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Abstract

Discovering causal networks, especially from observational data alone, is a fundamental yet
challenging task. Existing causal discovery algorithms not only rely on strict assumptions
such as having i.i.d data, but are also limited to working with static, fully-specified datasets,
rendering them incapable of learning causal networks in a continual fashion. In this short
paper, we propose an information-theoretic approach that can learn causal networks in a
continual fashion, does not require the i.i.d assumption on continually arriving data, and
converges to the true underlying causal network as samples within the accumulated batches
of data converge to the underlying data generating distribution. Our proposed approach,
ConCausD, leverages the Algorithmic Markov Condition, a postulate by Janzing and
Schölkopf (2010b), to discover causal networks in an online fashion. ConCausD is not
only capable of continual learning, it also provides multiple plausible causal graphs at
the end of each iteration, while the existing approaches can only predict a single causal
network.

1. Introduction

Discovering causal dependencies from observational data is one of the most fundamental
problems in science (Pearl, 2009). While there exist a plethora of approaches for discovering
causal networks designed for single (Spirtes et al., 2000a; Chickering, 2002; Shimizu et al.,
2006; Peters et al., 2014; Huang et al., 2018) or multiple but fully specified Shimizu (2012);
Mooij et al. (2016); Zhang et al. (2017); Mian et al. (2023) datasets, causal discovery over
continually arriving data still remains an open problem. It is easy to see that in practical
applications such as healthcare, stock-markets, and weather-forecasting, we continuously
receive new data over time. In such cases we have data arriving in batches, perennially.

The traditional paradigm in causal structure discovery assumes a single, homogeneous
dataset sampled from a single, stationary distribution. In various domains where we obtain
data over time in multiple batches, there is no guarantee that combining all the batches
would result in a single homogeneous dataset. This makes learning causal networks over
such data challenging. Existing methods that work with tabular data require that each time
we receive a new batch of data, we include the new data together with already existing data
and rediscover the causal network from scratch. This already results in two major problems.
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First, as the number of samples grows, so does the learning time. This can be a profound
problem, especially for Kernel-based approaches (Huang et al., 2018) where the runtime
complexity is cubic in the number of samples. Second, given the independent and identically
distributed (i.i.d) assumption that lies at the heart of many causal discovery algorithms,
distribution shifts across different batches mean that blindly grouping all data together
from multiple batches will result in biased or incorrect estimation of causal networks (Lee
and Tsui, 1982; Tillman, 2009). Even if we do not stack all the data together and instead
learn individual models over each incoming batch, it is non-trivial to combine those models
into a single model.

To address these problems, we propose an information-theoretic framework to learn
causal networks for data arriving over multiple batches over time. We build this frame-
work on the algorithmic model of causality and use the Algorithmic Markov Condition
(AMC) (Janzing and Schölkopf, 2010b), a postulate stating that the true causal factor-
ization of the joint distribution has the lowest Kolmogorov complexity. This allows us
to uniquely identify a fully directed overall causal network in a continual learning fashion.
While the Kolmogorov complexity is not computable itself, it can be instantiated in a statis-
tically well-founded manner using the Minimum Description Length (MDL) principle (Marx
and Vreeken, 2021).

We propose the ConCausD framework, which can be implemented using any AMC-
based causal discovery approach, can leverage already learned information about causal
structure, and does not require re-learning of causal networks over all of the data unless
strictly necessary. Moreover, ConCausD provides more flexibility compared to the existing
causal discovery approaches as it keeps track of multiple potential causal structures at each
time step instead of forcing the prediction of a single causal model. We postulate that as a
joint distribution over all the received batches gets closer to the true underlying distribution,
ConCausD will converge to the true causal model.

This paper is organized as follows: In Section 2, we describe the problem setup and
the preliminaries required to formalize our approach. We describe our proposed approach,
ConCausD, in Section 3, and discuss its implications as well as ongoing work in Section 4
before providing concluding remarks in Section 5.

2. Preliminaries

Problem Setup We consider a setting where we have data arriving perennially in batches
over time D = {d1, d2, ...}, where dt represents the batch of data arriving at time-step t and
Dt represents the subset {d1, ..., dt}. Each dataset di ∈ D is defined over the identical set
of m variables X = {X1, X2, ..., Xm}. For the framework described in this work, this set
can either consist of continuous-valued data or discrete valued data, or a mixture of both,
as long as we can define a lossless compressor to approximate the Kolmogorov Complexity
(described later in this section) of the incoming data under a proposed model. Each di ∈ D
does not need to have i.i.d samples. We do assume, however, that limt→∞Dt is i.i.d. Simply
stated, we assume that with a large enough number of batches, we will have i.i.d data.

