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Abstract

Access to a representative sample from the population is an
assumption that underpins all of machine learning. Unfor-
tunately, selection effects can cause observations to instead
come from a subpopulation, by which our inferences may be
subject to bias. It is therefore essential to know whether or
not a sample is affected by selection effects. We study un-
der which conditions we can identify selection bias and give
results for both parametric and non-parametric families of
distributions. Based on these results, we develop two practi-
cal methods to determine whether or not an observed sample
comes from a distribution subject to selection bias. Through
extensive evaluation on synthetic and real-world data, we ver-
ify that our methods beat the state of the art both in detecting
as well as characterizing selection bias.

Introduction
In order to draw valid conclusions about the underlying
probability distribution, statistical learning theory assumes
that we have access to a representative sample from the
population. Selection effects, induced by preferential inclu-
sion of some data based on unknown factors causally down-
stream of the observed variables, violate this assumption and
cause what is known as selection bias.

As an example, consider the study by Kovács and Sharkey
[2014] on Goodreads book ratings. In a sample of 32 books,
they found that the average ratings for individual books went
down after winning an award. This is explained by the fact
that there are two kinds of readers. Those who read a book
before it won an award did so because they were predisposed
to like it and therefore more likely to give good ratings in the
first place. Meanwhile, those who read books after they won
an award were not predisposed to like the book and are likely
to be more representative of the population as a whole.

Similar and less benign issues occur in other empir-
ical sciences, such as case-control studies in epidemiol-
ogy [Glymour and Greenland 2008], studies using hospital-
admission data [Berkson 1946, Herbert et al. 2020], genet-
ics [Mefford and Witte 2012], economics [Angrist 1997] and
in statistics [Kuroki and Cai 2006].

In machine learning, predictive performance suffers from
selection bias when training samples are collected preferen-
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tially, as this leads to covariate shift between training and
test samples [Bickel, Brückner, and Scheffer 2009]. Meth-
ods that correct for this shift [Sugiyama, Krauledat, and
Müller 2007, Gretton et al. 2009, Mallick et al. 2022] rely
heavily on the availability of independent training and test
datasets which can be matched with each other to correct
for such distribution shifts. Therefore, they cannot tell us
whether selection bias might be affecting our sample when
we have access only to a single dataset.

In contrast, in this work, we study conditions under which
selection bias is identifiable, given only a single dataset. We
provide identifiability results for both parametric and non-
parametric distributions when the selection effect is linear.

For the former, we provide results for exponential fam-
ilies both when the selection is a deterministic function of
observed covariates as well as when additive Gaussian noise
may influence the selection of data points. For the latter, we
show identifiability under the general assumption that the
distribution is subject to certain subsets of invariances, such
as rotational symmetries or quantile inversions.

Based on these theoretical results, we propose two prac-
tical methods to tell whether data from only a single dataset
has been subjected to selection bias, as well as how strong
this bias is. That is, we can estimate where the selection
boundary lies and how much of the original distribution has
been lost to selection bias.

Through an extensive set of experiments, including case
studies on penguin and exoplanet data, we show that our
methods provide useful and novel insight as well as signifi-
cantly outperform baselines that measure distribution shifts
or model confounding factors.

Our contributions are as follows:

1. Identifiability of selection bias: We provide theoretical
results on the identifiability of selection bias in both para-
metric and non-parametric model families.

2. Learning orthogonal symmetries: We provide a
method that learns special orthogonal symmetries of the
data-generating distribution in an unsupervised manner
by using the Cayley transform.

3. Detecting selection bias from a single dataset: We pro-
vide two algorithms to recover the selection boundary
given a single dataset and estimate the strength and ef-
fect of the selection bias.
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(b) Selection on X + Y > 1.
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(c) Selection on X + Y + ϵ > 1.

Figure 1: Selection bias. Left: A graphical representation of selection bias as the act of conditioning on a common child Z
of multiple observed variables. Middle: The effect of selection on independently uniformly sampled points. Blue points are
observed, gray points are excluded due to selection. While X and Y are originally independent, they are negatively correlated
in the observed sample. Right: Similar to (b) but the selection is noisy. Included and excluded points are no longer nicely
separated, making it more difficult to notice the effect of selection.

Our paper is structured as usual. We begin by formally
defining our problem in the next section. Then, in Section ,
we give our identifiability results. Next, in Section , we de-
scribe our proposed methods. Last, in Section , we empiri-
cally evaluate our methods before wrapping up in Section .
We make all code and data available online.!1

Preliminaries
In this section, we begin by providing common notation. We
then formally define selection bias and state assumptions on
the precise kind of selection bias we consider in this paper.

Notation
We denote random variables by capitals, e.g., X,Y, Z,
where we write X = (X1, . . . , Xn), Y for observed, and
Z for unobserved variables. We denote samples from these
by small letters, e.g., x, y, z. For ease of notation when writ-
ing affine-linear expressions a⊤X + a0, we add a variable
X0 = 1 so that the expression becomes simply a⊤X . We
denote sets of vectors a by A and index sets by I and write
[n] = {1, . . . , n}.

