs tens of thousands of
rules to classify the data. In this regard, DL8.5 performs much better
and often results in very small trees. However, we see that this often
corresponds to a drop in accuracy of DL8.5. Additionally, we also
limit tree depth of DL8.5, and therefore model size, due to its high
computational complexity. cart needs much fewer rules for easy-to-
classify datasets like Metabric. Since Spass is after descriptive models,
it is no surprise that we find more significant patterns than we need
to differentiate the groups. In most cases, our model is well below
100, which results in descriptions that are concise enough to be easily
interpretable.

In the middle panel of Figure 4.8, we show the run time. We see
that cart is usually the fastest method, closely followed by Spass. We
are on median only 0.08 seconds behind cart, and in the best case,
News, we are 6.5 minutes faster. DL8.5, on the other hand, often reaches
its time limit and is slower than Spass.
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Figure 4.8: From left to right, we show the the classification accuracy (a), run
time (b) and model size (c) of cart, DL8.5, and Spass as averages over a 5-fold
stratified cross validation on real-world two-group and multi-group data.

Sentiment Analysis

Next, we take a closer look at the quality of the patterns that Spass dis-
covers. To this end, we consider the IMDb movie review dataset [115],
which consists of positive and negative movie reviews as text. We run
Spass on this data and report associations of natural language pat-
terns to positive or negative sentiments. After eliminating stop words,
lemmatizing the corpus, and removing infrequent words, the dataset
consists of 50 000 rows with 8 124 features, in which Spass discovers
215 significant patterns under FWER control, which we rank according
to their significance. The top-3 patterns,

{ great fantastic }, { music sound }, { film plot twist } ,
are uniquely positive, whereas the most contrasting top-4 patterns
between the two groups are

{ seen worst }, { piece crap }, { world reality }, { painful watch } .
Regardless of the sentiment, reviewers are concernedwith special effects,
which is the highest-ranked shared pattern.
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Clinical Survival Analysis

To further analyze the interpretability of our results, we consider the
problem of clinical survival analysis. In particular, we analyze the
Metabric breast cancer dataset [40]. It consists of 2 000 samples (pa-
tients) over 124 binarized features, with binary labels marking the
survival status of each patient. By using Spass, we discover 65 patterns
at an FDR of at most 0.05. On average, these patterns consist of 4.5±2.3
items, with the longest pattern having length 12. Among the patterns
that are easiest to understand, we identify

{ Relapse: Recurred, Patient Died of Disease } and
{ Relapse: Not Recurred, Patient Died of Other Causes } ,

as only significant for the deceased group, and
{ Survival of 49 Months, Relapse Free for 31 Months },

as significant for the group of survivors.
The Nottingham Prognostic Index (NPI) is an estimate of the sur-

vival chance after breast surgery, with low numbers indicating a high
chance of survival. Spass discovers that a low NPI, combined with
small and early-stage tumors,

{ NPI: [1.0, 3.04), Tumor Size: [1, 15), Tumor Stage: [0, 1) } ,
is associated with survivors, while high values of NPI, together with a
cancerous lymph system,

{ NPI: [5.06, 7.2), Lymph Nodes Positive: [3, 45) } ,
are associated with deceased patients. Significant for both groups is
the association of radiotherapy and surgery type,

{ Surgery: Conserving, Radiotherapy: Yes } ,
{ Surgery: Mastectomy, Radiotherapy: No } ,

which corresponds to clinical practice.
We further discover that cancer cells which do not respond well to

hormone therapy,ER:- (by IHC), are typically treatedwithChemotherapy:
Yes. Spass returns two variants of this pattern: one withOverall Survival
≤ 49 months and onewith InferredMenopausal State: Pre, both significant
for the group of deceased patients. It also discovers a pattern significant
for deceased patients that characterizes the situation in which cancer
cells that are hard to differentiate from regular cells (i.e., they have a
high histological grade) do not respond to hormone therapy,
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{ ER:- (by IHC), ER:-, PR:-, Neoplasm Hist. Grade: 2 } .
In these cases, hormone therapy tends to fail, surgery is very hard to
perform, and hence, patients have low survival rates.

Topic Modeling

Finally, we use Spass to highlight important patterns in abstracts about
different topics. To this end,we crawledArXiv abstracts from across the
machine learning topics ‘explainability’, ‘interpretability’, ‘causality’,
‘deep learning’, and some ‘quantum theory’ for good measure. We
removed stop words, lemmatized the corpus, and removed infrequent
words. Overall, the sparsely populated dataset contains 18 913 rows
over 1 504 features across 5 groups, for which Spass tested 115 patterns
as significant. The most characteristic pattern for ‘deep learning’ is
unsurprisingly deep neural network, whereas the patterns

{ harmonic oscillator }, { master equation }
are unique to ‘quantum physics’. Over all machine learning groups,
the top-3 patterns are related to deep learning, namely,

{ deep neural network }, { deep learning }, { neural network },
which makes sense, as this is a widespread topic and the groups are
fuzzy. Yet, we also discovermeaningful patterns that set apart the other
machine learning topics. For example, the top contrasting patterns are

{ principle component analysis },
{ partial differential equation }, { black box }

Finally, the most significant pattern that emerges in ‘causality’, ‘ex-
plainability’, and ‘interpretability’ from the ‘deep learning’ perspective
is structural equation.

Overall, our experiments on real-world data from different do-
mains therefore demonstrate that Spass not only efficiently discovers
non-redundant sets of significant patterns, outperforming even spe-
cialized state-of-the-art methods, but that it also identifies meaningful
patterns in practice.
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4.7 Discussion

We demonstrated experimentally that Spass discovers pattern sets
which are as concise as the state of the art in pattern-set mining, while
retaining sequential statistical significance. Although Spass success-
fully yields significantly less-redundant results than the state of the
art in significant pattern mining, it still leaves room for future work.

Our method is essentially a framework which permits to (i) plug
in a data-appropriate probabilistic model that dependents on past
discoveries; (ii) choose a statistical test; and (iii) select one of themyriad
FWER or FDR control techniques [83, 84, 146, 176, 177, 188]. As such,
it is easily adaptable: One can simply exchange building blocks to
accommodate different types of data, such as graphs, sequences, or
continuous data, or to incorporate background knowledge beyond
pattern frequencies. Replacing the binomial test with the standard
normal approximation, for example, yields the /-test.

Albeit our sequential FWER control is much less conservative than
Bonferroni correction, we see room for increasing the statistical power
even further. Recent work, for example, introduces a novel online
FWER control [177], which might yield a statistically powerful sequen-
tial FWER control. However, since this work still controls for the strict
FWER, it will not replace the online FDR control, which could also be
improved further. For example, we might overburden our “
-budget”
by paying for each test, including tests of hypotheses that have very
high ?-values and thus will almost surely never result in discoveries.
Therefore, we might as well outright discard (not reject) these hopeless
hypotheses [176].

Further, we currently maintain one FDR budget for all groups, but it
is straightforward to adapt Spass to maintain independent FDR budgets
per group. Sincewe did not notice a practical performance difference in
our experiments when maintaining independent budgets, we present
the slightly simpler algorithm in this work.
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4.8 Conclusion

We considered the problem of discovering statistically significant pat-
terns under false discovery control. To avoid redundancy, we proposed
to statistically test whether observed frequencies match with expec-
tation, given past discoveries. To achieve high statistical power, we
proposed to sequentially control for either FWER or FDR. To efficiently
discover significant patterns, we introduced the Spass algorithm that
uses an easy-to-compute Chernoff bound to permit efficient signifi-
cance testing. Through extensive experiments, we demonstrated that
our method returns concise result sets, recovers the ground truth from
synthetic data, works well on data with many dimensions and any
number of groups, and identifies interesting and meaningful patterns
in practice. By combining pattern-set mining with significant pattern
mining, Spass consistently outperforms the state of the art in both
areas.
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5
TheRelaxedMaximumEntropyDistribution

The previous chapters are united in their use of the maximum
entropy principle to discover insightful patterns. As explained in Sec-
tion 2.3, this principle uniquely identifies the distribution that satisfies
the constraints laid out by our model but otherwise is maximally un-
biased. As soon as we consider non-trivial models, however, exact
inference quickly becomes intractable. So far, we have used a static and
exact factorizations of the expectation into size-constrained factors,
thus limiting the expressivity of our distribution. In this chapter, we
propose a relaxation that permits efficient inference by dynamically
factorizing the joint distribution into maximum-entropy factors we
can learn from data, which allows for unconstrained data modeling.

Specifically, we show that the relaxed maximum entropy (RelEnt)
distribution is PAC-learnable and consistent with the standard max-
imum entropy (MaxEnt) distribution. Through an extensive set of
experiments on synthetic and real-world data, we show that the re-
laxation is highly scalable, approximates standard maximum entropy
very closely, allows for equally good classification as well as much
faster clustering, and results in interpretable patterns.

This chapter is based on the publication: Dalleiger and Vreeken [44].
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5.1 Introduction

The maximum entropy (MaxEnt) principle allows us to uniquely iden-
tify the distribution that satisfies what we know about the data, yet
introduces as little other bias as possible. It is a very general princi-
ple, yet surprisingly easy to instantiate: The distribution often takes
a convenient form [39], and as the resulting problem is convex, it is
straightforward to optimize [45]. It is therefore no surprise thatMaxEnt
is useful in machine learning [104, 200], but as it provides a statistically
well-founded way to measure (subjective) interestingness, it is espe-
cially useful in data mining. In data mining, the MaxEnt principle has
been used to rank results given expert knowledge or beliefs [22, 87],
to measure differences between data mining results [174], to identify
small and non-redundant sets of informative patterns [118, 193], and
to discover components in data [43].

While MaxEnt has many favorable properties, the type of knowl-
edge we would like to incorporate into our model strongly affects how
efficiently we can infer it. As long as we care only about overall densi-
ties, life is simple [22, 174]. But whenever we incorporate dependencies
between attributes, such as basic co-occurrence frequencies (e.g., 0 and
1 co-occur in 50% of the data) [43, 118], it becomes PP-hard to infer
the resulting model [172]. Hence, whenever we want to use MaxEnt
with non-trivial factor models, we need to employ tricks to achieve a
reasonable runtime.

The main trick in the literature is to construct not one maximum
entropy distribution ?∗ over all attributes, but rather factorize the dis-
tribution according to the independences in our model [43, 118, 193].
That is, if those are given as a set of statistics (, we can partition this
set into independent subsets (8 , and we can later infer the maximum
entropy distribution ?∗ for each (8 . This, of course, only works when (

indeed consists of independent parts. Rather than hope for the best,
existingmethods hence enforce this—for example, by allowing only up
to : mutually dependent statistics in (, or by partitioning the attributes
and disallowing any statement about two or more parts. Putting such
restrictions on ( obviously strongly limits the expressivity of the result-
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ing models, and as our experiments confirm, it leads to underfitting
the data.

In this chapter, we take a different approach, starting from the
observation that not everything we know is always equally relevant.
That is, we propose to relax the maximum entropy distribution. In-
stead of using every piece of our model B ∈ ( for every inference, we
suggest to leverage only the most relevant subsets of (, working with
different maximum entropy distributions depending on what we infer
for. In other words, rather than enforcing one static factorization for all
queries, we consider different, dynamic factorizations of ( depending
on the inference.

We prove that our proposal, which we refer to as the relaxed max-
imum entropy distribution, is both PAC-learnable and consistent with
vanilla maximum entropy. Furthermore, we elucidate how the dy-
namic factorization problem relates to data summarization, which
allows us to specify an extremely fast instantiation based on pattern
mining. We show that our approach, which we call Reap, allows us
to consider almost arbitrarily large models and approximate complex
ground-truth distributions better than the strongly constrained existing
solutions, while at the same time being many orders of magnitude
faster. Moreover, through extensive experiments on both synthetic
and real-world datasets, we show that our relaxed distribution outper-
forms vanilla maximum entropy at multiclass classification, pattern set
mining, and data decomposition, in terms of both quality and speed.

In sum, our main contributions are that we
1. introduce the relaxed maximum entropy distribution,
2. provide a practical realization of this distribution,
3. show how factors of the model relate to associations in the data,
4. provide a highly efficient algorithm to estimate the distribution

through pattern discovery, and
5. demonstrate, through an extensive set of experiments, that the

distribution and the algorithm work well in practice.
The remainder of this chapter is structured as follows. Having intro-
duced the maximum entropy distribution already in Section 2.3, we
develop the theory of our relaxed maximum entropy distribution in
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Section 5.2, propose our Reap algorithm to find a good relaxed maxi-
mum entropymodel efficiently in Section 5.3, and contextualize related
work in Section 5.4. In Section 5.5, we demonstrate that Reap works
well in practice, before concluding in Section 5.6.

5.2 Theory

In this section, we briefly introduce our notation, and we develop the
theory of our relaxed maximum entropy distribution.

5.2.1 Notation

In this chapter, we also consider binary tabular data, and largely follow
the notation from Section 2.2 and Section 4.2. In a nutshell, for any
finite sets � and �, we denote 2� for the powerset of �,

(�
:

)
for the set

of all subsets of � of size : ∈ N, �
a

� for the symmetric difference
between � and �, and [=] = {1, 2, . . . , =} for any = ∈ N. The indicator
function is 1, all logarithms are to base 2, and by convention, we use
0 log 0 = 0.

As we again consider binary tabular data, a dataset - is a multiset
of = samples from the setΩ = 2ℐ of all possible samples, over 3 features
in the set ℐ. Like in Section 2.2, for a given partitioning of Π ∈ +(-),
we denote the : ≥ 1 groups in Π by {-1 , . . . , -:} and let =8 = |-8 |.
Our method requires an underlying probabilistic model, for which
we again choose the maximum entropy distribution introduced in
Chapter 2.