We work under the setting where variables in X are causally related to each other,
and a Structural Causal Model (SCM) S (Pearl, 2009) over X models a joint distribution
P over X corresponding to the observation distribution of the system. A causal Directed
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Acyclic Graph (DAG) G over X is a graph where the nodes represent random variables
{X1, X2, ..., Xm} and edges show the causal relationship between those variables as entailed
by S. A directed edge Xi → Xj implies that Xi is the causal parent or a direct cause of
Xj . We define paj to be the set of all causal parents of Xj . We assume that the true
underlying causal DAG that captures the structure of the physical process between the
variables remains the same throughout. Note that this setup does not rule out the presence
of interventional datasets in D as we discuss in Sec. 4.

When working with causal DAGs, we make the common assumptions, namely the 1)
causal Markov condition (Spirtes et al., 2000b), 2) faithfulness condition (Spirtes et al.,
2000b), and 3) causal sufficiency (Pearl, 2009). The combination of these assumptions
implies that each separation present in the true graph G is an independence in the (true)
joint distribution P over the random variables X and vice versa. This allows us to discover
causal networks from observational data up to the Markov equivalence class (Glymour
et al., 2019). With additional assumptions over the data generating mechanisms (Peters
et al., 2017), such as 4) non-linearity of the causal relation alongside independent additive
Gaussian noise term (Hoyer et al., 2009), or 5) the low-noise assumption (Blöbaum et al.,
2018; Marx and Vreeken, 2019) it is possible to go beyond the Markov equivalence class
and discover a fully oriented causal network (Shimizu et al., 2006; Peters et al., 2014; Mian
et al., 2021). For our proposed framework, we will require assumptions 1-3, and either
assumption 4. or 5.

Information Theoretic Causal Discovery Information theoretic causal discovery builds
on top of Kolmogorov Complexity (Kolmogorov, 1965). The Kolmogorov complexity of a
finite binary string x is defined as the length of the shortest binary program, p∗, for a
Universal Turing machine U that produces x as its output and then halts. One could
think of p∗ as the ultimate lossless compressor for x, and its length to be the best lossless
compression of x. This idea is similarly extendable to a probability distribution P . The
Kolmogorov complexity K(P ) of a probability distribution P is the length of the shortest
program that outputs P (x) up to the specified precision q (Li and Vitányi, 2009). Formally
stated,

K(P ) = min
p∈{0,1}∗

{|p| : |U(p, x, q)− P (x)| ≤ 1/q} .

Using Kolmogorov complexity, Janzing and Schölkopf (2010b) postulate the Algorithmic
Markov Condition (AMC).

Postulate 1 (Janzing and Schölkopf (2010b)) A causal DAG G over random vari-
ables X with joint density P is only acceptable if the shortest description of P factorizes
as

K(P (X1, . . . , Xm)) =

m∑
j=1

K(P (Xj | paj)) . (1)

which holds up to an additive constant.

Postulate 1 states that under the assumption that the underlying causal graph over
variables can be modeled by a DAG, the true causal DAG will be the minimizer of Eq. (1).
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Algorithm 1: ConCausD (A, E)
input : MDL-based causal discovery algorithm A, episodes E arriving over time
output: candidate causal modelsM

1 M← {}
2 τ ← 0
3 τmax ← k
4 while a new episode Ei arrives do
5 M← Update (Ei,M,A)
6 τ ← τ + 1
7 if τ == τmax then
8 M←Merge (M,A)
9 τ ← 0

10 end
11 yieldM
12 end

Hence, in an ideal world, if one could compute Kolmogorov complexity of the data under a
proposed DAG, the true causal DAG will result in the best compression of the data.

Kolmogorov complexity, however, is not computable due to the halting problem. We can
nevertheless approximate it from above in a statistically well-founded way through lossless
compression (Li and Vitányi, 2009), using the Minimum Description Length (MDL) princi-
ple (Rissanen, 1978; Grünwald, 2007). Marx and Vreeken (2021) prove a formal connection
between AMC and MDL by showing that the MDL formulation gives (on expectation) the
same inference result as the original postulate. Therefore, in the limit where the number
of samples n → ∞, finding the true DAG can be achieved by finding the minimizer of a
suitable lossless MDL score.