We write probability distributions as P,Q, with densities
p, q whenever they exist. We generally use Q to refer to dis-
tributions P (· | Z ∈ A) for a set A, e.g. P (· | a⊤X > 0).

Vector norms are denoted by ∥v∥ and transposes by v⊤.

Selection Bias
Given observed variables X , we define selection bias as the
act of conditioning on an unobserved variable Z caused by
X . This causes a distribution shift from the population dis-
tribution P (X) to a distribution P (X | Z), resulting in po-
tentially false inferences upon P (X). We consider the most
general case, where Z = f(X, ϵ) can be a function of any or
all variables in X as well as some independent noise term ϵ.

As an example, consider the setup shown in Fig. 1. We let
P (X,Y ) = U [0, 1]2, making them independent. We then

1https://eda.mmci.uni-saarland.de/prj/sprite/

select on X + Y > 1, leaving only the data in the top right.
We see clearly that there is a negative linear relationship in
the distribution Q(X,Y ) = P (X,Y | X + Y > 1).

We call the type of selection above noiseless because it
depends solely on X,Y but no external source of noise.
Selection can also be noisy, e.g., X + Y + ϵ > 1, where
ϵ ∼ N(0, 0.05) is a small amount of noise. We show this in
Fig. 1 on the right. Clearly, noise makes it more difficult to
determine whether selection is occurring and, if so, where.

For example, some studies early in the COVID-19 pan-
demic found that smoking appeared to be protective against
lung cancer [Herbert et al. 2020]. This turned out to be, in
part, due to the use of hospital admission data, and created a
classical case of Berkson’s Paradox [Berkson 1946]: people
generally go to the hospital for some reason, and when one
possible cause is ruled out, the others become more likely.

In this paper we assume linear selection Z = f(X, ϵ) =
a⊤X + ϵ so that our observed sample x comes from the
distribution Qa = P (· | a⊤X + ϵ > 0) where a ∈ A
is unknown. We further assume that each vector a ∈ A is
normalized, e.g., a1 = 1. Our goal then is to recover a and
P from a sample x ∼ Qa. Next, we describe the theoretical
underpinnings of two different approaches to doing so.

Theory
In this section, we show that linear noiseless selection effects
are always identifiable for exponential families, and noisy
selection with Gaussian noise is identifiable for the normal
family. Further, for non-parametric families, we show that
linear noiseless selection is identifiable under assumptions
on the invariances to which P is subject.

We include further details on the theory as well as proofs
for all results in the appendix.

Selection Bias in Parametric Models
We call a set M of probability distributions P parametric
if each distribution P can be parameterized (uniquely) by a
finite-dimensional vector of parameters θ ∈ Θ.



An example of this are exponential families, where each
Pθ has density pθ defined as [Bishop and Nasrabadi 2006]

pθ(x) = h(x) exp(η(θ)⊤T (x)−A(θ)),

where η(θ) are called the natural parameters, T (x) the suf-
ficient statistic and A(θ) the log-partition function. Fur-
ther, note that by definition all Pθ share the same support
supp(Pθ) := {x : pθ(x) > 0}. Uniform distributions over
different sets, therefore, do not form an exponential family.

With selection bias in play we form the model class
Ms = {Qθ,a : Pθ ∈M, a ∈ A} where Qθ,a := Pθ(· |
a⊤X+ϵ > 0). Note thatMs no longer forms an exponential
family since its members do not share the same support.

Next, we move on to identifiability results for the param-
eters of the distributions Qθ,a ∈Ms.

Identifiability for Exponential Families
We begin by showing that noiseless selection is always iden-
tifiable for exponential families as long as the set A of se-
lection coefficients a does not contain degenerate values that
result in selecting either all or no samples.
Theorem 1 (Identifiability for noiseless selection in expo-
nential families). LetM be an exponential family with pa-
rameter space Θ and A the set of a such that

0 < Pθ(a
⊤X > 0) < 1

for all θ. Then the parameters (θ, a) of Qθ,a are identifiable.

The assumption that 0 < Pθ(a
⊤X > 0) < 1 is natural.

First, if Pθ(a
⊤X > 0) = 0 then the distribution Qθ,a is

not well-defined. Conversely, if Pθ(a
⊤X > 0) = 1, then no

actual selection occurs, and the same would be true for any
a′0 > a0, making the parameters non-identifiable.

Next, we prove identifiability in the case of noisy selec-
tion in the Gaussian exponential family.
Theorem 2 (Identifiability for noisy selection in the Gaus-
sian family). Let M be the Gaussian exponential family
with parameter space Θ = {(µ,Σ)} and let ϵ ∼ N(0, 1).
Further, let

Qµ,Σ,a,ζ(X) = Pµ,Σ(X | a⊤X + ζϵ > 0).

