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Network traffic datasets are regularly criticized, notably for the lack of realism and diversity in their attack or
benign traffic. Generating synthetic network traffic using generative machine learning techniques is a recent
area of research that could complement experimental test beds and help assess the efficiency of network
security tools such as network intrusion detection systems. Most methods generating synthetic network flows
disregard the temporal dependencies between them, leading to unrealistic traffic. To address this issue, we
introduce FlowChronicle, a novel synthetic network flow generation tool from mined patterns and Bayesian
networks. As a core component, we propose a novel pattern miner in combination with statistical models
to preserve temporal dependencies. We empirically compare our method against state-of-the-art techniques
on several criteria, namely realism, diversity, compliance, and novelty. This evaluation demonstrates the
capability of FlowChronicle to achieve high-quality generation while significantly outperforming the other
methods in preserving temporal dependencies between flows. Besides, in contrast to deep learning methods,
the patterns identified by FlowChronicle are explainable, and experts can verify their soundness. Our work
substantially advances synthetic network traffic generation, offering a method that enhances both the utility
and trustworthiness of the generated network flows.
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1 Introduction

Evaluating network security tools, such as intrusion detection systems (IDS) [69] or firewalls [19],
and conducting network measurement campaigns, such as applications testing [24] or device
identification [50], requires the systematic collection and sharing of network traffic datasets.
However, multiple studies have highlighted recurring issues with network traffic datasets, such
as quality [34], density [31], and labeling accuracy [22]. In fact, instead of using actual network
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captures, which may not be shared due to confidentiality and privacy risks [31], researchers have
proposed to generate traffic in a controlled environment. This synthetic traffic does not result
from human network activities but from network automatons, such as web crawlers [60], email
generators [24], or bots that operate specific applications following predefined user profiles [65].
Simulating traffic effectively sidesteps the issues associated with human-generated traffic [60]: e.g.,
the risk of leaking confidential information is minimized since the users are simulated and not
real. Furthermore, the controllable behavior of these simulated users allows easier labeling of the
resulting traffic compared to traffic generated from human interactions [66].

One major drawback of traffic simulation is scalability: once the simulation is launched and the
traffic is being recorded, the behavior cannot be adapted to a new constraint that was not imple-
mented at the starting time. The resulting traffic cannot be adapted to produce unplanned behavior
and, therefore, hardly corresponds to another configuration in terms of hosts or activities [1]. Such
adaptation will often necessitate re-running the entire simulation, which is time-consuming and
costly. To address the issues of both real and simulated traffic, the research community has resorted
to synthetic data generation, which relies on a modeling algorithm that learns existing traffic
characteristics to reproduce them [1, 4, 49]. Such algorithms enable the generation of synthetic
traffic free from sensitive user information and with more precise labeling. For example, in the
case of data augmentation, generative algorithms can be used to produce more samples of a given
traffic class, greatly reducing manual and error-prone labeling effort during dataset creation [49].
In addition to these two features, it is expected that such algorithms enable the generation of new
traffic to assess the generalization of network security measures to new environments [1] while
preserving consistency/compliance [47].

This article focuses on the generation of benign traffic in the format of network flows. For this
specific task, several classes of synthetic data generation models have been proposed so far, including
Generative Adversarial Networks (GAN) [3, 4, 6, 54, 59], Variational AutoEncoders (VAE) [17, 45],
autoregressive model [75], Bayesian networks [63]. A problem these models have with network
flow generation is their lack of modeling the temporal dependencies among flows [4]: for example,
several works [3, 59, 63] are sampling network flows independently. We argue that this type of
generation is insufficient for real-life applications.

We therefore propose FlowChronicle, a novel synthetic network flow generation method based
on pattern mining [2, 72]. Our first contribution is a powerful pattern language especially designed
to match network flows, that not only captures relevant value combinations within flows but also
between different network flows. We formalize this problem as mining a set of non-redundant
patterns that best summarize the training network flow dataset.

Our second contribution is FlowChronicle, a data generation mechanism based on the learned
representation. As we will show, this approach generates highly realistic network traffic and respects
the protocol specifications. Moreover, since FlowChronicle generates synthetic data directly from
the temporal patterns mined from the training dataset, this results in synthetic traffic that preserves
temporal relations among network flows. In addition, the patterns mined by our generating model
are interpretable and auditable.

Finally, we compare our model to other state-of-the-art generators to show that our model, on
top of providing the best overall quality of synthetic traffic, also preserves time dependencies.

The remainder of the paper is articulated as follows: we introduce useful preliminaries in
Section 3, before detailing our contributions, namely the pattern language, the network flow
generation method, and our evaluation method, in Sections 4, 5 and 6, respectively. The evaluation
against other generators and their results are discussed in Section 7, before concluding in Section 8.
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2 Related Works

Although many statistical models can be used for synthetic data generation, in recent years
deep-learning-based methods have been increasingly favored due to their ability to generate high-
dimensional data such as images. Especially GAN [20], VAE [32], and Transformers [58, 71] have
been shown to produce highly realistic synthetic data. These methods have also been applied to
generate multiple types of network traffic data, including raw packet contents [8, 12, 25, 44],
sequences of headers [64, 77], flow features [3, 40, 43, 59, 63, 77] or even temporal series of
features [26, 39]. In the following, we will focus on methods for synthetic network flow generation.

The first use of these generative methods for creating synthetic legitimate network flow genera-
tion has been proposed by Ring et al. [59]. It was quickly followed by Manocchio et al. [43] who
have shown that, when applied to network traffic, WGAN-GP [23] is prone to a phenomenon called
mode collapse, which is when the generated data only cover a part of the training data distribution.
Anande et al. [3] and Bourou et al. [6] have shown that synthetic data generation methods for
tabular data [74] also work well for network flow datasets.

