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Abstract. Although event logs are a powerful source to gain insight
into the behavior of the underlying business process, existing work pri-
marily focuses on �nding patterns in the activity sequences of an event
log, while ignoring event attribute data. Event attribute data has mostly
been used to predict event occurrences and process outcome, but the
state of the art neglects to mine succinct and interpretable rules describ-
ing how event attribute data changes during process execution. Subgroup
discovery and rule-based classi�cation approaches lack the ability to cap-
ture the sequential dependencies present in event logs, and thus lead to
unsatisfactory results with limited insight into the process behavior.
Given an event log, we aim to �nd accurate yet succinct and interpretable
if-then rules how the process modi�es data. We formalize the problem
in terms of the Minimum Description Length (MDL) principle, by which
we choose the model with the best lossless description of the data. Addi-
tionally, we propose the greedyMoody algorithm to e�ciently search for
rules. By extensive experiments on both synthetic and real-world data,
we show Moody indeed �nds compact and interpretable rules, needs
little data for accurate discovery, and is robust to noise.

Keywords: Process mining · Rule mining · MDL.

1 Introduction

Given a process event log, process mining [39] improves our understanding of the
underlying process and enables downstream tasks such as monitoring, anomaly
detection, simulation, and optimization. Existing work focuses on discovering
patterns of event activities, but neglects how event attribute data changes during
the process. Process discovery algorithms [2, 33] only infer a graph of event
activities, where nodes refer to activities and edges visualize the �ow of execution.
However, since event data changes, or in other words, data is moody, how these
changes occur is crucial to understand the process. As a toy example, we show
the ordering process of a textile company with the activities Request, Place,
Delay and Receive in Figure 1. We only know the values of the attributes price
and delivery of an order after the Place event. The Delay event postpones the
delivery, e.g., due to a shortness of supplies.

Surprisingly, event data has only been used to predict the occurrences of ac-
tivities or the outcome of processes [38,41]. To the best of our knowledge, none of
the existing work mines interpretable rules for data modi�cations, and related
work does not satisfactorily transfer to our problem. Subgroup discovery [25]
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Request Place Delay Receive

product: shirt

amount: 100

product: shirt

amount: 100

price: $1000

delivery: 06-21

product: shirt

amount: 100

price: $1000

delivery: 06-28

product: shirt

amount: 100

price: $1000

delivery: 06-28

Fig. 1. [Processes change data] Exemplary process for ordering textiles with ac-
tivities Request, Place, Delay and Receive. Arrows indicate the �ow of events. Further,
we show how the data of an exemplary order changes throughout the process.

and rule-based prediction methods [42] lack the ability to model the sequential
dependencies present in event logs, and thus lead to unsatisfactory results with
limited insight into the process behavior. In addition, to apply subgroup discov-
ery or any prediction method, we need to de�ne which variables are features and
which are target, for which we need domain knowledge.

Given an event log, we aim to �nd accurate, yet succinct and interpretable
if-then rules on how the process modi�es data. To this end, we formalize the
problem in terms of the Minimum Description Length (MDL) principle, by which
we choose the model with the best lossless description of the data. Additionally,
we propose our methodMoody, which is short forModi�cation rule Discovery,
to e�ciently search for rule models. Starting with an empty set, we greedily
add the best compressing rule to the model, until we no longer �nd a rule that
improves our MDL score. Through extensive experiments on both synthetic and
real-world data, we show Moody indeed �nds succinct and interpretable rules,
needs little data for accurate discovery, and is robust to noise.

The contributions of our paper are as follows. We

(a) formulate the problem of �nding data modi�cation rules from event logs,
(b) formalize the problem using the Minimum Description Length principle,
(c) propose the Moody algorithm to e�ciently �nd accurate rule models,
(d) run extensive experiments on both synthetic and real-world data,
(e) make code, data and appendix publicly available.4

2 Related Work

While the problem of �nding interpretable data modi�cation rules from process
event logs has been neglected so far, related work on similar problems exists.
Krismayer [15] discovers if-then rules for data modi�cation from software exe-
cution logs. However, he only creates a large set of potentially redundant candi-
dates, which must be manually �ltered by domain experts. Other work [10, 40]
infers extended �nite state machines from software execution logs. Since business

4 https://eda.rg.cispa.io/prj/moody/
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process event logs in contrast to software event logs are usually noisy and contain
nondeterministic behavior, these methods are not applicable to our problem.

While process mining [39] focuses on business process event logs, most of
the work only models the �ow of process activities, and little work deals with
additional data. Mannhardt et al. [17] and Mozafari et al. [21] both de�ne how
to detect deviations between modeled and actual process behavior, where they
model activities using conditions on event attributes. They, however, do not
provide a method to learn these models from data. Schönig et al. [32] �nd corre-
lations between activities, resources and event duration. However, since they rely
on support and con�dence to �lter a large set of candidate rules, their method
su�ers from pattern explosion, i.e., it �nds many redundant rules.

Rule-based prediction is closely related to our problem. Classy [26] and its
successor Turs [42] �nd classi�cation rules by minimizing an MDL score. Both
methods, however, require de�ning features and predicted variable beforehand,
whereas we are interested in �nding relationships without any initial knowledge
of the data. Similarly, subgroup discovery algorithms such as SSD++ [25] �nd
rules for di�erently behaving subgroups of a given dataset. None of these methods
is able to model sequential relationships present in event logs.

Finding patterns in event sequences is a classic research topic [1, 18]. Ear-
lier proposals focused on e�cient discovery of all frequent subsequences with
or without gaps [23, 43], resulting in overly many and highly redundant pat-
terns: the pattern explosion. Attention hence shifted to reducing redundancy via
closures [35, 36], statistical testing [24, 34], or pattern set mining based on the
MDL principle [6, 11, 37]. While all these approaches give valuable insight into
event sequence data, none of them tackles the problem of explaining event data
modi�cations in business processes.