Then the parameters (µ,Σ) ∈ Θ, a ∈ Rm+1, ζ > 0 are
jointly identifiable, where a is normalized as stated above.

The assumption that 0 < Pθ(a
⊤X > 0) < 1 is not nec-

essary here because supp(Pθ) = Rm.
Next, we consider the case where our distributions are no

longer necessarily of a known parametric form but instead
satisfy another regularity condition by way of invariances.

Beyond Parametrics: Invariance
Assume that we have data either from a normal distribution
N(µ, σ2) or from a t-distribution tν(µ,Σ) with ν degrees of
freedom. Then, while we do not know the model class from
which our data comes, we nevertheless know one crucial fact
about the underlying distribution: it is the same after reflec-
tion across its mean, i.e., X and −X + 2µ have the same
distribution. We call this an invariance of the distribution,
which we define formally next.

Definition 1 (Invariance). Let P be a probability distribu-
tion and j be a measurable bijective function. We say that P
has invariance j if P (j(A)) = P (A) for all measurable A.

Note that the function j can be arbitrarily complex and
fine-tuned to P . For example, the 1-dimensional exponen-
tial distribution Exp(λ) has the invariance t 7→ − log(1 −
e−λt)/λ, which is simply the mapping of its q-quantile to its
1 − q-quantile. In fact, every univariate distribution P with
connected support has such a quantile inversion mapping of
q to 1 − q-quantiles. If F (t) = P (X ≤ t) then this is the
mapping t 7→ F−1(1 − F (t)). Furthermore, by Sklar’s the-
orem [Sklar 1959, Jaworski et al. 2010], every multi-variate
distribution P (X) with connected support has an invariance
group generated by its marginal quantile-inversion maps.

If P has a density p then for any x0, x1 it has trivial in-
variances j(xi) = x1−i and j(x) = x everywhere else. Such
invariances are said to be equal to the identity P -almost ev-
erywhere. To preclude such degenerate cases, we consider
what we call strongly distinguishable invariances.
Definition 2 (Strongly distinguishable invariances). A set J
of invariances is called strongly distinguishable for P if for
all j, j′ ∈ J we have P (j(x) = j′(x)) > 0 iff j = j′.

Consider, for example, the normally distributed X ∼
N(0, σ2I). It is invariant under any orthogonal matrix U ,
since UX ∼ N(0, σ2UU⊤) = N(0, σ2I). Further, for any
two U ̸= U ′, the set K = ker(U − U ′) = {x : Ux = U ′x}
is a linear subspace of Rm with dim(K) < m so that
P (UX = U ′X) = 0. The set of orthogonal matrices U
is therefore strongly distinguishable for any N(0, σ2I).

We can use these invariances to detect selection bias. If
P is invariant under j, then selection bias will likely break
such an invariance. For example, if we disregard all samples
to the right of the 80% quantile of the exponential distribu-
tion, then the new distribution Q will no longer be invariant
with respect to the map above. The invariance j still applies
to large parts of Q, however, indicating that we can never-
theless obtain useful information about P . We formalize this
intuition in the following theorem.
Theorem 3 (Identifiability of Selection under Invariance).
LetM be a set of probability distributions and J be strongly
distinguishable for each P ∈ M. Assume that for all P ∈
M there is j ∈ J such that P (X) = P (j(X)). Let P ∈ M
and A be the set of a such that

0 < P (a⊤X ≤ 0) < 1/2.

Then a is identifiable. Further, if all distributions P1, P2 ∈
M satisfy P1(· | a⊤X > 0) = P2(· | a⊤X > 0) iff P1 =
P2 then P is identifiable too.

The last assumption is true for many classes of distri-
butions. In particular, it holds for all exponential families,
unions of multiple exponential families, arbitrary finite mix-
tures of exponential families, and stationary Gaussian pro-
cesses [Bishop and Nasrabadi 2006].

Methods
This section develops two complementary approaches to
discovering selection bias in observational data. The first,



which we will refer to as EXP, directly fits an exponential
family with selection bias to the data. The second, referred
to as INV, finds an approximate invariance of the true distri-
bution and derives a likely selection boundary from it.

Finding Selectors for Exponential Families
When we know that the data x comes from an exponential
family (potentially) subject to selection bias, the simplest ap-
proach is to estimate the parameters θ, a, ζ of Qθ,a,ζ . The
log-likelihood is given by

lθ,a,ζ(x) := log qθ,a,ζ(x)

=

(
n∑

i=1

log pθ(xi) + log pζ(a
⊤xi + ϵ > 0)

)
− n logPθ,ζ(a

⊤x+ ϵ > 0) .