MDL, for a given model classM, chooses the best model M ∈M for data D as the one
that minimizes

L(D,M) = L(M) + L(D |M),

where L(M) is the length in bits of the description of M , and L(D | M) is the length in
bits of the description of data D given M . Stated with reference to Eq. (1), we consider our
model class M to consist of all tuples of the form (G,SG), where G can be any graph from
the space of DAGS, and SG is the SCM, or the generating mechanism for variables, under
their parents specified in G. Simply put, we seek to find that structure, and corresponding
set of functional mappings, that results in the best compression for a given data D.

Armed with the knowledge of AMC, we now describe how we can leverage this idea
of AMC-based causal discovery to propose a framework for continual learning of causal
networks.
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Algorithm 2: Update (A, Ei,M)

input : MDL-based causal discovery algorithm A, episode Ei at timepoint ti,
current set of candidate modelsM

output: Updated candidate modelsM
1 M̂ ← A.Learn(Ei)
2 L⋆ ← Sum Costs(M) +Cost(M̂)

3 M⋆ ←M⊕ M̂
4 foreach Mj ∈M do

5 M̃ ← Copy(M)

6 M̃[j].Add Data(Ei)
7 M̃[j]← A.Resume(M̃[j])

8 Lj ← Sum Costs(M̃)
9 if Lj < L⋆ then

10 (L⋆,M⋆)← (Lj ,M̃)
11 end

12 end
13 returnM⋆

3. Continual Causal Discovery

In this section we propose a framework to continually discover causal networks over data
that arrives in batches over time. We first provide a motivating example to explain our
idea, and then use this motivating example to describe the framework.

As a motivating example, consider the scenario where we already have the knowledge
of the best model M∗ = (G∗, S∗) given to us a priori. Then, for each data batch dt that
arrives, we can be guaranteed that M∗ is going to compress this given batch the best, by
the virtue of Eq. (1). Next, consider that we also know apriori that each batch dt is not
i.i.d. but in fact has selection bias such that each dt only has samples either from S∗

+ or S∗
−,

where S∗
+ resp. S∗

− are two disjoint subsets of the domain of S∗, such that their union again
gives the full SCM. In this new scenario, we can have two separate best models, namely
M∗

+ and M∗
−, depending on which kind of dt we receive. Nevertheless, by merging these

two models into one, we can arrive at the true model once more. It is straightforward to
see that this argument can be extended to more than two splits of S∗ e.g. three different
regimes shown in Fig. 1. The key point is that as long as we can merge the models, we can
arrive at the true model eventually.

The example above describes our scenario exactly, but in reverse order. In practice,
each di we receive can be thought of as a local snapshot of the overall joint distribution over
X . If we can stitch enough snapshots together, we could arrive at the full picture. This is
what we propose.

The main idea behind our proposed approach is to allow for more than one causal model
at any time step and progressively merge them together, until eventually we converge to one
model. Every time we receive a new batch of data, we evaluate its compression based on
existing models as well as learn a model over this data. If the existing models provide good
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Figure 1: Hypothetical scenario between two variables X and Y with ground truth X → Y .
Existing causal discovery approaches will fail if data continually arrives in batches
of biased samples from three different regimes i.e {[0, 10) , [10, 20) , [20, 25]} as
shown in this figure.

enough compression for this batch, we assign this batch to the best compressing model, else
we use the model learned for this data and add it to our list of candidate models. Concretely
stated, if evaluating on existing models already results in a better compression for the new
data than its own best model, we simply assign the data to the existing model instead of
storing a new model just for this data. We periodically check if we can merge the existing
models. If merging two models into one results in a better compressing model for data of
both models, we perform the merging. We call this proposed framework, Continual Causal
Discovery, ConCausD, and describe its outline in Algorithms. 1 and 2. Next we describe
the steps in detail.

ConCausD framework can be implemented using any Information-theoretic AMC-
based causal discovery method A including but not limited to the proposals by Mian et al.
(2021); Mameche et al. (2022), and Mameche et al. (2023). We start Alg. 1 with an empty
set of Models M (L1). Each time a new batch of data di arrives (L4), we make an up-
date to the existing set of plausible causal models using the Update function (L5). Note
that Update step at L5 would either create an extra model or assign di to an existing
one, thereby never decreasing the number of models. We, therefore, need a step that can
merge causal models if they become sufficiently similar. To do so, we try to merge each of
our existing models (L8) after a predefined number of iterations set by the max tolerance
threshold, τmax (L7). This intra-model evaluation allows us to merge the models that have
similar performance on each others’ data. At the end of each batch evaluation, we yield the
current set of plausible causal models as output (L10).