The major limit of these solutions is that while the generation preserves the dependencies across
network features within a flow, it does not consider the dependencies among the flows. For example,
before establishing an HTTP connection, a client might have to reach a DNS server to resolve the
domain name of the requested website. That is, a single action of the client will, hence, lead to two
flows, one to the DNS server and the other to the website host. All the previous solutions, due to
sampling new network flows independently, do not model those inter-flow dependencies [4]. To
solve that issue, Xu et al. [75] implement a solution that not only model dependencies within one
network flow but also dependencies across network flows by using an autoregressive model. Lin et
al. [39] propose a different approach where they model the problem of network traffic generation
as a temporal series generation, where a multidimensional time series represents the activity. This
method was then adapted by Yin et al. [77] to generate complete network flows. Recently, Schoen
et al. [63] have shown that this solution does not generate realistic network flows and tend to
produce flows that do not comply with basic network-specific checks. Therefore, generating realistic
network flows that also include temporal dependencies remains an open challenge.

We propose a different approach based on pattern mining. Traditional pattern miners discover
all patterns that occur more frequently than a user-set threshold [2, 36]. Such approaches often
result in an exaggerated number of patterns, the so-called pattern explosion. Closed episode mining
alleviates this [73, 76], but is very sensitive to noise. More recent approaches focus on reporting all
patterns that are significant under a null hypothesis, e.g. that all events occur independently of
each other [28, 41, 57, 70]. We use a pattern set mining approach where the goal is to find a set of
patterns that describe the data as a whole [72]. This approach should return a relatively small set
of patterns that capture the data distribution well. Pattern set miners have been proposed for many
different data modalities, like sequences [68] and graphs [33]. Recent approaches go beyond ‘and’
combinations and capture rules [13], ‘xor’ relations [14], and generalized patterns that capture
similar structures within one pattern [10]. Closely related to our setting are recent approaches
that focus on the delays between events [9, 15]. As such, none of the above methods addresses our
needs, we hence introduce our own novel pattern language that can model transactional relations,
i.e., structure in a flow, as well as sequential relations, i.e., structure between flows.

Researchers have successfully used pattern mining for various tasks related to network data, such
as near-live network monitoring [38], efficient computation of heavy hitters [52], and to provide
succinct visualization of network flow traces [18]. Most works use pattern mining in the context of
anomaly detection: Jakhale and Patil [27] build on the work of Li and Deng [38] to detect anomalous
flows. In contrast, Brauckhoff et al. [7] use frequent pattern mining to summarize flows that cause
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anomalies. Paredes-Oliva et al. [53] propose to classify extracted patterns as either anomalous
or not, in contrast to individual flows or time intervals. Unlike us, none consider patterns over
multiple flows, and all use frequent pattern mining. To the best of our knowledge, we are the first
to use pattern mining to generate synthetic network flows.

3 Background

In this section, we present some background knowledge we rely upon for FlowChronicle, in particular,
related to pattern mining and machine learning.

3.1 Network flows

Network traffic encompasses all the packets that are exchanged among hosts within a specific
network over a designated time frame. A network flow is an abstraction that describes a sequence
of packets that share five common key attributes: source IP address, destination IP address, source
port, destination port, and transport protocol. Two scopes of network flows exist: unidirectional and
bidirectional. Unidirectional flows only contain packets sent from the designated source to the
designated destination, while bidirectional flows group packets in both directions. A network flow
record embeds the statistical data related to the communication identified by the 5-tuple, such as
the Duration of the communication or the Number of Bytes transmitted. Such extra features depend
on the network flow format, and several competing formats exist. In the following, for brevity sake,
"network flow record" will be abbreviated to "flow".

3.2 Minimum Description Length

The Minimum Description Length (MDL) principle [21] is a model selection criterion based on
the idea of Occam’s razor, i.e., that out of all possible descriptions, the shortest one is the best one.
Formally, it is based on the Kolmogorov complexity [37]. For a given model class M, MDL identifies
the best model M € M as the one that minimizes the number of bits needed to describe both model
and data given the model, L(D, M) = L(M) + L(D|M) where L(M) is the length of model M in bits
and L(D|M) the length of data D given M. We use this score to identify the most relevant patterns.
Remark that, in practice, we do not need to actually describe the encoding of the data: only the
length of the encoded data is relevant. For example, one can describe any value among a set of
k different values with (asymptotically) log, (k) bits, and can describe a value v associated to a
probability distribution P with —log,(P(v)) bits [21]. In the following, all logarithms are base 2
and we define 0log(0) = 0.

3.3 Bayesian networks

Bayesian networks are a class of generative statistical models that represent probability distri-
butions [56]. They are widely used in statistics due to their ability to be able to represent any
probability distribution. Syntactically, they are described as a directed acyclic graph, where each
node is a random variable, and a set of conditional probability tables. These conditional probability
tables, one per node, describe the probability of their associated node depending on the values of
its parents. Due to their structure, Bayesian networks are considered to be explainable models: the
edges between nodes are indicative of their statistical correlations.

3.4 Notations

In the following, we denote F each feature of the network flow (such as source IP, protocol, etc.)
and F its domain, i.e., the set of possible values for F. Let us denote n the number of features. A
flow is simply a tuple of the n features: the domain of flows is therefore F; x F, x --- x F, . We will
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typically use the letter ¢ to denote timestamps. Finally, a dataset D is a sequence of timestamped
network flows (¢, ).

4 Pattern Language of FlowChronicle

In this section, we formalize the language of patterns that are identified by FlowChronicle.

4.1 Intuition

Given a dataset D of network flows, we aim to identify patterns that can describe which combina-
tions of flows occur frequently in D. Some patterns can concern values inside a flow. For example,
destination port 53 is frequently associated with protocol UDP so, intuitively, we could use a pattern
to automatically complete the protocol given the destination port. Some patterns can also concern
several flows. For example, HTTP(S) requests are typically preceded by a DNS request. Similarly, an
IMAP request (to read emails) can be followed by HTTP(S) requests if URLs of images are present
in an email. For this reason, our patterns can span over multiple flows.