5.2.2 Relaxation

Building on our introduction of the original maximum entropy distri-
bution in Section 2.3, we now develop our relaxation of this distribu-
tion. To this end, we first recapitulate the factorization of our expected
frequency in more detail. We then formalize the static factorization and
contrast it with our dynamic relaxation. In Section 2.3, we established
that a straightforward inference of the expectation ? of our maximum
entropy distribution involves an exponential number of terms in the
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sum. Many of these terms evaluate to the equivalent probabilities, and
they can be used to partition Ω into equivalence classes Ω/∼, with

G ∼ H ⇐⇒ 5 (G | () = 5 (H | ()

for G, H ∈ Ω, such that the expectation becomes the weighted sum

E 5 [G | (] =
∑

JHK∈Ω/∼
G⊆H

|JHK| 5 (H | ()

over these groups. Mampaey, Vreeken, and Tatti [118] showed how to
create the set of equivalence classes

{JHK ∈ Ω/∼ | G ⊆ H}

that support G and their weights from (, such that the size scales
exponentially only in ( instead of ℐ. However, if ( is sufficiently large,
the inference is still intractable. Hence, the question arises if we can
reduce the inference complexity without reducing the size of (.

If there exists a valid factorization of ? into independent factors∏
?8 , we will not change the outcome by inferring the factors indepen-

dently from one another. Conversely, we will not lose information by
factorizing ( into subsets (8 that are independent in ?. Whenever we
can do so, the inference complexity of each factor ?8(· | (8) scales only
in (8 , and if the sizes of these subsets (8 of ( are now considerably
smaller than (, we achieve a significant gain in inference complexity
without loss.

Example 5.1. Consider the case of

( = {012, 23, 34 , 35 , 4 5 } ,

where the set ℐ consists of letters from 0 to 5 . If we know that the
letters 012 are independent of the rest, we can factorize ( into (1 =

{012} and (2 = {34, 4 5 , 35 } without information loss. The inference
of the frequency of the pair 01 only marginalizes out the 2 of factor (1.
However, if (1 and (2 are not independent (for example, if the pair 23 is
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part of our statistics), then we have to marginalize out 2, 23, 34 , 4 5 , 35 ,
which consists of the sum over 25 combinations.

More formally, the inference of the expectation ?(G | () becomes
the product ∏

(8

?(G ∩ B 8 | (8)

of individual maximum entropy factors, where the set B 8 = ∪(8 con-
tains the elements that are associated through (8 . In the following, we
generalize this observation in terms of a factorization oracle !.

Definition 5.1 (Generalized Factorization). For a given factorization
oracle ! ∈ Ω→ 2( that is provided with statistic ( ⊆ Ω, the generalized
factorization is

?̃(G | () =
∏

(8∈!(G)
?(G ∩ B 8 | (8) , (5.2.1)

where the factors ?( · | (8) have maximum entropy, subject to con-
straints imposed by (8 (Eq. (2.3.1) and (2.3.2)).

Example 5.2 (Static Factorization). Assume that our statistic ( and
the factorization of ? are given and fixed. This means that we have
access to the set of ?-independent statistics {(8}8 such that ( =

⊔
8 (

8 .
In this situation, the static factorizer is

!static(G) =
{
(8 ∈ S

��G ∩ B 8 ≠ ∅
}
.

In theory, if S truly models the independences of the ground-truth
distribution, using !static is optimal. In practice, however, modeling
the true factorization can pose a significant problem: The complexity
of inferring a single factor is still exponential in the size of (8 . To
circumvent this issue, we have to drastically limit the size of each (8

to be no greater than, say, a user-defined � ∈ N. This limited special
case of Eq. (5.2.1) plays a central role in the inference of the maximum
entropy models as used by, e.g., mtv [118] and Desc [43] (cf. Chapter 2).

The problem is that if we use the static factorization, we have to
choose between tractable inference complexity and sufficiently rich
modeling of the data. For example, consider the static factorization
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Figure 5.1: We depict two exemplary factorizations as graphical models. For
( = {012, 23, 34 , 35 , ef }, denoted by the dotted edges, we visualize possible
factorizations for queries 23 (top, a–b) and abcdef (bottom, c–d). A solid edge
means that the corresponding nodes partake in the inference. For example,
as {012} ∈ (, the static factorization has to marginalize-out 0 and 1, in order
to infer 23. Depicted by the presence of solid edges (left), we see that the
static factorization requires all of (. Right, the dynamic factorization, however,
efficiently selects the 23 factor, thus crossing-out dependencies. Likewise
for abcdef , we see that the static factorization (left) again uses the complete
graph, whereas the dynamic factorization (right) frugally factorizes into two
easy-to-infer cliques, thus trading inference complexity with information
loss.

S that consists of the two independent factors {012} and {34, 35 , ef }.
If we model an association between 2 and 3, we introduce a statis-
tical dependency between the two factors, and hence, S becomes
{{012, 23, 34 , 35 , ef }}. However, as the size of this factor exceeds the
budget of � = 4, we are prohibited from modeling dependency 23.
In the following, we introduce a relaxed, more flexible factorizer that
relieves us from this choice.

Example 5.3. In Figure 5.1, we consider a graphical representation of
?̃ for our example set ( = {012, 23, 34 , 35 , ef }, which we visualize
using dotted edges. We show possible factorizations of the two queries
abcdef and 23, using both static factorization (Figure 5.1c resp. 5.1a) and
relaxed factorization (Figure 5.1d resp. 5.1b). The static factorization in-
volves the complete graph, and therefore, the graph is connected (solid
lines) and the inference is quite complex. However, if we deliberately
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ignore dependencies, we can partition the graph into clique graphs
that are less complex to infer by cutting out edges (the crossed-out
dotted edges).

In other words, by essentially cutting out edges from the graph, we
can, at the cost of information loss, tremendously reduce the inference
complexity. In general, the inference complexity of a factorization is

�(S) =
∑
(8∈S

2
��(8

��
,

and for a given factorization oracle ! that deliberately ignores associa-
tions, the reduction in inference complexity,

�(S∗) − �(!(G)) ∈ O(2�) ,

is exponential in �, where � is the difference between the sizes of the
largest factors in S∗ and !(G). For example, the complexity in Fig-
ure 5.1a is �({(}) = 25, whereas by omitting 23 in Figure 5.1a, the
complexity drops to only �({{012}, {34, 35 , ef }}) = 21 + 23.

Dynamic Factorization In the example above, we dynamically adapt
the factorization of ?̃ to trade inference complexity with information
loss for the queries G ∈ Ω. To formalize this idea, we assume that
not all information in statistics ( is necessarily worth including in the
factorization of each G ∈ Ω. More precisely, we assume that there is a
subset of ( that contributes very little to no information to the expected
frequency of G. Similar to the example, if we avoid maintaining these
statistics in our factorization, we can reduce the inference complex-
ity exponentially while keeping information loss at a minimum. Put
formally, we want the factorization of ?̃ that loses the least amount of
information while being tractable to infer, i.e.,

!dynamic(G) = arg min
S⊆2(

�(?∗‖ ?̃S ) s.t. �(S) < � , (5.2.2)

for a � ∈ N, where � is the Kullback-Leibler divergence (Eq. (2.5.2)).
However, directly solving Eq. (5.2.2) has three drawbacks:
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1. The total number of possible factorizations of ?̃ is exponential in
the size of (.

2. Each of these factors is supposed to maximize its entropy.
3. Computing � is computationally costly.
Together, this all has to be done at least for every G ∈ -, and hence,
this is not a very practical factorizer. In the following, we introduce
an alternative that does not suffer from the drawbacks just sketched
(i−iii).

For correctness, we require that our ! splits any G into pairwise
disjoint factors. In other words, we seek a factorization !(G) in which
any two factors (8 and ( 9 never cover the same subset of G, i.e.,

G =
⊔

(8∈!(G)
G ∩ B 8 ∀G ∈ Ω .

For efficiency, we require that each factor generated by ! must be
efficiently inferable, say,

! ∈ O(poly(|S|)) ,

for some set S (i, iii). This also means that we need efficient (i.e., poly-
time (ii)) access to all factors. Since maximizing the entropy of a single
factor has a complexity that is exponential in (8 , we cannot simply
generate arbitrary factors for any inference. Having to choose maxi-
mum entropy factors from a list, however, meets this demand. Hence,
our factorizer selects factors (8 ∈ !(G) from a set of pre-determined
maximum entropy factors known to the factorizer beforehand, which
we call elementary factors. As we only require that the factorization is
correct, it becomes unnecessary that elementary factors are disjoint,
which has a higher modeling capability than the static factorization.
That is, we relax constraints and are still correct, which provides ad-
ditional flexibility used to efficiently model dependencies hat have
previously been impossible tomodel efficiently by !static, due to budget
constraints. Formally speaking,

Definition 5.2 (Practical Factorizer). Let ! ∈ Ω→ 2S be a factorizer
for the efficiently computable cost function of a factor 2 ∈ Ω→ R. For
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(1 (2 (3

(a) !(23) = {(2}

0 1 2 3 4 5

(1 (2 (3

(b) !(abcdef ) = {(1 , (3}

Figure 5.2: We visualize our example as a factor graph. For the given elemen-
tary factors S = {{012}, {23}, {def }}, we show factor graph representations
of ?̃ for inferring 23 (left) and abcdef (right). We represent each elementary
factor (8 ∈ S as a square and highlight the factors that are in !(G).

any given setS of elementary factors, and for each G ∈ Ω, our factorizer
!(G) finds factorizations by

!(G) = arg min
�⊆S

2(�) s.t.
⊔
�8∈�

G ∩ 0 8 = G .

In all its generality, this definition of a practical factorizer allows
for many efficient, correct, however different factorizations of each
element G. To algorithmically identify one, we need to specialize this
practical factorizer further—by making a choice. Since we ultimately
infer the expected frequency of patterns, we interpret the coverage (by
!) as an explanation for its estimate, revealing precisely which feature
dependencies are used and which are omitted.

Example 5.4. Assume that in addition to ( from our running exam-
ple, we are now additionally given a set S of elementary factors
{{012}, {23}, {def }}. In Figure 5.2, we depict factor graph representa-
tions of ?̃ and visualize possible factorizations of two different queries.
Again, we trade inference complexity with information loss, however
this time, we do so not by removing arbitrary edges from the graph
but by selecting a subset of elementary factors (squares) from S. In
this figure, we also illustrate that elementary factors are not necessarily
disjoint. The factors in !(G), however, are always disjoint for any G.

Following Occam’s Razor, we seek to provide the simplest factor-
ization. That is, we are specifically interested in providing the smallest
number of factors that cover G ∈ Ω. We call this factorization the min-
imal sufficient factorization of G. To do this, we simply parameterize
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our practical factorization by letting the cost function of a factor be
2(�) = |�|. By doing so, the practical factorization problem becomes,
in fact, a variant of theminimal exact set cover or hitting set problem [93],
and is therefore efficiently optimizable by taking a greedy approach.
In other words, to overcome issues (i) and (iii), we take a greedy ap-
proach to the set cover problem, with a complexity of O(:2). Overall,
the worst-case complexity of inferring the relaxed expectation,

O(2�:2) ,

is bounded by a term that is exponential in the maximally allowed
size of a factor �. The expected average complexity - is less than this,
since we usually do not exhaust the full budget � and efficiently stop
greedy set cover early.

To summarize the above, we have introduced an efficiently com-
putable ! that factorizes ?̃ by selecting the minimal sufficient ex-
planation in terms of given, pre-determined, not necessarily disjoint
maximum-entropy factors. Providedwith a set of elementarymaximum-
entropy factors, we next use this factorization to relax the inference of
our expectation ?∗. Afterwards, we describe how to obtain elementary
factors from data, which we summarize as our algorithm.

Relaxed Maximum Entropy model Estimator We want to find the set
of elementary factors S ⊆ 2Ω that minimizes the divergence between
the true reference distribution ?∗ and our relaxation ?̃ such that the
inference complexity of ?̃ is bounded. Formally:

Problem 5.1 (Relaxed maximum entropy). Given a budget � ∈ N, we
seek to

minimize
S⊆2Ω

�(?∗‖ ?̃S) (5.2.3)

subject to
��(8

�� ≤ � ∀(8 ∈ S
5(8 ← Eq. (2.3.1) w.r.t. (8 ∀(8 ∈ S
?̃(G) = @(G) ∀G ∈ ∪S ,
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where � is the Kullback-Leibler divergence between the given target
reference distribution ?∗ and the relaxation ?̃. Every 5(8 maximizes
the marginal entropy according to Eq. (2.3.1). From a set of equally
diverging relaxations, we select the one with the lowest inference
complexity.

Even though this problem is straightforward to write down, it is
challenging to solve, as the search space of size 22Ω is tremendously
large. We also cannot access the true factorization S∗ to guide our
search for the optimal solution. Furthermore, we cannot actually infer
the unknown distribution ?∗. Hence, we cannot simply solve Prob-
lem 5.1 by means of an off-the-shelf combinatorial optimization al-
gorithm. Therefore, in the following, we show that Problem 5.1 is
learnable (i), by discovering associations (ii), from data (iii).

We start with the mild assumption that the support of ?̃ subsumes
the support of ?∗, i.e.,

supp ?∗ ⊆ supp ?̃ ,

from which follows that the divergence �(?∗‖ ?̃) < ∞ is finite [95], and
therefore, that a solution must exist. With the following lemma, we
show that there actually exists a solution that approximates ?∗.

Lemma 5.1 (Problem 5.1 is PAC-learnable). The probability that the
divergence is sufficiently small converges to 1, i.e.,

P [�(?∗‖ ?̃) < &] → 1 ,

where &→ 0 for |S| → |S∗ |.

Proof. Let . ∼ ?∗ and - ∼ ?̃ be two random variables. We know that
if the conditional entropy �(. | -) is 0, the divergence �(?∗‖ ?̃) is
minimal. Furthermore, we know from Fano’s inequality [37] that the
conditional entropy �(. | -) of . |- is bounded from above by the
error probability P(�) for the random variable � = (- ≠ .), in the
sense that

�(. | -)/log |Ω| < P(�) .
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This means that as long as P(�) converges to 0, the conditional entropy
converges to 0. By creating an elementary factor (H = {H} for such a
. = H, we create a maximum entropy factor ?H ∈ P(H for which ?(H) =
?∗(H) is true by construction, and hence, ifwemake use of (H , we reduce
the probability of an error. Thus, the set S = {{G}G∈(∗} is an example
of a sequence of factors for which P(�) converges asymptotically, given
that the moment constraints are consistent. Hence, our problem is
learnable according to Lemma 5.1. �

Now we know that the problem is learnable in general, but the
distribution ?∗ is still unknown. Next, we would like to get rid of this
unknown, andwe seek to specify the empirical information loss caused
by the factorization. To these ends, we need the following lemma.