In contrast to the above, Moody �nds compact and interpretable rules for
data modi�cations from process event logs, needs little data for accurate discov-
ery, and is robust to noise.

3 Preliminaries

Before formalizing the problem, we introduce preliminary concepts and notation.

3.1 Notation for Data Modi�cation Rules

As input for �nding data modi�cation rules, we consider an event log or dataset
D collecting traces of a single process. Each trace is an exemplary execution of
the process and consists of an event sequence. We describe an event by its values
for a set of numerical and categorical variables V .

To model how the events of a process modify these variables, we use di�erent
types of update rules. For a categorical variable v ∈ V , we write v ∈ {α, β, . . . },
i.e., v takes one of the values in the set. For a numerical variable v ∈ V , we can
set v to a speci�c value, v = α, or to a range of values, v ∈ [α, β]. We further
denote relative changes by v = v + α, v = v + [α, β], and v = α · v.
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Updates typically only occur in certain circumstances. For instance, the price
of an order may be dependent on the order volume, where a higher volume gives
discount. Therefore, we model conditions for update rules. In the simplest case,
we check for a speci�c value v = α or v ̸= α. We test lower and upper bounds
of numerical values by v ≤ α and v ≥ α. To model sequential dependencies, we
condition on value changes between the last and the current event with v : α → β,
and its negation v : α ̸→ β. Finally, we can join conditions using disjunctions,
e.g., (v1 = α) ∨ (v2 = β), as well as conjunctions, e.g., (v1 = α) ∧ (v2 = β).

We combine a condition c and an update rule u into a data modi�cation
rule IF c THEN u. To join multiple rules into a model M that covers the full
complexity of the process, we use an unordered set of rules. This allows for an
independent interpretation of each rule, which facilitates understanding [42]. To
avoid contradictory predictions, we ban cyclic models: If we condition on variable
v1 to update variable v2, we are not allowed to do the reverse in the same model.

3.2 Minimum Description Length

We select models by the Minimum Description Length (MDL) principle [12,27].
MDL de�nes the best model as the one with the shortest lossless description
of the given data. Formally, the best model minimizes L(M) + L(D | M), in
which L(M) is the length in bits of the description of M , and L(D | M) is the
length of the data encoded with the model. This form of MDL is known as two-
part or crude MDL. Although one-part or re�ned MDL has stronger theoretical
guarantees, it is only computable in speci�c cases [12]. Therefore, we use two-
part MDL. In MDL, we only compute code lengths, but are not concerned with
actual code words. Next, we formalize our problem in terms of MDL.

4 MDL for data modi�cations

From an event log D, we aim to �nd a modelM of data modi�cation rules, which
accurately describes the data, yet is as succinct as possible, such that domain
experts easily gain insight. As real-world data is usually noisy, we need a robust
model selection criterion. Therefore, we formalize the problem using the MDL
principle. To this end, we de�ne the length of the data encoding L(D | M), the
length of the model encoding L(M), and give a formal problem de�nition.

4.1 Data encoding

To encode a given event log with a model of data modi�cation rules, we iterate
over all events, using the rules in the model to encode the values of all event data
variables. A well-�tting model captures the structure of the data, and thus leads
to a short encoded length. For each event and variable, we check which rules in
the model �re, i.e., have satis�ed conditions, and use the �ring rules to encode
the variable. Whenever the model makes ambiguous predictions, we encode the
speci�c value among all possibilities. If no rule �res, we encode the variable from
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Model:

R1: IF amount = 10
THEN vendor = C

R2: IF product = shirt
THEN vendor ∈ {B, C}

Trace:

event: E1

shirt

20

C

product:

amount:

vendor:

E2 E3 E4

shirt

10

C

socks

10

A

socks

20

A

Code streams:

Cr: R1 Cm: ✓ ✓ ✗ Cv: C A A

Fig. 2. [Data encoding] Toy example of a rule model (top left), a trace with four
events where each event has the variables product, amount and vendor (top right), and
a corresponding encoding of the values of the variable vendor (bottom).

its whole domain. To ensure a lossless encoding and to handle noisy data, we
also encode any errors made by the model.

Conceptually, we split the data encoding into three code streams: In the
rule selection stream Cr, we encode which of the rules with matching conditions
we choose to encode the current variable value. Then, we encode in the model
stream Cm if the model predicts the correct value. If not, any value of the target
domain is possible. Whenever the model predicts multiple values, we choose a
value by a code in the value stream Cv.

We give a toy example of a data encoding in Figure 2, which we use to
describe how to decode the variable vendor. First, at event E1, we see only
rule R2 applies. Thus, we do not need to select a rule by reading from Cr. Next,
we �nd a checkmark as the �rst code in Cm, i.e., the model predicts correctly.
However, the rule allows two values, B and C, which we disambiguate by reading
C from Cv. Next, at event E2, we observe both rules apply. Therefore, we check
Cr to �nd that we should use rule R1 whose prediction is correct according to
the second code in Cm. Further, its prediction is not ambiguous and we get the
value C in the trace. Afterwards, at event E3, we �nd that only rule R1 applies
but its prediction is incorrect according to the last element in Cm. We obtain
the correct value by reading A from Cv. Finally, no rule applies at event E4, so
we neither read from Cm nor from Cr. Instead, we read the last value from Cv,
A, by which we have successfully decoded the values for vendor.

