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Abstract

The core assumption of not only the sciences but of our broader (western)
worldview is that nature adheres to certain laws which can be described in
terms of causal relationships. This assumption has repeatedly proved success-
ful in improving our understanding of how the world works. However, as we
explore ever more complex domains, it has become clear that identifying these
causal links is extraordinarily challenging. While collecting observational data
is straightforward, it is unfortunately the case that “correlation is not cau-
sation”. Instead, the gold standard in causal inference is to run randomized
controlled trials (RCT). But these often face ethical, economic, or physical limi-
tations. Even when such an RCT is feasible, the inclusion criteria are frequently
too stringent for derived causal estimates to generalize to other settings.
In this thesis we therefore investigate under which assumptions we can distin-
guish causal relationships between observed variables from biases due to un-
observed confounding or selection in purely observational data. Furthermore,
we investigate to what extent we can discover the causal graph over both ob-
served and unobserved variables. Our main tools will be the algorithmic model
of causality and the independence of causal mechanisms. That is, if different
causal mechanisms convey no information about each other, then by exploiting
the violations of this assumption, we can discover the effects of unmeasured
variables. We will show that such deviations exist at multiple levels of the
causal description, both at the level of the parameters of a single causal model
over the observed variables, as well as the level of mechanism changes between
different causal models over the same set of variables.
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Zusammenfassung

Die grundlegende Annahme nicht nur der Wissenschaften, sondern auch un-
serer breiteren (westlichen) Weltanschauung ist, dass die Natur bestimmten
Gesetzen folgt, welche in Form von kausalen Beziehungen beschrieben werden
können. Diese Annahme hat sich wiederholt als erfolgreich erwiesen, um unser
Verständnis der Welt zu verbessern. Doch je komplexer die Bereiche die wir er-
forschen werden, desto deutlicher wird, dass es außerordentlich herausfordernd
ist, diese kausalen Verbindungen zu identifizieren. Das Sammeln von Beobach-
tungsdaten ist zwar unkompliziert, doch leider gilt dass „Korrelation ist nicht
Kausation“. Stattdessen ist der Goldstandard für kausale Effekte das Durch-
führen von randomisierten kontrollierten Studien (RCT). Diese stehen jedoch
oft vor ethischen, ökonomischen oder physischen Einschränkungen. Selbst wenn
ein RCT durchgeführt werden kann, sind die Einschlusskriterien oft zu streng
um die abgeleiteten kausalen Effekte auf andere Szenarion zu verallgemeinern.
In dieser Arbeit untersuchen wir, unter welchen Annahmen wir kausale Beziehun-
gen zwischen beobachteten Variablen von Verzerrungen durch unbeobachtete
Störfaktoren oder Selektionsprozessen unterscheiden können, ohne Verwendung
von experimentelle Daten. Weiterhin untersuchen wir, inwiefern wir kausale
Graphen über sowohl beobachtete als auch unbeobachtete Variablen entdecken
können. Unsere Hauptwerkzeuge werden das algorithmische Modell der Kausal-
ität und die Unabhängigkeit kausaler Mechanismen sein. Das heißt, wenn
kausale Mechanismen keine Informationen übereinander übermitteln, dann kön-
nen wir durch das Ausnutzen der Verletzungen dieser Annahme die Auswirkun-
gen von ungemessenen Variablen entdecken. Wir werden zeigen, dass solche Ab-
weichungen auf mehreren Ebenen der kausalen Beschreibung existieren, sowohl
auf der Ebene der Parameter eines einzelnen Modells über die beobachteten
Variablen, als auch auf der Ebene von Mechanismusänderungen zwischen ver-
schiedenen kausalen Modellen über den selben Variablen.
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Chapter 1

From Plato to Probabilistic
Models of Causality

Everything that becomes or changes must do so owing to some cause; for
nothing can come to be without a cause.

Plato, Timaeus 28a

Plato was, of course, not the first person ever to consider the nature of reality
regarding questions of causal relations. In fact, asking the question “why?” is
a fundamental part of human nature. As we observe the world around us, we
do our utmost to weave our observations into a coherent whole. While it has
been popular in recent years to refer to brains as “prediction machines,” this
is a mischaracterization of what brains do; more adequately, we should refer
to them as causal prediction machines. Children begin developing notions of
causality already at the earliest stages of development, well before they can
even formulate or conceptualize such notions, or even understand what exactly
they are doing (Buchsbaum et al., 2012; Weisberg and Gopnik, 2013).
Questions of “why?” or “how?” are inherently causal questions: what are the
underlying causal mechanisms generating the observed structure of the uni-
verse, and how can we come to know them? The most basic step towards
developing such explanations is to observe the world around us, noticing corre-
lations between distinct factors of reality and forming various hypotheses about
the interplay of and relationship between these factors.
Further, as individual agents within the world taking actions, we inherently
generate interventions: by interacting with our surroundings, we consciously
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or unconsciously intervene on some variables of the system, so that we no
longer passively observe the world’s processes as they would run their natural
course, but instead, as actors, produce and obtain interventional data resulting
from this interference with the causal system we are part of. This kind of
interventional data is generally considered to be fundamental to our ability to
refine our causal models of the world.
At the same time, to the extent that our actions are intentional, this already
assumes that we can, at least to some extent, predict which actions will benefit
our goals and which will not. Our interactions with the world are founded on
the very assumption that we can use the causal models we have crafted from
past observations to predict the results of our actions.
Throughout their development, humans form an intuitive grasp of many dif-
ferent domains: certain aspects of physics, psychology, economics, and biology,
as well as countless others. These intuitive models are called “folk” theories—
often derogatorily—and their accuracy can vary dramatically, not only across
different areas but also within them (Gelman and Legare, 2011). While our
naïve model of physics is highly effective in unconsciously predicting the trajec-
tory of a ball thrown directly toward us, it fails spectacularly when it ricochets
off a wall. Similarly, our folk model of psychology is good at some aspects of
psychology but fails horribly at others (Kahneman and Tversky, 2013).1
The goal of science is, therefore, to make up for the limitations and failures
of human intuition. The scientists’ task is twofold in its endeavor: to develop
better answers to the questions of “why?” and “how?” and to develop appro-
priate methodologies to answer these questions in the first place. To derive
such answers and develop such methods, scientists develop theoretical, both
qualitative and quantitative, models to make predictions, gather observational
data, and orchestrate experiments to verify the models’ predictions. In order to
analyze the data they gather and the experiments they undertake and to ensure
the correctness of the derived causal conclusions, they must also develop the
statistical and causal frameworks within which it becomes possible to answer
these questions and verify the answers.
Clearly, the success of this methodology hinges critically both on our ability
to develop such causal frameworks as well as on our ability to obtain data
that can be used to validate our models within them. While data collection
is often conducted experimentally, such experiments are not always feasible.
In fields such as economics or epidemiology, the relevant experiments are of-
ten unethical, financially prohibitive, or outright impossible with our current

1Although much of the last 20 or more years of research in heuristics and biases,
and especially in behavioral economics, has turned out not to replicate and should
be taken with a grain of salt, many of the underlying psychological principles have
stood up to repeated attempts at replication.
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technology (Grossman and Mackenzie, 2005). However, even when such exper-
iments are feasible, all is not necessarily well.

RCTs & Reality: Not All That Glitters is a Gold Standard

Observation is the cornerstone of developing causal models not only for in-
dividuals but also for science as a whole: a good scientific theory has to be
consistent with all our empirical observations, so that our observed correla-
tions impose hard constraints on the set of viable causal models that could be
governing the phenomena we are interested in. Any model that cannot ex-
plain these observed correlations is incomplete at best and straight-up wrong
at worst. For this reason, simply by passively observing the world around us
and noting whatever patterns and correlations we find, we can already obtain
glimpses into the underlying causal structure of reality.
Yet, while these patterns and associations impose constraints, they rarely suf-
fice to discern real causation from spurious correlation. External factors not
accounted for in the data gathered may surreptitiously influence the observed
outcomes, leaving us with plausible but incorrect models and misleading narra-
tives spun from these models. This interference by latent confounders plagues
all sciences (Hemkens et al., 2016; Secrest et al., 2020) and leads to incorrect
estimates of causal effects when care is not taken. That is, to be confident in
our causal estimates, we need to develop methods that can determine which
correlations are due to causal influences and which are spurious.
Traditional attempts to control such biases are commonly used in the economet-
rics, epidemiology, and psychology literature; however, they already presume
knowledge of the causal graph (Wysocki et al., 2022). When the causal graph is
not known, controlling for other covariates by “regressing them out”, or in any
of a number of other ways, can be either helpful or harmful to the estimation
of the true causal parameters, and it is only by knowing this graph that we can
distinguish between the two cases. We show the three basic cases in Figure 1.1.
If we do not know the causal relationship between X, Y , Z, we cannot tell
whether the total causal estimate for X → Y when controlling for Z is better
or worse than the estimate when we do not control for Z. Only when Z is a
common cause for X and Y will the estimate resulting from controlling for Z
be improved. Otherwise, we introduce an unknown amount of bias.
To resolve these ambiguities, Randomized Controlled Trials (RCTs) are nowa-
days considered the gold standard for obtaining data that is not subject to such
confounding (Deaton and Cartwright, 2018). By randomly assigning partici-
pants to different groups, RCTs endeavor to ensure that all extraneous variables
are equidistributed among groups. This equidistribution ensures that unmea-
sured factors have equal effects in both experimental and control groups on
average, thus guaranteeing internal validity of the findings. In this controlled
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Figure 1.1: Different causal relationships lead to different results when controlling for
Z. (a) Controlling for the common cause Z will produce the correct total causal effect
for X → Y . (b, c) Controlling for either mediator or collider Z can introduce unknown
amounts of bias into the estimate of the total causal effect of X → Y , which was, in
fact, correctly estimated when we did not control for them.

setting, the cause-effect relationships between variables become clear, allowing
us to obtain insight into the true effect of one variable on another.
The most significant problem with this approach is, of course, paucity of such
experimental data. Even when RCTs are possible and ethical, the higher cost
of running tightly controlled experiments compared to obtaining merely ob-
servational data leads to theoretical identifiability of causal effects not always
translating into practically distinguishable causal estimates. Since sample size
is relatively small, there can be high variance in the distribution of all other
factors, leading to these other factors not being equal in the two experimental
and control groups (Deaton and Cartwright, 2018). While these concerns can
be ameliorated by stratification or other randomization schemes designed to
create equal distributions in the treated and control populations (Kang et al.,
2008), these can only adjust explicitly for differences in the observed covariates,
but not the unobserved ones (Arah, 2017). To remove biases in the unobserved
covariates, we would again need large sample sizes, the very problem that these
advanced randomization schemes were supposed to solve.
However, even barring issues of ethics, cost, and the associated low sample size,
RCTs are not without their problems. In their pursuit of internal validity, study
designs necessarily deviate from the messiness of real-world scenarios. Effects
are often measured in a highly simplified setting, and the participants of a study
are often a convenience sample chosen for their ease of availability or whose
inclusion is otherwise subject to highly stringent selection criteria, and thus not
truly representative of the larger population (Naci and Ioannidis, 2013). Many
other factors, such as non-response bias, survivorship bias, admission rate bias,
and healthy user bias, among countless others, can exacerbate these issues
even further. As such, even given perfect knowledge of the inclusion criteria,
the causal estimates may not even translate between subsets of the population
matched for their characteristics (Averitt et al., 2020). Even where RCTs solve
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the issue of internal validity, the question of external validity therefore remains:
can results derived from a controlled environment (ecological validity) on an
unrepresentative sample of the population (population validity), be generalized
to the sprawling complexities of the real world? In other words, is it possible
to transport the causal estimate derived in one (sub-)population to another?
Of course, the Taoists of old already knew that “the causal effect that can be
measured is not the true causal effect.”2 In recent years, the replication crisis
gives us further reason to believe that the answer is an emphatic no (Open
Science Collaboration, 2015; Camerer et al., 2018; Gordon et al., 2020). While
many other aspects, such as flawed statistical methodology, file drawer effects,
p-hacking, and other questionable research methodology, up to outright scien-
tific fraud, are undoubtedly large contributors to the non-replicability of many
of the results, we must ask to what extent the fundamental underlying issue
might be the lack of external validity in our studies (Yarkoni, 2022). While this
disregard for external validity is understandable, given the academic pressure to
produce surprising but minimally viable results for publication, combined with
the difficulty of evaluating the external validity of causal estimates in general,
it leads to a priori flawed study designs with little to no chance of replication
in the first place. Thus, while RCTs endeavor to refine our understanding of
the causal landscape by filtering out noise, they are often at risk of missing the
very facets of reality which we are interested in, providing us instead with false
or misleading narratives that can lead to long-lasting real-world harm.3
This problem of external validity in RCTs also explains the failure of the com-
monly proposed approach of combining large quantities of biased observational
data with small quantities of unbiased experimental data (Statnikov et al.,
2015; Cheng and Cai, 2021; Kladny et al., 2023; Colnet et al., 2024). The
issue is that these data combination approaches are a fundamentally flawed
attempt at overcoming the real issues posed by the two types of data. The
underlying assumption, that the experimental data is unbiased (i.e., internally
valid), virtually never obtains in the first place. Other attempts, such as using
meta-analytic methods, have been made to ensure that the obtained causal es-
timates may be transported between study populations (Dahabreh et al., 2020;
Markozannes et al., 2021). Unfortunately, these methods can currently deal
only with the case of data obtained from multiple RCTs rather than combining
multiple types of data collected from different (non-)experimental contexts.
Other approaches, such as instrumental variable-based methods (also known