Lemma 5.2 (Asymptotically Consistent). For a given set of = samples
- = {G8}8∈[=] from ?∗, where - ∼ ?∗, the empirical estimator �̂= of
Eq. (5.1),

lim
=→∞

�̂=(?∗‖ ?̃) → �(?∗‖ ?̃) ,

converges asymptotically to �.

Proof. We assume supp @ ⊆ supp ?∗. We write �(?∗‖ ?̃) = �(?∗‖@) +
�(@‖ ?̃) by using the information projection [39]. Since - ∼ ?∗, and
due to the law of large numbers, we know that lim=→∞ �̂=(?∗‖@) → 0.
Thus, it is sufficient to show

lim
=→∞

�̂=(@‖ ?̃) → �(@‖ ?̃) ,

which is trivially true because @ is the empirical estimate. �

With Lemma 5.2, we can now state the empirical information loss
introduced by our factorization for a single G ∈ Ω as

log @(G) −
∑

(8∈!(G)
log ?(G ∩ B 8 | (8) . (5.2.4)

Next, we focus on how to find elementary factors. Evenwhen using
the empirical estimator, solving the problem directly would involve
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search in the very large space of 22Ω possible combinations of ele-
mentary factors. To overcome this obstacle, we introduce a way to
considerably reduce the search space without loss. For this, we show
that we can limit our search to a set of elements ( ⊆ Ω that are sta-
tistically dependent in data -. To do so, we first formalize what we
mean by dependencies. We say that G ∈ Ω is conditionally independent
of H ∈ Ω if

G � H | S∗ ⇐⇒ �( 9 ∈ S∗ : G ⊆ B 9 ∧ H ⊆ B 9 .

By definition, there is no single maximum-entropy factor (8 in the
assumed-to-be given true factorization S∗ that contains both G ∈ Ω

and H ∈ Ω that are statistically independent in -. Therefore, we have
the following lemma.

Lemma 5.3 (Factors from Associations). For a given set (∗ ⊆ Ω that
contains all statistically dependent sets of elements G ∈ Ω, there are
no factors (8 in S∗ that contain G ∉ (∗.

Proof. Assume otherwise, that is, assume that there exists G = 0∪1 ∈ (∗
for which 0 � 1 | S∗. Thus, �(01 ∈ S∗ with 0, 1 ∈ (01 . Hence,

?∗(0 ∪ 1) = ?∗(0 | (0)?∗(1 | (1) .

However, by definition, @(0 ∪ 1) ≠ @(0)@(1) holds true. The contradic-
tion then follows from lim=→∞ @(=) → ?∗. �

In other words, instead of minimizing Eq. (5.2.3) directly, firstly, it
suffices to construct a factorization S that minimizes divergence, for
a given to-be-found set ( (Lemmas 5.1 and 5.3). Secondly, it suffices
to discover ( from - (Lemma 5.2). We separate these two problems
and solve them in turn. To this end, we start by creating the set of
elementary factors S from a given set of dependencies (. Next, we
discover this ( ⊆ Ω from data -.

We start with a given set (. If ( is provided and fixed, Problem 5.1
simplifies to the task of selecting a factorization

minimize
S⊆2(

�(@‖ ?̃) s.t. constraints from Eq. (5.2.3) are fulfilled (5.2.5)
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from the powerset of (. On the other hand, if the factorization function
is known, our problem simplifies to discovering the set (, allowing us to
rephrase Eq. (5.2.3) in terms of minimizing the cross-entropy between
?∗ and ?̃,

�(?∗‖ ?̃) = −
∑
G∈Ω

?∗(G) log ?̃(G) .

As a direct consequence of Lemma 5.2, we use the empirical cross-
entropy �̂, from which we derive the following problem.

Problem 5.2 (Summary Problem). For a given factorizer !, we call
the problem of selecting the set ( ⊆ Ω with the highest regularized
likelihood,

minimize
(⊆Ω

ℓ (Ŝ) = −
∑
G∈-

log ?̃(G | Ŝ) + A(Ŝ) ,

the summary problem, where Ŝ is a solution to Eq. (5.2.5) for (. To
prevent overfitting and limit the total number of constraints, we use
the Bayesian Information Criterion (BIC)

A(Ŝ) = 1
2 log |- |

∑
(8∈Ŝ

��(8
�� ,

where the number of degrees of freedom in our model is the combined
size of all elementary factors.

5.3 Algorithm

In the following, we derive an algorithm that discovers a relaxed maxi-
mum entropy model ?̃ from data. As described in Section 5.2, we split
this task into two: firstly, discovering patterns ( in -, and secondly,
estimating elementary factors S for (. However, there are 22ℐ possible
sets ( to select from, and many more elementary factors S. Therefore,
we resort to an iterative approach that jointly discovers associations
and elementary factors, whose outline follows next.

Given a set ( and fixed elementary factors S, we iteratively obtain
the candidate G ∈ � ⊆ Ωwith the highest estimated gain using heuris-
tic ℎ ∈ Ω→ R, for which we then create new factors. That is, starting
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with no dependencies S = {{G} | G ∈ (} between all items ( = ℐ, we
iterate

(← ( ∪ arg max
G∈�

ℎ(G) , (5.3.1)

and generate new elementary factors of size at most �, until conver-
gence of ℓ . Next, we explain these steps in detail, starting with the
creation of new elementary factors from candidates, followed by the
heuristic ℎ.

Creating Elementary Factors from Candidates We describe the creation
of elementary factors for a given pattern candidate G ∈ Ω \ (. As men-
tioned in Eq. (5.2.5), our goal is to minimize the divergence between
our relaxed maximum entropy distribution model and the empirically
observed frequency distribution. To efficiently capture the dependen-
cies modeled by G, we need one corresponding elementary factor that
contains all observed information about G. If there is such a factor
(G ∈ S, we require

@(G) = ?(G ∩ BG | (G) ,

or otherwise, we create a new factor (G ⊆ ( with access to necessary
information from ( and @ about G.

Because our factorizer ! selects the information about G, we incor-
porate its explanation in our newly created factor. Thus, to minimize
the divergence, we include our past explanation for G and G itself

S ← S ∪ {!(G) ∪ {G}} . (5.3.2)

into a new factor. However, as new elementary factors can easily exceed
our budget �, we need to limit the factor size. To achieve this, we use the
least diverging factor that is under budget, by solving the constrained
problem below.

Problem 5.3 (Relaxing a Factor). For a given factorizer !, and pro-
vided with a set of elementary factors S, relaxing any maximum en-
tropy factor ?( · | (8) for (8 ∈ S is the problem of selecting the subset
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of at most � ∈ N elements with the smallest information loss, i.e.,

(8 ← arg min
�⊆(8 ,|�|≤�

�Ω8 (@‖?�) , (5.3.3)

where �Ω8 is the Kullback-Leibler divergence with respect to the parti-
tion Ω8 ⊆ Ω that factor (8 supports.

Fortunately, � tends to be small in practice, and the divergence � is
known to be submodular (cf. Lemma 2.1) [43, Proof in App. 1]. There-
fore, we can solve Eq. (5.3.3) greedily with guarantees. To specifically
relax (G , we ensure that G is always present in that factor after the
relaxation.

Running the iterative method outlined in Eq. (5.3.1), however,
might create factors that are superseded by other factors at a later
iteration, thus do not participate in any factorization of -—and con-
sequently are not needed. Formally, elementary factors � ∈ S are
unused iff �G ∈ - such that � ∈ !(G). This allows us to easily identify
unused elementary factors after the final iteration, remove them from
the model, and reduce our model selection penalty A(S).

Discovering the Statistics Now that we know how to iteratively create
new elementary factors, we can explain how we discover (. To do so,
we will specify the heuristic ℎ that we use to rank candidates from
set �. Afterwards, we show a simple way to build up �. The problem
is that � becomes quite large, and ℓ is expensive to compute. Hence,
we do not compute the ℓ to rank each element in � exactly. Instead,
we make use of a cheaper-to-compute heuristic ℎ that is based on the
pointwise loss caused by the factorizer. This pointwise score from
Eq. (5.2.4) evaluates the loss as if we only made use of the candidate
once. However, the usage for each resulting candidate factor can differ
greatly. We thus discount the loss using the candidate-factor usage

D(G) = |{� ∈ !(H | S′)|H ∈ - , G ⊆ ∪�}| ,
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where S′ = S ∪ {!(G) ∪ {G}} (according to Eq. (5.3.2)). By scaling
Eq. (5.2.4) with D(G), we obtain our heuristic

ℎ(G) = D(G)
[
log @(G) −∑

(8∈!(G) log ?(8 (G)
]
.

This leaves us to specify the candidate set �. Naïvely, we could set � =

Ω. However, this is not practical.Ω is typically prohibitively large, and
it contains exponentially many candidates that will be uninformative
with regard to (.Wehence propose amore effective breadth-first search
strategy, in which we take into account what ( can already explain
well. In a nutshell, we iteratively generate candidates by merging pairs
G, H ∈ ( ∪ ℐ into a candidate G ∪ H ∈ �. From all the candidates in
�, we are only interested in the candidates from which we expect
a reduction of the BIC score ℓ . If ℎ(I) is less than the actual cost of
inserting I in terms of our regularizer A, we remove I from �. The
actual cost is A(I) = A(S ∪ {(I}) − A(S), and it is not necessarily equal
for all candidates since it depends on the factorization of I.

Putting the above together, we have Reap, the Relaxed maximum
Entropy Accelerated Pattern-set miner, whose pseudocode we give as
Algorithm 5.1. In short, starting with the singleton-only model (lines
1–2), we generate our initial batch of candidates � (line 3). We consider
these candidates in descending order of ℎ (line 5), and evaluate the
best candidate G ∈ � (lines 5–8). If the objective function improves, we
keep the candidate and the factorization (lines 9–11), otherwise, we
reject it. Lastly, we remove unused factors (line 12).

The computational complexity of Reap depends on the number of
candidates in �, which is quadratic in the size of (, and in the worst
case, can grow up to |Ω|. Hence, it is in O(23), where 3 is the number
of features.

5.4 Related Work

The principle of maximum entropy was proposed by Jaynes [85, 86] as
a general approach to choosing probability distributions. The theoreti-
cal foundations were further developed by, among others, Csiszár [39],
who showed that the maximum entropy distribution minimizes the
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Algorithm 5.1: Reap
Input: Data -, Factorizer !
Output: Factors S, Pattern-set (

1 (← ℐ
2 S ← {{G} | G ∈ ℐ}
3 � ← {I = G ∪ H | G, H ∈ (, A(I) < ℎ(I)}
4 while � ≠ ∅
5 G ← arg max

I∈�\(
ℎ(I) − A(I)

6 � ← � \ G
7 (G ←minimally divergent factor with Eqs. (5.3.2)

and (5.3.3)
8 if ℓ (S ∪ {(G}) < ℓ (S)
9 (← ( ∪ {G}

10 S ← S ∪ {(G}
11 � ← {I = G ∪ H | G, H ∈ (, A(I) < ℎ(I)}
12 remove unused factors from S and let (← ⋃S
13 return (S , ()

Kullback-Leibler divergence to the uniform distribution, that it has
an exponential form, and that its maximization is convex. For large
sample spaces Ω, the main bottleneck is the computation of expecta-
tions. Tatti [172] showed that for the case of itemset frequencies, this
computation is PP-hard.

We do not always have to compute the distribution, as we can
also approximate it. Barron and Sheu [15] show that under moment
constraints, this is possible in terms of exponential families and basis
function expansion using, e.g., polynomials. Bierig and Chernov [23]
studied how Monte Carlo methods of approximate and exact infer-
ence can be used to approximate the maximum entropy distribution.
Singh and Vishnoi [163] establish the equivalence of maximum en-
tropy inference to general counting problems, and show that we can
use approximate counting techniques to approximate the distribution.
Approximate counts immediately translate to noisy, and therewith
relaxed, moment constraints. Dudík et al. [50] present a maximum
entropy problem with relaxed constraints that are generalized regu-
larization measures in their dual form. For possibly noisy generalized
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constraints, Sutter et al. [170] propose an approximation strategy for
the dual of the maximum entropy problem by means of a fast gradient
approximation.

To the best of our knowledge, probabilistic independences have first
been exploited for the factorization of the maximum entropy distribu-
tion into efficiently inferable factors by Mampaey et al. [118]. However,
to enforce the efficient inference in practice, the authors had to addi-
tionally constrain this factorization. Despite being constrained, this
factorization has been successfully used to discover concise and non-
redundant pattern sets [118], sample realistic categorical datasets [193],
and discover pattern compositions [43] (cf. Chapter 2).

Our method Reap builds on probabilistic dependencies in data,
which we ascertain using information theoretical principles. In prac-
tice, we achieve an approximation by minimizing the information
divergence via the search for probabilistic dependencies in data, i.e.,
patterns. As pattern mining aims to discover co-occurring items in
data that are, e.g., frequent (i.e., [5, 133]), informative (cf. Chapter 2),
or statistically significantly correlated (cf. Chapter 4 and Chapter 3),
we are closest to informative pattern-set mining, such as Desc [43]
or mtv [118]. Not only does this mean that Reap is closely related to
pattern mining, we also explain how the structure of a (maximum
entropy) probabilistic graphical factor model is linked to informative
pattern-set mining. Where Reap, however, uses informative patterns
to balance the conciseness of its factorization with the conciseness of
each factor, pattern-set mining is after concise and informative pattern-
sets. Going beyond informativeness, novel approaches to pattern-set
mining (as we have deployed in Chapter 4) lift the dependency as-
sessment from being probabilistic to statistical, to increase robustness
against noise, trustworthiness, and interpretability by domain experts.
Although useful for mining patterns, we are after approximating the
maximum entropy distribution by minimizing the information diver-
gence directly.
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5.5 Experiments

In our experiments, we evaluate Reap on synthetic data as well as on
57 real-world datasets, spanning a wide range of domains, sizes, and
dimensionalities.¹ We implemented Reap in C++, ran experiments on a
12-Core Intel Xeon E5-2643 CPU, and report wall clock time.