Classical pattern mining searches for deterministic relations, e.g., destination port 53 implies
the UDP protocol. We consider they are not sufficient to properly encompass network flows
dependencies. For this reason, we propose to also include in our pattern statistical relations. For
example, if a machine has both an SSH and an HTTPS server, then when this machine is contacted,
the destination port will probably be 22 or 443 but not any other port, e.g., 21.

4.2 Pattern language

A pattern is composed of two parts: the partial flows, to mine discrete temporal dependencies,
and the dependency structure, to mine statistical temporal dependencies. Since a pattern can span
across several flows and can specify the values of features for these flows, we need to store this
information. For that purpose, patterns contain a table, called the partial flows, which columns are
the network features and each row corresponds to a flow. We name cell each cell of such table.

Each cell of the partial flow can be one of three types. Firstly, there are fixed cells: these are cells
which values are directly defined in the partial flows. For example, the first partial flow could have
destination port 53 and the second, destination port 443. Secondly, there are free cells: these are the
cells not defined by the partial flows, and their values are determined by the dependency structure
(described below). Lastly, there are reuse cells: the values of these cells are equal to the values of
other cells in preceding partial flows of the pattern. A common illustration of this type of cell could
be the Source IP address of a first flow that is reused as the Destination IP of a subsequent flow.

Because some cells can be free, each pattern also contains a dependency structure. The dependency
structure is a Bayesian network that represents the joint probability distribution of the free cells.

More precisely, a pattern p is a tuple (X, BN), where X is a sequence of partial flows, and BN is
the Bayesian network representing the dependency structure between free cells. We write X[j] to
denote the j* partial flow. Each cell of a partial flow can be either fixed (i.e., associated with a f of
F), free (denoted f, for "Bayesian") or reuse (denoted with an uppercase identifier). Besides, free
cells can be marked for reuse. This is denoted by adding an uppercase identifier in subscript to .
For example, the value of 4 will be used for the reuse cell denoted A. If an identifier is defined in
X[j], then it can only be used in later partial flows, i.e., in X[k] such that k > j. BN is a Bayesian
network defined over all the free cells in partial flows, i.e. all § € p.

Examples of patterns are shown in Figure 1. Three patterns are defined: € has one partial flow
with only free cells. Pattern p has two partial flows. The identifier A in the reuse cell is used to
ensure that the source IP is the same in both flows. The ports are fixed while the IP addresses are
free. Finally, pattern g has three partial flows. The identifiers A and B and the reuse cell ensure that
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Model — Pattern and Bayesian Network: Data and Pattern Windows:
€): J— Time Src IP Dst IP Port
[ B B p ] 1SeclP LD B QGRS 12 134.96.235.78  142.251.36.5 993
56 134.96.235.129 8.8.8.8 52
p : —
[ Ba B 993 ] 1:Src IP 1:Dst IP 89 134.96.235.78 212.21.165.114 80
[ A B 80 ] 2:Dst IP 113 134.96.235.129 198.95.26.96 443
145 198.95.26.96 198.95.28.30 3306
q [ Ba 8888 52 | B 156 134.96.235.78  134.96.234.5 21
[ A B5 443 ] A 178 134.96.235.36  185.15.59.224 993
[ B B 3306 | A 2 206 134.96.235.36  128.93.162.83 80

Fig. 1. Toy example: On the left side we show a model with 3 patterns, on the right side we show the dataset
and how the patterns of the model cover the dataset.

the source IP of the second flow is equal to the source IP of the first flow and that the source IP of
the third flow is equal to the destination IP of the second flow.

4.3 Dataset cover

To select the best model able to capture the patterns in a dataset, we need to compute the term
L(D|M), as seen in Subsection 3.2. For this, we have to use the patterns to compress the data, i.e.,
cover the datasets with patterns and encode the locations of the patterns and the values of their
non-fixed values. To properly define this cover, we first define a window of a pattern p, which
indicates for each partial flow of p an index in the data, such that the partial flow matches the flow
at that index in the data.

For example, in Figure 1, pattern p is associated to two windows, (12,89) and (178,206), and
pattern q is associated to the window (56,113,145). Remark that the fixed values of the pattern
always match the data. Besides, the reuse cells also match: for example, in the window (12,89) of
pattern p, both source IP are indeed identical.

A dataset cover is a set of windows such that all flows of the dataset are associated to exactly one
window. To ensure that this is always possible, we define a “catch-all pattern”, denoted € (see Fig. 1),
that has only one partial flow and whose cells are all free. € is called the empty pattern. Remark
that multiple covers can explain the data for a given set of patterns, and that finding the optimal
cover is a NP-hard problem [30]. For this reason, we use a greedy algorithm to estimate a cover.

4.4 Model encoding

Now that we have given the intuition, we formally describe our MDL encoding, which has two
parts: model encoding and data encoding given a model. We start with the model encoding.

As a model M is a set of patterns, we need to encode the number of patterns and each pattern.
Hence, we require L(M) bits to encode M, with

L(M) = Lu(IM)) + > L(p) .
PEM

Proc. ACM Netw., Vol. 2, No. CONEXT4, Article 26. Publication date: December 2024.



FlowChronicle: Synthetic Network Flow Generation through Pattern Set Mining 26:7

Code Sequence — encoding of data with model:

2p ;| 12] 77| 134.96.235.78 | | 142.251.36.5| | 212.21.165.114 | 178 |28 |134.96.235.36 |185.15.59.224
128.93.162.83 | 1q|: 56| 57 |33 134.96.235.129 |198.95.26.96 | 198.95.28.30 1€ . 156

134.96.235.78 | | 134.96.235.5 | | 21

Fig. 2. Encoding of the data shown in Fig. 1, i.e. how the data is described using the model.

where |M| refers to the number of patterns in M. We encode |M| using the MDL-optimal encoding
for integers z > 1 [61]. It is defined as Ly(z) = log* z + logcy where log™* z is the expansion
log z 4 loglog z 4 - - - where we only include the positive terms. To ensure this is valid encoding,
i.e. one that satisfies the Kraft inequality, we set ¢y = 2.865064 [61].