2Originally, “The Tao that can be spoken is not the true Tao.”
3It also does turn out that, at least in the field of medicine, the results produced

by RCTs are almost invariably indistinguishable from those obtained from purely
observational studies (Anglemyer et al., 2014; Bun et al., 2020; Bröckelmann et al.,
2022). That is, either RCTs never gave us the internally valid results we wanted in
the first place, or we never needed RCTs to obtain them.
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Figure 1.2: Different types of studies have different benefits and drawbacks. In this
dissertation we are interested in solutions satisfying both high internal and external validity.

as Mendelian randomization when the instrument is genetic variation; An-
grist et al., 1996; Sanderson et al., 2022), and regression discontinuity designs
(RDDs; Imbens and Lemieux, 2008) both assume precise knowledge about sub-
sets of the causal graph, but are also open to further questions. Is the instru-
ment indeed valid? Do estimates from the regression discontinuity apply to
other regions of the covariate range? Meanwhile, natural experiments (Rosen-
zweig and Wolpin, 2000) may at times be good alternatives to designed exper-
iments as they do not artificially restrict the included subjects, but it is often
impossible to tell to what extent causal estimates derived from such data are
representative of the causal mechanism at large as compared to the idiosyn-
cratic circumstances particular to that time and place. In contrast to these
approaches designed to leverage (quasi-)experimental data, our two goals in
this thesis are different (see Figure 1.2). We are concerned with the questions
of whether and how we can learn unbiased, internally and externally valid,
causal structures from purely observational data. First, under which conditions
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can we provably ensure the internal validity of our results and learn causal
structures and effects directly from observational data? Second, how can we
provably determine if the (potentially experimental) data we have obtained is
affected by selection bias, thereby violating external validity? Moreover, under
which conditions can we recover the original distribution from it?

Causalchemy: From Leaden Observation to Golden Insights

"One box contains a key," said the king, "to unlock your chains; and if
you find the key you are free. But the other box contains a dagger for
your heart, if you fail."
And the first box was inscribed: "Either both inscriptions are true, or both
inscriptions are false."
And the second box was inscribed: "This box contains the key."
The jester reasoned thusly: "Suppose the first inscription is true. Then
the second inscription must also be true. Now suppose the first inscription
is false. Then again the second inscription must be true. So the second
box must contain the key, if the first inscription is true, and also if the
first inscription is false. Therefore, the second box must logically contain
the key."
The jester opened the second box, and found a dagger.
"How?!" cried the jester in horror, as he was dragged away. "It’s logically
impossible!"
"It is entirely possible," replied the king. "You merely wrote those
inscriptions on two boxes, and then I put the dagger in the second one."

Adapted from The Parable of the Dagger

As we have noted, while observational data constrains the facts that need to be
correctly predicted by a proposed scientific explanation, these constraints will
generally only partially determine the true causal model. One must, therefore,
invoke additional assumptions to bridge the gap between observation and cau-
sation (Pearl, 2009). These assumptions serve to distinguish between different
observationally equivalent mechanisms generating the data based on external
information that is not included in the data itself. These assumptions vary from
setting to setting and often require expert domain knowledge, but common
assumptions include sparsity, (non-)linearity, (in-)variance, (non-)Gaussianity,
and (un-)confoundedness. That is, it is often assumed that the correct causal
model is the sparsest among all equivalent models, that the causal mechanisms
are linear (or strictly nonlinear), that the causal mechanisms are stable over
time or across environments (or not), that the exogenous sources of variation
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are Gaussian (or strictly non-Gaussian), or that there is no latent confounding
as well as no selection bias (or that all correlations are due to latent variables).
While none of these assumptions are likely to hold exactly, and we will revisit
all of them in the following chapters, for now, we will focus on the last and
most egregious: that all correlations are due to endogenous causal relations
between the measured variables rather than due to latent variables inducing
confounding or selection bias among the observed variables.
First, while the other assumptions are often satisfied at least approximately,
it is virtually never the case that all relevant variables have been measured,
and in fact, in most complex domains, we neither know what the relevant
variables are nor would we be able to measure all of them even if we did.
To assume that there are no latent variables is to assume away the biggest
challenge in most fields of science. In fact, the contribution of the latent factors
to the observed correlations can easily be larger than those of endogenous causal
mechanisms (Boyle et al., 2021; Barth et al., 2022). Or, if by some chance this
assumption does hold, the reason is more likely than not that the data was
obtained in a lab, with all variables subjected to strict control and the causal
relations already known or suspected from the start.
Second, the assumption is unverifiable, both ex-ante and ex-post, since almost
every method that makes this assumption. When such a method returns causal
gobbledygook with more spurious than correct edges, this must be taken at
face value because no tools exist to determine which edges are real and which
are due to the effect of latent confounders. In contrast, assumptions of (non-
)linearity, (in-)variance, and (non-)Gaussianity of exogenous noise variables
are all testable after a method has been applied to data, simply by checking
whether the error residuals have the expected distributional properties.
Thus, while the assumption that all relevant variables have been observed,
known as causal sufficiency, is persistent in the literature on causal discovery
and inference, it is often both untestable and untenable in practice.
As such, the overarching goal of this thesis is to determine whether we can do
away with this assumption. More precisely, we develop methods for testing the
validity of this assumption and determining the extent of its violation (Chap-
ters 2, 5), as well as exploiting the structure in our data to recover the latent
variables and performing causal discovery over both observed and unobserved
variables when the assumption does not hold (Chapters 3, 4, 6).
More precisely, our first problem will be the simple question: can we detect at
all whether our data might be confounded based on observational data alone?
Problem Statement 1 (Confounded or Causal). Given covariates X and a
target variable Y , does X cause Y , or are the correlations best explained due
to latent confounding caused by not controlling for an unobserved variable Z?
Asked differently, which patterns in the data can we exploit to distinguish be-
tween these two different potential models? It turns out that one of the most
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important factors is the number of observed covariates X. When only few
jointly confounded covariates X are observed, it is almost impossible to distin-
guish between latent confounding and causal connections between variables. In
contrast, when a larger number of variables is observed, patterns induced by
latent confounding become more predominant, and we can use these patterns
to distinguish between the cases. As such, while the common intuition of “just
measure more variables (and control for them)” shared by many social scientists
is misguided in the sense that controlling for everything not only does not solve
the problem but can even exacerbate it to an unknown degree (Wysocki et al.,
2022), measuring more covariates is, in fact, useful when adequate procedures
are employed to make use of them to detect latent confounding.
What if the covariates are jointly confounded? Commonly used causal discov-
ery methods may not be applicable, but is there anything we can do to learn the
underlying causal structure? Ideally, can the same patterns used to distinguish
between causality and confounding also be used to learn which correlations are
due to causal mechanisms and which are due to latent confounding?

Problem Statement 2 (Causal Discovery with Hidden Confounders). Given
only data over the observed variables X but not the data for the unobserved
variables Z, can we discover a joint causal network over X and the unobserved
confounding factors Z affecting them?

This problem is, of course, far too general for us to solve directly, so we start
by tackling the following simpler version, assuming linear causal relationships.

Problem Statement 2a) (Causal Discovery with Hidden Confounders—Lin-
ear Case). Given data only for the observed variables X, and assuming that all
causal relationships between both the unobserved Z and the observed X are
purely linear, can we discover a joint causal network over both the observed
variables X as well as the unobserved Z?

It turns out that under some additional assumptions on the causal structure,
which mainly amount to sparsity of the underlying causal graph, the answer to
this question is yes. In essence, by exploiting the linearity of the causal rela-
tions, we can decompose the correlations between the observed variables into
those attributable to latent factors—inducing specific low-dimensional patterns
in these correlations—and those due to direct causal effects between observed
variables—deviations from the patterns expected from pure confounding.
Next, since strict linearity of causal mechanisms is a strong requirement, we
consider whether we can use the framework developed in answering the last
question to also deal with some nonlinearities in our causal mechanisms.
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Problem Statement 2b) (Causal Discovery with Hidden Confounders—Non-
linear Case). Given data only for the observed variables X but not the unob-
served variables Z, do nonlinear causal mechanisms exist for which we can
discover a joint causal network over X and Z?

We begin by showing that recent identifiability results for nonlinear ICA do
not translate into any results for this question. We then proceed to show that
the post-nonlinear causal model precisely fits the bill. It permits us to describe
the correlations between observed variables solely in terms of linear relations,
enabling us to use the tools we developed to tackle the previous question.
Having obtained positive results for the case of confounding, we turn to the
related but distinct problem of selection bias. While one might intuitively
expect that solutions for one kind of problem translate readily into solutions
for the other, this is unfortunately not the case. We therefore ask whether there
are any other patterns we can exploit in the case of selection bias. That is,
under which conditions can we tell apart data subject to (artificial) selection
bias from data that arose “naturally”? Can we determine how strong these
selection effects are? Can we recover the true underlying distribution?

Problem Statement 3 (Dealing with Selection Bias). Given data for the
observed variables X, are they causally connected, or are the correlations best
explained by selection effects due to conditioning on an unobserved collider Z?

To study this problem, we consider the case of linear selection effects, i.e.,
threshold effects for including data points based on a linear combination of the
observed values. We show that this kind of selection bias can be discovered
for parametric (specifically, exponential) families of distributions and certain
nonparametric families of distributions for which we have prior information
about their invariance structure (e.g., rotational invariance).
Last, we study if data from multiple contexts is useful for detecting latent
confounders. A central observation in the last years on causal discovery has
been that using data from multiple sources, such as data from different hospi-
tal sites or observational and experimental data, allows us to obtain stronger
identifiability on the underlying causal graph and its mechanisms (Mooij et al.,
2020; Huang et al., 2020). However, the vast majority of these approaches still
assume causal sufficiency and are, therefore, not designed to deal with latent
confounding or selection. Therefore, we take some first steps towards deter-
mining to what extent the presence of latent confounding can be detected when
we have access to such multiple data sources.

Problem Statement 4 (Confounding across Contexts). Given data only for
the observed variables X across multiple contexts c ∈ C, but not the unob-
served variables Z, how readily can we determine which variables are jointly
confounded by the same latent factor Zi ∈ Z?



From the answers to our previous questions we already know that we can
figure out a lot about the structure under parametric assumptions. Given data
from multiple environments, however, it turns out that the answer is yes under
quite generic assumptions, requiring neither parametricity nor strong structural
assumptions on the underlying causal model. Instead, we only require some
weak assumptions about the mechanism changes across environments.

We summarize the contributions of this thesis and the relevant research ar-
ticles on which it is based in the following table. All chapters are based on
these research articles, albeit many structural changes were made. These in-
clude changes of notation, restructuring of results for narrative coherence, and
inclusion of additional results and discussions relating them to each other and
to other related work that did not fit within the pages of the original publi-
cations. For the publications forming the basis of Chapters 2–5, the author
took the lead in ideation, developing the theory, experiments, and writing. For
the article on which Chapter 6 is based, the author provided the initial idea,
contributed to the theory and writing, and took on a more supervisory role.

Reference Chapter

D. Kaltenpoth and J. Vreeken. We Are Not Your Real Parents: Telling
Causal from Confounded using MDL. In SDM, pages 199–207. SIAM,
2019

Chapter 2

D. Kaltenpoth and J. Vreeken. Causal Discovery with Hidden Con-
founders Using the Algorithmic Markov Condition. In UAI, pages
1016–1026. PMLR, 2023a

Chapter 3

D. Kaltenpoth and J. Vreeken. Nonlinear Causal Discovery with
Latent Confounders. In ICML, pages 15639–15654. PMLR, 2023c

Chapter 4

D. Kaltenpoth and J. Vreeken. Identifying Selection Bias from Ob-
servational Data. AAAI, 37(7):8177–8185, 2023b

Chapter 5

S. Mameche, J. Vreeken, and D. Kaltenpoth. Identifying Confounding
from Causal Mechanism Shifts. In AISTATS. PMLR, 2024

Chapter 6

Table 1.1: Publications on which this thesis is built and their corresponding chapters.
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Notation

Symbol Description

X = (X1, . . . , Xm), Y Observed variables
Z = (Z1, . . . , Zl) Unobserved variables
V General set of variables, usually X ∪ Y ∪ Z
I, J ⊆ [m] = {1, . . . , m} Index sets
VI = {Vi : i ∈ I} A subset of variables corresponding to index set I
P (V ) Joint probability distribution over V
x, y, z, v Samples for the corresponding set of variables
G = (V, E) Graph with vertices V and edges E
Xi → Xj Edge (Xi, Yj) ∈ E
XI → Y Set of edges {Xi → Y : i ∈ I} ∈ E
PaG(Y ), Pai The set of parents of Y in G, and Pa(Xi)
G∗, Pa∗ True graph, and parent sets in this graph
A, B, C Matrices
U Orthogonal matrix
ε Exogenous noise variables
X ⊥⊥ Y | Z Conditional independence
f, g, τ, ν (Nonlinear) Functions
K Kolmogorov Complexity
+=,

+
≤ (In-)equality up to additive constants

I(x : y) Algorithmic Mutual Information
I(X; Y ) Statistical Mutual Information
KL Kullback-Leibler Divergence
L(x, M), L(x; M) MDL Scores
C Confidence score of a method
Π = {π1, . . . , πr} Partition
s ∈ S Settings
P s Probability distribution in setting s



Chapter 2

Telling Causal from
Confounded

"If you can’t solve a problem, then there is an easier problem you can
solve: find it."