To obtain a good set of parameters, we suggest updating θ, a,
and ζ alternately as follows. Starting from a random initial-
ization θ0, a0, ζ0, we can update our parameters as follows

θt+1 ← θt + λθ∂θlθt,at,ζt(x),

at+1 ← at + λa∂alθt+1,at,ζt(x),

ζt+1 ← ζt + λζ∂ζ lθt+1,at+1,ζt(x),

with step sizes λθ, λa, λζ . We give them the full gradient
∇lθ,a,ζ in the appendix. Note that, as with exponential fam-
ilies in general, we cannot provide convergence guarantees
for our approach. We will see, however, that we empirically
obtain good estimates.

To measure the gain of modeling the selection boundary,
we further compute the confidence of our method as

0 < C =
lθ,0,0(x)− lθ,a,ζ(x)

lθ,0,0(x)
< 1

It measures the relative improvement from including selec-
tion into the modeling process over the model where lack of
selection is assumed. The confidence is low when no gains
can be made from modeling selection, and it is high when
large gains can be made. We will see in Section that it cor-
relates well with the empirical performance of our approach.

Finding Invariances and Selection Boundaries
Next, we move away from strict model assumptions and in-
stead develop an approach based on invariances of the under-
lying distribution as outlined in Sec . For the sake of feasi-
bility, we restrict ourselves to the simple but still expressive
class of orthogonal matrices—but note that recently some
progress on discovering more general symmetries has been
made [Desai, Nachman, and Thaler 2021].

To motivate our approach, recall that if P is invariant un-
der U , the sample Ux should look indistinguishable from
the sample x. Hence, given sample x from the distribution
Qa = P (· | a⊤X > 0), we would like to maximize some
similarity measure of the datasets Ux and x. Since selection
is at play, however, even the true invariance U cannot apply
to all samples xi.

To address this issue, we will first have to introduce
our approach based on the kernel mean embedding µP of

P [Muandet et al. 2017]. One can show under relatively gen-
eral conditions that µP = µQ, iff P = Q [Muandet et al.
2017]. In particular, µP = µP◦U iff U is an invariance of P .

In the absence of selection bias, our goal would be to find
the matrix U that minimizes |µP − µP◦U |2. The empirical
estimate for a sample x is [Muandet et al. 2017]

1

N

∑
i,j

k(xi, xj) +
1

N

∑
i,j

k(Uxi, Uxj)

− 1

N2

∑
i,j

k(Uxi, xj) ≥ 0.

In practice, it is useful to use an isotropic kernel, i.e.,
k(Ux,Uy) = k(|Ux− Uy|) = k(|x− y|). Fortunately,
the commonly used squared exponential kernel k(x, y) =

exp(−λ |x− y|2) satisfies this property. Then the first two
terms above are independent of U so that we maximize

L(U ;x) =
1

N2

∑
k(Uxi, xj).

However, due to the effects of selection bias, not all sam-
ples available to us are “good” samples. To deal with this,
we use the following approach to determine which samples
are good. To begin with, if U∗ is an invariance of P , how
does the selection mechanism a⊤X > 0 affect this?

Clearly, the points for which a⊤U∗xi > 0 are unaf-
fected in the above score. Meanwhile, those points for which
a⊤U∗xi ≤ 0 are far away from every point xj in the avail-
able sample, incurring a large penalty. Hence, the score L
would be improved if we recomputed the average without
the terms k(U∗xi, xj).

As such, we propose the following approach to de-
termining which samples are “good” samples. First, we
optimize L(U ;x) with respect to U (described below).
Then, for each point xk ∈ x we check if for I =
{1, · · · , k − 1, k + 1, · · · , n} we have

L(U ;x, I) =
1

N |I|
∑

i∈I,j∈[n]

k(Uxi, xj)≪ L(U ;x).

In other words, we check if the set of points {Uxi}i∈I is
significantly more similar to the sample x than the sample
{Uxi}i∈[n]. We then remove all “bad” points and set I =

[n] \ {k1, · · · , kl}.
We then rerun the optimization of U starting at its pre-

vious optimum, now using the score L(U ;x, I) instead.
After each such optimization step over U , we evaluate
L(U ;x, [n]) and recompute the set I by removing indices
from [n] rather than updating I directly. This is necessary
as some previously considered “bad” might only have ap-
peared as such due to U being poorly optimized. We repeat
this process until the pair (U, I) converges.

To optimize the score L(U ;x, I) over special orthogonal
matrices, we use the Cayley transform [Wen and Yin 2013]

U = (I −A)(I +A)−1

where A is a skew-symmetric matrix, A⊤ = −A. This turns
the constrained optimization problem of L(U) with respect



to orthogonal matrices into an unconstrained optimization
problem L(A) with respect to skew-symmetric matrices.

Note that while the matrices U parametrized in this way
all lie in SO(n), i.e., det(U) = 1, this is not a concern for
us. If P is invariant to U , then it is also invariant to U2 ∈
SO(n). Since we use the matrix U only to determine the
effects of selection bias, this purpose is equally well-served
by working only with matrices in SO(n).