To encode a pattern p, we first encode the number of partial flows a pattern contains, then all
the partial flows, and finally the Bayesian network,

id
L(p) = In(pl) + | D L(X[jllp) | + L(BN,)

j=1

We encode the Bayesian network by encoding for each node its number of parents c, in log K bits,
where K is the maximum number of parents passed as a parameter to the learning algorithm, and
then select the parents out of all |B| — 1 possible parents, where B is the set of free cells described
by the Bayesian network (formally B = {(j,i) | X[j]; = B v X[j]; = Ba})- So:

B —1
L(BN,) = . logK +log (' |” >
J.i

C
(J.i)eB ’

We do not encode the conditional probability tables, as explained in the next subsection.

We split the partial flow encoding into three parts: we encode 1) the fixed cells, 2) which free
cells that are marked for reuse, and 3) if there are values marked for reuse in earlier flows, where
and if we want to use them. We will explain the encoding in turn.

We start by encoding for how many of the n flow features we want to encode a fixed value, with
log n bits. To select which k cells, we require log (Z) bits. Finally, we encode the respective values
by choosing one value from the respective domain. To encode which cells we mark for reuse, we
first encode how many, out of the n — k remaining, and then, choose the [ cells we want to mark.
Finally, we encode for which cells we want to reuse values: we again encode how many of the
remaining n — k — [ and choose which m cells. For each of the m selected cells, we select which of
the previously marked cells we reuse. Formally this is,

L(X[j]|p) =log(n) + log (Z) + | 2 log|E,| | +log(n — k) + log (n ; k) +

i€S;
147019} > 0)(tog(n —k — 1) +10g ("2 7"} + (1)),

where S; is the set of all features with a fixed cell, and 7 (j|p) is a set of all cells marked for reuse
before the j flow.
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4.5 Data encoding given a model

Now that we know how to encode a model M, we describe how to encode D using a model M. We
define the encoding of D by M as the Cover of D. Its length in bytes is L(D|M). Because M is a set
of patterns, the cover is a set of pattern windows. In Figure 1, we show a toy example of a dataset,
a model and its cover. Before we define how we encode a dataset D, using a set of patterns, let us
give the intuition by describing how we decode a dataset from a given cover. More precisely, a
cover is a sequence of codes, encoding how often each pattern occurs, where these occurrences are,
and the values of the free cells.

In Figure 2, we show the sequence of codes corresponding to the toy example in Figure 1.
To decode the cover, we start by reading the first code from the cover, in our toy example ,
indicating that we use pattern ‘p’ twice in the cover. Next, we read for each partial flow in the pattern

the codes corresponding to the timestamps and , the first one being the start time, and the
second one the delay to the first partial flow. Next, we read for each free cell one code—decoding the
values. We repeat these steps for the second occurrence of pattern ‘p’. We do the same for pattern

‘q’. Finally, code , tells us there is one flow is covered by the empty pattern. We read again the
timestamp code as well as the encoded values. With that, we have fully decoded the cover.

Now that we have seen how data encoding works, we will formally describe how many bits we
need to encode it. For each p, we encode how often we want to use it, i.e., the number of windows
in the cover. We then encode each window. Formally this is:

L(D| M) = Y} (Lu([Wpl) +L(Wp))
PEM

where W, denotes the set of windows of pattern p used to describe D. The length of W, is the
timestamps plus the free cells, encoded based on the probabilities given by the Bayesian network,

[Wp| P
L(Wp) = > | Lt of wi) + D" L(txof w; | ti_1) | — log(Pr(wi|BNp, {wj|j < i}))
i=1 k=2

where L(t) = log(fmax — tmin) and fmax (teSp., tmin) refers to the maximum (resp., lowest) timestamp
in the data D, L(#; | t;) = Ln(t; — t;). As we expect lower delays between flows, we chose Ly to
encode the difference between time points. It closely follows a geometric distribution, hence giving
higher probability mass to lower delays, and thereby requiring fewer bits for those.

To avoid having to encode the contingency table of the BN and make arbitrary encoding choices
in the process, we use prequential codes [21]. The basic idea is to start with a uniform distribution
and update the probabilities after each encoding, thereby always maintaining a valid probability
distribution. More precisely, after each encoding, the probability distribution is recomputed given
the sets of all encoded vectors using a Laplace smoothing with A = % [29].

5 Algorithm

In this section, we present the whole generation pipeline: data preprocessing, pattern identification—
the previous section describes the MDL loss used to choose a model but does not explain how to
find the candidate model—and data sampling from the selected model.

5.1 Preprocessing a network flow dataset

Network flow data are tabular data, where each network flow is a line in the table, and each feature
is a column. The features are either categorical (e.g. Transport Protocol), or continuous (e.g. Duration
of the flow). To mine patterns in that tabular dataset, we first need to discretize the numerical
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features in our network flow description. Similar to Schoen et al. [63], we discretize the numerical
features into 40 categories, such that each category contains the same number of samples.

5.2 Pattern Miner

In this section, we explain how to discover a good model and a description of the data under a
given model M. We begin with the latter.

5.2.1 Finding a cover. Given a model M, we want the cover C that minimizes the encoding cost
L(D | M). Finding the optimal cover is a NP-hard problem, so we propose a greedy method. For
this, we have to find out where we can use a pattern p, i.e., we have to find the windows of p.
We only consider minimal windows, i.e., windows for which there does not exist a window w(p)
whose interval I(w(p)) is a proper sub-interval of I(w(p)). We sort all windows by 1) the number
of covered flows (decreasing), and 2) inter-flow delays (increasing). Note the empty pattern € is
defined to cover 0 flows, i.e., it should only be used to cover flows that are not covered by any other
pattern. Finally, we greedily add windows to the cover until all flows are covered. If one window
overlaps with precedent windows, we skip it. With that, we have a description of D in terms of
pattern.