George Pólya, Mathematical Discovery on Understanding,
Learning, and Teaching Problem Solving

Causal inference is one of the most challenging and important problems in
statistics (Pearl, 2009). As we have seen, the commonly proposed "gold stan-
dard" of using RCTs or other controlled data sources comes with its own set
of problems. It by no means guarantees that causal estimates will be accurate,
much less so that causal graphs will be (Deaton and Cartwright, 2018).
Therefore, we focus on a different way of tackling the problem: to find condi-
tions under which the causal effects (or networks) are identifiable from purely
observation data (Glymour et al., 2019). That is, we want to find assumptions
under which the observed data allows us to uniquely determine the causal fac-
torization of the joint probability distribution of all variables.
One of the most common assumptions in causal inference is that of causal
sufficiency. That is, to make sensible statements on the causal relationship
between two statistically dependent random variables X and Y , it is assumed
that no hidden confounder Z exists that causes both X and Y . When this
assumption holds, all correlations between two variables X and Y that cannot
be explained away by conditioning on other observed variables must be due to
direct causal effects between X and Y . In practice, this assumption is virtually
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always violated—because we do not know all the relevant factors, or because we
cannot measure everything—and existing methods relying on this assumption
will return supposedly “causal” graphs containing many spurious edges (Tu
et al., 2019). Worse yet, the assumption is not only often violated, but most
methods do not, even can not, check whether the assumption holds.
In this chapter, we begin by asking the following simple question: given a set
of variables X = (X1, . . . , Xm) and a target Y , does X cause Y or does there
exist some set of unmeasured confounders Z = (Z1, . . . , Zl) co-causing both of
them? To answer this question, we build upon the algorithmic model of causal-
ity (AMC) introduced by Janzing and Schölkopf (2010). Within this framework
of causality, the simplest—measured in terms of Kolmogorov complexity—
factorization of the joint distribution coincides with the true causal model. In
the simplest case of only two variables without latent confounding, if X causes
Y , then the complexity of the factorization in the causal direction, X → Y ,
should be lower than in the anti-causal direction, Y → X,

K(P (X)) + K(P (Y | X)) < K(P (Y ) + K(P (X | Y )) .

We propose, similarly, that if a third variable Z confounds X and Y , then
the complexity of the factorization according to the model, including this con-
founder should satisfy the corresponding inequality

K(P (Z)) + K(P (X | Z)) + K(P (Y | Z)) < K(P (X)) + K(P (Y | X)) .

Note that we do not include K(P (Z)) on the right-hand side here. Our claim
is, therefore, that including the (correct) latent confounder is strictly better
than any proposed causal model over solely the observed variables.
Of course, since we have not measured the confounding factor Z, we cannot
evaluate the Kolmogorov complexity terms involving it. We will, therefore, em-
ploy latent factor models to estimate the joint distribution P (X, Y, Z) (Loehlin,
1998). Within the AMC, the true confounder helps us compress the data op-
timally so that no other model, including latent confounders, can perform any
better. Hence, if we can nevertheless find such a latent factor model out-
performing purely causal models, we know that there must exist some latent
confounder, even if the specific model we fit to the data is itself misspecified.
To address the fact that K itself is not computable (Li and Vitányi, 2009),
we use the Minimum Description Length (MDL) principle (Grünwald, 2007),
which provides us with a statistically well-founded variational upper bound for
the Kolmogorov complexity K by restricting the set of permitted programs.
To introduce our approach and set the tone for the remainder of this thesis,
we begin by introducing the required background for causal discovery in Sec-
tion 2.1, including a precise description of our problem in Section 2.1.2 and
some intuitively appealing attempts at solutions, which are unfortunately not
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all that, in Section 2.1.3. We then introduce the algorithmic model of causality
in Section 2.2, which in particular lets us formalize the notion of independence
of causal mechanisms in Section 2.2.3. The algorithmic model of causality will
underpin the remainder of this thesis as a conceptual tool to think with.
In Section 2.3, we extend the algorithmic model of causation to include latent
confounding directly instead of considering them only as violations of the stan-
dard formulation. Since Kolmogorov complexity itself is not computable, in
Section 2.4 we restrict the problem from all programs to subsets of programs
for which the code lengths can be computed. This is similar to the commonly
used approach of variational inference, where we optimize over some tractable
subset of the distributions we would, in fact, like to optimize over. We then
show that it performs well empirically on both synthetic and real-world data,
and also in comparison with other approaches, in Section 2.6. We wrap up
with Section 2.7, where we discuss some limitations of our approach and the
literature on the topic in general, as well as outline some additional problems
that we will further discuss in subsequent chapters. We include proofs for all
theoretical statements in Appendix A.2, and include here only proof sketches.

2.1 Causal Inference and Confounding

We consider here the setting where we are given n samples from the joint
distribution P (X, Y ) over two statistically dependent continuous-valued ran-
dom variables X and Y . We require Y to be a scalar, i.e., univariate, but
allow X = (X1, . . . , Xm) to be of arbitrary dimensionality so that it may
be univariate or multivariate. We also allow a set of unmeasured variables,
Z = (Z1, . . . , Zl) to influence the observed variables X, Y so that P (X, Y ) is
the marginal distribution of the joint distribution P (X, Y, Z) over both ob-
served and unobserved variables. We will write V to refer to a generic set of
variables, which can generally be taken to be V = X ∪ Y ∪ Z. We begin by
introducing the basic framework for causal discovery and inference that will be
used throughout the rest of this manuscript.

2.1.1 Causal Basics

It is impossible to infer causal effects from observational data without mak-
ing any assumptions (Pearl, 2009). That is, to reason about the effects of
an intervention (or counterfactual) on the distribution P (V ) generating our
data, we require assumptions on the (properties of) a causal model in the first
place. Without any such assumptions, many processes with different causal
relationships are consistent with the observed distribution P (V ).
To start with, we introduce Bayesian Networks (BNs), which provide a graph-
ical representation of the distribution P (V ) (Koller and Friedman, 2009).
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Figure 2.1: Three proposed Bayesian networks for the distribution P (X, Y, Z) =
P (X)P (Z)P (Y | X, Z). All three graphs entail different conditional independences.
As such, only graph (b) captures the independences X ⊥⊥ Z and X ̸⊥⊥ Z | Y correctly.

Definition 2.1 (Bayesian Network). A Bayesian Network for a distribution
P (V ) is a directed acyclic graph (DAG) G = (V, E) with nodes V and edges
E ⊆ V × V , denoted by X → Y when (X, Y ) ∈ E, such that

P (V ) =
∏

Y ∈V

P (Y | PaG(Y )) ,

where PaG(Y ) = {X ∈ V : X → Y ∈ E} is the set of parents of Y in G. For
ease of notation, we also write S → Y for subsets S ⊆ PaG(Y ) when all
variables Xi ∈ S have an edge Xi → Y .

Of course, for any given distribution P (V ), there are many different ways of
factorizing it and, thus, many different corresponding BNs G. To constrain the
set of admissible networks we therefore require further assumptions.
Consider the example where X and Y are independent, X ⊥⊥ Y . While we could
consider the graph G = ({X, Y } , {X → Y }), the corresponding factorization
P (X, Y ) = P (X)P (Y | X) would not capture the independence of X and Y .
In a sense, this graph is not minimal in that it allows us to model correlations
that are not, in fact, present in the observed distribution that is to be modeled.
We, therefore, want to find BNs G that capture precisely the (in-)dependences
of the variables that hold in the observed distribution P (V ). In particular, if we
want to interpret G causally, we need to be able to look at G and know which
variables would change if we were to intervene on any given target variable
Vi ∈ V . In the previous example of independent X and Y , changes in either
variable will not influence the other. This leads us to our first assumption, the
causal Markov condition (CMC, Pearl (2009)).

Definition 2.2 (Causal Markov Condition). Each variable Y ∈ V is indepen-
dent, in P (V ), of all its non-descendants, given its parents PaG(Y ) in G.

What does this mean? Ignoring the variable Y ’s effects, all the relevant infor-
mation about it is contained in its parents PaG(Y ). That is, in a (causally)
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X R S T U V Y

W P Q

Figure 2.2: Illustration of d-separation in a causal graph based on Pearl (2009). X and
Y are d-separated by the empty set ∅ because of the collider T on the path between
them, but would become d-connected if we condition on either the collider T or its child
P . U and Y are not d-separated, but become d-separated by conditioning on V .

Markovian system, the current state is relevant to the future, but how we ar-
rived at the current state is irrelevant (Scheines, 1997). This is in contrast with
the state-dependence of a system, also known as hysteresis (Ewing, 1882).
In particular, if G satisfies the CMC for P (V ), a graphical criterion exists for
deriving statistical independence in P (V ) from G. That is, under the CMC,
properties of G can be translated into properties of P (V ). A Bayesian network
G is called a causal Bayesian network (CBN) if it satisfies the CMC.

Definition 2.3 (Causal Bayesian Network). A Causal Bayesian Network is a
Bayesian Network satisfying the CMC.

To derive useful properties from a CBN, we require two more properties for
our network, G and distribution P .
First, an (undirected) path p in G of length r is be a sequence of nodes
Vi1 , . . . , Vir

∈ V such that there exists an edge between Vij
, Vij+1 for all j =

1, . . . , r− 1. We call a node C ∈ V a collider on the path p in G if C = Vij for
some j and such that Vij−1 → C ← Vij+1 . An unblocked path between R, S is
a path between two nodes X ∈ R and Y ∈ S containing no colliders C.
We call two sets R, S ⊆ V d-connected by a set T if there exists a path p
between R and S such that a) no non-collider on p lies in T and b) T contains
C or a descendant of C for every collider in p. The sets R and S are called
d-separated by T if they are not d-connected by T .

Example 2.1. Let us consider the graph in Figure 2.2 based on Pearl (2009).
a) The variables X, Y are d-separated by the empty set ∅ because the only

path between them goes through the collider T . However, this path
would become unblocked if we condition on either T (a collider) or P (a
descendant of a collider).

b) The variables U, Y are not d-separated by ∅ because V is a common
parent of both, but they are d-separated by V .

According to the CMC, any two subsets R and S that are d-separated by T are,
in fact, independent in P , i.e., R ⊥⊥ S | T . Therefore, the CMC lets us draw
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inferences about conditional independences in P (V ) based on the graphical
structure of the BN G. In order to learn such a graph G from data, we also
need to be able to do the reverse; that is, draw inferences about the graphical
structure of G from conditional independence properties in P (V ). This is called
the Causal Faithfulness assumption.

Definition 2.4 (Causal Faithfulness). A Bayesian Network G is faithful to a
probability distribution P if any three sets satisfying the independence R ⊥⊥
S | T in P satisfy the same d-separation in G.

Note that by construction, the faithfulness assumption reduces to tests of
marginal independence. By considering all paths between single nodes X ∈ R
and Y ∈ S, we are essentially assuming that conditional independence between
R, S is violated, R ̸⊥⊥ S | T , because there exists at least one pair X ̸⊥⊥ Y | T
that are not conditionally independent.

Example 2.2. We consider three examples where faithfulness does (not) hold.
a) The faithfulness assumption generically holds for generalized additive

models in which each variable is described by a sum of its parents

Vj =
∑

Vi∈Pa(Vj)

fji(Vi) + εj ,

where εj ⊥⊥ Pa(Vj) and all fji are assumed to be non-zero functions.
b) To see what we mean by “generically” in the previous example, let us

consider the simple linear model given by

V1 = ε1

V2 = α21V1 + ε2

V3 = α32V2 + α31V1 + ε3

In particular, the marginal effect of V1 on V3 is given by α31 + α32α21.
Therefore, if the parameters satisfy α32 = −α31/α21, the parameters can-
cel out exactly, leading to V1 ⊥⊥ V3, and thus faithfulness being violated.
This kind of fine-tuning is, of course, very specific, and if we assume
the parameters to be sampled at random from a continuous probability
distribution, this happens with probability zero.

c) Another example where the faithfulness assumption fails is

X1, X2 ∼ Bern(0.5)
Y = X1 ⊕X2 ,

in which case both X1 and X2 are marginally independent of Y , but the
sets {X1, X2} and {Y } are not independent. Note that once more, this
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Figure 2.3: The need for causal sufficiency. When variable Z is unobserved, then the
conditional independence relations holding between X and Y (no independences at all)
are indistinguishable between all three causal graphs.

is a highly specific case: if either of the two Xi were ∼ Bern(p) with
probability p , 0.5, faithfulness would, in fact, hold.

When the faithfulness assumption holds, all independences in P (V ) are re-
flected by d-separation in G. When both the CMC and faithfulness hold,
conditional independences in P (V ) correspond exactly to d-separation in G.
That is, G is minimal for representing the conditional independence relation-
ships of P (V ) in the sense that no graph with fewer edges can produce the
same independence relationships. In particular, when we try to discover a
graph G capturing the conditional independences in P (V ), sparsity constraints
will be computationally convenient and provide an adequate inductive bias by
enforcing a real property of the true graph.
However, These two conditions are insufficient to guarantee that a discovered
graph G corresponds to the true causal network generating P (V ). For example,
in Figure 2.3, in all generating models, the same conditional independences—
none whatsoever—hold among the observed variables X, Y , regardless of whether
X causes Y , Y causes X, or the unobserved Z causes both X and Y . Therefore,
one more assumption, called causal sufficiency, is required for independences
and d-separations to tell us anything.