This makes the optimization dramatically more efficient
and stable than other approaches, such as coordinate descent
using Givens rotations [Shalit and Chechik 2014].

Having obtained an orthogonal matrix U and the index set
I , we can use these to estimate the selection boundary. Let
Ic = [n]\I . Then the points xk, k ∈ Ic are such that Uxk is
far from observed samples xi and is likely to lie in the region
a⊤Uxk < 0, i.e., the other side of the selection boundary.
We therefore use a linear classifier such as an SVM to sep-
arate the two sets of points {xi}i∈[n] and {Uxk}k∈Ic . We
will see in the experiments that this simple approach already
produces good results.

We compute the confidence of this method by

C =
L(Û ; [n])− L(Û ; Ĵ)

L(Û ; [n])
,

again measuring the improvement from modeling selection.

Related Work
While most machine learning and statistical research as-
sumes access to a representative sample from the popula-
tion, selection bias can have detrimental effects on statistical
inferences, especially regarding public health advice [Berk-
son 1946, Herbert et al. 2020]. Work with samples sub-
ject to selection bias can also reinforce stereotypes, causing
issues with regard to the fairness of algorithmic decision-
making [Caton and Haas 2020].

Most work done on the topic of selection bias focuses
on conditions under which selection bias can be controlled
for [Bareinboim and Pearl 2012, Bareinboim, Tian, and
Pearl 2014, Bareinboim and Pearl 2016, Forré and Mooij
2020, Versteeg, Zhang, and Mooij 2022], or identifiability
of causal directions in spite of a special case of selection
bias [Zhang et al. 2016]. In contrast, we are concerned with
conditions under which it is possible to determine whether
selection bias is a likely concern for a given dataset.

Related approaches are those dealing with covariate
shift [Gretton et al. 2009, Sugiyama, Krauledat, and Müller
2007]. They require access to multiple datasets, however,
making them unusable when only one dataset subject to se-
lection bias is available. Similarly related to selection bias
is confounding in causal inference and discovery [Wang and
Blei 2019, Kaltenpoth and Vreeken 2019, Bhattacharya et al.
2021]. However, the approaches used here do not transfer to
selection bias despite their apparent similarity.

The study of symmetries in probability distributions gar-
nered much attention at the start of the century [Fang, Kotz,
and Ng 1990, Chikuse 2003, Kallenberg 2005].

More recent theoretical work has focused chiefly on pro-
viding theoretical frameworks to explain the benefits of sym-
metries for predictive tasks [Lyle et al. 2020, Fortuin 2022,

Chen, Dobriban, and Lee 2020, Dao et al. 2019]. A different
line of research has focused on learning models invariant
to a given symmetry group T . van der Wilk et al. [2018]
developed invariant Gaussian processes f by averaging a
Gaussian process g over the orbit of T . Further work also
extended this line of work to neural networks [van der Oud-
eraa and van der Wilk 2022]. Note that these approaches
assume that T is known beforehand. Benton et al. [2020]
relax this assumption by parametrizing the set of transfor-
mations. Other recent work has focused on leveraging the
benefits of symmetries, especially in image recognition sys-
tems [Ravanbakhsh, Schneider, and Poczos 2017, Worrall
et al. 2017, Immer et al. 2022]. However, these approaches
focus on exploiting symmetries in the data-generating pro-
cess to achieve a specific supervised task.

One notable exception to this is SymmetryGAN [Desai,
Nachman, and Thaler 2021], which uses a generative adver-
sarial network (GAN) approach to learning a linear volume-
preserving transformation of the data, which makes it look
indistinguishable from the original dataset.

Experiments
In this section we perform a comprehensive experimental
analysis of our proposed methods.

We begin by explaining the data generating process and
then show that our methods’ performance can be predicted
from observable quantities. We further evaluate our meth-
ods on two real world datasets and show that they provide
relevant and novel insight into the data.

To verify that our methods work, we compare them with
two different algorithms. First, we use the kernel mean
matching (KMM) [Gretton et al. 2009] algorithm, designed
to tell whether there is a distribution shift between two dif-
ferent datasets. Second, we use DCD [Bhattacharya et al.
2021], a recent approach to causal discovery in the presence
of confounding. It explicitly models non-causal edges, mak-
ing it a suitable competitor.

We implement our methods in Python using Tensor-
flow [Abadi et al. 2016] and use the publicly available im-
plementations of KMM and DCD. All experiments finished
within a few hours on a commodity laptop. We make all code
and data available in the supplementary material.

Data Generation
To generate suitable synthetic data, we use the following
approach. We start by generating a random directed Erdős-
Rényi (ER) network G with probability of an edge being
added being p. To do so, we sample a random topological or-
der τ over the nodes {1, . . . ,m} and for i < j add an edge
(τ(i), τ(j)) with probability p. We define the distribution
over X1, · · · , Xm via the structural model Xi = fi(pai, ϵi)
for appropriate functions fi and noise variables ϵi, where pai
are the parents of Xi in G.