5.5.1 Verifying the Relaxation on Synthetic Data

First, we test and verify our relaxation on data with known ground
truth. To do so, we generate synthetic data. In each trial, we generate
a random dataset - of 4 096 rows over 256 attributes. Firstly, we ran-
domly generate and insert 2 048 characteristic patterns into (∗. Then,
into each row, we randomly insert patterns from (∗ using their corre-
sponding frequency. Lastly, we introduce additive noise by randomly
inserting items into each row, independently and with a probability of
5%. In total, we sample 20 synthetic datasets and compare ?̃ with ?∗.
Even though we have access to the true pattern sets (∗, the computa-
tion of the true likelihood is intractable for ?∗. Therefore, we compare
the divergence between ?∗ or ?̃ and empirical frequencies @ for (∗.

In Figure 5.3, we see that ?∗ cannot insert more than 40–80 patterns
from (∗ for � = 12 without considerable runtime cost, on average over
all trials. For the same budget, we observe the exponential inference
time growth for the relaxation ?̃ significantly later, at around 1 800
patterns. On real-world data, we usually observe a discovered pattern
set with a size in the order of tens to hundreds, but we show that the
scalability of ?̃ is sufficient to handle even significantly bigger cases
for budgets deemed large in practice.

On the left, we see that for smaller �, the true distribution ?∗ con-
verges early, because there are no factors left that are below the budget.
However, in this experiment, ?̃ can handle the ground-truth patterns
(∗ for a budget of up to 12 patterns per factor, and it is capable of
reaching the minimal divergence of 0. For ?̃, we can further observe
that strictly limiting the budget does not have a significant impact on

¹https://archive.ics.uci.edu/ml, http://fimi.ua.ac.be/data/
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Figure 5.3: RelEnt approximates the maximum entropy distribution well
and is much faster to infer on synthetic data. We show the divergence of ?̃
and ?∗ to empirical frequencies @ (left) and the elapsed time of inferring the
likelihood for different � on synthetic data for increasing |( | (right).

the divergence between @ and the relaxation ?̃. This is due to the fact
that ?̃ is overall less constrained than ?∗, even for the same �.

5.5.2 Verifying the Relaxation on Real-World Data

Now, we test and verify ?̃ on real-world datasets. To do so, we first
discover a pattern set ( using Reap for each dataset. Then, we use the
same set ( to compute the distributions ?̃ and ?∗. We compare both
distributions in terms of the likelihood ratios Λ = ℓ/ℓ (0) with regard
to that ( and its initial independence model ((0). Next, for � = 12, we
compare the time it takes to compute the objective ℓ of ?̃ versus ?∗.

All datasets that we use in our experiments are publicly available.
We take Chess, Connect, Mushroom, Pumsb, Kosarak, Retail, Accidents
from the Itemset Mining Dataset Repository.² We remove stop words,
lemmatize and binarize the AGnews text corpus, and for the AGnews
(Titles) dataset, we only consider news titles.³ Similarly, we lemmatize
and binarize the two versions of the CORD 19 dataset by extracting the
abstracts from the CORD 19 open research dataset.⁴ The DQ dataset of
lemmatized Deep-Learning and Quantum-Theory ArXiv abstracts can
be found in our online material. To reduce the number of attributes of
the Instacart dataset, we combine products from the same category, e.g.,

²fimi.ua.ac.be/data
³di.unipi.it/~gulli/AG_corpus_of_news_articles
⁴kaggle.com/allen-institute-for-ai/CORD-19-research-challenge
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we merge Thin Spaghetti with Regular Spaghetti into the Spaghetti
meta-category.⁵ We use the Chainstore dataset from the SPMF dataset
collection⁶. All remaining datasets are from the UCI Machine Learning
Repository.⁷ In Table 5.1, we provide basic statistics for the datasets
and state the minimum support we use in our experiments.

Table 5.1: For each dataset, we show the number of rows (|- |), items (dim-),
groups, density, and the mean transaction length.

Dataset |- | dim- EG∈- [|G |] density groups

Higgs 11000000 247 28.00 ± 0.00 0.1133 2
SUSY 5000000 178 18.00 ± 0.00 0.1011 2
Instacart 2620570 1235 3.14 ± 2.18 0.0025 1
Chainstore 1112949 46086 7.23 ± 8.91 0.0002 1
POWER C 1040000 125 7.00 ± 0.00 0.0560 1
KDD Cup 99 1000000 135 16.00 ± 0.00 0.1185 1
PAMAP 1000000 82 23.93 ± 0.73 0.2919 1
Kosarak 990002 41270 8.10 ± 23.62 0.0002 1
Covtype 581012 64 11.95 ± 0.23 0.1866 2
Record Link 574913 27 10.00 ± 0.00 0.3704 1
Accidents 340183 468 33.81 ± 2.94 0.0722 1
COD RNA 271617 16 8.00 ± 0.00 0.5000 2
Skin 245057 12 4.00 ± 0.06 0.3330 1
AG Headlines 127600 5243 3.09 ± 1.49 0.0006 4
AG News 127600 11489 13.63 ± 4.05 0.0012 4
Retail 88162 16470 10.31 ± 8.16 0.0006 1
Connect 67557 129 42.00 ± 0.00 0.3256 3
BMS WV 1 59602 497 2.51 ± 4.85 0.0051 1
BMS WV 2 77512 3340 4.62 ± 6.07 0.0014 1
Pumsb 49046 2113 74.00 ± 0.00 0.0350 1
Adult 48842 97 13.87 ± 0.48 0.1430 2
Plants 34781 69 8.69 ± 13.11 0.1259 1
CORD 19 32915 3517 62.67 ± 31.77 0.0179 1
Chess 28056 51 6.00 ± 0.00 0.1176 18
Letter Recognition 20000 102 16.00 ± 0.00 0.1569 26
US Census 13369 392 68.00 ± 0.37 0.1735 1
Nursery 12960 30 8.00 ± 0.00 0.2667 5
Pen Digits 10992 76 16.00 ± 0.00 0.2105 10

⁵The Instacart Online Grocery Shopping Dataset 2017, accessed from
instacart.com/datasets/grocery-shopping-2017
⁶philippe-fournier-viger.com/spmf
⁷archive.ics.uci.edu/ml
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DQ 9993 434 22.30 ± 10.40 0.0514 1
Mushroom 8124 117 22.00 ± 0.00 0.1880 2
Breast Cancer 7325 397 11.67 ± 13.06 0.0294 2
Page Blocks 5473 39 10.00 ± 0.00 0.2564 5
DNA 5186 180 45.53 ± 5.22 0.2530 3
Waveform 5000 98 21.00 ± 0.00 0.2143 3
DNA Amplification 4587 391 5.78 ± 8.40 0.0148 1
Hypothyroid 3247 86 43.19 ± 0.39 0.5022 1
Led 7 3200 19 7.00 ± 0.00 0.3684 10
kr-vs-kp 3196 73 36.48 ± 0.50 0.4998 1
Splice 3190 287 60.73 ± 0.44 0.2116 1
Mammals 2183 121 24.81 ± 8.25 0.2050 1
German Credit 1000 110 38.70 ± 0.46 0.3518 1
Tic Tac Toe 958 27 9.74 ± 0.44 0.3606 1
Anneal 898 71 13.31 ± 1.45 0.1874 5
ICDM 859 3933 47.67 ± 14.32 0.0121 1
Diabetis 768 38 8.00 ± 0.00 0.2105 2
Australian Credit 653 124 51.53 ± 0.50 0.4155 1
Soybean 630 50 16.93 ± 0.25 0.3387 1
Vote 435 48 16.33 ± 0.47 0.3403 1
Ionosphere 351 155 34.00 ± 0.00 0.2194 2
Primary Tumor 336 31 15.79 ± 0.41 0.5092 1
Heart 303 50 12.98 ± 0.14 0.2596 5
Heart (Cleveland) 296 95 45.52 ± 0.50 0.4792 1
Audiology 216 146 67.13 ± 0.34 0.4598 1
Wine 178 65 13.00 ± 0.00 0.2000 3
Hepatitis 155 52 18.92 ± 1.83 0.3639 1
Iris 150 19 4.00 ± 0.00 0.2105 3
Lymph 148 68 27.72 ± 0.45 0.4077 1
Zoo 101 36 16.06 ± 0.24 0.4461 1

We show in Figure 5.4 that the likelihoods of ( inferred by ?̃ and
?∗ are, generally speaking, close to each other. If we use the relaxed ?̃

instead of ?∗, we observe a loss of at most 6% in likelihood ratio but
also a gain of up to 9%. On approximately half of the datasets, our less
constrained relaxation results in models with higher likelihood. In all
but two cases, the inference by means of ?̃ takes significantly less time
than using ?∗. However, these outlier datasets, Iris and Breast Cancer,
are tiny, such that the absolute time is in the order of milliseconds
and therefore negligible. In the majority of cases, our relaxation uses
significantly less than 50% of the time taken by ?∗.
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Figure 5.4: RelEnt approximates themaximum entropy distributionwell and
is faster to infer on real-world data. We compare ?̃ and ?∗ using the likelihood
ratio Λ = ℓ/ℓ (0) (left) (lower is better) and runtime (right) (milliseconds, log
scale, lower is better) of inferring the likelihood using ?̃ versus ?∗ for the
same sets (, discovered by Reap on 57 real-world datasets using � = 12.

5.5.3 Reap as a Predictive Model

Generally speaking, it is very hard to compare different pattern sets.
One way to objectively compare the quality is to evaluate how well
these characterize and differentiate groups of data points. The better
the statistic ( models these groups, the better we can classify points,
unless the groups have the same distribution. For a given statistic (8

and a set of factors S8 per group 8, the predictive model of ?̃ labels
data points G

arg max8 ?̃8(G | S8)

with the label of the group under which G exhibits the largest likeli-
hood, analogously for ?∗.

In this experiment, we compare ?̃ to ?∗ on 22 labeled datasets. We
perform 10-fold cross-validation. In each fold, we randomly sample
training (80%) and test data (20%), such that we preserve the relative
sizes per group. Independently for each group in the training data, we
estimate a model using Reap and Desc, respectively.

In Figure 5.5, we report the mean true positive rate (tpr) and aver-
age classification time for the sampled test datasets. We observe that
in all but 2 cases, Reap has the same or better classification accuracy
than Desc, while Reap always uses significantly less time to classify
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Figure 5.5: RelEnt classifies better than the constrained maximum entropy
distribution. We show the relative improvement (left) in accuracy t̃pr/tpr∗
(higher is better) and relative runtime C̃/C∗ (lower is better), and we show the
absolute true positive rate (higher is better) of ?̃ versus ?∗ (right), for all 22
labeled datasets.

the datasets. Note that ?̃ and ?∗ are generative models, and we trained
neither to be specialized classifiers.

5.5.4 Reap for Discovering the Composition

Here, we investigate our relaxation in terms of decomposing a dataset
and describing these components in terms of characteristic and com-
mon patterns, as first proposed by [43] (cf. Chapter 2). In a nutshell,
Disc iteratively splits the dataset into components, assigns data points
to the likeliest component, and characterizes these components using
Desc. We replace Disc’s distribution and pattern miner by ?̃ and Reap,
and call the result Dĩsc.

In Fig 5.6, we show the likelihood ratio and runtime of Dĩsc and
Disc. We can see that Dĩsc discovers compositions that have a likeli-
hood similar to the result of Disc. However, Dĩsc usually takes signifi-
cantly less time than Disc. This is hardly surprising, as this tasks relies
heavily on the inference of the distribution. Furthermore, in most cases
in which Dĩsc is slower, the composition has a higher likelihood.

5.5.5 Reap for Mining Sets of Patterns

In this experiment, we evaluate the quality of Reap data summarization
compared to other pattern mining methods. To do so, we discover
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Figure 5.6: Reap discovers the composition efficiently and results in a high
likelihood. We compare the likelihood ratio Λ = ℓ/ℓ (0) (left) (lower is better)
and runtime (right) (milliseconds, log scale, lower is better) of Dĩsc and Disc
for 30 real-world datasets.

patterns using iim [60], opus [187, 189], mtv [118], Desc [43] and Reap.
As mtv and Desc estimate the statically-factorized maximum entropy,
we can fairly compare against them. On the other hand, iim and opus
optimize for a different score. To include their results, we create a
maximum entropy distribution of their patterns sets and use that to
infer the likelihood. Creating a static factorization from their models
would, however, exclude many of their patterns from the statistics.
Thus, for a fair comparison, we use our relaxation and estimate ?̃ from
their patterns. opus discovers the top-: self-sufficient itemsets for a
user-defined :, that is, we set : to the number of patterns that Reap
has discovered. For iim, we limit the number of iterations and EM steps
as done by the authors [60].

In Figure 5.7a, we show that Reap outperforms opus, iim, and mtv,
and it is almost always within ±5% of the likelihood of Desc. In many
experiments, we observe that the modeling power of Reap results in
more patterns and a higher likelihood in comparison to the statically
factorized mtv or Desc. In Figure 5.7b, we illustrate that the pattern
sets discovered by mtv, Desc, iim, and Reap are similarly concise.

Now we take a closer look at the pattern sets and quantify how
similar the discoveredpatterns are to one another. To do so,wemeasure
the average intra-pattern-set symmetric difference,

�(() = |
((
2
)
|−1 ∑

GH∈((2) |G4H | .
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Figure 5.7: Reap efficiently discovers concise non-redundant pattern sets. We
show the likelihood ratio (lower is better) in (a), the number of discovered
patterns in (b), and the intra-pattern-set symmetric difference � of pattern
sets discovered in the 15 largest datasets in (c).