Definition 2.5 (Causal Sufficiency). All common parents of all observed vari-
ables V are themselves observed and thus included in V .

That is, we cannot distinguish between the generating models without assum-
ing sufficiency based on only graphical criteria. When all three assumptions
hold, the true causal graph can be recovered up to a certain equivalence relation
called Markov equivalence. Consider, for example, the graphs in Figure 2.4 over
variables X1, X2, X3. There are no conditional independences between any of
the variables, and all of the graphs capture precisely the same set of distribu-
tions. This set of graphs entailing exactly all the same independence constraints
is called the Markov Equivalence Class (MEC) of the graph G (Pearl, 2009).
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Figure 2.4: Markov Equivalence. All six networks contain precisely the same d-separation
conditions, despite depicting different causal mechanisms generating the data.

Definition 2.6 (Markov Equivalence). Two graphs G and H are called Markov
equivalent, denoted G ∼ H if they entail precisely the same set of d-separation
relationships. The Markov equivalence class of a graph G is the set {H : H ∼ G}
of all its Markov equivalent graphs.

It can be shown that all graphs H in the Markov equivalence class of G can
be characterized by two things. First, they all share the same undirected
edges, called the skeleton of G. Second, they share the same set of unshielded
colliders, where a collider X → C ← Y is called unshielded if there exists no
edge between X and Y (Meek, 1995).
Another way to formulate this is in terms of Markov blankets (sometimes called
Markov boundary). The Markov blanket MB(Y ) of the variable Y is the small-
est set of variables B ⊂ V not containing Y such that Y is independent of all
other variables, V \ (B∪{Y }), conditional on B. When the CMC and faithful-
ness hold, the Markov blanket is unique and consists precisely of the parents,
children, and other parents of its children. Graphs G and H are then Markov
equivalent if and only if all Markov blankets MBG(Y ) = MBH(Y ) coincide.
Unfortunately, as we will repeatedly see in the experiments in future chapters,
the Markov equivalence classes of discovered graphs are generally exponentially
large in the number of discovered edges, and thus not very insightful (Chicker-
ing, 2002; He et al., 2015b). That is, a discovered MEC commonly leaves many
of the causal directions unspecified, allowing for a great many different causal
graphs and permitting only little causal insight into the result.
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In many cases, this limited causal interpretability of the resulting MEC is
insufficient for the task at hand, so we would like to go beyond Markov equiv-
alence. To do so, we employ structural causal models (SCMs; Wright, 1921;
Pearl, 2009), also known as structural equation models or structural functional
models. These models correspond to specific parametrizations of the causal
mechanisms underlying the joint distribution P (V ).

Definition 2.7 (Structural Causal Model). A structural causal model for the
distribution P (V ) is a triple (G, F, P (ε)) such that G is a CBN for P (V ) and
F = (f1, . . . , fm) is a set of functions such that each Vi can be written as

Vi = fi(Pai, εi) ,

where ε are independent random variables and Pai are the parents of Vi in G.

We have already seen three examples of SCMs in Example 2.2 and will see
many more throughout this thesis.
Conversely, given a set F of functions fi and noise variables εi such that the
joint distribution of V can be described by the relationships

Vi = fi(VIi , εi) ,

then, if we construct the graph G by setting Pai = Ii, it will satisfy all condi-
tions required of a CBN for P (V ). Note that for any given P (V ) and CBN G,
there are infinitely many sets of functions F and noise variables ε which could
generate P (V ). For example, if F, ε parametrize P (V ), then so does any pair
F̃ , ε̃ such that ε̃i = gi(εi) and f̃i(·, ·) = fi(·, g−1

i (·)) for invertible functions gi.
Once a specific choice of functions has been made, however, the causal network
often becomes uniquely identifiable. That is, all of its edges become directed,
thereby reducing the size of its MEC exponentially. In this case, it makes
sense to speak of the ground truth network G∗ uniquely describing the struc-
ture of P (V ). This is the case for linear non-Gaussian models (Shimizu et al.,
2006; Hoyer et al., 2008b), linear Gaussian models with equal variances (Peters
and Bühlmann, 2014), additive noise models (Peters et al., 2014), and post-
nonlinear models (Zhang and Hyvärinen, 2009), among others. While the choice
of model class in these works is generally inspired by theoretical tractability of
the analysis, they both cover pragmatic choices for fields like chemistry (Lud-
den, 1991) and biology (Álvarez Buylla et al., 2016; Runge, 2023; Sakurada and
Ishikawa, 2024), and also incorporate a wide range of cases (Cramér, 1936).
For the rest of this thesis, when we use P (V ), we assume that the CMC, causal
faithfulness condition, and causal sufficiency all hold over the entire set V . In
particular, we assume that the set V = X ∪ Y ∪ Z will contain all variables,
including all confounders Z. Of course, when Z is not observed, and only X
and Y are observed, causal sufficiency no longer holds over only these variables.
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Figure 2.5: Causal and Confounded graphs with nodes X1, . . . , Xm, Y , and Z. Our goal
will be to determine which of the two models fits our data better.

2.1.2 What’s Our Problem?

With the basics out of the way, we can now describe the specific problem we
are interested in solving. In the previous section, we have described conditions
that allow for discovering causal graphs (or at least their MEC) when all rele-
vant variables have been observed. Therefore, our question is: how would we
know whether we have measured all relevant variables? In general, this is a
challenging problem, so as a first attempt at discovering confounders, we con-
sider two relatively simple cases of causal models in Figure 2.5. Our goal is to
decide between the model in which X causes Y , depicted in Figure 2.5a, and
the model where a set of confounders Z are responsible for all the observed
correlations between X and Y , shown in Figure 2.5b.

Problem Statement. Given a sample x, y = xn, yn from P (X, Y ), determine
whether the distribution P (X, Y ) is the marginal distribution generated by a
causal model where X → Y with independent Z, or where X ← Z → Y .

Of course, to solve this problem, we will require further assumptions on the
two competing models generating P (X, Y, Z). Before we go into the details of
this, however, let us consider some simple and intuitive ideas we could try to
use to determine which of the two cases obtains.

2.1.3 Simple Solutions That Do Not Work

As we have noted above, when looking at the causal relationships between X
and Y , the case where X causes Y and where a Z causes both X and Y are
indistinguishable from looking at conditional independences between X and Y
alone. In both cases, X ̸⊥⊥ Y are not independent and cannot be rendered
independent by conditioning on any other observed variables.
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Moreover, given only a sample x, y from the distribution P (X, Y ) for which
X ⊥̸⊥ Y holds, but knowing nothing about Z or P (Z), we cannot directly test if
X ⊥⊥ Y | Z. A simple approach would be to see if we can generate a Ẑ such that
X ⊥⊥ Y | Ẑ; for example, through sampling or optimization. However, suppose
the confounders Ẑ are not constrained in any way. In that case, it is easy to
see that it is always possible to generate a Ẑ that achieves this independence,
even when there are no confounders Z. A trivial example is to set Ẑ = X.
Deciding based on model evidence rather than conditional independence fares
no better. That is, we can try to find a Ẑ achieving better model evidence,
P (Ẑ)P (X|Ẑ)P (Y |Ẑ) > P (Ẑ)P (X)P (Y |X). Besides having to choose a prior
on Z, we already achieve this, once more, by initializing Ẑ = X, regardless of
whether there was a confounder in the underlying causal model or not.
Essentially, the problem with both of these approaches is that it is simply too
easy to find a Ẑ where these conditions hold, which in large part is due to
the fact that we do not take the complexity of Ẑ into account, and hence face
the problem of overfitting. To avoid this, we take an algorithmic information
theoretic approach, such that we can take both the complexity of Ẑ and its
effect on X and Y into account in a principled manner.

2.2 The Algorithmic Model of Causality

What do we mean when we say that the above attempts at a solution do not
take into account the complexity of Ẑ, and how do we measure the complex-
ity of a variable in the first place? Over the years, many different measures
of complexity have been proposed in the field of complex systems and out-
side of it. These measures include measures of nonlinearity (Strogatz, 2018),
interactions (Cliff et al., 2023), adaptation (Del Fabbro and Christen, 2022),
self-organization (Kauffman, 1995), hierarchy (Corominas-Murtra et al., 2013),
diversity (Ulanowicz, 2009), feedback loops (Turner and Baker, 2019), close-
ness to the “edge of chaos” (Langton, 1990), and circuit complexity (Vollmer,
1999). For the most part, these are difficult to compute and approximate, are
highly specialized to the study of specific systems in which they give interesting
insights, are often difficult to reason about, and have no causal interpretation
whatsoever. Instead of these highly specific measures, we, therefore, make use
of the Kolmogorov complexity from the field of algorithmic information the-
ory (Li and Vitányi, 2009), which can be given a causal interpretation through
the algorithmic model of causality (Janzing and Schölkopf, 2010). The under-
lying intuition is that the laws of physics are both computable and that the
specific forms of these laws simple. In particular, a causal description of the
universe should be simpler than a non-causal description of the universe.
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As we have seen for SCMs, we can describe the distribution P (V ) by writing
each variable Vi ∈ V with its structural equation

Vi = fi(Pai, εi) ,

where {εi}Vi∈V are mutually independent noise variables.
In the algorithmic model of causality, we assume that each function fi is a
computable function (Grzegorczyk, 1957). Unfortunately, introducing the en-
tire formal framework of computability theory is beyond the scope of this sec-
tion, so we shall give essentially correct but informal definitions of the required
concepts (Cooper, 2017). A computable function will then be no more than a
function that can be approximated arbitrarily well by a (computer) program.
More specifically, we call a number x ∈ R computable if there exists an algo-
rithm that can be used to approximate it arbitrarily well. For example, e is
computable because it can be approximated by evaluating increasing partial
sums of the form

∑n
i=0

1
n! . A computable sequence (xi)i∈N is a sequence of

computable numbers that can all be computed by the same program, such as
the sequence of all these approximations of e.

Definition 2.8 (Computable Function). A function f : D ⊆ Rd → R is called
computable if and only if the following conditions hold

a) For every tuple (xi)i∈N((x1i, . . . , xdi))i∈N of computable sequences of real
numbers , the sequence (f(xi))i∈N is also computable, and

b) there exists a computable function d : N→ N such that if ∥x− y∥ < 1
d(n)

then |f(x)− f(y)| < 1
n .

In essence, assumption a) tells us a computable function f is another program
so that the composition of f and the program generating its inputs is again a
program. Meanwhile, assumption b) is known as effective continuity, requiring
us to be able not only to show that the function is continuous but also to give
an explicit (and computable) description of how the ε and δ in the commonly
used ε− δ definition of continuity are related to each other.
Note that for any compact (i.e., closed and bounded) domain, the set of all com-
putable functions is dense in the space of continuous functions, and therefore
capable of capturing any physically relevant aspect of the universe arbitrarily
well (Grzegorczyk, 1957). If this were not the case, correct theories of the
universe would be fundamentally non-constructive: while a mathematically ac-
curate description of the laws of physics might exist, we would not be able to
use them to construct models and make predictions about the world.
Given such computable functions F = {fi}i—which imply the structure in G—
and ε = {εi}i, all variables Vi take on deterministic values, so that the joint
distribution P (V ) is described entirely by the functions f and the distribution
of ε. In particular, P (V ) is computable so long as F and P (ε) are. To measure
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the complexity of P (V ), we can therefore measure the complexities of f and ε.
To do this, we use algorithmic information theory (Li and Vitányi, 2009).

2.2.1 Kolmogorov Complexity and Algorithmic Mutual In-
formation

Now that all our functions are considered computable, how would we use this
fact to measure their complexity? The most natural and straightforward way of
doing this is to measure the length of the shortest program, which computes, or
approximates, the function (and then halts). This length depends on the choice
of the specific programming language—more formally referred to as universal
Turing machine—used. Fortunately, it turns out that the resulting quantity,
called Kolmogorov complexity, is independent of this choice up to an additive
constant (Li and Vitányi, 2009).

Definition 2.9 (Kolmogorov Complexity). Let U be a universal Turing ma-
chine (Li and Vitányi, 2009). Then the the Kolmogorov complexity for finite
strings and functions is defined as follows.

a) If r ∈ {0, 1}∗ is a finite string

K(r) = min
p∈{0,1}∗

{|p| : U(p) = r} .

b) If f is a (computable) function, then1

K(f) = min
p∈{0,1}∗

{
|p| : ∀x ∈ dom(f)∀q ∈ N : |U(x, p, q)− f(x)| ≤ 1

q

}
.