For the multivariate Gaussian distribution, this is Xi =
β⊤
i pai + ϵi where β⊤

i ∼ N(0, σ2
β) and ϵi ∼ N(0, σ2

ϵ ). For
data generation from the t-distribution we use the approach
proposed by Finegold and Drton [2014].
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Figure 2: [Higher is better.] Decision rate plots of the cosine
similarity between discovered and true selection boundary.
Left: Experiments on Gaussian distributed data. EXP out-
performs INV slightly, and both outperform KMM signifi-
cantly. Right: Experiments on t-distributed data. INV out-
performs both EXP and KMM significantly. In both cases,
all methods significantly outperform random guessing.

We generate samples x = (x1, . . . , xm) from P (X) and
then pick a random sink node Z from G and remove all sam-
ples for which Z + a0 < 0 where a0 ∼ N(0, σ2(fZ)). For
the Gaussian distribution, we pick σ2(fZ) = β2

i1
where i1

is the first parent of Z in the topological ordering. Note that
this is the setting used in Thm. 2 if P (X) is Gaussian.

For each instantiation of the parameters, we generate data
points until a total of 1000 points are included in the ob-
served data. We further run each experiment 1000 times to
obtain reliable results.

Recovering the Selection Boundary
We start our evaluation by checking how well each method
predicts the correct selection boundary in a dataset that is
subject to selection bias. To this end, we generate data from
three-dimensional Gaussian and t-distributions N(µ,Σ) and
tν(µ,Σ) subject to selection bias as described above, where
we set p = 1 for our ER network. We consider the impact of
larger dimensions in the appendix.

We then compute the cosine similarity 0 ≤ ⟨a,a∗⟩
|a||a∗| ≤ 1

between the true selection boundary a∗ and the estimated a.
A result closer to 1 corresponds to better performance.

We compare only with KMM here as DCD is not capable
of estimating a∗. For KMM, we summarize here the modifi-
cations made to make it applicable to our setting. Full moti-
vation and details are included in the appendix.

Since KMM requires two datasets, besides the one subject
to the true selection boundary a∗, we also give it access to
a second dataset subject to the selection boundary a′ which
is a slightly rotated version of a∗. Thus, the original data
x and the secondary dataset x′ share similar distributions
which are nevertheless different and are therefore amenable
to analysis using KMM.

We show the results in a decision-rate plot in Fig. 2. On
the x-axis is the decision rate, i.e. the fraction or number of
datasets evaluated so far, ordered from most to least confi-
dent for each method. On the y-axis is the cosine similar-
ity. We see clearly that for all three methods, the confidence
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Figure 3: [Higher is better.] Decision rate plots of the Jac-
ard similarity between recovered and true set of variables af-
fected by selection bias. Left: Experiments on Gaussian dis-
tributed data. EXP outperforms INV slightly, and both out-
perform KMM and DCD significantly. Right: Experiments
on t-distributed data. INV outperforms EXP, which in turn
outperforms KMM and DCD significantly. In both cases, all
methods significantly outperform random guessing.

strongly correlates with their performance on both datasets.
On the left, we see that for Gaussian generated data, EXP

performs slightly better than INV, although not significantly.
Both methods significantly outperform KMM. On the right,
for t-distributed data, INV significantly outperforms EXP
which in turn significantly outperforms KMM. Lastly, all
methods significantly outperform random guessing of the se-
lection boundary on both datasets at all levels.

Recovering Variables Affected by Selection
Next we consider the task of discovering which variables
are affected by selection bias. We generate data from a ten-
dimensional joint distribution with p = 0.3 for the ER Graph
as described above. Then the parents of the variable Z we
condition on are the variables we would like to recover.

For evaluation, we compute the Jaccard similarity be-
tween the true set S∗ = paG(Z) and our recovered S,

J(S, S∗) =
|S ∩ S∗|
|S ∪ S∗|

,

where higher values tell us that S is more similar to S∗. We
include further analysis of the precision-recall curve for this
experiment in the appendix.

We compare our methods with both KMM and DCD in
this setting. For our methods and KMM, we use the dis-
covered selection boundaries a and consider those variables
which have ai significantly different from zero to be the vari-
ables subject to selection bias. For DCD, we run the method
to obtain pairs of variables whose correlations are estimated
to be strictly non-causal. We then estimate the set of vari-
ables affected by selection to be the set of all variables in-
cluded in at least one such pair.