We compute the encoded length of the data by summing the code lengths in
Cr, Cm and Cv. Whenever we must disambiguate multiple �ring rules in Cr, we
assume all rules in the model are equally important. This means, we have

L(Cr) =

|Cr|∑
i=1

log |Ri| ,

where |Ri| denotes the set of �ring rules at the i-event.
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When we compute the encoded length of Cm, we do not know the prob-
abilities of codes for checkmarks and crosses in advance. Therefore, we use a
prequential plug-in code [7,29] to compute L(Cm): We initialize uniform counts
for checkmarks and crosses and update counts after each event, such that we have
a valid probability distribution at each step in the encoding. Asymptotically, this
gives an optimal encoded length of Cm. Formally, we have

L(Cm) =

|Cm|∑
i=1

usgi Cm[i] + ϵ

usgi ✓ + usgi ✗ + 2ϵ
,

where usgi Cm[i] denotes how often the i-th code in Cm has been used before,
and ϵ with standard choice 0.5 is for additive smoothing.

To compute code lengths in Cv, we use the empirical probability of variable
values. Let ui be the update rule we selected in Cr to encode the i-th value in
Cv. If no rule �res or we encoded an error in Cm, ui falls back to all possible
values in the domain of the target variable. We formally de�ne

L(Cv) = −
|Cv|∑
i=1

log
fr(Cv[i])∑
j∈ui

fr(j)
,

where fr(Cv[i]) denotes how often value Cv[i] occurs in the data, and we normal-
ize this by the frequencies of all values j possible according to the update rule
ui. To encode numerical variables, we assume a histogram-based discretization,
by which we can compute all necessary probabilities and code lengths.

Altogether, this gives us a lossless data encoding.

4.2 Model encoding

To de�ne the length of the model encoding L(M), we encode the number of rules
in the model |M | and all conditions c and update rules u. As |M | is unbounded,
we use the universal MDL integer encoding LN [28] that encodes any natural
number x ≥ 1 as LN(x) = log(c0) + log(x) + log(log(x)) + . . . , where we sum
only the positive terms and c0 = 2.865064 ensures Kraft's inequality holds, i.e.,
LN is a lossless encoding. We de�ne the encoded length of the model as

L(M) = LN(|M |+ 1) +
∑

(c,u)∈M

L(c) + L(u) .

To encode a condition c, we �rst encode the number of terms |c|. Next, we
encode which of the two operators in the set O = {∨,∧} we have at each of
the max(0, |c| − 1) positions between terms. Then, for each term t, we encode
which single variable v ∈ V is tested by t, which comparator of the set C =
{=,̸=,≤,≥,→, ̸→} is used, and all constants in the term. Formally, we de�ne

L(c) = LN(|c|+1)+max(0, |c|−1)·log |O|+
∑
t∈c

(
log |V |+ log |C|+

∑
α∈t

L(α)

)
.
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To encode the value α ∈ dom v for a categorical variable v, we have

L(α) = log |dom v| ,

and to encode a real-valued α, we represent α up to a user-speci�ed precision p
by the smallest integer shift s, such that |α| · 10s ≥ 10p, and have

LR(α) = 2 + LN(|s|+ 1) + LN(⌈|α| · 10s⌉+ 1) ,

where we �rst encode the signs of α and s with 1 bit each, then the value of s,
and �nally the value of α up to the precision of p signi�cant digits [19].

To encode an update rule u on a variable v, we �rst specify the type T of u,
which is one of v ∈ {α, β, . . .}, v = α, v ∈ [α, β], v = v + α, v = v + [α, β], or
v = α · v, for which we need log |T | = log 6 bits. Then, we encode which variable
v ∈ V is updated by u, and �nally we encode the constants in u the same way
we do for conditions. Formally, we have

L(u) = log |T |+ log |V |+
∑
α∈u

L(α) .

This gives us the encoded length of the model L(M).

4.3 Formal problem de�nition

With this, we now have all the ingredients to formally de�ne our problem.

Minimal Modi�cation Rules Problem Given an event log D with variables

V , �nd an acyclic model of data modi�cation rules M that minimizes the total

encoding cost L(D,M) = L(M) + L(D | M).

Solving this problem optimally is infeasible due to the large number of acyclic
models. To derive a lower bound of this number, we consider the rule dependency
graph of a model, which is a directed acyclic graph with variables as nodes and
their dependencies induced by rules as edges. We give a simple example of a
rule dependency graph in Figure 3. Since each edge requires at least one rule,
there are at least as many models as rule dependency graphs. According to
Rodionov [30], the number of acyclic graphs with n nodes and up to m edges is

A(n,m) =

n∑
i=1

m∑
j=0

(−1)i−1

(
n

i

)(
i(n− i)

m− j

)
A(n− i, j) ,

with A(1, ·) := 1. Because A(n,m) grows exponentially in n and m [5, p. 1186],
the number of acyclic models grows exponentially in the number of variables |V |
and the number of modi�cation rules in the model |M |.

Furthermore, our search space has no trivial structure such as submodularity
or monotonicity, which we could exploit to �nd an optimal solution in feasible
time. We give counterexamples for both properties in the supplementary mate-
rial. Hence, we resort to heuristics.
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IF product = pants THEN vendor = A
IF product = bag THEN amount = 20

product

amount vendor

Fig. 3. [Rule dependency graph] Example of a model (left) and its rule dependency
graph (right), in which nodes represent variables and edges show whether and in which
direction a modi�cation rule induces a dependency between variables.

Algorithm 1: Estimate L(Cv)

Input: Rule (c, u)

Output: L̂(Cv | c, u)
1 L̂(Cv | c, u)← 0;
2 b← supp(c);
3 forall j ∈ u ordered by increasing fr(j) do
4 ∆b← min(b, fr(j));
5 L̂(Cv | c, u)← L̂(Cv | c, u)−∆b · log fr(j)∑

i∈u fr(i)
;

6 b← b−∆b;

7 return L̂(Cv | c, u);

5 The Moody algorithm

To e�ciently �nd good data modi�cation rules in practice, we prune the exponen-
tially sized search space by a quickly computable estimate of our score avoiding
repetitively passing the whole event log, and we present a greedy search.