The higher �((), the more different the patterns look on average. In
Figure 5.7c, we see that Reap discovers patterns that are, on average,
slightly more diverse than the results of Desc, but in general, the
diversity is on par with the state of the art.

5.5.6 Qualitative Study

To conclude our experiments, we study the interpretability of the re-
sults produced by Reap via qualitative evaluation. To this end, we
manually inspect the patterns Reap discovers in 3 datasets. The DQ
dataset consists of 10 000 abstracts crawled from arXiv [43]. Half of the
abstracts are from papers on Deep Learning, the other half are from
papers on Quantum Physics. The CORD-19 dataset was generated by
extracting 33 000 abstracts from the original CORD-19 paper collec-
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tion [185]. The AGnews⁸ dataset consists of 127 600 news articles from
4 different categories. From all corpora, we remove stop words, extract
and lemmatize nouns, verbs, and adjectives, and erase words with a
frequency below 0.01.

In Table 5.2, we give a number of exemplary patterns discovered by
Reap. The pattern set includes, for example,magnetic field and computer
vision for DQ, potential impact respiratory mechanism and antigen necessary
for CORD-19, and International Space Station for AGnews.

5.6 Conclusion

We introduced the relaxed maximum entropy distribution based on a
generalized, dynamic factorization. This factorization trades inference
complexity with information loss and results in a distribution that has
higher statistical modeling power than previously-used exact models.
On top of that, we provided an efficient and practical instantiation of
this factorization based on set-cover principles. We formally linked
the problem of estimating the relaxed distribution to the problem of
discovering associations from data, for which we proposed the Reap
algorithm that jointly discovers patterns and creates factors efficiently.

Experimentally, we have shown, on synthetic and real-world data,
that the inference of the relaxed distribution is efficient and scalable,
and that the relaxed distribution approximates the reference distribu-
tion well, without being similarly constrained. We extensively studied
Reap in the context of multiclass classification and the discovery of
the data composition, in which we performed at least equally well as
competitors, however faster. Lastly, we compared Reap to pattern set
miners, and we showed that our results are easily interpretable. This
leads us to a comfortable conclusion: To find insightful patterns, it
helps to relax.

⁸www.di.unipi.it/~gulli/AG_corpus_of_news_articles.html
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Table 5.2: Reap discovers interpretable pattern sets. We show a selection of
patterns discovered by Reap in 3 different datasets.

Dataset Patterns (Selection)

CORD-19 coronavirus acute severe respiratory syndrome sars
patient hospital intensive care unit
basic case reproduction number
protective personal equipment
PEDv epidemic diarrhea swine
world health organization
development target drug
cell membrane protein fusion
international preprint license copyright holder

DQ deep convolutional neural network
neural network adversarial attack
stochastic gradient descent
variational model inference
quantum matrix density
quantum space hilbert
measurement quantum mechanic
paper experimental result
image classification task

AGnews initial public offering,
International Space Station,
international agency nuclear atomic energy
international space station astronaut
world fastest supercomputer
european union trade organization
european space agency
european commission brussels
prime minister party coalition
profit higher quarterly
chief executive company chairman
wall street stock
gold medal olympics
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6
Efficiently Factorizing Boolean Matrices

using Proximal Gradient Descent

In the previous chapter, we saw how relaxing the maximum en-
tropy distribution can speed up the discovery of pattern sets in binary
tabular data. But as pattern-set miners provide a high level of detail,
exploring an exponentially-sized search space at a considerable compu-
tational cost, they struggle to report meaningful results on very large
or very high-dimensional datasets that easily exceedmultiple hundred
thousand columns. The quest for scalable methods that can discover
groups in tabular data and express them in terms of insightful pat-
terns quickly leads to matrix factorization methods like Non-Negative
Matrix Factorization (NMF) and Principal Component Analysis (PCA).
These methods are not only scalable, but they also yield highly inter-
pretable results—unless the data is Boolean, which is precisely our
case of interest. Addressing the interpretability problem of NMF on
Boolean data, Boolean Matrix Factorization (BMF) uses Boolean al-
gebra to decompose the input into low-rank Boolean factor matrices.
These matrices are highly interpretable and very useful in practice,
but they come at the high computational cost of solving an NP-hard
combinatorial optimization problem. Again, our strategy to reduce
the computational burden is to relax. That is, we decompose Boolean
matrices using a Boolean product of Boolean matrices obtained via
a relaxed optimization scheme using linear algebra of intermediate

This chapter is based on the publication: Dalleiger and Vreeken [41].
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continuous matrices. We therefore call this problem Boolean matrix
factorization.

We propose to continuously relax BMF using a novel elastic-binary
regularizer, from which we derive a proximal gradient algorithm, thus
allowing us to use concepts from linear algebra instead of Boolean
algebra. Through an extensive set of experiments, we demonstrate that
our method works well in practice: On synthetic data, we show that it
converges quickly, recovers the ground truth precisely, and estimates
the simulated rank exactly. On real-world data, we improve upon the
state of the art in recall, loss, and runtime, and a case study from the
medical domain confirms that our results are easily interpretable and
semantically meaningful.

6.1 Introduction

Discovering groups in data and expressing them in terms of common
concepts is a central problem in many scientific domains and business
applications, including cancer genomics [103], neuroscience [69], and
recommender systems [80]. This problem is often addressed using
variants of matrix factorization, a family of methods that decompose
the target matrix into a set of typically low-rank factor matrices whose
product approximates the input well. Prominent examples of matrix
factorization are Singular Value Decomposition (SVD) [64], Principal
Component Analysis (PCA) [64], and Nonnegative Matrix Factoriza-
tion (NMF) [99, 100, 136]. These methods differ in how they constrain
the matrices involved: SVD and PCA require orthogonal factors, while
NMF constrains the target matrix and the factors to be nonnegative.

SVD, PCA, andNMF achieve interpretable results—unless the data
is Boolean, which is ubiquitous in the real world. In this case, their
results are hard to interpret directly because the input domain differs
from the output domain, such that post-processing is required to ex-
tract useful information. Boolean Matrix Factorization (BMF) addresses
this problem by seeking two low-rank Boolean factor matrices whose
Boolean product is close to the Boolean target matrix [127]. The output
matrices, now lying in the same domain as the input, are interpretable
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and useful, but they come at the computational cost of solving an NP-
hard combinatorial optimization problem [125, 127, 135]. Tomake BMF
applicable in practice, we need efficient approximation algorithms.

There are many ways to approximate BMF—for example, by ex-
ploiting its underlying combinatorial or spatial structure [19, 20, 127],
using probabilistic inference [153–155], or solving the related bi-clustering
problem [131, 132]. Although these approaches achieve impressive
results, they fall short when the input data is large and noisy. Hence,
we take a different approach to overcome BMF’s computational bar-
rier. Starting from an NMF-like optimization problem, we derive a
continuous relaxation of the original BMF formulation that allows
intermediate solutions to be real-valued. Inspired by the elastic-net
regularizer [201], we introduce the novel elastic binary (Elb) regularizer
to regularize toward Boolean factor matrices. We obtain an efficient-
to-compute proximal operator from our Elb regularizer that projects
relaxed real-valued factors towards being Boolean, which allows us to
leverage fast gradient-based optimization procedures. In stark contrast
to the state of the art [74–76], which requires heavy post-hoc post-
processing to actually achieve Boolean factors, we ensure a Boolean
outcome upon convergence by gradually increasing the projection
strength using a regularization rate. We combine our relaxation, effi-
cient proximal operator, and regularization rate into an Elastic Boolean
Matrix Factorization algorithm (Elbmf) that scales to large data, results
in accurate reconstructions, and does so without relying on heavy post-
processing procedures. Elb and its rate are, however, not confined to
BMF and can regularize, e.g., binary MF or bi-clustering [76].

In summary, our main contributions are as follows:
1. We introduce the Elb regularizer.
2. We overcome the computational hardness of BMF leveraging a

novel relaxed BMF problem.
3. We efficiently solve the relaxed BMFproblemusing an optimization

algorithm based on proximal gradient descent.
The remainder of this chapter proceeds as follows. In Section 6.2,

we formally introduce the BMF problem and its relaxation, define
our Elb regularizer and its proximal point operator, and show how to
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ensure a Boolean outcome upon convergence. We discuss related work
in Section 6.3, validate our method through an extensive set of experi-
ments in Section 6.4, and conclude with a discussion in Section 6.5.

6.2 Theory

Our goal is to factorize a given Boolean target matrix into at least two
smaller, low-rank Boolean factor matrices, whose product comes close
to the target matrix. Since the factor matrices are Boolean, this product
follows the algebra of a Boolean semi-ring, i.e., it is identical to the
standard outer product on a field where addition obeys 1 + 1 = 1. We
define the product between two Boolean matrices U ∈ {0, 1}=×: and
V ∈ {0, 1}:×< on a Boolean semi-ring ({0, 1} ,∨,∧) as

[U ◦V]8 9 =
∨
;∈[:]

U8;V; 9 ,

where U ∈ {0, 1}=×: , V ∈ {0, 1}:×< , and U ◦V ∈ {0, 1}=×< . This gives
rise to the BMF problem.

Problem 6.1 (Boolean Matrix Factorization). For a given target ma-
trix A ∈ {0, 1}=×< , a given matrix rank N 3 : ≤ min{=, <}, and � ⊕ �

denoting logical exclusive or, discover the factor matrices U ∈ {0, 1}=×:

and V ∈ {0, 1}:×< that minimize

‖A −U ◦V‖2� =
∑
8 9

A8 9 ⊕ [U ◦V]8 9 . (6.2.1)

While beautiful in theory, this problem is NP-complete [125]. Thus,
we cannot solve it exactly for all but the smallest matrices. In practice,
we hence have to rely on approximations. Here, we relax the Boolean
constraints of Eq. (6.2.1) to allow non-negative, non-Boolean ‘intermedi-
ate’ factor matrices during the optimization, allowing us to use linear
algebra, rather than Boolean algebra. In other words, we solve the
non-negative matrix factorization (NMF) problem [136]

‖A −UV‖2� ,
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subject to U ∈ R=×:+ and V ∈ R:×<
+ . In contrast to the original BMF

formulation, we can approximate this problem efficiently, e.g., via a
Gauss-Seidel scheme. Although efficient, using plain NMF, however,
disregards the Boolean structure of our matrices and produces factor
matrices from a different domain, which are consequently hard to inter-
pret and potentially very dense. To benefit from efficient optimization
and still arrive at Boolean outputs, we allow real-valued intermediate
solutions and regularize them towards becoming Boolean.

To steer our optimization towards Boolean solutions, we penalize
non-Boolean solutions using a regularizer. This idea has been explored
in priorwork. There exists the ;1-inspired Primp regularizer [74], which
is

−�[−|1 − 2G | + 1]

for values inside [0, 1] and ∞ otherwise, and the ;2-inspired bowl-
shaped regularizer [199], which is

�(G2 − G)2/2

everywhere on the real line. Although both have been successfully
applied to BMF, both also have undesirable properties: The Primp reg-
ularizer penalizes well inside the interval [0, 1] but is non-differentiable
on the outside, while the bowl-shaped regularizer is differentiable and
penalizes well outside the interval [0, 1] but is almost flat on the inside.
Hence, both regularizers are problematic if used individually. Com-
bining them, however, yields a regularizer that penalizes non-Boolean
values well across the full real line. To combine ;1-regularization and
;2-regularization, we use the elastic-net regularizer,

A(G) = �‖G‖1 + �‖G‖22 ,

which, however, only penalizes non-zero solutions [201]. To penalize
non-Boolean solutions, we combine two elastic-net regularizers into our
(almost W-shaped) Elb regularizer,

'(-) =
∑
G∈-

min{A(G), A(G − 1)} , (6.2.2)
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Figure 6.1: Elb regularizes non-Boolean values well. We show the three
regularizers Bowl, Primp, and Elb, for � = � = 0.5, and see that only our Elb
regularizer penalizes non-Boolean values well.

where - ∈ {U,V}. In Figure 6.1, we show all three regularizers in
the range of [−1, 2], for � = � = 0.5. We see that only the Elb regu-
larizer penalizes non-Boolean solutions across the full spectrum, and
summarize our regularized relaxed BMF as follows.

Problem 6.2 (Elastic BooleanMatrix Factorization). For a given tar-
get matrix A ∈ {0, 1}=×< and a given matrix rank N 3 : ≤ min{=, <},
discover the factor matrices U ∈ R=×:+ and V ∈ R:×<

+ that minimize

‖A −UV‖2� + '(U) + '(V) .

Although this is a relaxed problem, it is still non-convex, and there-
fore, we cannot solve it straightforwardly. The problem, however, is
suitable for the Gauss-Seidel optimization scheme. That is, we alter-
natingly fix one factor matrix to optimize the other. By doing so, we
generate a sequence

UC+1 ← arg min
U
‖A −UVC ‖2� + '(U) ,

VC+1 ← arg min
V
‖A −UC+1V‖2� + '(V) , (6.2.3)

of simpler-to-solve sub-problems, until convergence. Now, each sub-
problem is again a sumof two 5 (-)+'(-) functions,where 5 is the loss
‖ · ‖2

�
, and '(-) is the regularizer. This allows us to follow a proximal
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gradient approach, i.e., we use Proximal Alternating Linear Minimiza-
tion (PALM) [24, 144]. In a nutshell, we minimize a sub-problem by
following the gradient ∇ 5 of 5 , to then use the proximal operator for
' to nudge its outcome toward a Boolean solution. That is, for the
gradients ∇U 5 = UVV> −AV> and ∇V 5 = U>UV−U>A, we compute
the step

prox'(- − �∇ 5 ) , (6.2.4)

where � represents the step size, which we compute in terms of Lips-
chitz constant, rather than relying on a costly line search [24]. To further
improve the convergence properties, we make use of an inertial term
that linearly combines -C with -C−1 before applying Eq. (6.2.4) (see
[144] for a detailed description). We now derive the proximal operator
for the Elb regularizer, before discussing howwe ensure that the factor
matrices are Boolean, and summarizing our approach as an algorithm.