5.2.2 lterative Pattern Search. The general approach is an iterative search procedure: at each
iteration, we generate pattern candidates and test if these candidates help in reducing the description
length. If so, we add them to our model. At each step of the search, we ensure no source or destination
IP has a fixed value. Indeed, we do not want to learn the behavior of specific IP addresses. Besides,
we restrict reuse cells and cells marked for reuse to only be source IP or destination IP.

Candidate Generation. The initial set of candidates is created as follows: for each couple of features,
and for each combination of values of these two features (except the source IP and destination IP), we
create a pattern with a single flow with two
fixed cells. The rest of the cells are free and
described by a Bayesian network.

During the search, we build new candidates
by extending existing patterns. Given a pattern,
we have three different ways to generate new
candidates: 1) by directly creating a fixed cell,
either from a previously free cell or by adding a

Algorithm 1: FlowChronicle
Input :set of flow D,
continous misses threshold ¢
Output: model M and Cover of D
1 M «— {e}

2 C <« all pairwise combinations

w

mode « single-flow, misses<— 0

new row of free cells and transforming one into ¢ while misses< ¢ or mode = single-flow do
a fixed cell—once again, this fixed cell cannot 5 C < CUBUILDCANDIDATES (M, mode)
be a source IP or destination IP; 2) by merging 6 ¢ « arg max.ec cs(c)
existing patterns. If both patterns have only one 7 if L(D,M) > L(D,Muc):
partial flow and have no conflicting fixed cells, s M <« PRUNE(M U ¢)
we merge them into a new single-flow pattern. o misses<— 0
For patterns over multiple flows, we create can- 44 else
didates by appending them; 3) by transforming L misses<— misses+1
a free cell into a reuse cell. Such cells can only e ;
. ) 12 if misses > t and mode = single-flow:
appear in multi-flow patterns because a reuse .
13 mode «— multi-flow
cell can only reference a marked cell from pre- .
. . . 14 misses < 0
vious partial flows. This reuse cell can reference |

previously marked cells or mark new previous 5 yeturn M, C
cells to reference them.
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Candidate score. As testing all candidates is not feasible in a reasonable time, we want to test the
most promising candidates first. To this end, we derive a candidate score. The candidate scores
capture how many values a pattern can cover: the number of non-overlapping windows multiplied
by the number of fixed or reuse cells in the pattern.

Mining a Model. We show the pseudocode of FlowChronicle in Algorithm 1. We initialize our
model with the empty pattern. We start our search with the initial set of patterns. The basic idea is
to take the best candidate ¢ according to the candidate score cs(c), and if it reduces L(D, M), we add
it to the model. If a pattern fails to reduce L(D, M), we will not test it again in future iterations’.

As testing all candidates is not feasible, we propose an early stopping criteria. We propose to
stop when we exceed a consecutive misses threshold ¢. This threshold is defined by the user.

To avoid building uninformative patterns spanning many rows, we begin by searching for
patterns within single flows. In practice, we do that by only generating single-flow candidates. We
continue this until we surpass the consecutive misses threshold; at this point, we reset the consecutive
misses threshold and also allow the construction of candidates that cover multiple flows.

Adding a new pattern to M can make existing patterns redundant. We hence prune redundant
patterns by testing for all patterns p where the usage in the cover has been reduced: if L(D, M\{p}) <
L(D, M), we remove it from the model M.

5.3 Parallelization

To improve run-time on larger data sets, we propose to split the preprocessed data into n chunks.
We learn independently a model for each chunk, so each chunk can be processed in parallel. The
learned models then capture local characteristics and provide a cover of the respective chunk.
Since each model is a set of patterns and the corresponding BN, we can simply take the union of
all models resulting in a new model for the entire dataset. The cover of the entire dataset can be
constructed by appending all individual covers. Finally, we relearn the BN of the empty pattern
(the pattern used to cover all flows not covered by any other pattern).

5.4 Synthetic data generation

Once we have a set of patterns and the cover, we can use them to generate a synthetic dataset. From
the cover, we can learn the probability distribution over the usage of each pattern (including the
empty pattern) and sample from this distribution. Next, we sample the initial timestamps for each
pattern. As some patterns might occur more frequently during some periods (e.g., fewer emails
during lunch, more OS updates in the morning, etc.), and to not make any assumption about the
shape of the distribution, we estimate the frequency over time via a Kernel Density Estimation (KDE).
We then sample the timestamps from this distribution. For patterns with multiple partial flows,
we estimate a distribution of the delay between consecutive partial flows, again with KDE, and
sample from this distribution. Finally, we have to fill the cells of all sampled pattern occurrences.
Cells with a fixed value are already set. For the free cells, we sample from the Bayesian network
BN associated with the pattern. Finally, we set the values of reuse cells, and this completes the
generated flow dataset.

6 Evaluation method

Our goal in this part is to provide an evaluation framework to compare the generation of the
different models. This evaluation will be twofold: we will first evaluate the different generated
flows independently, without any consideration for any temporal dependencies, and second, we
will study how well the generation preserves temporal dependencies present in real data.

IFor better readability, we omitted this part from the pseudocode.
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6.1 Independent evaluation

Independent evaluation involves analyzing the network flow distribution generated by a model
and comparing it with the training data to determine if the model has captured the essential
characteristics needed to create new data. For each evaluated model, we compare its synthetic
network flow distribution with the real network flows from the week-3 dataset (the training dataset).
As described by Schoen et al. [62, 63], this comparison should elucidate four key attributes of the
generated data: Realism, Diversity, Compliance, and Novelty. Realism ensures that a generated
network flow should be sampled from the same distribution as the real network flows. Diversity
ensures that the generated network flows should cover the entire real network flow distributions.
Compliance refers to the criterion that checks if the generated network flow adheres to specific
network rules. Lastly, Novelty ensures that the generated network flows are not mere replicas of
the real network flows.