5.1 Estimating the MDL score

Computing the MDL score L(D,M) requires a pass over all events in the event
log, because we must check at each event, which of the rules in the model �re.
To avoid iterating over all events each time we evaluate adding a new rule to
the model, we prune the large set of candidate rules by a quickly computable
estimate L̂(D,M), and only compute L(D,M) for the remaining candidates.
For the estimate, we optimistically assume that a new rule has no con�icts with
other rules, such that we do not need to update Cr or Cm.

Using this assumption, we can independently estimate the contribution of
a single rule with condition c and update rule u to L(Cv). We give the pseu-
docode for estimating L(Cv | c, u) as Algorithm 1. First, we compute the support
supp(c), i.e., at how many events c �res (ln. 2). For each value j predicted by u,
we compute how many codes we must add to Cv, which is the minimum of the
remaining events to cover, b, and the frequency fr(j) of j (ln. 4). We compute
the length of all these codes and add it to our estimate (ln. 5). At the end of
each iteration, we update how many codes we still must add to Cv (ln. 6).

While computing the support requires a pass over all events, we only need
a single pass when creating the candidate. By assuming independence between
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rules, we do not need to update the estimated code lengths of all candidate rules,
every time we add another rule to the model. Using L̂(D,M) we can prune out
rules with high encoding costs, and thus avoid computing L(D,M) for those.

Next, we use L̂(D,M) and L(D,M) to �nd good rules for a given event log.

5.2 Finding Good Modi�cation Rules

We �rst search for conditions with a single term. Further, we let the domain
experts control how much time they want to invest in model search, and in-
troduce two hyperparameters. Instead of generating conditions with all possible
combinations of variables, operators and values, we only generate the Nc most
frequent values in the dataset for each variable and for each operator of the set
{=, ̸=,→, ̸→}. Since condition terms with the operators ≤ and ≥ apply to a
range of values, we instead generate them with the Nc values that equally cover
each variable's range in terms of percentiles.

To speed up generating update rules, we use the conditions generated above
to �lter for the values relevant for the update rule. For a given condition, in-
stead of generating update rules with all combinations of variables and values
remaining after �ltering, we only generate the Nu most frequent �ltered values
for α in the dataset for each variable and for each type of update rule in the
set {(v = α), (v = v + α), (v = α · v)}. Similarly, to generate update rules of
the type v ∈ {α, β, . . .}, we populate its set {α, β, . . .} with the 1, . . . , Nu most
frequent �ltered values and repeat this for each variable. Like before, since the
update rules of type v ∈ [α, β] and v = v + [α, β] apply to a range of values,
we cannot use frequent values here. Instead, we successively cut the interval of
�ltered values in half. This, way we get intervals with the central 100%, 50%,
25% etc. of values until we have generated Nu update rules for each variable.

We give the pseudocode of our greedy search Moody as Algorithm 2. We
start with the empty model (ln. 1). Iteratively, we extend the model by rules for
all variables (ln. 3). As computing L(D,M) needs a pass over all events, we keep

the candidate rules in a priority queue sorted by an estimate of our score L̂(D,M)
(ln. 4), such that we check promising rules early. Next, we search the candidates
from most to least promising and compute their actual encoded length L (ln. 6-
8). To not waste computation time for computing L on inferior rules, we perform

this search as long as the estimate L̂ is better than the best actual code length
L that we have seen so far (ln. 6). After evaluating the candidates, we only add
the best candidate to our model if it reduces the total encoded length (ln. 9-10).
Whenever two rules in the model have the same update rule, we merge them by
a disjunction (ln. 11). Finally, we end when no candidate for any target variable
could improve our score (ln. 12) and return the resulting model (ln. 13).

In the worst case, all generated candidates improve our MDL score. Since the
number of candidates grows linearly with Nc and Nu, the outer loop of Moody
grows linearly withNc andNu. In the worst case, our estimate does not prune any
candidate, and we must compute our score for all of the O(Nc ·Nu) candidates.
Since we loop over all variables, and computing our score requires a pass over the
whole dataset, the runtime complexity of Moody is O

(
(Nc ·Nu)

2 · |V | · |D|
)
.
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Algorithm 2: Moody

Input: event log D with variables V
Output: model of data modi�cation rules M

1 M ← ∅;
2 do

3 forall v ∈ V do

4 Q← priority queue of rules r predicting v ordered by L̂(D,M ∪ {r});
5 r∗ ← ∅;
6 while Q ̸= ∅ and L̂(D,M ∪ {top of Q}) < L(D,M ∪ {r∗}) do
7 r′ ← pop element from Q;
8 r∗ ← argminr∈{r∗,r′} L(D,M ∪ {r})
9 if L(D,M ∪ {r∗}) < L(D,M) then
10 M ←M ∪ {r∗};
11 replace all (IF c1 THEN u, IF c2 THEN u) ∈ M by IF c1 ∨ c2 THEN u;

12 while M was extended in the last iteration;
13 return M ;

6 Experiments

In this section, we evaluateMoody on both synthetic and real-world data. When
de�ning our MDL score, we assumed discretization of numerical variables. In our
prototype implementation, we use variable-width histograms. For e�ciency, we
compute histogram boundaries by percentiles. We use 50 bins in all experiments.

We run all experiments in a Docker-based environment on a Linux server
with an Intel® Xeon® Gold 6244 CPU. In all experiments, we observe 16 GB
of RAM su�ce. As a simple baseline, we consider the empty model M = ∅.
Further, for each variable, we learn a decision tree and tune its depths by 5-
fold cross validation. In addition, we learn if-then-else rules using the rule-based
classi�er Turs [42], and subgroup discovery method SSD++ [25]. To ensure
reproducibility, we provide code, data, and details in the supplementary material.