We show the resulting decision rate plots in Fig. 3. As
in the previous section, for Gaussian generated data, EXP
outperforms INV slightly. Further, both of our methods out-
perform both KMM and DCD significantly. For t-distributed
data, INV again outperforms both EXP significantly, which
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Figure 4: Result on Palmer penguin dataset. Observed points
are displayed in blue, unobserved points in gray. The linear
separator found by LDA is displayed in gray. We see that the
selection boundary found by INV (gold) is much closer to
the best possible than the one found by KMM (purple).
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Figure 5: Result on exoplanet dataset. The regression line
(dark blue) is negative and highly significant, p < 10−20.
The selection boundary estimated by INV (gold) captures the
intuitive lack of points in the top right corner, consistent with
our speculation of selection due to technological limitations.

in turn significantly outperforms both KMM and DCD. Fur-
ther, all methods significantly outperform random guessing
of the set of variables affected by selection.

Real Data
To see if our methods can provide novel insight, we evaluate
them on two real-world datasets.

Palmer Penguins We begin by evaluating our methods on
the Palmer Penguins dataset [Gorman, Williams, and Fraser
2014]. They were collected at Palmer Station, Antarctica,
and contain samples from three different species of pen-
guins. Among the measured variables are bill depth, bill
length, flipper length, and weight.

To test whether our approach is capable of finding in-
teresting results on this dataset, we preprocess our data as
follows. We split the data by penguin species and then for
each of them we select the 80% of penguins with the low-
est weight from that species. Since we expect bill depth, bill
length and flipper length to all positively affect weight, this
should introduce selection bias in these features.

We show an example of our results in Fig. 4, where
gray points have been removed in the preprocessing step.
We see that the selection boundaries estimated by our ap-
proach is reasonable, while the one provided by KMM is
not. In fact, when compared to a Linear Discriminant Anal-
ysis (LDA) [Bishop and Nasrabadi 2006] fit on all data with
known labels of which data points our methods have access
to, the selection boundaries discovered by our methods are
almost identical. We show similar results for other pairs of
variables and penguin species in the appendix.

Exoplanet Discovery Next, we consider data from the
Open Exoplanet Catalogue using the ExoData library [Rein
2012, Varley 2016]. It contains data about exoplanets and
their stars, including variables such as their distance d from
the earth and their absolute magnitude – a measure of their
brightness, with dim stars having high magnitude.

It is generally believed that the universe is uniform at large
scales [Liddle 2015]. In particular, the distance of stars from
us should be independent of their absolute magnitude. How-
ever, due to technological constraints we should expect that

the further away a star, the brighter it has to be for us to be
able to detect exoplanets in its system. As such, we expect
selection effects to be at work in this dataset, making it a
good case study for our methods.

We show the data in Fig. 5. One thing that stands out from
the very first glance is that the top right corner of our dataset
(dim points which are very far away) is only sparsely popu-
lated. Indeed, the linear correlation between log(d) and mag-
nitude is negative and significant at the 10−21 level. Apply-
ing INV we obtain the selection boundary seen in Fig. 5. We
see that the selection boundary found by INV is consistent
with our speculations of selection effects based on techno-
logical limitations.

Discussion and Conclusion
We introduced two different approaches to identifying selec-
tion bias from purely observational data. The first is based
on the uniqueness of members of exponential families over
any set of non-zero probability. The second is based on in-
variances of the true generating distribution before selection.
Theoretically, we prove both approaches to identify selec-
tion bias under general conditions. Empirically, we show
that both approaches produce good results both for discov-
ering the true selection boundary as well as recovering the
set of variables affected by selection bias.

Two important future work directions, and current limi-
tations, are using broader classes of invariances and richer
selection models. These challenges can be roughly bro-
ken down into three parts: first, parametrize the underly-
ing invariance and learn a model respecting specific in-
variances, e.g., using normalizing flows [Kobyzev, Prince,
and Brubaker 2020] or GANs [Desai, Nachman, and Thaler
2021]. Second, find those subsets of data points on which we
obtain the most coherent invariances as well as those where
they are least consistent with the available data. Third, de-
termine the selection mechanism which would produce data
similar to our observations given the generative process re-
sulting from the previous step. To go beyond linear selection
mechanisms, the use of both kernel-based, as well as meth-
ods based on latent embeddings such as VAEs [Kingma and
Welling 2019] are promising next steps of exploration.
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Forré, P.; and Mooij, J. M. 2020. Causal calculus in the
presence of cycles, latent confounders and selection bias. In
Uncertainty in Artificial Intelligence, 71–80. PMLR.