6.1.1 Realism. Similarly to [63], we evaluate the realism of the joint distribution with the Density
metric [46], the realism of the conditional probability distributions with CMD (Contingency Matrix
Difference) and PCD (Pairwise Correlation Difference). CMD is the difference between the generated
data’s correlation matrix and the training data’s correlation matrix (for numerical features). PCD is
the difference between the generated data’s contingency matrix and the training data’s contingency
matrix (for categorical features).

6.1.2  Diversity. Similarly to [63], we evaluate the diversity of the joint distribution with the
Coverage metric [46]. A low score indicates that the generated distribution does not cover the
entire training distribution. We also evaluate the marginal distributions of each features. with the
JSD (Jensen Shannon Divergence) for categorical features and the EMD (Earth Mover’s Distance)
for numerical features.

6.1.3 Compliance. Compliance is the property that the generated network flow should respect
network protocol specifications. For example, a generated UDP flow should not contain any TCP
flags. We evaluate this property with the DKC (Domain Knowledge Check) [59], a succession of
boolean tests for the generated network flow, each test representing one property that we want to
enforce in the generation. We use the implementation proposed by [63]. A lower DKC means fewer
tests have failed and a more compliant generation.

6.1.4 Novelty. We evaluate the novelty similarly to [63] with he Membership Disclosure (MD)
metric. This metric evaluates the privacy risk of synthetic datasets generated by models trained
on real datasets. It involves comparing the synthetic samples to the training and testing sets from
the original data by computing the Hamming distances between each pair of generated and real
samples. When a synthetic sample is sufficiently similar to a real sample (i.e., the Hamming distance
is below a certain threshold), the real sample is considered a potential leak from the training set. By
varying the threshold, a detection method for training samples is established, and the effectiveness
of this detector is measured using the F1-score. The overall privacy risk is quantified by integrating
the F1-scores over all possible threshold values. In a network context, very similar flows like DNS
or NTP requests are not uncommon, so the level of novelty in synthetic data should mirror that of
a reference set of real data.

6.2 Preservation of temporal correlation

The above metrics only account for individual network flows, but we seek to generate data that
preserves temporal dependencies, so we also need to evaluate this aspect. We propose to use
feature-wise metrics to assert whether a generated dataset preserves the temporal dependencies
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present in the training set. We will consider the numerical features on one hand and the categorical
features on the other.

6.2.1  Numerical features. Inspired by several papers [42, 48, 51, 67], we evaluate the temporal
dependencies between a generated dataset and a training dataset by comparing the Autocorrela-
tion Functions (ACF) of every numerical features. The ACF of a numerical feature is the (linear)
autocorrelation between the value of the feature at a timestamp ¢ and its value at a later timestamp
t+l, where [ is the lag.

However, since not all lags exhibit strong autocorrelation, calculating the difference between
ACFs across all lags may smooth out the differences for those lags that do reveal significant temporal
dependencies. To address this, we discard any lags whose autocorrelation in the training data does
not exceed the Bartlett confidence interval [5]. This ensures that we compute the ACF difference
only for the lags that demonstrate strong temporal dependencies. This approach allows us to verify
whether a temporal dependency present at a certain lag in a training feature is accurately reproduced
at the same lag in the generated feature, and we apply this procedure across all numerical features
of the training dataset.

6.2.2 Categorical features. For categorical features, we decided to implement a TSTR (Train on Syn-
thetic, Test on Real) method [79]. It is commonly reused when it comes to evaluate the preservation
of temporal dependencies [11, 48, 67]. This method compares the performance of a model in a ma-
chine learning task when it is trained on the training dataset and when it is trained on the generated
dataset. To apply this methodology and highlight how a model preserves temporal dependencies,
we compare the performance of an LSTM (a temporal deep learning model) when it is trained on
training data versus when it is trained on generated data for a feature-wise autoregressive task.

For one categorical feature, we first encode its values
in a one-hot encoded vector. Then, we train an LSTM to
predict the next one-hot encoded value of that feature P
given the previous values in a context window. This L Coporil et
first training is done on the training dataset. Afterward, //’
we create another LSTM with the same hyperparame- /
ters (same number of hidden dimensions, same context
size, etc.) and we train it on the generated dataset. We Categorical feature
compute the accuracy of the two LSTMs on the eval-
uation set, and the final TSTR score is the difference
between the two values. We do this process (illustrated
in Figure 3) for every categorical feature. In practice,
because we do not want our score to rely too heavily on
one configuration of the LSTM, we repeat the operation  Fig. 3. TSTR methodology: two similar LSTMs
multiple times while varying its hyperparameters. The are trained, one on the training data, and the
score for each categorical feature will be the average other on the generated data. Their accuracy

of the differences in accuracy for every LSTM. are then compared on evaluation data. This is
repeated for each categorical feature.

Training Data
Data

Evaluation };

7 Experiments

In this section, we would like to verify whether FlowChronicle is able to generate network flows with

a higher quality than other model-based generation methods. The implementation of FlowChronicle,

as well as the experimental setup, are available online as open source software?.

Zhttps://github.com/joschac/FlowChronicleCONEXT
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7.1 Competing methods

We compare FlowChronicle with CTGAN [74], TVAE [74], E-WGAN-GP [59] and NetShare
[77]. NetShare does model temporal dependencies, so we can compare our model against another
method with temporal dependencies. We were also interested in adding STAN to our benchmark,
but despite our best efforts, we were unable to reproduce the work of Xu et al. [75] from the
author’s repository. We therefore omit it from comparison. We also compare our method to the
Bayesian Network proposed by Schoen et al. [63]: we call it IndependentBN. We also propose a
variation that generates a sequence of five network flows instead of generating every network flow
independently: we call it SequenceBN. Recently Tranformer-based methods have been shown to
be great synthetic data generators. As a representative, we compare against the GPT2 model [58].
We tokenize the data as we do for our method, and use a context window of 60 tokens.