Here, the terms U(p) and U(x, p, q) can be understood simply as a computer
(with a specific programming language) running the program p (with the inputs
x, q). The Kolmogorov complexity is therefore defined as the length of the best
possible compression of the string r, respectively function f , and makes use of
all structure in the given object (Li and Vitányi, 2009). In particular, when
this object is generated from an i.i.d. source, Kolmogorov complexity cannot
be asymptotically improved upon, even when we are given access to the true
model generating the object, as we will see in Equation (2.4).
Next, we define the conditional Kolmogorov complexity for string r given some
side information s as the length of the shortest program which computes r
starting from the input s (Li and Vitányi, 2009),

K(r | s) = min
p∈{0,1}∗

{|p| : U(p, s) = r} ,

1If f is not computable, then there is no such program and K(f) = ∞.
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and similarly for two computable functions f and g, or combinations of com-
putable functions f and strings r. For example, when f(x) = f(x; r) = xr

where r ≫ 0 is some natural number, then K(f | r) ≪ K(f) since the entire
“difficulty” in computing f is knowing the parameter r.
Thus, when we see that K(r | s)≪ K(r), this tells us that s contains a lot of
algorithmic information about r that can be extracted by a short program p.
In contrast, when K(r | s) ≈ K(r), then s contains no algorithmic information
about r, e.g., when s is simply a random string sampled independently of r.

Example 2.3. Let us look at a few examples.
a) Let s = r⊕ e where e = (0, . . . , 0, 1, 0, . . . , 0) contains precisely one non-

zero entry. Then, instead of computing r from scratch, we could run the
following simple two-step program p: first, copy the input s. Second,
specify the one index whose corresponding bit needs to be flipped. The
first step is independent of the size of the input. The second stop requires
a description of the index, which can be done in O(log n) bits. Together,
they, therefore, need much fewer than n bits.

b) Let r ∈ {0, 1}∗ be a string whose bits are i.i.d. uniformly distributed in
{0, 1}, and let s be another string such string, sampled independently
from r. Then s gives us no information about r.

c) Let r, s be as in the previous case, but now let both have their entries
distributed according to Bern(p) with p , 0.5. Then, despite s being
statistically independent of r, it does provide us with relevant informa-
tion: an (initial) estimate of the probability p, knowing which we can
compress r much more cheaply than if we had not known it.

The above intuition leads us to the following definition of algorithmic mutual
information (AMI) between two objects (Li and Vitányi, 2009).

Definition 2.10 (Algorithmic Mutual Information). We define the algorithmic
mutual information I(a : b) between two objects a, b as

I(a : b) += K(a)−K(a | b∗) += K(b)−K(b | a∗) ,

where t∗ refers to the shortest program computing t and += refers to equality
up to additive constants independent of a and b.

Here, we need to condition on the shortest programs for a and b instead of
a and b themselves to avoid asymmetries due to inefficient encodings. For
example, if we use the function f(x) = xr from above, then we could write an
arbitrarily complex program to compute it and thus make it difficult to gain
any information from f about r with a shorter program than what was needed
to compute r in the first place. By using the optimal compression f∗, we avoid
such cases and ensure symmetry of the measure (Li and Vitányi, 2009).
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We call two objects a and b algorithmically independent when I(a : b) += 0.
In this case, their best joint compression is simply the concatenation of their
individual compressions, i.e., K(a, b) = K(a) + K(b). For more than two ob-
jects a1, . . . , am, we define algorithmic independence in terms of independence
between pairs aI , a−I for all subsets I ⊆ [m] B {1, . . . , m}, where we write
aI = (ai)i∈I and a−I = a[m]\I . Equivalently, when all the ai are independent,
we have K(a1, . . . , am) =

∑m
i=1 K(ai).

2.2.2 Algorithmic and Statistical Independence

Since algorithmic independence is a rather abstract concept that is much less
well-understood than statistical independence, in this section we explain some
connections between the two notions of independence.
To start with, algorithmic independence is a stronger condition than statistical
independence. Consider, for example, the case of a ∈ {0, 1}n being a long string
such that K(a) += n. Assume that we obtain two identical copies of a from
some process. Clearly, a is not algorithmically independent of a. However, we
can easily find a distribution where the two strings could have been generated
independently: Take the distribution P on {0, 1}n such that P (X = a) = 1.
Then the two strings x1 = a, x2 = a could be generated independently from the
distribution P ⊗ P . While this example may be highly specific, it nevertheless
highlights the difference between the two approaches. Since two objects x, y
are algorithmically dependent if and only if we can write y = f(x∗) for some
simpler function K(f) < K(y), a reasonable question is to ask under which
conditions a random variable X and the output f(X) under a function f are
statistically independent. The answer is, unfortunately, rather disappointing.

Lemma 2.1. Let X ∼ P and f be some (measurable2) function. Then X and
f(X) are statistically independent if and only if f is constant.

Proof sketch. If X and f(X) are independent, then for all B we have P (f(X) ∈
B) = P (f(X) ∈ B)2 ∈ {0, 1}2, which can only happen when f(X) is constant.

This lemma tells us that the “gap” between the two types of independence
is quite small. However, their semantics are nevertheless quite different. For
example, in independent mechanism analysis (Gresele et al., 2021), the inde-
pendence of nonlinear functions is phrased in terms of the orthogonality of the
columns of the Jacobian matrix at every point. That is, variation in one dimen-
sion of the output is (locally) independent of variation in the other dimensions

2Since all computable functions are continuous and all continuous functions mea-
surable, this is not a concern for us
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of the output. While these assumptions could be formulated in terms of some
statistical independence of some distributions, such a formulation would likely
not be a fruitful way to think about the problem.
Another way to see that the difference between statistical and algorithmic in-
dependence is not very large is to compare algorithmic and statistical mutual
information. Here, the statistical mutual information for two discrete random
variables is given by (Cover and Thomas, 1999),

I(X; Y ) =
∑

P (x, y) log P (x, y)
P (x)P (y) ≥ 0 .

Assuming that we have strings generated from an i.i.d. source on its symbols,
we then have the following relationship between the mutual information and
the average Kolmogorov complexity (Li and Vitányi, 2009),

I(X; Y )−K(P ) ≤ EX,Y ∼P (X,Y )[I(x : y)]
+
≤ I(X; Y ) + 2K(P ) .

That is, statistical dependence implies (almost) algorithmic dependence for
“typical” samples from the distribution P . We can, therefore, use statisti-
cal dependencies between variables as a proxy for algorithmic dependencies.
In essence, the only algorithmic information shared between two statistically
independent samples from the same distribution P is that distribution.

2.2.3 Independence of Causal Mechanisms

How can we apply these notions of complexity and independence to a causal
model described by the DAG G? To think about this, let us consider the
Markov property of G for the distribution P (V ),

P (V ) =
∏

Vi∈V

P (Vi | PaG(Vi)) .

As we have seen, many graphs G can satisfy this factorization, even among
those capturing precisely the independence constraints present in the distri-
bution P (V ). To distinguish between different graphs, we require a stronger
Markov condition. Not only should the variables Vi be generated solely from
their parents PaG(Vi), but the mechanisms by which they are generated should
also be independent of the mechanisms generating the other variables.
This idea is called independence of causal mechanisms (Janzing and Schölkopf,
2010). That is, all mechanisms P (· | PaG(·)) in the factorization above should
be independent of each other. When this independence is framed in terms of al-
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gorithmic independence, this means precisely that the complexity “factorizes”,

K({P (V | PaV (G))}V ∈V ) +=
∑

V ∈V

K(V | PaV (G)) .

Because of the similarity of this equation with factorization of P (V ) in the
causal Markov condition, this notion is called the algorithmic Markov condi-
tion (Janzing and Schölkopf, 2010).

Postulate 2.1 (Algorithmic Markov Condition). A causal DAG G is admis-
sible as causal graph for the distribution P (V ) if and only if

K(P (V )) +=
∑

V ∈V

K(P (V | PaG(V ))) . (2.1)

Being an algorithmic version of the causal Markov condition, this means that
not only is a variable statistically independent of its non-descendants given
its parents, but so are the causal mechanisms of all variables. Furthermore,
when we generate V via an SEM (G, F, P (ε)) in which all components are
algorithmically independent, then G is indeed an admissible causal graph for
P (V ). Therefore, the simplest description of an algorithmic Markov process
is the causal model generating the distribution P (V ) (Janzing and Schölkopf,
2010).
In particular, in the bivariate case, it states that if X causes Y , then

K(P (X)) + K(P (Y | X))
+
≤ K(P (Y )) + K(P (X | Y )) ,

which can be used to determine the direction of causality where purely statis-
tical criteria cannot be used to distinguish between the direction of the edge.
Since the algorithmic Markov condition is a stronger requirement than the
causal Markov condition, the former implies the latter. How about faithfulness?
While there is no general relationship between the CMC and faithfulness, it
turns out that the algorithmic Markov condition often does entail faithfulness.
To see why this is so, we first look at an example where it is not the case.

Example 2.4. Let X1, X2, X3 satisfy the following deterministic equations,

X1 = ε1

X2 = f(X1)
X3 = X1 + X2 ,

where f is bijective and both f and f−1 are sufficiently complex. It is easy to
see that in this model, all necessary information about X3 is already available
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in either of the variables X1 or X2, and once we include either of the edges
X1 → X3 or X2 → X3, causal faithfulness would require the other to be absent.
However, the complexity of K(P (X3 | X1, X2)) is very small, while the com-
plexity of both K(P (X3 | X1)) and K(P (X3 | X2)) are large, requiring an
additional encoding of f or f−1. Hence, the model with the shortest encoding
is the complete graph G, which is not faithful to the distribution P .

The reason why this example does not satisfy faithfulness is that the equations
are fully deterministic without any exogenous noise (besides X1). In contrast,
for non-deterministic models, it has been shown that when a graph G satis-
fies the algorithmic Markov condition for P (V ), then it will also satisfy the
faithfulness condition (Lemeire and Janzing, 2013).
Note that when there is no admissible graph G for P (V ), other explanations,
such as latent confounding or models with selection bias, must be considered.
We study how we can determine that confounding is likely to be the issue with
a proposed graph over the observed variables X.

2.3 Telling Causal from Confounded by Simplicity

The non-existence of admissible graphs for the distribution P (X, Y ) gives us a
hint towards the existence of a latent confounder Z, but it does not provide us
with a constructive criterion for determining whether such non-existence is due
to confounding, selection bias, or other issues. To derive such a constructive
criterion, we instead explicitly include latent confounders Z in the evaluation of
the model complexity and show that by comparing between models with and
without such Z, we can consistently and fairly determine if such a latent Z
should exist. We then explain how our setup can be used in practice by com-
bining the statistically well-founded approximations of Kolmogorov complexity
provided by the minimum description length principle (Grünwald, 2007) with
latent factor models to derive explicit model classes for comparing between
models with and without confounders (Loehlin, 1998).

2.3.1 Confounding in the Algorithmic Model of Causality

Since we assume that X, Y, Z with Z → X, Y have a joint causal DAG satis-
fying causal sufficiency, there is an admissible causal DAG satisfying over this
(unknown) larger set of variables. However, when we observe only the variables
X and Y , then causal sufficiency over only these two variables is violated, and
there will generally be no admissible network G for P (X, Y ) in the sense of
the algorithmic Markov condition above. Specifically, this means that any pre-
sumed set of causal functions relating the variables X, Y to each other will not
be algorithmically independent (Janzing and Schölkopf, 2010).
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For simplicity of notation, let us for now include Y among the Xi and con-
sider whether the variables X are confounded by some Z. We know that no
admissible causal graph exists if the variables X are confounded. But, being a
purely negative statement about the non-existence of a suitable DAG, it does
not give us any information as to why no such admissible graph exists. Nor will
we be able to derive from it an easily computable criterion for discovering la-
tent confounding down the line. Therefore, we explicitly model the unobserved
confounder Z to obtain such a readily operationalizable criterion.
That is, we apply the algorithmic Markov condition on the extended variable
set X, Z including the (correct) latent variables Z = (Z1, . . . , Zl), where the
Zj ’s are assumed to be independent. Then, if we knew the joint distribution
P (X, Z), we could identify the corresponding minimal Kolmogorov complexity
causal graph G as the minimizer,

K(P (X, Z)) = min
G

m∑

i=1
K(P (Xi | Pai)) +

k∑

j=1
K(P (Zj)) , (2.2)

where by Pai we denote here the parents of Xi among {Xj , Zk} in the full
network. Adding the terms K(P (Zj)) mirrors our assumption that all Zj are
jointly independent and that no reverse causality from X to Z exists.
Two questions arise from this idea. First, even knowing P (X, Z), could we
actually obtain K(P (X, Z)) < K(P (X))? That is, can the distribution become
simpler by including more variables? At first glance, it seems unlikely that this
will work. However, an intuitive example where this is plausible is for mixture
models. When we consider a distribution P that is a mixture of, e.g., Gaussian
distributions, then the “natural” parametrization we give is to state the mixture
probabilities and the parameters of the individual distributions in the mixture.
In general, even when we have an analytically tractable distribution P (X, Z),
the simplest way we know to describe P (X) is often by explicitly modeling
P (X, Z) and marginalizing out Z. Second, since we do not even know which set
of latent confounders Z is correct, and thus which distribution P (X, Z) would
be appropriate for the proposed comparison, can we ask instead if there exists
any distribution P (X, Z) with correct marginal distribution P (X) for which
K(P (X, Z)) < K(P (X)) holds? Moreover, if such a distribution P (X, Z)
indeed exists, does that mean that the data comes from a model involving a
latent variable? The following Theorem gives the, perhaps surprising, positive
answer to these questions.
Theorem 2.2 (Kolmogorov Does Not Incorrectly Detect Confounders). For
any distribution P (X), the following inequality holds

inf
P (X,Z)∈P

K(P (X, Z))
+
≤ K(P (X)) ,
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where the infimum is over the set P of all joint distributions P (X, Z) with fixed
marginal P (X) and jointly independent Z. Conversely, if a joint distribution
P (X, Z) ∈ P exists such that the inequality

K(P (X, Z))
+
< K(P (X)) ,

holds,3 then the true generating mechanism of X includes latent variables in-
fluencing some subset XS ⊆ X of the observed variables.