The two main components of ConCausD are the Update function described in Alg. 2,
and the Merge function. Update works as follows: for each batch of data, Ei that we
receive, we use A to learn the locally best model, M̂ , for Ei (L1), compute the total cost L⋆

of storing M̂ as a new model alongside already existing models (L2), and create an updated
list, which we consider as our best case configuration, containing existing models as well
as M̂ (L3). Next we iterate over already existing models (L4). For each model, we check
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if adding Ei to this model instead of using M̂ costs less than storing M̂ explicitly (L5-8).
We do this by first adding Ei to the data in Mj (L6), and then resuming causal learner A
to adjust to parameters change induced due to Ei (L7). Intuitively, if Ei comes from the
same distribution as Mj , the overall cost of additionally storing M̂ would be higher due to
the overhead of storing (potentially) identical models twice. After evaluating each model,
we update the best model configuration, if our evaluation results in a lower number of bits
for this configuration (L8-9). Finally, we return the best configuration (L12). The Merge
function shown in Alg. 1 line 8 works similarly to Update, except that we repeatedly learn
M̂ pairwise across existing models, instead of using Ei from an incoming batch. If a model
Mij over combined data costs fewer bits, we use this model instead of models Mi and Mj .

4. Related Work

A growing body of work studies causal discovery from observational data, introducing
constraint-based (Pearl, 2009), score-based Spirtes et al. (1999); Huang et al. (2018) and
hybrid (Squires et al., 2020) approaches to discover the Markov equivalence class of the
causal graph from an i.i.d. data distribution. Other works study assumptions to identify
additional causal directions (Shimizu et al., 2006; Hoyer et al., 2009; Peters et al., 2014;
Blöbaum et al., 2018), including the line of work of information-theoretic approaches (Marx
and Vreeken, 2019; Mian et al., 2021) that we follow, which is inspired by the algorithmic
framework of causation going back to Janzing and Schölkopf (2010a).

More recently the interest in causal discovery has turned towards interventional data,
and constraint- and score-based (Mooij et al., 2016; Zhang et al., 2017; Squires et al., 2020)
as well as information-theoretic approaches (Mian et al., 2023; Mameche et al., 2023) have
been proposed for this setting. These methods can discover a shared causal network from
data in different contexts with distribution shifts, causal mechanism changes, or interven-
tions, without knowing which variables are affected by such changes. All aforementioned
methods however assume datasets that come from multiple contexts that are both known
and unbiased.

Finally, fewer works investigate selection bias where a given dataset is not identically
distributed, but rather some part of the relevant domain is observed, and other parts re-
main unobserved. Pearl (2012) study this problem under a missingness framework (Rubin,
1976; Little and Rubin, 2019) and give conditions under which information about causal
mechanisms is recoverable in such cases (Bareinboim et al., 2014). Other approaches exist
for correcting selection bias (Boeken et al., 2023) when additional (privileged) information
is available. Finally, Kaltenpoth and Vreeken (2023) propose an approach for identifying
whether selection bias holds.

However, while multi-context approaches cannot handle selection bias, existing work
in selection bias does not consider multiple datasets that need to be matched together to
discover a causal model. Neither lines of work address a dynamic setting with data arriving
continually over time. This motivates us to propose our framework for continual learning
of causal networks over such data.
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5. Discussion and Ongoing Work

We believe that there are a number of advantages to using ConCausD framework. First,
unlike existing causal discovery approaches that inherently predict one single network over
all data, ConCausD can propose more than one plausible causal network based on the
batches of data seen so far. Second. each new incoming data can be assigned to the best
compressing model without strictly having the need to learn a new or updated model each
time. Moreover, it is straightforward to see that having multiple models allows ConCausD
to deal with biased batches of data as shown in Fig. 1, where samples from the orange
regime would be assigned to a model different from the one for samples from the indigo
regime. Eventually, with enough data from the green regime, merging the data across all
models would result in an i.i.d. sample, which can then be used to reliably learn the true
underlying causal network using the same causal discovery method A.

While we only provide a framework outline in this short paper, ConCausD can be
implemented using any AMC-based causal discovery approach, a number of which have been
proposed recently (Mian et al., 2021; Mameche et al., 2022). Furthermore, the application
of ConCausD framework is not just limited to observational data. If the incoming batches
either come from observational data or from an intervention distribution, one would expect
ConCausD to converge to two different models in the limit, one of which models the
interventional SCM and the other one which models the observational SCM. Once again, this
should be possible to achieve using any AMC-based method that works with interventional
data (Mian et al., 2023; Mameche et al., 2023).