7.2 Experimental protocol

We evaluate the methods on the CIDDS-001 dataset [60]. It is a simulated dataset of 4 weeks of
traffic from 30 terminals (5 servers, 3 printers, 4 Windows clients, and 15 Linux clients). Because we
focus on generating benign traffic, we only kept the data recorded in the OpenStack environment.

We use week-3 as a training set, and week-4 Feature Description of the feature
as a held-out Reference set. The creation of  Date first seen  Timestamp of the first packet of the flow
week-4 followed the same process as week-3, _Froto Transport protocol

: . Src IP Addr Source IP Address (Client)
and thus, we consider this Reference set as the DSt TP Adds Destination TP Address Served)

best possible synthetic generation. Because ¢

Destination Port

some parts of our evaluation methodology T Byte Number of Bytes coming to the client

also require another evaluation subset (see  In Packet Number of Packets coming to the client

paragraph 6.2.2), we consider the benign traf- Out Byte Number of Bytes sending from the clier.lt

fic of week-2 as an evaluation set. We process Out Packet Number of Packets.send'mg from the client
. . .1 . . .. Flags Type of flags contained in the flow

the original unidirectional flows into bidirec- 5 —=— Duration of the flow

tional flows. We consider the 11 flow features Table 1.
shown in Table 1. We did not include the

Source Port because it is generally randomly sampled in a particular range (cf. RFC6056 [35]).
In the original dataset, the external public IP addresses were anonymized [60]. The value generated
by our method will, therefore, be anonymized too.

Set of Features in our dataset

7.3 Time-independent Evaluation

We begin by evaluating the flows independently, without considering temporal dependencies
between flows. The different metrics were computed 20 times on 20 different subsamples of both the
generated and training data. Each subsample includes 10000 flows. The average value of each metric
as well as the ranking of all our models according to each of them are reported in Table 2. With
this global benchmark, we can see that FlowChronicle is on average above the other model-based
methods, with CTGAN being a close second.

7.3.1 Realism. We see that Transformer and CTGAN achieve a pretty high Density (0.62 and
0.56 respectively). However, Transformer seems unable to represent cross-feature correlation as
illustrated by its CMD and PCD (0.78 and 3.62, respectively). Moreover, E-WGAN-GP seems unable
to create realistic data (0.02 of Density, 0.34 of CMD and 3.63 of PCD). This might be because our
dataset is bidirectional, whereas the encoding IP2Vec was originally intended for unidirectional
datasets. FlowChronicle creates above-average data regarding the Realism of its synthetic network
flows.
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Density | CMD PCD EMD JSD Coverage | DKC MD Rank
Real. Real. Real. | Real/Div. | Real./Div. Div. Comp. Nov. Average
= Ranking
Reference 0.69)  (0.06)  (1.38) (0.00) (0.15) (0.59) 0.00)  (6.71) -
IndependentBN | 7 (0.24) 5(0.22) 6(274) 8(0.11) 4(027)  4(038) 4(0.05 4(5.47) 5.25
SequenceBN | 6(0.30) 2(0.13) 5(218) 7(0.08)  3(0.21)  3(0.44)  2(0.02) 3(5.51) 3.875
TVAE 3(0.49) 4(0.18) 3(1.84) 2(0.01)  5(0.30)  5(0.33)  6(0.07) 5(5.17) 4.125
CTGAN 2(056) 3(0.15) 2(1.60) 3(0.01)  2(0.15)  2(051)  8(0.11) 2(5.70) 3.0
E-WGAN-GP | 8(0.02) 7(034) 8(3.63) 5(0.02) 7(0.38)  8(0.02)  7(0.07) 6 (4.66) 7.0
NetShare 5(032) 6(0.28) 1(147) 6(0.03)  6(036)  6(0.22) 5(0.05 7(3.82) 5.25
Transformer | 1(0.62) 8(0.78) 7(3.62) 1(0.00) 8(0.55)  7(0.03)  3(0.05) 8(3.75) 5.375
FlowChronicle | 4(0.41) 1(0.03) 4(2.06) 4(0.02) 1(0.10) 1(0.59) 1(0.02) 1(5.87) 2.125

Table 2. Ranking of our different models without considering the preservation of temporal dependencies. For
each metric, the average of the score is given between parentheses. Real.: Realism, Div.: Diversity, Comp.:
Compliance, Nov.: Novelty, |: Lower is better, T: Higher is better. =: closer to Reference is better.

7.3.2  Diversity. While the Transformer produce a rather realistic result, it fails to produce diverse
results: it has a low Coverage (0.03) and a high JSD (0.55). This is because the Transformer model
fell into a well-known behavior of autoregressive generative models during training called degener-
ation [16, 78]. This phenomenon consists of the model learning to generate one specific sequence
of network flow and keep repeating it during the generation process. We also see the difficulty
for Bayesian Networks to work with numerical variables (EMD of 0.08 and 0.011 for SequenceBN
and IndependentBNs, respectively) — a phenomenon already highlighted by Schoen et al. [63].
FlowChronicle and CTGAN are among the best models for covering the entire training distribution.

7.3.3  Compliance. Apart from CTGAN (DKC of 0.11), the models are able to generate traffic that
is compliant with our set of rules. FlowChronicle produces data with the least compliance issues.

7.3.4  Novelty. With its MD of 5.87, FlowChronicle is closest to the reference data set (6.71), denoting
its ability to generate fresh data. On the other hand, Transformer and NetShare introduce too little
novelty in the synthetic data.

7.4 Preservation of temporal correlation

The previous evaluation did not consider preserving temporal dependencies between the flows
during the generation. This is the goal of this subsection. Overall, FlowChronicle preserves temporal
dependencies in both categorical and numerical features, making it closest to the reference.