Proof sketch. The first part follows directly from choosing a distribution P (Z =
a) = 1, which has constant complexity independent of P (X). For the second
part, if there are no confounders for X, then all information required to com-
press the distribution P (X) is already available in the graph G∗

X .

This formulation gives us a principled manner to identify whether a given set
of variables Z is a (likely) confounder of X. With the above, we can score
the hypothesis Z → X. However, it also allows us to fairly score the hypoth-
esis that X is unaffected by any confounders. This is the case if none of the
proposed P (X, Z) obtain lower Kolmogorov complexities than P (X). Equiva-
lently, when P (Z) = δ(Z, z) is a deterministic point mass with P (Z = z) = 1,
then K(P (X, Z)) += K(P (X)) so that the case of unconfounded distributions
can be included within this larger framework. That is, the comparison between
complexities K(P (X)) and K(P (X, Z)) is not biased towards either case of al-
ways preferring the confounded or always preferring the unconfounded model.
What Theorem 2.2 tells us is, therefore, that if we can find any set of additional
variables Z such that K(P (X, Z)) < K(P (X)), then there in fact does exist
some true set of latent confounders Z affecting (some subset of) the variables X.
Note, however, that it does not guarantee that if a confounder is involved in the
true generating process, it will always be found. For a simple counterexample,
consider Z ∼ N(0, σ2) and noiseless relations X = aZ, Y = bZ. Then the
model containing only X and Y can be described by two parameters a2σ2 and
b/a, whereas the model involving Z requires three parameters σ2, a, b. It is,
therefore, not guaranteed that the model involving Z should be strictly less
complex than the one containing only X and Y .
Given that a distribution P (X, Z) is not guaranteed to exist, why should we
ever expect such a distribution P (X, Z) to exist? We will provide an intuitive
explanation of this expectation in the following hypothesis.

3Here,
+
< denotes inequality by more than the additive constant permitted due to

choice of the universal Turing machine U . Equivalently, K(P (X)) ̸
+
≤ K(P (X, Z)).
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Hypothesis 2.1 (Confounders Are Likely Generically Recoverable). Let P (X, Z)
be a computable distribution generated by the causal model involving edges
Z → X. Then, for most distributions of this kind, the following hold

a) The simplest way to compute P (X) is to compute P (X, Z), and then
marginalize over Z as P (X) =

∫
Z

P (X, Z)dZ, so that

K(P (X)) += K(P (X, Z)) + K(I) ,

where I is the program for computing the marginalization.
b) The algorithm I for provably approximating the integral uniformly up to

a desired accuracy is not of constant complexity in that it depends on the
underlying distribution P (X, Z) itself so that

K(P (X)) ̸
+
≤ K(P (X, Z)) .

Hence, P (X) will, in general, be strictly more complex than P (X, Z).

While we cannot provide any proof of the hypothesis in this very general form,
we will see it borne out throughout this thesis both in the theoretical analysis
of the specific scores we employ to evaluate competing causal models, as well
as in our empirical results. In particular, we will see that as we include more
observed variables X, cases in which the unconfounded model requires fewer
parameters than the confounded model become more exceptional.
Overall, we have seen that by using the algorithmic Markov condition on an
extended set of variables, we can determine the most likely causal model by
simply comparing the scores for different P (X, Z) and choosing the one with
the lowest Kolmogorov complexity. This approach does not suffer from the
problems we saw in Section 2.1.3 since we now explicitly take the complexity
P (Z) of the latent confounder into account. Moreover, this formulation allows
us to consider any distribution P (X, Z) with any type of latent factor Z.
Next, we turn to two aspects of this framework that we have not considered
in our analysis so far. First, we do not know the true distribution P (X, Z),
nor even distributions P (X) or P (Z). Instead, we only have a sample x from
P (X) from which we can approximate P̂ (X), but which gives us no explicit
information about Z, P (Z) or the joint P (X, Z). Second, Kolmogorov com-
plexity is not computable and the criterion therefore not directly applicable
in practice (Li and Vitányi, 2009). We will next show that both of these as-
pects can be addressed by employing the Minimum Description Length (MDL)
principle (Grünwald, 2007) with an appropriate model class.
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2.4 Minimum Description Length

Out of the two issues outlined above, we start with the first: instead of access
to P (X), we are given only a sample x. So even if we could compute the
Kolmogorov complexity K(x) of the sample, how would we compute K(P (X))?
Fortunately, there is a correspondence between K(P (X)) and K(x) in expec-
tation, and thus for generic samples from P (X), via (Marx and Vreeken, 2022)

Ex∼P (X)[K(x)] += K(P (X)) + H(X) ,

where H(X) is the entropy of P (X). Considering the bivariate case for X, Y
with samples x, y, in the direction X → Y we obtain the approximation

K(x) + K(y | x) += K(P (X)) + H(X) + K(P (Y | X)) + H(Y | X)
= K(P (X)) + K(P (Y | X)) + H(X, Y ) ,

and analogously for the reverse direction Y → X. Since H(X, Y ) is the same
in both directions, we can cancel the term out and obtain

K(P (X)) + K(P (Y | X))
+
≤ K(P (Y )) + K(P (X | Y ))
∼←→

K(x) + K(y | x)
+
≤ K(y) + K(x | y) ,

which holds approximately for generic samples from the joint distribution
P (X, Y ). When we are interested in determining whether a set of variables
X is confounded, we can similarly compare the values K(x) and K(x, z) in-
stead of K(P (X)) and K(P (X, Z)), which we have no access to.
Of course, since Kolmogorov complexity is not computable (Li and Vitányi,
2009), even this does not suffice by itself. To make further progress, we use
upper bounds on K(x) and K(x, z) by restricting the class of programs over
which the minimum is taken. This is precisely what the Minimum Description
Length (MDL) principle (Rissanen, 1978) does: it provides a statistically well-
founded approach to approximate K(·) from above. To achieve this, rather
than considering all programs as in the definition of K, in MDL, we consider
a model class M for which we know that every model M ∈ M will halt, and
identify the best model M∗ ∈ M as the one that describes the data most
succinctly, i.e., the one providing the best lossless compression of the data.
This is also known as two-part, or crude MDL, where we score models M ∈M
by first encoding the model and then the data given that model,

L(x, M) = L(x |M) + L(M) ,
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where L(M) and L(x | M) are code length functions for the model and the
data conditional on the model, respectively. When M is a parametric model
class with parameter space Θ, then we can write this in the form

L(x, M) = − log p(x | θ)− log p(θ) , (2.3)

where θ is the parameter corresponding to M and the distributions are given by
the density p(·) ∝ e−L(·) (Grünwald, 2007). This is essentially the familiar max-
imum a posteriori (MAP) estimate of the parameters θ (Bishop and Nasrabadi,
2006), although there are philosophical differences in the interpretations and
desirable properties of the estimates (Grünwald, 2007).
The two-part MDL approximation of Kolmogorov complexity is an adequate
approximation in two senses. First, if we endow the class M of all programs
that output x and halt with the Solomonoff prior µ(a) ∝ e−K(a) (Solomonoff,
1964a,b), then the MDL-optimal score for the model is (Li and Vitányi, 2009)

arg min
p∈M

L(x, p) += K(x | p∗) + K(p∗) += K(x) ,

where p∗ is the minimizer of the left-hand side. This approach is known as
Ideal MDL, since it is based on all possible models (Li and Vitányi, 2009).
Equivalently, we can formulate MDL as an upper bound of K as follows,

K(x) = min
p

K(x | p) + K(p)

≤ min
p∈M

K(x | p) + K(p)

+
≤ min

p∈M
L(x | p) + K(p)

+
≤ min

p∈M
L(x | p) + L(p) ,

where in the last line, we used the fact that the Solomonoff prior µ is a universal
approximation for every other positive distribution (Li and Vitányi, 2009).
Second, when x = xn ∼ P is generated from a distribution P corresponding to
the model M ∈M, then we have (Li and Vitányi, 2009)

1
n

EX∼P [K(X)] = H(P ) + o(1) = min
M∈M

1
n

(L(M) + L(x |M)) + o(1) . (2.4)

That is, when we have a large (and thus generic) sample from P , the average
MDL score and average Kolmogorov complexity of a representative sample
from P are almost identical. Since all the structure that can be consistently
extracted from a sample x ∼ P is contained in P , Kolmogorov complexity
cannot do any better than a score that extracts precisely this structure.
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Two-part MDL often works well in practice, and as we have seen, it has a solid
theoretical relationship to Kolmogorov complexity. Under the assumption of
causal sufficiency, it has also been used to discover causal directions in both
the bivariate (Budhathoki and Vreeken, 2017; Marx and Vreeken, 2017) and
multivariate cases (Mian et al., 2021; Mameche et al., 2023). However, by en-
coding the model separately, it introduces additional choices into the modeling
process. That is, by encoding the model separately from the data, we impose
an essentially arbitrary interpretation of “structure” and “noise” on the data,
which may not be desirable. These choices can furthermore lead to problems
in the finite sample regime (Grünwald, 2007). In one-part MDL—also known
as refined MDL—we avoid these choices by encoding the data using the en-
tire model class jointly, for example as in the Bayesian MDL score introduced
below. The reason to choose such encodings is that they are pointwise asymp-
totically min-max optimal (Grünwald, 2007). That is, no matter which data
point x we obtain, the (average) refined score for x is always within an additive
constant of the optimal score we could obtain by using the (unknown) optimal
model M∗(x). Denoting such a refined MDL score by L(x; M), it satisfies

max
x=xn

1
n

(L(x;M)− L(x, M∗(x))) = o(1) .

There exist different forms of refined MDL codes (Grünwald, 2007). Since we
are interested in whether there exists a confounder for our data, we want to
determine whether X is confounded in a broad sense without having to care
about the specific optimum of a given model class. As such, we propose to use
the Bayesian MDL score for the model class M,

L(x;M) = − log
∫

M∈M
P (x |M)P (M)dM ,

where P (M) is a prior distribution on M. We can think of M as one of the
model classes “X confounded by some Z” or “X not confounded”, and some-
times more specifically as “subset XI ⊆ X confounded by some Z”, depending
on the precise task at hand, and will be made clear where relevant. Note that
for any M ∈M, we have (Grünwald, 2007)

L(x;M) ≤ L(x |M) + L(M) ,

so that in the idealized case of M containing all halting programs, we obtain
the same relationship with Kolmogorov complexity as above.
When M is parametric, we can write L(x; M) in the more common form

L(x;M) = − log
∫

θ∈Θ
P (x | θ)P (θ)dθ , (2.5)
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where each θ corresponds to a different model M ∈ M of X. Just as the two-
part MDL score of Equation (2.3) corresponds to MAP, this score corresponds
to the evidence, also known as marginal likelihood (de Carvalho et al., 2019).
For our specific use case, the relevant model classes are the causal model class
Mca, in which we model data with respect to a causal factorization within
X, and the confounded model class Mco, in which the confounder models all
correlations. That is,

L(x;Mca) = − log
∫

θ∈Θca

P (x | θ)P (θ)dθ

L(x;Mco) = − log
∫

θ∈Θco

P (x | z, θZ→X)P (z | θZ)P (θZ→X , θZ)dzdθ ,

where by independence of causal mechanisms, we assume that the parameter
θ ∈ Θco can be split into the parameters θZ determining the distribution of the
confounder Z, and θZ→X determining the influence of Z on X.
We next describe the two model classesMca andMco we use when determining
whether the data is causally connected or co-caused by a latent confounder.

2.4.1 Causal Model

We begin by introducing our causal model Mca. As a proof of principle, and
because we will also be using linear latent factor models, we use Bayesian linear
regression from Y onto X, which is given by (Bishop and Nasrabadi, 2006)

X ∼ N(0, σ2
xI) (2.6)

w ∼ N(0, σ2
wI)

Y | X, w ∼ N(w⊤X, σ2
y) .

We can, therefore, write the corresponding score as

L(x, y;Mca) = − log
(

P (x)
∫

P (y | x, w)P (w)dw

)
,

where we assume the parameters σ2
x and σ2

y to be fixed. Note that while the
P (x) term does not affect the integral in any way, we nevertheless need to keep
it in order to compare this score to that of the confounded model later on.