6.1 Synthetic event logs

To control data properties such as noise, we �rst experiment on synthetic event
logs, such that we know the ground-truth rules. We randomly generate 20 in-
dependent ground-truth models, where each model contains �ve rules, two cat-
egorical variables and two numerical variables. Since none of the baselines can
model sequential dependencies v : α → β, we only create models with condi-
tions v ≤ α, v ≥ α and v = α. From each model, we randomly generate �ve
independent event logs with |D| = 2000 events, such that we have 100 synthetic
event logs in total. To test noise-robustness, we add di�erent amounts of noise,
where we randomly swap values of variables. 10% swap noise means that for
each variable in the dataset, we randomly swap 10% of its values.
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Fig. 4. [Choosing Nc] Median F1 score on categorical variables (left, higher is better),
median RMSE on numerical variables (center, lower is better) and median runtime
(right, lower is better) for di�erent values of Moody's parameter Nc for 10% and 20%
swap noise in the training set. Error bars show interquartile ranges.

Turs in contrast to SSD++ only discovers rules for categorical target vari-
ables. Therefore, we separately evaluate on models predicting only categorical
variables and on models predicting only numerical variables. However, in both
setups, we generate conditions with both categorical and numerical variables.

Choosing Hyperparameters Such that the user can control runtime by re-
ducing the search space, we introduced the hyperparameters Nc and Nu when
proposing Moody. For e�ciency, we only search for the most compressing up-
date rule given a condition and set Nu to 1. To evaluate the accuracy of a set of
rules, we compute its F1 score on predicting categorical variables, and its root
mean squared error (RMSE) on predicting numerical variables. We report the
in�uence of Nc on prediction accuracy and discovery runtime in Figure 4. We
see the accuracy drops for only very small Nc, and is almost constant for larger
values. This means, the conditions with the highest support in the data tend to
give the best compression and accuracy. We also see that the runtime does not
grow quadratically with Nc, as we would expect by the theoretical runtime anal-
ysis. This means, our score estimate successfully prunes the search space. For a
safety margin on unknown data, we set Nc to 50 in the following experiments.

Results on categorical variables Next, we compare results on synthetic data
with di�erent amounts of swap noise forMoody against all baselines in Figure 5.
We see in the left plot that Moody by a wide margin has the highest F1 score
for data with 0% and 10% noise. Up to 20% noise, Moody shows good noise-
robustness and still has the highest median F1 score. While 20% noise may sound
low, swapping 20% of the values for each variable in the dataset accumulates to
a much higher noise-ratio than we expect in any real-world event log. Hence,
Moody predicts well under reasonable amounts of noise.

Results on numerical variables We see similar results on predicting nu-
merical variables in the center of Figure 5. As Turs cannot predict numerical
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Fig. 5. [Moody predicts well under reasonable amounts of noise] Median
F1 scores on categorical variables (left, higher is better), median root mean squared
errors on numerical variables (center, lower is better) and number of rule terms in the
discovered models (right, lower is less complex) at di�erent noise levels for Moody,
SSD++, Turs and decision trees. Error bars indicate interquartile ranges.
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Fig. 6. [Moody shows low sample complexity and scales well] Median
F1 scores on categorical variables (left, higher is better), median root mean squared
errors on numerical variables (center, lower is better) and median runtime (right, lower
is better) dependent on the number of training events for Moody, Turs, SSD++ and
decision trees. Error bars indicate interquartile ranges.

variables, we leave it out in this comparison. Moody shows by far the smallest
test root mean squared error (RMSE) for training data with up to 20% noise.
Hence, Moody predicts well under reasonable amounts of noise.

Model complexity Not only doesMoody give the best prediction results under
reasonable amounts of noise. It also �nds the rule sets with the lowest total
number of rule terms as we show on the right of Figure 5. All baselines �nd sets
with signi�cantly more rule terms. The size of the ground-truth models is ten
rule terms. We seeMoody's models have similar complexity as the ground-truth
models for data with low amounts of noise. As the noise level increases, Moody
does not discover more rule terms. This means,Moody is robust against �nding
spurious rules on noisy data.
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Table 1. [Real-world event logs statistics] Number of traces |D|, events ||D||,
di�erent activities |Ω|, categorical variables |Vcat|, and numerical variables |Vnum| for
the Sepsis and Tra�c Fines event logs.

Data |D| ||D|| |Ω| |Vcat| |Vnum|
Sepsis 782 15214 18 25 7
Tra�c Fines 30074 112245 11 4 5

Sample complexity To evaluate sample complexity, we compute F1 score and
RMSE on the test set dependent on the number of events in the training set.
For a realistic setup, we add 10% swap noise to all training sets. We report
results for Moody and the baselines in Figure 6. As expected, we see Moody
predicts better the more training data is available. Already with 500 training
events,Moody shows a higher median F1 score than the baselines. On numerical
variables, it shows a lower median RMSE for all training set sizes.

Runtime We report wall-clock runtime for single-threaded execution dependent
on the number of training events on the right of Figure 6. As we expect by our
theoretical analysis, we seeMoody scales well and shows a runtime linear to the
number of events. While SSD++ and decision trees are constantly fast, Moody
�nishes within reasonable time and is signi�cantly faster than Turs.

6.2 Real-world event logs

Next, we evaluate on two publicly available real-world event logs, for which we
give the base statistics in Table 1. The �rst one, Sepsis [16], contains event
traces from treating Sepsis patients in a Dutch hospital. The second one, Tra�c

Fines [8], [17, p. 20] is an event log of handling road-tra�c �nes by the police
of an Italian city. To reduce runtime, we randomly sample 20% of the original
150370 traces in the Tra�c Fines event log. Furthermore, we parallelize candi-
date generation and candidate evaluation of Moody on twelve CPU cores.

First, we look at the insights we gain from rules found by Moody on these
logs. Then, we evaluate how well the rules generalize to unseen test data.