7.4.1  Numerical features: Difference of autocorrelation functions (ACF). In Figure 4, we have repre-
sented the differences of ACF across all numerical features between the real training dataset and the
generated dataset. CTGAN and TVAE are the worst models for preserving temporal dependencies
in numerical features. Both models come from the same library [55] and do not take into account
temporal dependencies. Both Transformer and NetShare preserve the temporal dependencies well
since these models are designed to preserve such dependencies. More surprisingly, E-WGAN-GP,
which samples network flow independently has also a low score. FlowChronicle is better than those
methods and reproduces well the different autocorrelation across the different numerical features.
The differences in ACFs between the set generated by FlowChronicle and the Reference set are
almost equivalent.

7.4.2  Categorical features: Impact of generated sequences on the accuracy of an LSTM. In Figure 5,
we see the difference in accuracy between two similar LSTMs trained on the training data and
on synthetic data generated by every model, and this, for every categorical feature in the dataset.
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g I I I = Reference
i 0.0004 'I = = IndependentBN
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$ 0.0003 | = TVAE
EE = CTGAN
& 0.0002 -] l - I = E-WGAN-GP
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= FlowChronicle
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Fig. 4. Difference of ACF between the generated data and the train data across all the numerical features for
our different generative methods. Lower is better.

FlowChronicle is the best among the other generative models for preserving temporal dependencies
across categorical features, with a score once again close to the Reference set.

0.25 I

0.20

= Reference

I = IndependentBN

0.15 = SequenceBN

I = TVAE
l [=cTGaN

0-10 = E-WGAN-GP

005 mm == NetShare

= Transformer
== FlowChronicle

Proto Src IP Addr Dst IP Addr Dst Pt Flags

Difference in Accuracy
L]
| I
L1 ||

Fig. 5. Average difference of accuracy of various LSTMs trained on the train data and our generated data
from our different generative models. Each subgroup is one feature, and each bar is one generation method.
Lower is better.

7.5 Computational Cost Duration (hh:mm)

Comparing computing costs can be useful for choosing  Model Training  Generating
the right generation method. In Table 3, we report the " IndependentBN | 00:12 <0:01
time taken for training each method and generating  SequenceBN 00:31 <0:01
synthetic data from it. All our experiments have been =~ CTGAN* 29:12 00:02
carried out on a server with 500 GB of RAM, 2 AMD  TVAE* 02:01 00:03
EPYC 7413 CPUs, and 3 A40 Nvidia GPUs. E-WGAN-GP* 00:36 01:59
One drawback of FlowChronicle is the time required  NetShare* 59:39 05:00
to train and generate new data. Even if FlowChronicle = Transformer* 84:02 34:41
obtained on average the best performances on indepen-  FlowChronicle 106:54 85:16

dent and temporal metrics, it is also the longest to train  Table 3. Training and generating runtimes.
and produce new data. While a long training time is a Methods annotated with * rely on GPU.
known issue of MDL-based methods, we are confident

the generation time could be largely lowered due to the simplicity of the process.
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7.6 Explainable patterns

Besides a good-quality generation, FlowChronicle has the advantage of learning explainable patterns.
In this section, we present a few interesting multi-flow patterns.

The first one contains three partial flows, from the same source IP and the same destination IP.
All three partial flows are HTTPS requests (TCP protocol, destination port 443). When a browser
requests a webpage, there can be many resources that it needs to download from the same server
(images, scripts, styles, etc.) that can be fetched with a different HTTPS connection.

A second pattern is a DNS request (UDP protocol, destination port 53) followed by an HTTP flow
(TCP protocol, destination port 80). The source IP is the same. This is a classical network pattern:
before a device can access a domain for an HTTP request, it must know its IP. It could be cached
locally but sometimes requires a DNS request to obtain it.

A third pattern contains two partial flows, from the same source IP but to different destination IPs.
The first partial flow is an HTTPS request (TCP protocol, destination port 443) and the following
one is a DNS request (UDP protocol, destination port 53). It can be explained by the fact that there
can be some resources on a web page that are stored on other web servers (scripts or images). In
that case, the browser needs to ask for the IP address of the server that stores those resources. This
pattern is probably missing some later HTTPS connections. We did not find multi-flow patterns
related to non-Web protocols though. We consider that such patterns explanation strongly indicates
that FlowChronicle is indeed capable of learning relevant patterns that can be verified and explained
by experts.

8 Conclusion

In this article, we consider the issue of generating synthetic network traffic, with a focus on
preserving the temporal dependencies within the generated data. To achieve this goal, we introduced
an innovative data-generating approach, dubbed FlowChronicle, which is based on pattern set mining.
Initially, FlowChronicle learns a set of patterns that effectively encapsulate the data distribution
and describe the data within the model. We formalize the problem with the Minimum Description
Length (MDL) principle, by which our method is naturally robust against overfitting.

During the evaluation phase, we observed that FlowChronicle not only upholds the diversity
and realism of the data but also maintains the temporal dependencies among flows. Even without
taking into account any temporal dependencies, the generation through pattern mining allows us to
reproduce network flows that are really close to the training data. In the non-temporal evaluation,
the second-best method was CTGAN, but it struggled to capture temporal dependencies. Conversely,
the Transformer model preserved temporal dependencies well but failed to generate high-quality
individual flows. FlowChronicle, however, consistently ranked highest in both evaluations, excelling
in both flow quality and temporal dependency preservation.

Finally, contrary to other methods, FlowChronicle outputs patterns that can be manually analyzed.
This way, the generation method can be audited, and possibly manually verified and corrected. It is
also easy to manually include new pattern to modify the generation without a relearning procedure.

Looking ahead, we identify two primary avenues for improvement. Firstly, a more powerful
pattern language, Although our language is already robust, there are certain concepts, such as
repeating flows as observed in video streaming, that we cannot represent effectively yet. A more
expressive language will come with additional challenges, such as the increased search space.
Secondly, our current approach employs a greedy search due to the necessity of testing numerous
combinations. A differential approach could potentially expedite the learning process significantly,
but how to do so is still an open research question.
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