2.4.2 Latent Factor Models

Since we do not distinguish between X and Y in this model, we will consider
Y = Xm+1 and talk again about the distributions P (X) and P (X, Z) where
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convenient. As we have noted in Section 2.3.1, there are infinitely many possible
distributions P (X, Z) which entail the marginal distribution P (X), and hence
we have to make further choices to make the problem feasible. In our setting,
where we want to determine whether X causes Y or whether the variables are
jointly confounded, a natural choice is to use latent factor modeling (Loehlin,
1998). That is, we assume that the distribution over X, Z is of the form

P (X, Z) = P (Z)
m+1∏

i=1
P (Xi | Z) ,

where the distribution of Z can, in principle, be arbitrarily complex. Not
only does this give us a very clear and interpretable hypothesis, namely that
given Z, all Xi should be independent of one another, i.e., XI ⊥⊥ XI′ | Z for
any two disjoint I, I ′ ⊆ [m] = {1, . . . , m}. It also corresponds to the notion
that Z should explain away as much of the information shared within X as
possible—in particular, causal mechanisms of different Xi are rendered inde-
pendent (Equation (2.2)). Moreover, from a more practical perspective, it is
also a well-studied problem for which advanced techniques exist, such as Prob-
abilistic PCA (PPCA; Tipping and Bishop, 1999), Factor Analysis (Loehlin,
1998), Gaussian process latent variable models (GPLVM; Lawrence, 2005), and
Deep Generative Models (Kingma and Welling, 2014; Rezende and Mohamed,
2015; Ranganath et al., 2015; Bond-Taylor et al., 2022).
For the sake of simplicity, we focus here on using PPCA to find latent con-
founders forMco so that we model our data as being generated by the process

Zj ∼ N(0, σ2
zI) (2.7)

Wj ∼ N(0, σ2
wI)

X | Z, W ∼ N(W ⊤Z, σ2
xI) ,

which is appropriate if we deal with real-valued variables with linear relation-
ships and assume Gaussian noise. If the data does not follow these assumptions,
one of the abovementioned models may be more appropriate. An appealing as-
pect of PPCA is that by marginalizing over Z we can rewrite it in terms of
only the matrix W (Tipping and Bishop, 1999), so that

Wi ∼ N(0, σ2
wI) (2.8)

X |W ∼ N(0, σ2
zWW ⊤ + σ2

xI) ,

which dramatically reduces the computational effort and allows us to provide
consistency guarantees for our method. Furthermore, since σ2

z rescales W , it
can be subsumed in σ2

w, and we will assume that σ2
z = 1.

While in the simple form, PPCA assumes linear relationships, it is possible



39 Telling Causal from Confounded

to model nonlinear relationships by adding features to conditional distribution
X | Z, W , e.g., using polynomial regression of X on Z. This is similar to using
GPLVMs (Lawrence, 2005), which replace the linearity assumption with more
complex kernel-based models. While this increases the ability of our model to
capture richer relationships between the latent and observed variables, it also
comes with both an increase in computation, as well as a decrease in theoretical
guarantees, since the simplification of Equation (2.8) no longer holds.
Now, given this model class, what will our score L(x;Mco) be? Given the
simplified version of Equation (2.8), we can instantiate Equation (2.5) via

L(x;Mco) = − log
∫

P (x |W )P (W )dW ,

where Mco is the PPCA model class with fixed σ2
w and σ2

x. Note in particular
that there is no need, or opportunity, to instantiate the confounding factor with
specific values z for a given sample x so that the concerns from Section 2.1.3
about overfitting the latent confounder do not apply.
We can now put all the pieces together to determine whether a pair X, Y is
more likely causally related or confounded by an unobserved Z.

2.4.3 Confounded or Causal?

With the theory we have developed, testing whether X → Y or X ← Z → Y
is a better fit is straightforward. To do so, we consider the two model classes
Mca and Mco defined in the previous sections and compare which of the two
models obtains a lower score on our data x, y. To ease our notation, we write
Lca and Lco instead of L(·;Mca), respectively L(·;Mco).
For the causal model Mca we can compute the code length of the data x, y as

Lca(x, y) = − log
(

P (x)
∫

P (y | x, w)P (w)dw

)

≈ − log


P (x)N−1

N∑

j=1
P (y | x, ŵj)


 ,

where we approximate the integral by Monte Carlo sampling N weight vectors
ŵj from the distribution defined by Equation (2.6). Of course, the more samples
we take, the better the approximation.
Second, we consider the confounded model class Mco, where all correlations
between X and Y are explained entirely by a hidden confounder modeled by
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the (simplified) PPCA model of Equation (2.8), i.e.

Lco(x, y) = − log
∫

P (x, y |W )P (W )dW

≈ − log N−1
N∑

j=1
P (x, y | Ŵj) ,

where the N samples for Ŵj are drawn from the PPCA model, i.e., according
to Equation (2.8). As for the causal case, the more samples we consider, the
better the approximation, but the higher the computation cost.
To determine which model is a better fit for the data, we use the rule

Lco(x, y)− Lca(x, y)




≪ 0 if the data is likely confounded
≫ 0 if the data is likely causal
≈ 0 if both models are roughly equally good .

Our decision rule to decide between the confounded and the causal case is to
choose “confounded” when the sign of the difference is negative and to choose
“causal” when it is positive. We call our method based on fitting the two
models and using this decision rule Confounded or Causal, CoCa.
A natural question is how large the difference between Lca and Lco should be
for us to be confident in classifying into either of the two classes. While not
directly applicable to our case, we can leverage the intuition provided by the
no hypercompression inequality from information theory (Cover and Thomas,
1999). To explain this inequality, let x be data generated from P (X) and let
Q(X) be another distribution. Then Q compressing the data better is unlikely,

P (− log Q(x) < − log P (x)− k) < 2−k .

That is, compared to the true distribution P , any other distribution can com-
press the data x better by at least k bits on only a small fraction of the data.
Thus, if our data were, in fact, generated from the modelMca, then the prob-
ability ofMco outperforming it by k ≫ 0 bits should be small, and vice versa.
In the real world, our data is, of course, unlikely to be generated from either
of these distributions exactly, but the intuition is nevertheless useful. Further-
more, since our scores Lco and Lca depend on the chosen hyper-parameters
σx, σw, and σy, as well as the sample size n, we may not get comparable results
for different data sets. To make our scores comparable between different data
sets, we therefore introduce the confidence score

C = L(X, Y ;Mco)− L(X, Y ;Mca)
max {L(X, Y ;Mco), L(X, Y ;Mca)} , (2.9)
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which is simply a normalized version of the above difference that accounts for
both the intrinsic complexities of the data as well as the number of samples.
The confidence C can be interpreted as the relative gain of one model over the
other. If the absolute value of C is small, both model classes explain the data
approximately equally well, i.e., we are not very confident in our result and
should perhaps refrain from making a decision.
Can we give any theoretical guarantees that this approach will, in fact, work?
When dim(Z) < dim(X), the answer will generally be yes. That is, we can
show that our method is statistically consistent, meaning that we will pick the
correct model class in the limit of infinitely many samples. This is based on
general results of MDL consistency for deciding between model classes when
the data is generated by a model in one of these classes (Grünwald, 2007).

Theorem 2.3 (Consistency of CoCa). Let xn, yn be n be samples from the
distribution M∗ which is contained in Mca ∪Mco. Then

lim
n→∞

n−1 (Lco(xn, yn)− Lca(xn, yn))
{
≤ 0 if M∗ ∈Mco
≥ 0 if M∗ ∈Mca ,

with strict inequalities if M∗ is contained in precisely one of the two classes.

Proof sketch. When M∗ ∈ Mca, then from MDL theory we know that Lca is
asymptotically optimal (Grünwald, 2007). Conversely, when M∗ ∈ Mco, then
Lco is asymptotically optimal.

Thus, since dim(Z) < dim(X) ensures that sets of non-degenerate models in
Mca and Mco are mutually exclusive, in the limit, we will infer the correct
conclusion if the true model is within the model classes we assume. Here, by
degenerate models, we refer to those models in which at least dim(X)−dim(Z)
parameters are 0. Since we assume that the parameters are randomly sampled
from a continuous probability, this happens with probability 0. For example,
when X, Y are independent, then all parameters are 0 in both models, and
both models will compress the data equally well. Importantly, even when the
true model is in neither of our model classes, we can still expect reasonable
inferences relative to these model classes; by the minimax property of refined
codes we use, we encode every model as efficiently as possible, which suggests
reliable performance and confidence scores even in adversarial cases. In the
next section, we will see this intuition borne out by various experiments.

2.5 The Origin of Specious Causality: Related Work

Causal inference is arguably one of the most important problems in both statis-
tical inference and also all of the sciences. It hence has attracted a lot of research
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attention (Rubin, 1974; Spirtes et al., 2000; Pearl, 2009). Unfortunately, the
existence of confounders, selection bias, and other statistical problems make it
impossible to infer causality from observational data without making any fur-
ther assumptions (Pearl, 2009). When their assumptions hold, a large variety
of both constraint-based (Spirtes et al., 2000, 1995; Zhang, 2008) and score-
based methods (Chickering, 2002; Scanagatta et al., 2015; Ramsey et al., 2017;
Raskutti and Uhler, 2018; Solus et al., 2021; Rashid et al., 2022) for causal
discovery can reconstruct causal graphs up to Markov equivalence. However,
this means that they are not applicable to determining the causal direction
between two variables X and Y , nor when causal sufficiency does not hold.
By making assumptions on the shape of the causal process, Additive Noise
Models (ANMs) can determine the causal direction between just X and Y .
In particular, ANMs assume independence between the cause and the residual
(noise) and infer causation if such a model can be found in one direction but
not in the other (Shimizu et al., 2006, 2011; Hoyer et al., 2008a; Zhang and
Hyvärinen, 2009). The idea is simple: when Y = f(X) + ε with ε ⊥⊥ X, then
in general there exists no function g such that X = g(Y ) + η where η ⊥⊥ Y .
A more general framework for inferring causation than the above is given by
the Algorithmic Markov Condition (Lemeire and Janzing, 2013; Janzing and
Schölkopf, 2010), which we introduced earlier. In this framework, the sim-
plest network over the observed variables—measured in terms of Kolmogorov
complexity—is the true causal network from which the data was generated.
Thus, in the bivariate case, if X → Y , then the factorizations of the distribution
P (X, Y ) should satisfy K(P (X)) + K(P (Y | X))

+
≤ K(P (Y )) + K(P (X | Y )).

Since K is not computable (Li and Vitányi, 2009), practical instantiations
use computable criteria to judge the complexity of the two causal directions,
including Rényi-entropies (Kocaoglu et al., 2017), information geometry (Da-
niusis et al., 2012; Janzing et al., 2012, 2015), coding theory (Figueiredo and
Oliveira, 2023), Bayes Factors (Dhir and van der Wilk, 2023), and MDL (Bud-
hathoki and Vreeken, 2017; Marx and Vreeken, 2017, 2019).
When we extend our work from the case of causal sufficiency to that of insuffi-
ciency, it is important to note that without further assumptions, many different
latent factorizations of the same data are possible, and thus latent confounders
are generally not unique without additional assumptions (D’Amour, 2019).
Most similar to our approach is the work by Janzing and Schölkopf on deter-
mining the “structural strength of confounding” in a high-dimensional linear
regression model for a continuous-valued pair X, Y , which they propose to mea-
sure using spectral analysis (Janzing and Schölkopf, 2018), respectively ICA
(Janzing and Schölkopf, 2018). Like us, they also focus on linear relationships,
but in contrast to us, they define a one-sided significance score rather than
a two-sided information theoretic confidence score. More theoretical analysis
along these lines shows that under some additional assumptions, L1-optimal
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convergence towards the true causal model can be attained (Ćevid et al., 2020;
Rendsburg et al., 2022). Rather than implicitly inferring the existence of la-
tent confounders by measuring the significance of such deviations, we instead
explicitly model the hidden confounder Z via probabilistic PCA (Tipping and
Bishop, 1999). While this makes our approach linear in nature, too, this ap-
proach permits us to fairly compare the scores for the models X → Y and
X ← Z → Y , allowing us to define a reliable confidence measure. Janzing and
Schölkopf (2018) considered the case of determining whether the variables X
are confounded by finding deviations of the regression vector from theoretical
properties in high-dimensional regression. Kaltenpoth and Vreeken (2019) use
the AMC (Janzing and Schölkopf, 2010) to infer whether two sets of variables
X and Y are causally related or jointly confounded. In contrast, Wang and
Blei (2019) and Ranganath and Perotte (2018) explicitly model latent con-
founders using factor models to adjust causal estimates for their presence. An
information-theoretic similar to our own has also been proposed for finding con-
founders has also been applied to the discrete case (Kocaoglu et al., 2018) by
minimizing Iα(X, Y |Z)+βHα(Z) over a proposed confounder Z, where Hα, Iα

are the Rényi entropy and mutual information.

2.6 “Show, Don’t Tell”: Experiments

We now empirically evaluate CoCa in a variety of experiments. In partic-
ular, we consider performance in telling causally generated data from con-
founded data, both for settings where our model assumptions apply and those
where they do not, and using both synthetic and real-world data. We compare
against two other methods by Janzing and Schölkopf designed for the same task,
which are based on finding deviations from the expected properties of regres-
sion vectors in high-dimensional regression problems (Janzing and Schölkopf,
2018; Janzing and Schölkopf, 2018). We implemented CoCa in Python using
PyMC3 (Salvatier et al., 2016) for posterior inference with ADVI (Kucukelbir
et al., 2017). All code is available for research purposes on our website.4

2.6.1 Experiments on Synthetic Data

To see whether CoCa works at all, we start by testing it on synthetic data
with known ground truth close to our assumptions. For the confounded case,
we generate samples over X, Y from the model

Zj ∼ pz, Wij ∼ pw

ε ∼ N(0, 1) X, Y = W ⊤Z + ε ,

4https://eda.rg.cispa.io/prj/coca/

https://eda.rg.cispa.io/prj/coca/
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while for the causal case, we generate X, Y as

Xi ∼ px wi ∼ pw

ε ∼ N(0, 1) Y = w⊤X + ε .