Sepsis On the Sepsis log, Moody needs about two hours runtime and returns
49 rules in total. We observe that our greedy search strategy (namely ln. 6 and
ln. 9) eliminates the vast majority of 41769 candidates that Moody considers.
Further, we �nd sequential dependencies in 7 rules (14%) which shows that they
appear in practice. None of our baseline methods Classy [26], Turs [42] and
SSD++ [25] are able to �nd these.

Next, we give examples of rules, which we can interpret without domain
knowledge about the underlying process. For reference, we show the complete
set of rules in the supplementary materials. Six of these rules express a correlation
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between the group and activity variable, e.g.,

IFgroup = C THEN activity = ER Triage

IFgroup = E THEN activity = Release A

IFgroup ∈ {W,P} THEN activity = Admission IC .

The rules indicate groups in the hospital are specialized in certain activities.
Furthermore, Moody �nds the rules

IFLeukocytes ≤ 4.7 THEN Infusion = True

IFLeukocytes ≤ 2.8 THEN Diagnose = GB

IFLeukocytes = 7.8 THEN Diagnose = AA ,

where leukocytes measurements imply the diagnosis and the treatment of sepsis.
These rules enable to ask targeted questions to domain experts and thus can be
a valuable start to gain insight into this process.

Tra�c Fines On the Tra�c Fines log, Moody takes 4.5 hours to �nd 84
rules. It eliminates the majority of the 4427 candidates by the greedy search and
�nds sequential dependencies in 18 rules (21%). The latter shows an even larger
advantage over Classy [26], Turs [42] and SSD++ [25].

We give all discovered rules in the supplementary materials and show exam-
ples of rules, which we can interpret without domain knowledge in the following.
While we expected that a higher �ne amount correlates with a higher number
of points to penalize the o�ender, the rules

IFamount ≤ 68.77 ∨ amount ≥ 131.00 THEN points = 0.0

IFamount = 80.00 THEN points ∈ [0.0, 2.0]

contradict this intuition. A look into the data con�rms there is no monotonic
relationship between the two variables. Counter-intuitive but data-supported
rules like these give valuable insight. In contrast to other methods, Moody
�nds rules with sequential dependencies, such as

IFactivity : Insert Fine Noti�cation → Send Fine THEN expense = 0

IFactivity : Payment → Payment THEN totalPayment += 38 .

When sending a new �ne noti�cation, the expense is initialized to zero. Repetitive
executions of the Payment activity increase the total payment amount.

Generalization Finally, we evaluate how well the rules found by Moody gen-
eralize to unseen data. To this end, we split the Tra�c Fines event log into a
training set and a test set with a distinct 20% of traces each. Then, we compare
the F1 score and RMSE on both sets for each rule discovered by Moody on the
training set. We show results in Figure 7. As we see, most of the rules have a low
prediction error on both sets. The gap between training and test performance is
small, which means Moody �nds well-generalizing rules.
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Fig. 7. [Moody generalizes well] Train and test F1 score on predicting categorical
variables (left, higher is better) and train and test root mean squared error on predicting
numerical variables (right, lower is better) for each rule found byMoody on the Tra�c
Fines event log.

7 Discussion

In our experiments,Moody does not only discover simple and thus interpretable
rules to unveil how event data changes within a process. It also �nds rules ac-
curately predicting the data values, and is more robust to sensible amounts of
noise than all baselines. Yet, we see interesting directions to improve Moody.

As in many MDL-based methods,Moody's bottleneck is combinatorial search.
Hence, we see an approach for mining rules based on di�erentiable pattern set
mining [9] as promising. While both the modeling language and the MDL score
of Moody allow rules with complex conditions joined by conjunctions (∧) and
disjunctions (∨), the algorithm does not search for conjunctions. Conjunctions
imply an even larger search space, and thus we see the need to improve the
runtime e�ciency of Moody. Here, the implementation behind methods like
Turs or SSD++ could help to e�ciently search for conjunctions. Alternatively,
we could �rst learn a graph summarizing the possible set of activity sequences
of the process [41]. Learning conditions and updates for each node in this graph
could result in an even easier understandable model and could help to separate
traces during model search and thus might speed up the search.

Furthermore, we would like to put a stronger focus on causality of the dis-
covered rules. To this end, we may use well-de�ned measures for the causal e�ect
of a rule [4]. Alternatively, we would like to examine the link between causality
and two-part MDL codes in terms of algorithmic independence [20], and how to
use this during search for causal data modi�cation rules.

Last but not least, we see many interesting applications for Moody. As the
most compressing rules found by Moody de�ne normal behavior, it would be
interesting to use them for anomaly detection [22]. As the behavior of real-world
processes usually changes over time, we see Moody could help to identify and
understand concept drift [3,31]. Finally, predicting data attributes withMoody
may be used in the simulation of process behavior for process optimization [13].
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8 Conclusion

We studied the hitherto largely neglected problem of discovering accurate yet
concise and interpretable rules how event attribute data changes in a business
process. We formalized the problem in terms of the Minimum Description Length
(MDL) principle, by which we choose the model with the best lossless descrip-
tion of the data. To e�ciently search for rule models in practice, we proposed
our greedy method Moody. Through extensive experiments on both synthetic
and real-world data, we showed Moody indeed discovers succinct and inter-
pretable if-then rules, needs little data for accurate discovery, is robust to sensible
amounts of noise, and thus gives valuable insights into data modi�cations.

Besides applying Moody on downstream tasks such as anomaly detection,
concept drift detection and simulation, future work involves runtime optimiza-
tions of Moody to enable search for more complex rules in feasible time.
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A Appendix

In this section, we give additional details of Moody and our empirical evalua-
tion, which we could not include into the main paper.