Fortuin, V. 2022. Priors in bayesian deep learning: A review.
International Statistical Review.
Glymour, M. M.; and Greenland, S. 2008. Causal diagrams.
Modern epidemiology, 3: 183–209.
Gorman, K. B.; Williams, T. D.; and Fraser, W. R. 2014.
Ecological sexual dimorphism and environmental variabil-
ity within a community of Antarctic penguins (genus Py-
goscelis). PloS one, 9(3): e90081.
Gretton, A.; Smola, A.; Huang, J.; Schmittfull, M.; Borg-
wardt, K.; and Schölkopf, B. 2009. Covariate shift by kernel
mean matching. Dataset shift in machine learning, 3(4): 5.
Herbert, A.; Griffith, G.; Hemani, G.; and Zuccolo, L. 2020.
The spectre of Berkson’s paradox: Collider bias in Covid-19
research. Significance, 17(4): 6–7.
Immer, A.; van der Ouderaa, T. F.; Fortuin, V.; Rätsch, G.;
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Appendix
Proofs
Proof of Theorem 1. Let (a, θ), (a′, θ′) be two pairs of pa-
rameters as in the assumptions and denote Q := Qθ,a, Q

′ :=
Qθ′,a′ . Note that in particular we have supp(Q) = supp(Q′)
so that

supp(Pθ) ∩
{
a⊤X > 0

}
= supp(Pθ′) ∩

{
a′⊤X > 0

}
so that from Pθ(a

⊤X > 0) ∈ (0, 1) it follows that a = a′.
Now given a = a′ it follows that for u ∈

{
a⊤X > 0

}
we

have
Pθ(u)

Pθ(a⊤X > 0)
= Q(u) = Q′(u) =

Pθ′(u)

Pθ′(a⊤X > 0)

so that

logPθ(u) = logPθ′(u) + log

(
Pθ(a

⊤X > 0)

Pθ′(a⊤X > 0)

)
.

Now if the second term on the right is zero, the claim θ = θ′

follows because Pθ form an exponential family. If it is not,
then w.l.o.g. we can assume it is > 0 so that Pθ assigns
strictly larger probabilities to every value of u than Pθ′ . But
since Pθ′ is a probability distribution that would imply that∫
dPθ(u) >

∫
dPθ′(u) = 1, which is in contradiction to Pθ

being a probability distribution.

Proof of Theorem 2. Let θ = (µ,Σ, a, ζ), θ′ =
(µ′,Σ′, a′, ζ ′) be two different vectors such that
Q = Qθ = Qθ′ = Q′. Let q, q′ be the correspond-
ing densities for Q respectively Q′. By plugging in the
definition of the Gaussian density we have

1 =
q(u)

q′(u)
=

e−(u−µ)⊤Σ−1(u−µ)Φ(a⊤u/ζ)

e−(u−µ′)⊤Σ′−1(u−µ′)Φ(a′⊤u/ζ ′)

By taking logarithms we obtain for all u

0 =
(
−∥u− µ∥2Σ + ∥u− µ′∥2Σ′ + log ϕ− log ϕ′

)
where ∥·∥Σ is the Mahalanobis norm for Σ and ϕ =
Φ(a⊤u/ζ). By taking derivatives we obtain

0 = A⊤(u− µ)−A′⊤(u− µ′)

+
Φ′(a⊤u/ζ)

ϕ

a

ζ
− Φ′(a′⊤u/ζ ′)

ϕ′
a′

ζ
.

Note that if A ̸= A′ we have Φ′(a⊤u/ζ) → 0 but∥∥(A−A′)⊤u
∥∥ → ∞. Hence A = A′. By setting u = 0

we obtain that a
ζ −

a′

ζ = A⊤(µ − µ′). However, by set-

ting u = µ′ we also obtain Φ′(a⊤µ′/ζ)
ϕ

a
ζ −

Φ′(a′⊤µ′/ζ)
ϕ′

a′

ζ′ =

A⊤(µ′−µ) = −(aζ −
a′

ζ′ ) which can only hold if a = a′ and
ζ = ζ ′. But then also µ = µ′ and we have proved what we
wanted to prove

Proof of Theorem 3. Let j be an invariance of P . Then since
P (a⊤X ≤ 0) < 1/2 the intersection

{
a⊤X > 0

}
∩

j−1(
{
a⊤X < 0

}
) ̸= ∅ and this intersection uniquely de-

termines a.
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Figure 6: [Higher is better.] Cosine similarity between true
and recovered selection boundary for different dimensions
of data.
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Figure 7: [Higher is better.] Precision recall curve for recov-
ering the correct set of nodes affected by selection bias.

Additional Experiments
Details on KMM For KMM, we use two similar datasets
with a∗ and a′ where a′ = Ua∗ with an orthogonal matrix
U . To this end, we sample random orthogonal matrices via

the Cayley transform until ⟨a
∗,a′⟩

∥a∥∥a∗∥ ≥ 0.95.

Selection boundary in higher dimensions Next, we
show the effects of higher dimensions on our ability to re-
cover the correct selection boundary in Fig. 6. We see that
the recovered selection boundary quickly deteriorates as the
dimension increases, which is not too surprising since our
number of samples is low.

Precision and Recall We now study the precision-recall
relationship for recovering variables subject to selection
bias. We show the results in Fig. 7. We see that as in our
previous expecriments EXP does particularly well when the
data comes from a Gaussian family, wheereas INV does well
also for t-distributed data. Meanwhile KMM and DCD don’t
do very well in either case.