6.2.1 Proximal Mapping

To solve the sub-problem

arg min
-

ℓ��(-) for ℓ��(-) = 5 (-) + '(-)

from Eq. (6.2.3) for - ∈ {U,V}, we need a proximal operator [139] that
projects values towards a regularized point.

To do this, we derive a proximal operator from the Elb (Eq. (6.2.2),
repeated below)

'(-) =
∑
G∈-

min{A(G), A(G − 1)} .

Starting with the definition [139] of the general proximal operator

arg min
.

1
2 ‖- − .‖

2
2 + '(.) ,

we observe that this proximal operator is coordinate-wise solvable.
This allows us to derive a scalar proximal operator, whichwe then apply
to each value in the matrix independently. Substituting the regularizer
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' with its scalar version, we obtain a scalar proximal operator

prox��(G) = arg min
H∈R

1
2 (H − G)2 +min{A(H), A(H − 1)} , (6.2.5)

which is non-convex, has no unique minima, and, therefore, is not
straightforwardly solvable. We can, however, separate this function
into two locally convex V-shaped functions, which are straightforwardly
solvable. By asserting that its least-squares solution is either at most
1/2 (if G ≤ 1/2), or greater than 1/2 (if G > 1/2), we can address each
case independently, and merge the outcome into a single piecewise
proximal operator.

Case I In the first case, we address the operator for G ≤ 1/2. For this,
we start by simplifying our scalar proximal operator Eq. (6.2.5), by
substituting A(H)with its definition, and get

prox≤1/2
�� (G) =

1
2 (H − G)2 + �′

2 H2 + � |H | ,

for �′/2 = �. Then, we take its partial derivative for H

%

%H
prox≤1/2

�� (G) = (H − G) + �′H + � sign(H) ,

which we set to zero, obtaining

0 = (H − G) + �′H + � sign(H)
⇔

0 = H(1 + �′) − G + � sign(H) .

By asserting that we can obtain a better least-squares solution if H has
the same sign as G, we can substitute the sign of G with sign(H), and
get

0 = H(1 + �′) − G + � sign(G)
⇔

H = (1 + �′)−1[G − � sign(G)] ,

which concludes the first case.
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Case II Analogously, we now repeat the steps from above for G > 1/2.
Again, we start by simplifying Eq. (6.2.5), substituting A(H − 1)

prox>1/2
�� (G) =

1
2 (H − G)2 + �′

2 (H − 1)2 + � |H − 1| ,

for �′/2 = �. By taking its partial derivative for H

%

%H
prox>1/2

�� (G) = (H − G) + �′(H − 1) + � sign(H − 1) ,

and setting it to zero, we obtain

0 = (H − G) + �′(H − 1) + � sign(H − 1)
⇔

0 = (1 + �′)H − �′ − G + � sign(H − 1) .

Then, asserting that the least-squares solution does not get worse by
using the same sign for H − 1 and G − 1, we can substitute the sign of
G − 1 with sign(H − 1), and get

0 = H(1 + �′) − G − �′ + � sign(G − 1)
⇔

H = (1 + �′)−1[G − � sign(G − 1) + �′] ,

which concludes the G > 1/2 case.

Combining Case I & Case II Combining the cases above yields our
piecewise proximal operator

prox��(G) ≡ (1 + �)−1

{
G − � sign(G) if G ≤ 1

2

G − � sign(G − 1) + � otherwise .
(6.2.6)

Alternative Proximal Operator Considering Eq. (6.2.5), we notice that
the term H−G is squared, whichmeans that there aremultiple solutions
to this equation. We derive the alternative operator analogously to the
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steps above, however, by switching the positions of H and G in 5 .

proxalt.
�� (G) ≡ (� − 1)−1

{
−G − � sign(G) if G ≤ 1

2

−G − � sign(G − 1) + � otherwise .
(6.2.7)

Since this operator is denominated by�′−1, we need to ensure that�′ ≠
1. Because our original proximal operator in Eq. (6.2.6) is denominated
by �′ + 1, and since �′ is usually positive, we are not required to take
extra precautions. Since this is more convenient, we select Eq. (6.2.6)
as our proximal operator, rather than taking extra precautions when
using Eq. (6.2.7).

Algorithm 6.1: Elbmf
Input: Matrix A ∈ {0, 1}=×< , rank : ∈ N
Output: Factors U ∈ {0, 1}=×: , V ∈ {0, 1}:×<

1 initialize U,V uniformly at random
2 for C = 1, 2, . . . until convergence
3 U← arg reduceU ℓ��C (A,U,V)
4 V← arg reduceV ℓ��C (A,U,V)

6.2.2 Ensuring Boolean Factors

Our proximal operator only nudges the factor matrices toward becom-
ing Boolean. We, however, want to ensure that our results are Boolean.
To this end, the state-of-the-art method Primp relies heavily on post-
processing, performing a very expensive joint two-dimensional grid
search to guess the ‘best’ pair of rounding thresholds, which are then
used to produce Boolean matrices. Although this tends to work in
practice, it is an inefficient post-hoc procedure—and thus, it would
be highly desirable to have Boolean factors already upon convergence.
To achieve this without rounding or clamping, we revisit our regular-
izer, which binarizes more strongly if we regularize more aggressively.
Consequently, if we regularize too aggressively, we converge to a sub-
optimal solution, and if we regularize too mildly, we do not binarize
our solutions. To prevent subpar solutions and still binarize our out-
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put, we start with a weak regularization and gradually increase its
strength.

Considering Eq. (6.2.6), we see that a stronger regularization in-
creases the distance over which our proximal operator projects. Thus,
if we set the ;1-distance controlling � too high, we will immediately
leap to a Boolean factor matrix, which will terminate the algorithm
and yield a suboptimal solution. Regulating the ;2-distance controlling
� is a less delicate matter. Hence, we gradually increase � to prevent a
subpar solution and achieve a Boolean outcome, using a regularization
rate

�C = � · �C for �C ≥ 0 ∀C ≥ 0

that gradually increases the proximal distance at a user-defined rate. If
Elbmf stops without convergence, we bridge the remaining integrality
gap by projecting the outcome onto its closest Boolean counterpart,
using our proximal operator (see Figure 6.2).

We summarize the considerations laid out above as the generic
version of Elbmf in Algorithm 6.1 or as the iPALM-based version in
Algorithm 6.2. The computational complexity of Elbmf is bounded
by the complexity of computing the gradient, which is identical to
the complexity of matrix multiplication. Therefore, for all practical
purposes, Elbmf is sub-cubic O

(
=2.807) using Strassen’s algorithm.

6.3 Related Work

Matrix factorization is a well-established family of methods, whose
members, such as SVD, PCA, or NMF, are used everywhere in ma-
chine learning. Almost all matrix factorization methods operate on
real-valued matrices, however, while BMF operates under Boolean
algebra. Boolean Matrix Factorization originated in the combinatorics
community [129] and was later introduced to the data mining com-
munity [127], where many cover-based BMF algorithms were devel-
oped [19, 20, 126, 127].

In recent years, BMF has gained traction in the machine learn-
ing community, which tends to tackle the problem differently. Here,
relaxation-based approaches that optimize for a relaxed but regularized
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Algorithm 6.2: Elbmf (using iPALM [144])

Input:

Target Matrix A ∈ {0, 1}=×<
Rank : ∈ N,
;1 Regularizer Coefficients � ∈ R,
;2 Regularizer Coefficients � ∈ R,
Regularization Rate �C ∈ N→ R,
optional Inertial Parameter � ∈ R+

Output: Factors U ∈ {0, 1}=×: , V ∈ {0, 1}:×<

1 U0 = U1 ← rand(=, :)
2 V0 = V1 ← rand(:, <)
3 for C = 1, 2, . . . until convergence
4 �C ← � · �C

5 V← VC

6 U← UC−1 + �(UC−1 −UC−2)
7 ∇U 5 = UVV> −AV>
8 !← ‖VV>‖2
9 U← prox�!−1 ,�C!−1

(
U − !−1∇U 5

)
10 UC ← U

11 V← VC−1 + �(VC−1 −VC−2)
12 ∇V 5 = U>UV −U>A
13 !← ‖U>U‖2
14 V← prox�!−1 ,�C!−1

(
V − !−1∇V 5

)
15 VC ← V

16 if U or V not Boolean (if the loop aborted early (cf. Figure 6.2))
17 let �′ ∈ R be huge
18 U← bprox0.5,�′(U)e
19 V← bprox0.5,�′(V)e
20 return U, V
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BMF [73, 74, 199] are related to ourmethod, but they differ especially in
their regularization. Hess et al. [74] introduce a regularizer that is only
partially differentiable, and they rely heavily on post-processing to
force a Boolean solution, and Zhang et al. [199] regularize only weakly
between 0 and 1. In contrast, our regularizer penalizes well across
the full spectrum and yields a Boolean outcome upon convergence.
Building on a thresholding-based BMF formulation, Araujo et al. [9]
also consider relaxations to benefit from gradient-based optimization.

Other recent approaches build on probabilistic inference. For exam-
ple, Rukat et al. [153–155] combine Bayesian Modeling and sampling
into their logical factor machine. A similar direction is taken by Ravan-
bakhsh et al. [149], who use graphical models and message passing,
and Liang et al. [103], who combine MAP-inference and sampling. A
different, geometry-based approach lies in locating dense submatrices by
ordering the data to exploit the consecutive-ones property [173, 183].
Since BMF is essentially solving a bipartite graph partitioning problem,
it is also closely related to Bi-Clustering and Co-Clustering [76, 131].
Neumann and Miettinen [132] use this relationship to efficiently solve
BMF by means of a streaming algorithm. Although there are many
different approaches to BMF, its biggest challenge to date remains
scalability [125].

6.4 Experiments

We implement Elbmf in the Julia language and run experiments on
16 cores of an AMD EPYC 7702 and a single NVIDIA A100 GPU, re-
porting wall-clock time. We compare Elbmf with six other methods:
four dedicated BMF methods (Asso [127], Grecond [20], OrM [155],
and Primp [74]), one streaming Bi-Clustering algorithm (Sofa [132]),
one elastic-net-regularizedNMFmethod leveraging proximal gradient
descent (NMF [99, 100, 136]), and one interpretable Boolean autoen-
coder (Binaps [56]). The code for Asso, Grecond, Primp, Sofa, OrM,
and Binaps was written by their respective authors and is publicly
available,¹ and we implement nmf in the Julia language.

¹cs.uef.fi/~pauli/basso
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Since nmf outputs non-negative factormatrices, rather thanBoolean
matrices, we cannot compare against nmf directly, so we clamp and
round its solutions to the nearest Boolean outcome. To fairly compare
against Binaps, we task it with autoencoding the target matrix as a
reconstruction, given the matrix ranks from our experiments as the
number of latent dimensions. We perform three sets of experiments.
First, we ascertain that Elbmf works reliably on synthetic data. Second,
we verify that it generally performs well on real-world data. And third,
we illustrate that its outputs are semantically meaningful through an
exploratory analysis of a biomedical dataset.

6.4.1 Performance of Elbmf on Synthetic Data

In the following experiments, we ask four questions: (1) How does
Elbmf converge?; (2) How well does Elbmf recover the information in
the target matrix?; (3) How consistently does Elbmf reconstruct low-
density or high-density target matrices?; and (4) Does Elbmf estimate
the underlying Boolean matrix rank correctly? To answer these ques-
tions, we generate synthetic data with known ground truth as follows.
Starting with an all-zeros matrix, we randomly create rectangular,
non-overlapping, consecutive areas of ones called tiles, each spanning
a randomly chosen number of consecutive rows and columns, thus
inducing matrices with varying densities. We then add additive noise
by setting each cell to 1, uniformly at random, with varying noise
probabilities.

How does Elbmf converge? To study how our method converges to
a Boolean solution, we quantify relevant properties of the sequence
of intermediate solutions (cf. Eq. (6.2.3)). First, to understand how
quickly and stably Elbmf converges to a Boolean solution, we quantify

github.com/martin-trnecka/matrix-factorization-algorithms
bitbucket.org/np84/paltiling
cs.uef.fi/~pauli/bmf/sofa
eda.mmci.uni-saarland.de/prj/binaps
github.com/TammoR/LogicalFactorisationMachines
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the Boolean gap, ∑
-∈{*C ,+C }

|- |−1
∑
G∈-

min{|G |, |G − 1|} .

Second, to understand when we can safely round intermediate almost-
Boolean solutions without losing information, we calculate, for the
reconstruction B from rounded intermediate factors, the cumulative
Hamming process as the fraction of bits that flip from iteration C to
iteration C + 1,

|�|−1‖BC − BC+1‖1 ,

and the loss gap as the difference between the relaxed loss and the loss
from the rounded B.

As shown in Figure 6.2a, we achieve an almost-Boolean solution
without any rounding after around 250 epochs, continuing until we
reach a Boolean outcome. This is also the point at which the rounded
intermediate solution and its relaxation are almost identical, as il-
lustrated by the loss gap in Figure 6.2b. Considering the Hamming
process in Figure 6.2c, we observe that Elbmf goes through an erratic
bit-flipping phase in the beginning, followed by only minor changes
in each iteration until iteration C = 100. Afterwards, Elbmf has settled
on a solution—under our regularization rate. When using constant
regularization instead, we continue to observe bit flips until the end of
the experiment. Under constant regularization, the Boolean gap hardly
decreases over time. Far from Boolean, the constant regularization thus
also never closes the loss gap—which is unsurprising, given that its
factors are less regularized. In other words, our regularization works
well, and it allows us to safely binarize almost-converged factors that
are &-far from being Boolean by means of, e.g., our proximal operator.