A.1 Submodularity of our MDL score

Rules:

R1: IF product = shirt THEN vendor = C
R2: IF product = bag THEN vendor ∈ {A, B}

Trace:

bag

A

shirt
C

shirt
B

pants

C

product:

vendor:

event: E1 E2 E3 E4

Fig. 8. [Example rules and trace] We show two simple rules (top) and a simple
trace (bottom) to disprove submodularity and monotonicity for our score.

Submodularity [14, p. 15] requires our score to ful�ll

L(D,Ma ∩Mb) + L(D,Ma ∪Mb) ≤ L(D,Ma) + L(D,Mb)

for all valid models Ma,Mb. As a counterexample for this, consider the trace in
Figure 8 as our event logD and the modelsM1 = {R1} andM2 = {R2}. Here, we
get L(D,M1∩M2)+L(D,M1∪M2) ≈ 59.448 and L(D,M1)+L(D,M2) ≈ 59.199
and thus

L(D,M1 ∩M2) + L(D,M1 ∪M2) > L(D,M1) + L(D,M2) .

A.2 Monotonicity of our MDL score

Monotonicity [14, p. 359] requires our score to be non-increasing or non-decreasing
as we add rules to our model. To disprove this for our score, assume that our
event log contains the trace in Figure 8 repeated 20 times. Then, we get the
scores L(D, ∅) ≈ 241.519, L(D, {R1}) ≈ 279.595 and L(D, {R2}) ≈ 239.595. So,
extending the empty model with di�erent rules can both increase and decrease
the score, and thus it is not monotone.
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A.3 Rules discovered for Sepsis

In the following we show the complete set of rules that Moody discovered on
the Sepsis event log [16].

IF True THEN Age += 0

IF activity ̸= CRP THEN CRP += 0

IF DisfuncOrg = True THEN Diagnose = G

IF SIRSCriteria2OrMore = False

∨Diagnose ∈ {ZD,Y,LA,GB}
∨Diagnose : EB → EB

∨DiagnosticOther = True THEN DiagnosticArtAstrup = False

IF DiagnosticIC = False

∨Diagnose = CA THEN DiagnosticBlood = False

IF DiagnosticXthorax = False THEN DiagnosticECG = False

IF SIRSCriteria2OrMore = False THEN DiagnosticIC = False

IF DiagnosticIC = False

∨Diagnose = S THEN DiagnosticLacticAcid = False

IF DiagnosticUrinarySediment = False THEN DiagnosticLiquor = False

IF DiagnosticXthorax = False THEN DiagnosticSputum = False

IF DiagnosticUrinarySediment = False THEN DiagnosticUrinaryCulture = False

IF DiagnosticIC = False

∨Diagnose : EB → EB THEN DiagnosticUrinarySediment = False

IF DiagnosticIC = False THEN DiagnosticXthorax = False

IF Hypotensie = True THEN DisfuncOrg = True

IF Oligurie = True THEN Hypotensie = True

IF DiagnosticECG = False THEN Hypoxie = False

IF SIRSCriteria2OrMore = False THEN InfectionSuspected = False

IF SIRSCriteria2OrMore = False THEN Infusion = False

IF activity ̸= LacticAcid THEN LacticAcid += 0

IF activity ̸= Leukocytes THEN Leukocytes += 0

IF SIRSCritTemperature = False THEN Oligurie = False

IF SIRSCriteria2OrMore = False

∨Diagnose = LB THEN SIRSCritHeartRate = False

IF DiagnosticECG = False THEN SIRSCritLeucos = False

IF SIRSCriteria2OrMore = False THEN SIRSCritTachypnea = False

IF InfectionSuspected = False THEN SIRSCritTemperature = False
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IF activity = IV Liquid

∨ activity = IV Antibiotics THEN SIRSCriteria2OrMore = True

IF group = C THEN activity = ER Triage

IF Hypoxie = True THEN Diagnose = CA

IF Diagnose = CA THEN DiagnosticArtAstrup = True

IF DiagnosticLacticAcid = True THEN DiagnosticBlood = True

IF DisfuncOrg = True

∨DiagnosticSputum = True THEN DiagnosticECG = True

IF Infusion = True THEN DiagnosticIC = True

IF DiagnosticUrinaryCulture = True THEN DiagnosticLacticAcid = True

IF DiagnosticUrinarySediment = True THEN DiagnosticUrinaryCulture = True

IF Diagnose ∈ {ZD,F,AA} THEN DiagnosticUrinarySediment = True

IF Oligurie = True THEN DiagnosticXthorax = True

IF SIRSCritTachypnea = False THEN DisfuncOrg = False

IF DiagnosticIC = True THEN InfectionSuspected = True

IF activity = IV Liquid

∨ Leukocytes ≤ 4.7 THEN Infusion = True

IF Oligurie = True THEN SIRSCritTachypnea = True

IF group = E THEN activity = Release A

IF Age = 50 THEN Diagnose = EB

IF Age ≤ 60 ∨Diagnose = ZD THEN SIRSCritHeartRate = True

IF group = ? THEN activity = Return ER

IF Leukocytes ≤ 2.8 THEN Diagnose = GB

IF group : A → A ∨ group : L → L THEN activity = IV Antibiotics

IF Leukocytes = 7.8 THEN Diagnose = AA

IF group ∈ {F,O,G, I,M,Q,R,H,

D,N,T, S,V,U,K, J} THEN activity = Admission NC

IF group ∈ W,P THEN activity = Admission IC
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A.4 Rules discovered for Tra�c Fines

In the following we show the complete set of rules that Moody discovered on
the Tra�c Fines event log [8]