While we have the blueprint forConCausD, there still remain a number of implementation-
related questions that need to be answered in practice, the most obvious one being a sta-
tistically sound test to decide when two existing models are sufficiently similar enough to
be merged. Currently we are working on an implementation of our proposed framework to
build a working algorithm, with provable theoretical guarantees.

6. Conclusion

In this short paper we introduced the ConCausD framework for learning causal networks
in a continual fashion. We use an information-theoretic approach to continuously build and
merge plausible causal models, until we converge to the single underlying causal network.
Our proposed framework can be instantiated using any causal discovery algorithm that is
based on the Algorithmic Markov Condition. As ongoing work, we are implementing a
proof-of-concept for ConCausD, with provable theoretical guarantees.
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M. Li and P. Vitányi. An Introduction to Kolmogorov Complexity and its Applications.
Springer, 2009.

Roderick Little and Donald Rubin. Statistical analysis with missing data, third edition. 04
2019. doi: 10.1002/9781119482260.

Sarah Mameche, David Kaltenpoth, and Jilles Vreeken. Discovering invariant and chang-
ing mechanisms from data. In Proceedings of the 28th ACM SIGKDD Conference on
Knowledge Discovery and Data Mining, pages 1242–1252, 2022.

Sarah Mameche, David Kaltenpoth, and Jilles Vreeken. Learning causal models under
independent changes. In Thirty-seventh Conference on Neural Information Processing
Systems, 2023.

Alexander Marx and Jilles Vreeken. Identifiability of cause and effect using regularized
regression. In KDD. ACM, 2019.

9



Mian Mameche

Alexander Marx and Jilles Vreeken. Formally justifying mdl-based inference of cause and
effect. arXiv preprint arXiv:2105.01902, 2021.

Osman Mian, Alexander Marx, and Jilles Vreeken. Discovering fully oriented causal net-
works. 2021.

Osman Mian, Michael Kamp, and Jilles Vreeken. Information-theoretic causal discovery and
intervention detection over multiple environments. In Proceedings of the AAAI Conference
on Artificial Intelligence, AAAI-23, 2023.

Joris M Mooij, Sara Magliacane, and Tom Claassen. Joint causal inference from multiple
contexts. JMLR, 21, 2016.

Judea Pearl. Causality: Models, Reasoning and Inference. Cambridge University Press, 2nd
edition, 2009.

Judea Pearl. A solution to a class of selection bias problems. 2012.

Jonas Peters, Joris M. Mooij, Dominik Janzing, and Bernhard Schölkopf. Causal discovery
with continuous additive noise models. JMLR, 15, 2014.

Jonas Peters, Dominik Janzing, and Bernhard Schölkopf. Elements of causal inference:
foundations and learning algorithms. MIT Press, 2017.

Jorma Rissanen. Modeling by shortest data description. Automatica, 14(1):465–471, 1978.

Donald B. Rubin. Inference and missing data. Biometrika, 63(3):581–592, 1976.

Shohei Shimizu. Joint estimation of linear non-gaussian acyclic models. Neurocomputing,
81, 2012.

Shohei Shimizu, Patrik O. Hoyer, Aapo Hyvärinen, and Antti Kerminen. A linear non-
gaussian acyclic model for causal discovery. JMLR, 7, 2006.

Peter Spirtes, Christopher Meek, and Thomas Richardson. An algorithm for causal infer-
ence in the presence of latent variables and selection bias. Computation, causation, and
discovery, 21, 1999.

Peter Spirtes, Clark N Glymour, Richard Scheines, and David Heckerman. Causation,
prediction, and search. MIT Press, 2000a.

Peter Spirtes, Clark N Glymour, Richard Scheines, David Heckerman, Christopher Meek,
Gregory Cooper, and Thomas Richardson. Causation, prediction, and search. MIT press,
2000b.

Chandler Squires, Yuhao Wang, and Caroline Uhler. Permutation-based causal structure
learning with unknown intervention targets. In Conference on Uncertainty in Artificial
Intelligence, pages 1039–1048. PMLR, 2020.

Robert E Tillman. Structure learning with independent non-identically distributed data.
In ICML, pages 1041–1048, 2009.

10



ConCausD

Kun Zhang, Biwei Huang, Jiji Zhang, Clark Glymour, and Bernhard Schölkopf. Causal
discovery from nonstationary/heterogeneous data: Skeleton estimation and orientation
determination. In IJCAI, 2017.

11


	Introduction
	Preliminaries
	Continual Causal Discovery
	Related Work
	Discussion and Ongoing Work
	Conclusion