How well does Elbmf recover the information in the target matrix? Having
ensured that our method converges stably and quickly, we would like
to assess whether it also converges to a high-quality factorization. To
this end, we generate synthetic 40 × 30 matrices containing 5 random
tiles each spanning 5 to 10 rows and columns, under additive noise
levels between 0% (no noise) and 50%. We then compute the fraction
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Figure 6.2: Elbmf converges quickly under a regularization rate. We report
the progression over time of the Boolean gap, loss gap, and theHamming process,
for 1 000 iterations of Elbmf on synthetic 400 × 300 matrices with 10% noise
and 5 random tiles covering between 50 and 100 rows or columns, under a
constant regularization of �C = 1 or a regularization rate of �C = 1.05C .

of ones in target A that is covered by the reconstruction B = U ◦V, i.e.,
the recall (higher is better)

‖A‖−1
1 ‖A � B‖1 .

To ensure that we fit the signal in the data, we additionally report
the recall regarding the generating, noise-free ground-truth tiles �∗,
denoted as recall∗. Finally, to rate the overall reconstruction quality
including zeros, we compute the Hamming similarity (higher is better)
between the target matrix and its reconstruction

|A|−1‖A − B‖1 .

We run each method on our synthetic datasets, targeting a matrix
rank of 5. To account for random fluctuations, we average over 10
randomly drawn sets of 5 ground-truth tiles per 10% increment in
noise probability. In Figure 6.3, we show similarity, recall, and recall∗.
We observe that in the noiseless case (0%), all methods except Binaps
recover the 5 ground-truth tiles with high accuracy, but only Asso and
Elbmf do so with perfect recalls. Starting with as little as 10% noise,
both recalls of Asso, Grecond, Sofa, nmf, and Binaps deteriorate
quickly, while the similarity and both recalls of Primp and Elbmf
remain high. In fact, Elbmf and Primp perform similarly across the
board—which is highly encouraging, as unlike Primp, Elbmf does not
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Figure 6.3: Overall, Elbmf reconstructs the noisy synthetic data well and
recovers the ground-truth tiles. On synthetic data for additive noise levels
increasing from 0% to 50%, we show mean as line and standard deviation as
shade of similarity, recallw.r.t. the target matrix, and recall∗ w.r.t. the noise-free
ground-truth tiles, for Asso, Grecond, OrM, Sofa, Binaps, nmf, Primp, and
Elbmf.
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Figure 6.4: Elbmf reconstructs noisy synthetic high-density and low-density
matrices consistently well. On synthetic data with fixed additive noise and
increasing density, we show mean as line and standard deviation as shade
of similarity, recall, and relative loss, for Binaps, Asso, Grecond, OrM, Sofa,
Binaps, nmf, Primp, and Elbmf.

require post-processing. For Asso and Grecond, recall and similarity
drop considerably, but they exhibit a slightly higher recall∗. This means
that these methods are robust against noise, but they fail to recover
the remaining information. Starting low, OrM’s recalls increase jointly
with the noise level, suggesting that clean data is problematic for OrM.
Reporting the standard deviations as the shaded region, we see little
variance across all similarities—except for Asso and nmf in the highest-
noise regime. The deviation of both recalls is, however, inconsistent
for most methods, except for Binaps, Primp, and Elbmf. Overall, the
performance characteristics of Elbmf are among the most reliable.
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How robust is Elbmf regarding varying matrix densities?

To understand whether Elbmf performs consistently well on low-
density and high-density matrices, we generate synthetic matrices
as before, this time using fixed noise of 0.2, and varying the width and
height of the ground-truth squared tiles from 32 to 122, resulting in
densities between 0.0375 to 0.6, before noise.

In Figure 6.4, we show the similarity, recall, and loss of Binaps,
Asso, Grecond, OrM, Sofa, nmf, Primp, and Elbmf. We can see that
the increasing density affects the performance of all methods, however,
it does not affect the performance of all methods equally. All methods—
except OrM—improve in similarity, recall, and loss. With increasing
density, OrM gets worse at first, before its loss shrinks significantly,
such that it finishes outperforming Sofa and Binaps. From low to
high density, Elbmf is the best-performing method across the board
in similarity, recall, and loss.

So far, the synthetic data used in our experiments consisted only
of non-overlapping tiles generated using rejection sampling. To obtain
results on harder-to-separate data, we generate synthetic matrices as
described previously—however, this time, allowing tiles to overlap
arbitrarily by sampling without a rejection step. In Figure 6.5, we
show similarity, recall, and recall∗ for the overlapping case, observing
a behavior similar to Figure 6.3 across the board. Again, we notice
the surprisingly good performance of rounded nmf reconstructions,
outperforming Asso, Grecond, Sofa, and Binaps by large margins.
Overall, Primp and Elbmf outperform Asso, Grecond, OrM, Sofa,
Binaps, and nmf across varying noise levels in similarity, recall, and
recall∗.

As our last experiment on synthetic data, we ask whether our ob-
servations carry over to a low-noise scenario, in which the performance
of Asso and Grecond improves significantly (cf. Figure 6.3). To answer
this question, we study the effects of varying densities under a low
noise level of only 5%, reporting the results in Figure 6.6. As tiny tiles
are hard to distinguish from noise, we see an overall improvement
with increasing density, regardless of the method. With less noise,
Asso, Grecond, and nmf improve significantly in comparison to their
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Figure 6.5: Elbmf reconstructs the noisy synthetic data well and recovers
the ground-truth tiles also when the tiles are overlapping. On synthetic data
for additive noise levels increasing from 0% to 50%, we show mean as line
and standard deviation as shade of similarity, recall w.r.t. the target matrix,
and recall∗ w.r.t. the noise-free ground-truth tiles, for Binaps, Asso, Grecond,
OrM, Sofa, nmf, Primp, and Elbmf.
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Figure 6.6: Elbmf reconstructs the low-noise synthetic high- and low-density
matrices consistently well. On synthetic data with fixed additive noise level
of as low as 5% and increasing density, we show mean as line and standard
deviation as shade of similarity, recall, and relative loss w.r.t. the target matrix,
for Binaps, Asso, Grecond, OrM, Sofa, nmf, Primp, and Elbmf.

performance under more noise (cf. Figure 6.4). They, however, are still
outperformed by Primp and Elbmf in recall and loss. The similarities of
Asso, Grecond, nmf, Primp, and Elbmf are close to 1, whereas Sofa, Bi-
naps, and OrM exhibit lower similarity with increasing density. From
Figure 6.4 and Figure 6.6, we see that Elbmf performs consistently
well across varying densities, regardless of the noise level.

Overall, we observe that on synthetic data, Elbmf achieves best-in-
class results for overlapping and non-overlapping tiles across all noise
regimes: Elbmf, which does not use any post-processing, is consistently
on par with its strongest competitor, which relies heavily on post-
processing.
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Figure 6.7: Using AIC, MDL, or Bai & Ng’s first information criteria, Elbmf
correctly detects the rank of the simulated 400 × 300 matrix of rank 10 to
which we applied 10% additive noise.

Does Elbmf estimate the underlying Boolean matrix rank correctly? When
a target rank is known, we can immediately apply Elbmf to factorize
the data. In the real world, however, the target rankmight be unknown.
In this case, we need to estimate an appropriate choice from the data,
and we use synthetic data to ensure that Elbmf does so correctly.

Since a higher matrix rank usually also means a better fit, selecting
the best rank according to recall, loss, or similarity leads to overfitting—
unless we properly account for the growth in model complexity. There
are many model selection criteria that penalize complex models, such
as AIC [7], Bai & Ng’s criteria [8, 11], Nuclear-norm regularizing [67,
82], the information-theoretic Minimal Description Length principle
(MDL) [66], or (Decomposed) Normalized Maximum Likelihood [81,
195]. Following common practice, andmotivated by its practical perfor-
mance in preliminary experiments, we choose MDL. That is, we select
the minimizer of the sum of the log binomial ;(-) = log

( |- |
‖-‖1

)
of the

error matrix and the rows and columns of our factorization (assumed
to be i.i.d.) [126],

;(A ⊕ [U ◦V]) +∑
8∈[:] ;(U>8 ) + ;(V8) + : log(= · <) .

To validate whether Elbmf recovers the correct rank, we synthet-
ically generate a 400 × 300 matrix of ground-truth rank 10 with 10%
additive noise. In Figure 6.7, we show AIC, MDL, and Bai & Ng’s first
criterion for each rank up to 30, finding that our method precisely
discovers the right rank.
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6.4.2 Performance of Elbmf on Real-World Data

Having ascertained that Elbmf works well on synthetic data, we turn
to its performance in the real world. Here, we use 9 publicly available
datasets² from different domains. To cover the biomedical domain, we
extract the network containing empirical evidence of protein-protein
interactions inHomo sapiens from the String database. From theGrand
repository,we take the gene regulatory networks sampled fromGlioblas-
toma (GBM) and Lower Grade Glioma (LGG) brain cancer tissues, as well
as from non-cancerous Cerebellum tissue. The TCGA dataset contains
binarized gene expressions from cancer patients, and we further ob-
tain the single nucleotide polymorphism (SNP) mutation data from
the 1k Genomes project, following processing steps from the authors
of Binaps [56]. In the entertainment domain, we use the user-movie
datasets Movielens and Netflix, binarizing the original 5-star-scale rat-
ings by setting only reviews with more than 3.5 stars to 1. Finally, as
data from the innovation domain, we derive a directed citation network
between patent groups from patent citation and classification data
provided by PatentsView. For each dataset with a given number of
groups, such as cancer types or movie genres, we set the matrix rank
: to 33 (TCGA), 28 (Genomes), 136 (Patents), 20 (Movielens), and 20
(Netflix). When the number of subgroups is unknown, we estimate
the rank that minimizes MDL using Elbmf, resulting in 100 (GBM), 32
(LGG), 100 (String), and 450 (Cerebellum). We give basic statistics for
all datasets in Table 6.1.

On TCGA, Genomes, Movielens, Netflix, and Patents, we set the !2–
regularizer � = 0.001, the !1-regularizer � = 0.005, and the regular-
ization rate to �C = 1.0033C . On GBM, LGG, and Cerebellum, we set
the !2-regularizer � = 0.001, the ;1-regularizer � = 0.001, and the
regularization rate to �C = 1.0015C . We run nmf, Elbmf, Primp for at
most 1 500 epochs on each dataset. In the case that Elbmf reaches its

²grand.networkmedicine.org
string-db.org
cancer.gov/tcga
internationalgenome.org
patentsview.org
grouplens.org/datasets/movielens
kaggle.com/datasets/netflix-inc/netflix-prize-data
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Table 6.1: Our datasets are from different domains and cover a wide range of
dimensionalities. We provide an overview of the real-world datasets involved
in this study, listing their dimensionalities, densities, and selected target
matrix ranks : (number of components) used in our experiments.

Dataset Rank Rows Columns Density

Genomes 28 2 504 226 623 0.1043
String 100 19 385 19 385 0.0318
GBM 100 650 10 701 0.0566
LGG 32 644 29 374 0.0729
Cerebellum 450 644 30 243 0.0823
TCGA 33 10 459 20 530 0.0501
Movielens 10M 20 71 567 65 133 0.0011
Netflix 20 17 770 480 189 0.0067
Patents 136 10 499 10 511 0.1305

maximum number of iterations without convergence, we bridge the
remaining integrality gap simply by applying our proximal operator
(see Figure 6.2). To obtain a good reconstruction for Primp, we use a
grid width of 0.01. To obtain a binary solution from nmf, we first clamp
and then round its factor matrices upon convergence. We set Asso’s
threshold, gain for covering, and penalty for over-covering each to 1.
To achieve a better performance with Asso, we parallelize Asso on 16
CPU cores. Further, because Asso’s runtime scales with the number
of columns, we reconstruct the transposed target whenever it has more
columns than rows (see Table 6.1). For example, transposing GBM,
LGG, Cerebellum, and Genomes is particularly beneficial for Asso, as
these datasets have orders of magnitude more columns than rows.

Aswe can achieve a high similarity with an all-zeros reconstruction
(of sparse data), or a perfect recall with an all-ones reconstruction, we
also report the relative loss (lower is better),

‖A‖1‖A −U ◦V‖1 ,

between the target matrices and their reconstructions.
We show relative loss, similarity, recall, and runtime of Asso, Gre-

cond, Sofa, OrM, Binaps, nmf, Primp, and Elbmf, applied to all real-
world datasets, targeting a given matrix rank, in Figure 6.8. The cover-
based Grecond and Asso show comparable loss, similarity, and recall.
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Figure 6.8: Elbmf factorizes real-world data with high similarity and recall,
as well as low relative loss and runtime. We report relative loss, similarity,
recall, and runtime for 9 real-world matrices and their reconstructions by
Asso, Grecond, OrM, Sofa, Binaps, nmf, Primp, and Elbmf.

Both perform better on smallermatrices (LGG,GBM, orCerebellum) and
struggle with complex matrices (e.g., TCGA or Genomes). On the com-
plex matrices (e.g., TCGA, String, or Movielens), although always out-
performed by Elbmf, we see that the rounded nmf reconstructions are
surprisingly good, occasionally surpassing dedicated BMF methods,
such as Asso, Grecond, OrM, and Sofa. Across the board, Grecond,
Asso, OrM, Sofa, Binaps, and nmf almost always result in considerably
higher loss than Elbmf. Compared to the close competitor Primp, our
method Elbmf always results in lower reconstruction loss. We observe
the largest gap between the two on the Cerebellum dataset, where
Primp’s grid-search procedure fails to find suitable thresholds. This
is an impressive result because unlike Primp, Elbmf does not require
heavy post-processing.

In Figure 6.8b, we see that all methods except Binaps result in a
high similarity, which implies they are sparsity-inducing. As Binaps
overfits and densely reconstructs sparse inputs, it surpasses sparsity-
inducingmethods in recall. Considering non-overfittingmethods, how-
ever, Elbmf is among the best-performing in terms or recall, often out-
performing Primp, while under significantly stronger regularization.
When Primp has a higher recall (e.g., Genomes), this often comes with a
higher loss than Elbmf. We see in Figure 6.8d (log scale) that—except
for a few cases—Asso, Grecond, OrM, Sofa, and Primp are slower
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Figure 6.9: Elbmf discovers hidden structure in gene expression data. We
show the two-dimensional t-SNE embedding of the TCGA dataset (a) and
the embedding of its reconstruction from Elbmf (b), where each point corre-
sponds to one of the 10 459 patients, colored by cancer type. While the cancer
types are hard to differentiate in the embedding of the original dataset (a),
they are separated into easily distinguishable clusters in the embedding of
our reconstruction (b).

than Elbmf. Although nmf is less constrained than Elbmf, both are
almost on par when it comes to runtime. Degraded by post-processing,
our closed competitor Primp is almost always much slower than Elbmf,
and it struggles with Netflix. Only Binaps and Elbmf finished Net-
flix—however, only Elbmf did so at a reasonable loss, considering the
given target rank.