IF article ̸= 142 THEN amount = 35

IF resource ∈ {29, 30} THEN article = 142

IF vehicleClass ̸= R THEN activity = Create Fine

IF activity : Add penalty → Send Appeal to Prefecture THEN dismissal = #

IF activity : Insert Fine Noti�cation ̸→ Send Fine THEN expense = 13.50

IF noti�cationType = C THEN lastSent = C

IF activity = Appeal to Judge THEN resource = 0

IF totalPaymentAmount = 35 THEN paymentAmount = 35

IF amount ≤ 68.77 ∨ 131 ≤ amount

∨ amount = 125.19 ∨ amount = 78 THEN points = 0

IF activity = Create Fine THEN totalPaymentAmount = 0

IF activity = Add penalty THEN amount = 71.50

IF vehicleClass = C THEN article = 171

IF noti�cationType ∈ {P,C} THEN activity = Insert Fine Noti�cation

IF activity : Insert Fine Noti�cation → Send Fine THEN expense = 0

IF totalPaymentAmount = 36 THEN paymentAmount = 36

IF 143 ≤ amount THEN points ∈ [0, 10]

IF activity : Payment → Payment THEN totalPaymentAmount =

totalPaymentAmount+ [0, 400]

IF article = 142 THEN amount = 125.19

IF totalPaymentAmount = 33.60 THEN paymentAmount = 33.60

IF activity : Payment → Payment THEN totalPaymentAmount = 82.50

IF resource ∈ {559, 560, 561, 563}
∨ totalPaymentAmount : 35 ̸→ 0 THEN amount = 36

IF resource ∈ {558, 550, 541, 537, 557, 559,
538, 546, 561, 536, 560, 548} THEN article = 157

IF totalPaymentAmount = 38 THEN paymentAmount = 38

IF amount = 80 THEN points ∈ [0, 2]

IF activity : Payment → Payment THEN totalPaymentAmount += 38

IF article = 7

∨ resource ∈ {49, 63, 852, 53} THEN amount = 38

IF totalPaymentAmount = 39 THEN paymentAmount = 39
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IF article = 146 THEN points ∈ [0, 6]

IF totalPaymentAmount = 31.30 THEN paymentAmount = 31.30

IF resource ∈ {538, 536, 28}
∨ totalPaymentAmount : 33.60 → 0 THEN amount = 33.60

IF totalPaymentAmount = 32 THEN paymentAmount = 32

IF article = 172 ∨ amount = 78 THEN points ∈ [0, 5]

IF totalPaymentAmount = 32.80 THEN paymentAmount = 32.80

IF totalPaymentAmount = 46 THEN paymentAmount = 46

IF article = 181 THEN amount = 23

IF totalPaymentAmount = 24 THEN paymentAmount = 24

IF article = 173 THEN points = 5

IF article = 158 THEN amount = 78

IF totalPaymentAmount = 42 THEN paymentAmount = 42

IF article = 146 THEN points = 6

IF activity : Insert Fine Noti�cation ̸→ Add penalty THEN amount = 68.77

IF totalPaymentAmount = 51.50 THEN paymentAmount = 51.50

IF resource = 548 THEN amount = 32

IF totalPaymentAmount = 82.50 THEN paymentAmount = 82.50

IF totalPaymentAmount = 39.51 THEN paymentAmount = 39.51

IF totalPaymentAmount = 80 THEN paymentAmount = 80

IF article = 180 THEN amount = 398

IF totalPaymentAmount = 44.60 THEN paymentAmount = 44.60

IF article = 181 THEN amount ∈ [18.78, 25]

IF totalPaymentAmount = 87 THEN paymentAmount = 87

IF resource ∈ {26, 31} THEN amount = 39

IF totalPaymentAmount = 23 THEN paymentAmount = 23

IF article = 80 THEN amount = 137.55

IF totalPaymentAmount = 91 THEN paymentAmount = 91

IF totalPaymentAmount = 37.75 THEN paymentAmount = 37.75

IF totalPaymentAmount = 49 THEN paymentAmount = 49

IF 94.50 ≤ totalPaymentAmount THEN paymentAmount ∈ [3.25, 798]

IF vehicleClass = C

∨ dismissal ̸= NIL

∨ article = 172

∨ resource = 30 THEN amount = 31.30

IF totalPaymentAmount = 85.75 THEN paymentAmount = 85.75

IF article = 171

∨ resource = 11 THEN amount = 32.80



24 M. Schuster et al.

IF totalPaymentAmount = 79.77 THEN paymentAmount = 79.77

IF totalPaymentAmount = 49.25 THEN paymentAmount = 3.25

IF totalPaymentAmount = 82.50 THEN paymentAmount −= 9.50

IF totalPaymentAmount = 91 THEN paymentAmount −= 12

IF True THEN amount = amount+ [19.68, 780.50]

IF totalPaymentAmount = 87 THEN paymentAmount −= 11

IF totalPaymentAmount ≤ 23 THEN paymentAmount ∈ [0, 23]

IF 94.50 ≤ totalPaymentAmount THEN paymentAmount += 0

IF article = 193 THEN amount ∈ [179, 798]

IF totalPaymentAmount = 79.77 THEN paymentAmount −= 9.43

IF article = 23 THEN amount = 389

IF totalPaymentAmount ≤ 54 THEN paymentAmount =

paymentAmount+ [−42.75, 11.05]

IF article = 20 THEN amount = 155

IF 94.50 ≤ totalPaymentAmount THEN paymentAmount = 94.50

IF totalPaymentAmount = 85.75 THEN paymentAmount −= 6.25

IF totalPaymentAmount = 49.25 THEN paymentAmount ∈ [3, 49.25]

IF article = 180 THEN amount ∈ [18.78, 419]

IF True THEN amount += 31.29

IF article = 146 THEN amount = 143

IF article = 193 THEN amount = 779

IF article = 116 THEN amount = 516

IF article = 41 THEN amount = 65.60

IF article = 23 THEN amount ∈ [312.97, 398]

IF article = 173 THEN amount = 148


	