6.4.3 Exploration of Gene Expression Data with Elbmf

Knowing that Elbmf performs well quantitatively, we ask whether its
outputs are also interpretable. To this end, we take a closer look at
the TCGA data, which contains the expression levels of 20 530 genes
from 10 459 patients, who are labeled with 33 cancer types. Since we
are interested in retaining high gene expression levels only, we set
expression levels to 1 if their I-scores fall into the top 5% quantile, and
to 0 otherwise [103]. We run Elbmf on this dataset, targeting a rank of
33.

To learn whether our method groups patients meaningfully, we
visualize the target matrix and its reconstruction. As the target matrix
is high-dimensional, we embed both the target matrix and the recon-
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Figure 6.10: Elbmf discovers components that identify cancer types. We show
the normalized mutual information between estimated groups and cancer
types, and observe that there is an almost 1-to-1 correspondence between
our estimated groups and the cancer types.

struction in a two-dimensional space using t-SNE [116] as illustrated
in Figure 6.9, where each color corresponds to one cancer type. In Fig-
ure 6.9a, we find that when embedding the target matrix directly, the
cancer types are highly overlapping and hard to distinguish without
the color coding. In contrast, when embedding our reconstruction,
depicted in Figure 6.9b, we see a clean segmentation into clusters that
predominantly contain a single cancer type.

To better understand these results, we quantify the association
between our 33 estimated components and the ground-truth cancer
types by computing the normalized mutual information matrix, visual-
ized in Figure 6.10. This matrix is noticeably sparse, which leads to
a clean segmentation. Upon closer inspection with Enrichr [31], the
associations we discover turn out to be biologically meaningful. For ex-
ample, we find that Elbmf associates a set of 356 genes to patients with
thyroid carcinoma. This component is associated with thyroid hormone
generation and thyroid gland development, and statistically significantly
so—even under a strict False Discovery Control, with ?-values as low
as 2.574 × 10−8 and 6.530 × 10−6.

6.5 Conclusion

We introduced Elbmf to efficiently factorize Boolean matrices using
an elegant and simple algorithm that, unlike its closest competitors,
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does not rely on heavy post-processing. Elbmf decomposes Boolean
matrices as the Boolean product of two Boolean matrices, obtained via
a relaxed optimization scheme using linear algebra of intermediate
continuous matrices. It solves this problem by leveraging an efficiently
computable proximal operator, derived from the innovative Elb regu-
larizer, and using a regularization rate to obtain Boolean factors upon
convergence. Experimentally, we have shown that Elbmf works well in
practice. It operates reliably on synthetic data, outperforms the discrete
state of the art, is at least as good as the best relaxations on real data,
and yields interpretable results even in difficult domains—without
relying on post-processing.

Although Elbmf works well overall, it has two bottlenecks. First,
by randomly initializing factors, we start with highly dense matrices,
thus prohibiting efficient sparse matrix operations. This is not ideal for
sparse datasets that are too large to fit intomemory, and future research
on sparse initialization of Boolean factors will benefit not only Elbmf
but also many other methods. Second, the larger the datasets, the
higher the cost of computing gradients, and future work might adapt
stochastic gradient methods for Elbmf to mitigate this problem. Thus,
while we have made considerable progress in discovering insightful
patterns at scale through our BMF relaxation, there still remains a lot
to be discovered.
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Conclusion

Motivated by real-world needs arising in high-stakes and quality-
demanding scientific domains, in this thesis, we developed methods
for discovering insightful patterns: sets of strongly associated features
that are informative, contrasting, probabilistically sound, statistically sound,
and discoverable using scalable algorithms. To conclude this work, in
the following, we summarize these methods, discuss their commonal-
ities, and discuss opportunities for future research.

7.1 Retrospective

In Chapter 2, we discussed themaximum entropy distribution in detail,
and we introduced an efficient inference strategy for probabilistic
models of discrete sets, thus laying the theoretical foundation for
all subsequent chapters. Using the maximum entropy distribution,
we introduced two algorithms, Disc and Desc, to unveil the pattern
composition of a dataset. Disc decomposes a dataset into statistically
significantly diverging groups, andDesc efficiently identifies insightful
patterns in groups.

In Chapter 3, we considered groups of graphs. We introduced a
maximum entropy distribution of paths in graph groups to model
subgraph patterns soundly, and proposed the Gragra algorithm to
discover contrasting graph patterns with statistical guarantees.

In Chapter 4, we considered insightful patterns for which we could
guarantee statistical soundness using hypothesis testing. We intro-
duced the concept of sequentially significant pattern sets, proposed
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a novel notion of informativeness using significant unexpectedness,
and developed two online false-discovery correction schemes, which
we summarized in the Spass framework.

To model patterns probabilistically soundly, Desc, Disc, Gragra,
and Spass all use the maximum entropy distribution. As this distribu-
tion is either computationally costly or restricted in its expressivity,
in Chapter 5, we mitigated this limitation. We proposed a PAC maxi-
mum entropy factorization problem and a greedy set-cover algorithm
inference solution, thus allowing us to efficiently discover the factoriza-
tion from data while trading inference complexity with factorization
quality.

Although relaxing the maximum entropy distribution could speed
up the discovery of pattern sets in binary tabular data, as pattern-set
miners rely on combinatorial search, they still struggle to report results
on high-dimensional datasets with thousands of features. To obtain
insightful patterns that scale to such datasets, in Chapter 6, we com-
bined the interpretability of Boolean matrix factorization (BMF) with
the scalability of continuous matrix factorization. Again, relaxing was
key: We relaxed BMF as a continuous optimization problem using our
novel elastic-binary Elb regularizer, fromwhich we derived a proximal
gradient algorithm. Ourmethod, Elbmf, proved to be competitive with
the state of the art without relying on the otherwise ubiquitous heavy
post-processing. It thus allows us to identify and express groups in
data in terms of insightful patterns.

7.2 Commonalities between Chapters

All methods discussed in this thesis are specialized on discrete data,
be it binary tabular data or graphs, and most methods are based on
the maximum-entropy principle. However, as depicted in Figure 7.1,
our methods are also interconnected in many other ways, which we
discuss in the following.

The development of Desc in Chapter 2 was inspired by the need to
discover characteristics and commonalities between multiple groups
in the data, for which we leveraged the maximum entropy distribution,
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Figure 7.1: Web of the science included in this dissertation. We depict de-
pendencies (solid lines), inspirations (dotted lines), and applicabilities (dashed
lines) between the research topics covered by this dissertation.

which we built upon to discover statistically significantly diverging
groups in the data using Disc. As Disc, however, does not efficiently
scale to large datasets, we were motivated to investigate an efficient
estimation of the expectation of our maximum entropy distribution.
This led us to develop the relaxed maximum entropy distribution in
Chapter 5 and the pattern-set miner Reaper, which we then used to
not only improve the performance of Disc but also its modeling ca-
pabilities. Its intended approximation error, however, might lead to
spurious discoveries. To assess the approximation error and incorpo-
rate a margin of error into our score, we developed a measure that
ultimately resembled Student’s t-test. Noticing this, we resorted towell-
understood statistics, which brought us to the development of Spass
in Chapter 4. In this chapter, we elucidated the relationship between
the ?-values used by Spass and the Kullback-Leibler divergence used
by Desc, thus clarifying the link between information-theoretic redun-
dancy and statistical redundancy of patterns. Now, Spass can serve as
a direct replacement of Desc, and it enables a fully statistical-testing-
based composition discovery using Disc, which we could additionally
improve with our online adjustment strategies.

At the same time, we brought ideas from information-theoretical
pattern-set mining like Desc to graph group analysis, which led to
Gragra, for which we again took inspiration from statistical testing,
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thus building a bridge from Desc to graphs. To also close the gap
between Spass and Gragra, we can transfer the former’s online adjust-
ment strategies to the latter. Although Gragra’s distribution can easily
be relaxed, it is ultimately maximum-entropy based, which allows us
to directly apply Disc to identify statistically significant clusters in a
graph collection.

One of the critical challenges faced by pattern-set discovery meth-
ods is the computational complexity of searching for the best pattern
candidate to be included in the maximum-entropy model. As our
search space is too large to be instantiated, we resorted to iterative
search, pruning, and relaxations to the distribution. In the worst case,
however, those solutions still do not scale to high-dimensional datasets
with thousands of features. To overcome this, a paradigm shift in our
approach to characteristics and commonalities was needed. For this,
we translated the problem from greedy combinatorial algorithms to
convex optimization, which led to the development of Elbmf. Use
cases of Elbmf go beyond discovering patterns, as it can also be used
to identify groups via its basis matrix, as shown in Figure 6.10, which
we wish to further improve by transferring the idea of significantly dif-
ferently distributed groups of Disc to clustering via Elbmf. Although
we can also directly apply Elbmf to groups of graphs, this could re-
sult in non-connected patterns, which we could prevent by bringing
Gragra’s concept of connected subgraph patterns to Elbmf.

7.3 Outlook

While this thesis contributes theoretical and methodological ground-
work for discovering insightful patterns, it leaves ample room for
further research. In addition to the discussions presented in each chap-
ter, we aim to further develop our maximum-entropy distributions by
incorporating more expressive first-order logical expressions as pat-
terns. This would enhance the capabilities of our methods, including
Desc, Disc, Reaper, Gragra, and Spass. One important special case
we aim to explore is directly modeling mutual exclusivity between
observations (cf. Fischer et al. [57]), which is currently only modeled
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indirectly as probabilistically independent factors. This would greatly
improve the expressiveness of our models and their applicability to
various fields.

There are, however, other approaches to pattern discovery in tabu-
lar Boolean data, including the prominent Booleanmatrix factorization
and Binary autoencoders. Those have in common that they operate
on relaxed constraints, which allow for continuous optimization ap-
proaches. Whereas Binaps [55] uses a heuristic pattern extractor on
top of a mathematically ad-hoc gradient squashing for autoencoders,
Elbmf allows for immediate interpretability upon convergence by
using a mathematically well-understood proximal optimization and
regularization rate. In the end, both methods serve a similar purpose,
which they approach via different avenues. We can use concepts de-
veloped in Elbmf to merge those avenues together. That is, to combine
the best of both worlds, we can straightforwardly apply Elb’s well-
understood proximal operator and regularization rate in conjunction
with a proximal (stochastic) gradient descent, for training quantized bi-
nary autoencoders efficiently, to then appropriate either Fischer et al.’s
pattern extraction heuristic [55, 56] or well-understood explainability
methods with guarantees. In preliminary experiments exploring just
this idea, we saw an improvement over the state of the art, due to our
proposed proximal-based optimization schemes.

One important application of Elbmf lies in the biomedical domain,
in which privacy concerns often prohibit the compilation of larger
shared datasets frommultiple sources.We see potential in a distributed
learning environment that addresses this concern in terms of federated
matrix factorization methods that will allow us to discover shared
components from private data, thus ensuring stakeholder privacy and
security in theory and in practice while enabling scientific discoveries
and increasing our understanding of distributed learning.

Inspired by recent developments in explainable machine learn-
ing via pattern mining [55], we see future opportunities for Elbmf
to dissect neural activations of deep neural networks by identifying
groups neurons that are characterized by unique neural network ac-
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tivations patterns, thus allowing for correlations of the input with
straightforwardly interpretable sets of activation patterns.

Our Elbmf method is well-suited for analyzing adjacency matrices,
which are commonly used in network analysis. However, the current
version of our method does not take into account the underlying graph
semantics of the adjacency matrix, which might result in disconnected
subgraph components. By specializing Elbmf to focus on identifying
coherent and connected graph motifs, we believe that it would be able
to extract more meaningful and relevant information from the data,
and thus improve its expressivity in the context of network analysis.

In its causal interpretation, Simpson’s paradox [140, 162] describes
a potential danger of drawing wrong causal conclusions from grouped
data. Future research includes leveraging our tools that decompose
data into groups, to aid causal discovery by controlling for potential
group-defining confounders. As there cannot be a causal relationship
without correlation, a potential prospective investigation is using our
statistically sound patterns (correlations) to equip causal discovery
with the information necessary for further causal analysis.

On the flip side, our algorithms could also benefit from considering
causal dependencies. That is, as science ultimately seeks to understand
causal relationships between observations and effects of interest, we
would improve the expressivity of our methods by enabling them to
discover causal dependencies from data (cf. Marx et al. [121]) in follow-
up studies. Our graph group analysis, for example, currently models
paths of associated nodes in a network. By restricting our method to
only allow causal edges, we would be able to identify causal structure
in undirected graphs and thus gain a deeper understanding of the
underlying mechanisms.

In addition to the specific directions already discussed toward the
end of each chapter or in the above, we see particular potential for
future work on a fundamental question:

How can we integrate methods for automated feature as-
sociation discovery into scientific workflows?
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This question targets the relationship between computer science on
the one hand and the domain sciences on the other hand. Its variants
occur at all stages of the method-development process:

How can we ensure that the methods we develop to solve abstract
problems can be translated to tackle the concrete problems by which
they were motivated? How can we realistically evaluate methods that
are designed to expand our scientific knowledge beyond what is al-
ready known without sacrificing rigor? How can we, perhaps even
interactively and adaptively, inform ourmethods aboutwhat is already
known, such that they may focus on revealing what has hitherto been
unknown? How can we provide trustworthy methods that tell us when
their predictions are uncertain?

Answering such questions requires close collaboration between
computer scientists and domain scientists or real-world experts, which
will help us advance toward our goal of making a difference in the
real world by putting insightful patterns into practice.
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