While these models look precisely like the Bayesian regression of Equation (2.6)
and the PPCA model of Equation (2.7), we do not assume the distributions of
Z, W , or X, w to be Gaussian. To see how much CoCa depends on the precise
assumptions of the used models, we consider the source distributions,

pz, px, pw ∈ {N(0, 1), Laplace(0, 1),
LogNormal(0, 1), Uniform(0, 1)} . (2.10)

We expect CoCa to perform best when all distributions are Gaussian, as
this corresponds to our model assumptions made in Equation (2.6) and Equa-
tion (2.7). From Theorem 2.3, we further expect CoCa to perform well when
dim(X) ≫ dim(Z), but not so well when this assumption is violated. We
therefore begin by generating data with fixed dimensionality dim(Z) = 3, and
vary the dimensionality of X, dim(X) ∈ {1, 3, 6, 9}. Afterward, we also study
the relationship between dim(X), dim(Z) and the performance of CoCa.
To study not only how well CoCa performs in aggregate across all datasets
but also how it performs for different levels of its confidence C, we study its
performance by looking at its decision rate plots as we describe next.

Evaluating Performance with Decision Rate Plots

In Section 2.4.3, we argued based on the no hypercompression inequality that
our decisions should be more accurate when the confidence C of Equation (2.9)
is large in absolute terms than when it is small: a large positive value C ≈ 1
indicates that the causal model outperforms the confounded model, whereas a
large negative value C ≈ −1 indicates the reverse situation and neutral con-
fidence C ≈ 0 indicates that both models are roughly equally good and no
decision should be made. While it is tempting to try to define which values
should count as large or small, we take the more empirical approach of ranking
the various decisions and checking whether the expected pattern obtains.
To this end, we use decision rate (DR) plots, in which we consider the accuracy
of CoCa over different datasets sorted by descending absolute confidence, |C|.
That is, for each dataset, we evaluate the confidence C associated with the
classification decision and sort datasets in decreasing order of |C|. On the x
axis, we show the percentile ranking of |C|, and on the y axis, our metric of
choice, which here is accuracy. A point at coordinates (0.2, 0.8) tells us that
for the 20% of data where our method is most confident, it correctly decides
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Figure 2.6: [Higher is bet-
ter] Accuracy over top-k% pairs
sorted by confidence. We use
different generating models of
X, Y , and different dim(X),
with dim(Z) = 3 fixed. Left:
px, pz, pw = N(0, 1). Right:
All distributions are sampled
uniformly from the set of dis-
tributions in Equation (2.10)

between the causal and confounded cases 80% of the time. These plots are
commonly used in the causal inference literature as they give more information
about performance than aggregate accuracy scores, which correspond only to
the right-most point in the figure. In particular, if the confidence of a method is
to be a useful quantity, the curves plotted should be monotonically decreasing,
and the area under the decision rate curve should be as high as possible.
We show our DR plots in Figure 2.6. On the left, we show the case where
all pz, px, pw are Gaussian distributions, and on the right, the case where
each of the distributions is uniformly sampled from the distributions in Equa-
tion (2.10). Clearly, while CoCa works better when all model assumptions
are met, it still performs remarkably well when they are not, and the quali-
tative picture remains the same. Overall, for all dimensionalities dim(X), the
accuracy of CoCa decreases monotonically in confidence. As we expected,
for dim(X) ≤ dim(Z), there is not enough information in X, Y about the
confounder Z to decide between causal and confounded models, so we see rel-
atively steep drops in these cases. Nevertheless, CoCa still determines the
correct model for those cases where it is most confident. In contrast, when
dim(X) > dim(Z), there is enough information to decide between causal and
confounded models, and CoCa is both highly confident and accurate.
Importantly, almost all results are significantly better than the 95% confidence
interval of a fair coin flip—the exception is dim(X) = 1, which is significant
for the 75% where it was most confident. Further, for no combination of dis-
tributions and dimensions of X and Z was CoCa biased towards either class.

Performance for Different Dimensions of X and Z

Since the performance of CoCa depends on the relationship between dim(X)
and dim(Z), we next study how it fares for a larger range of combinations of
dimensionalities of X and Z. In Figure 2.7, we plot a heatmap of the area
under the decision rate curve (AUDR) of CoCa, which we use to measure
its aggregate performance across all levels of confidence. As expected, when
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fixed dim(Z) performance im-
proves as dim(X) increases,
while for fixed dim(X) perfor-
mance degrades as dim(Z) in-
creases. CoCa scores above
0.75, against a baseline of 0.5.

dim(Z) is fixed, we become more accurate as dim(X) increases. Further, as
dim(Z) increases for fixed dim(X), our performance degrades gracefully—this
is because we infer a Ẑ of dimensionality one, which deviates further from the
true generating process as the dimensionality of the true Z increases. Notably,
even in the worst case of dim(X) = 2 and dim(Z), the AUDR score for CoCa
is above 0.7, whereas a random classifier would obtain a score of 0.5.

Comparison with other methods

As the last study on our synthetic data, we compare CoCa to two approaches
by Janzing and Schölkopf, both of which are based on the properties of high-
dimensional regression vectors (Janzing and Schölkopf, 2010, 2018). In par-
ticular, one of them is based on spectral analysis (SA; Janzing and Schölkopf,
2018) and the other on independent component analysis (ICA; Janzing and
Schölkopf, 2018). Since both methods require X to be multi-dimensional, we
consider the cases dim(X) = 3, 6, 9, and sample px, py, pz as before from Equa-
tion (2.10). We show the results in Figure 2.8. As both SA and ICA-based
methods provide only an estimate β̂ ∈ [0, 1] of the strength of confounding,
without any confidence score to distinguish between confounded and causal
cases, we used |β̂ − 1/2| as substitute. Since the accuracy decreases with less
extreme values of β̂, this seems to be a reasonable measure.
For both dim(X) = 3 and 6, CoCa outperforms these competitors by a large
margin where the respective methods are most confident, but also that the
overall accuracies are almost indistinguishable. For dim(X) = 9, the dimen-
sionality of X is large relative to Z so that all approaches obtain close to perfect
performances, and consequently, the differences in performance reduce.

2.6.2 Simulated Genetic Networks

Next, we consider more realistic synthetic data. For this, we consider the
DREAM 3 data (Prill et al., 2010), originally used to compare different meth-
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Figure 2.8: [Higher is better.] Comparison of CoCa against the spectral analysis-
based (SA; Janzing and Schölkopf, 2018) and ICA-based (ICA; Janzing and Schölkopf,
2018) approaches by Janzing and Schölkopf on synthetic data. From left to right to right,
we use dim(X) = 3, 6, and 9. Baseline accuracy is at 0.5. We see that in all cases,
CoCa performs best by a margin, particularly in regions where it is most confident.

ods for inferring biological networks. We use this data both because the un-
derlying generative network is known and because the generative dynamics are
biologically plausible (Prill et al., 2010). In particular, the relationships are
highly nonlinear and, therefore, pose an interesting challenge to evaluate how
CoCa performs when our assumptions do not hold at all. Out of all networks
in the dataset, we consider the ten largest networks, those of 50 and 100 nodes,
which are associated with time series of lengths 500 and 1000, respectively.
Since CoCa was not designed to work with time series data, we treat the data
as if it were generated from an i.i.d. source.
For each network, we take pairs (X, Y ) of univariate X and Y such that pre-
cisely one of the following two cases applies

• X has a causal effect on Y and there exists no common parent Z, or
• X, Y have a common parent Z and there is no causal effect between them

Although we could, in principle, also consider tuples (X1, ..., Xm, Y ) with m >
1, there were too few such tuples to provide meaningful comparisons. Further,
since the original networks are heavily biased towards causality rather than to
common parents, we take all the confounded pairs and then uniformly sample
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Figure 2.9: Decision
rate and correspond-
ing confidence plots for
the genetic networks
data. CoCa is accu-
rate when it is confi-
dent, even for this ad-
versarial setting.
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Figure 2.10: Decision rate
plot and its correspond-
ing confidence plot for the
Tübingen pairs. The base-
line for the decision rate
plot is at 0.87. Note the
strong correspondence be-
tween high confidence and
high accuracy.

an equal number of causal pairs from the set of all such pairs.
We show the decision rate plot when applying CoCa to these pairs after ag-
gregating over all the networks in the left-hand side plot of Figure 2.9. As
before, we see that CoCa is highly accurate for those pairs where it is most
confident. In comparison to the results for dim(X) = 1 in Figure 2.6, we see
that performance drops more quickly, which is readily explained by the fact
that the simulated dynamics are both highly nonlinear and form a non-i.i.d.
sample. Note, however, that our results are nevertheless still statistically sig-
nificant with regard to a fair coin flip for the 75% pairs that CoCa is most
confident about. To further explain the behavior of CoCa on this dataset, we
plot the absolute confidence scores we obtain on the right of Figure 2.9. In par-
ticular, we see that for the first approximately 25% of decisions, the confidence
we obtain is much larger than for the remaining pairs. This corresponds very
nicely to the plot on the left, as the first 25% of our decisions are also those
where we compare most favorably to the baseline.

2.6.3 Tübingen Benchmark Pairs

To consider real-world data suited for causal inference, we now consider the
Tübingen benchmark pairs dataset (Mooij et al., 2016).This dataset consists of
(mostly) pairs (X, Y ) of univariate variables for which plausible directions of
causality can be decided, assuming no hidden confounders. For many of these,
however, it is either known or plausible to posit that they are confounded
rather than directly causally related. For example, for pairs 65–67, certain
stock returns are supposedly causal, but given the nature of the market, they
would be better explained by common influences on the returns of the stocks.
We, therefore, code every pair in the benchmark dataset as either causal (if
we think the directly causal part to be stronger), confounded (if we expect the
common cause to be the main driver), or unclear (if we are not sure which
component is more important) and apply CoCa to the pairs in the first two
categories. This leaves 47 pairs, of which we judged 41 to be mostly causal and
6 to be mostly confounded. We include the complete list in Appendix A.1.
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In Figure 2.10, we show the decision rate plots over the datasets, weighed
according to the benchmark definition. As in the previous cases, CoCa is
most accurate where it is most confident while declining to the baseline as we
try to classify points about which CoCa is less and less confident. We note that
for these cases CoCa was biased towards saying that datasets represented truly
causal relationships, even when we judged them to be driven by confounding.
This is in large part explained by the fact that X and Y are both univariate,
and we have seen that the case of dim(X) ≤ dim(Z) is particularly problematic
when it comes to distinguishing between causal and confounded data. As we
see from the right plot in Figure 2.10, CoCa nevertheless does better than the
naive baseline of “everything is causal” by assigning more confidence to those
datasets, which, according to our judgment, were truly causal.

2.6.4 Optical Data

Finally, we consider real-world optical data (Janzing and Schölkopf, 2018).
Here, X is a low-resolution (3×3 pixels) image on a screen, and Y is the bright-
ness measured by a photodiode some distance from the screen. The confounders
Z are one LED in front of the photodiode and one in front of the camera, con-
trolled by shared random noise, where the brightness of these LEDs controls
the strength of confounding. We define the relative strength of confounding

s B bLED/(bLED + bscreen) ,

where bLED and bscreen are the brightness of the respective device.
We evaluate CoCa on each dataset and plot the results in Figure 2.11. The
strength of confounding increases from left to right, and values larger (smaller)
than zero indicate that CoCa judged the data to be causal (confounded). We
see that towards an intermediate confounding strength of 0.5, our method is
uncertain about its classification. In contrast, towards the extreme ends of
pure causality or pure confounding, it is very confident and correct in being so.
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2.7 Beyond Cause and Confound: Toward Causal Discovery

In this chapter, we tackled Problem 1: to what extent is it possible to determine
whether a set of correlated variables is causally related or whether they are
jointly confounded. That is, we wanted to distinguish whether the data over
variables (X, Y ) has been generated via a truly causal model or whether the
apparent cause and effect are, in fact, confounded by unmeasured variables.
To answer this question, we began by introducing the relevant causal and
information-theoretic terminology and, in particular, the algorithmic Model
of causality, wherein the typical causal Markov condition (Y is independent of
its non-descendants given its parents) is replaced by the algorithmic Markov
condition (the causal mechanisms governing each Y are algorithmically inde-
pendent). We extended this framework to allow for the explicit inclusion of
unmeasured variables and showed in Theorem 2.2 that comparing models with
and without latent variables can be done fairly. By using the connection be-
tween Kolmogorov complexity and MDL, we showed that this framework can
be made practical for distinguishing between causal and confounded relation-
ships. In particular, in Theorem 2.3 we showed that by using MDL with latent
factor models, we can distinguish them in the linear Gaussian setting.
In our experiments, we showed that CoCa performs well in practice, in cases
where the data generation is close to our model assumptions and also where the
generating process is different. Importantly, we showed that the confidence—
the (normalized) difference in scores between competing models—of our method
tracks its accuracy, suggesting that the confidence, which is readily measurable,
is a good proxy for its performance, which is not observable.
This raises the question “So what?” Knowing that our data are (likely) con-
founded, what can we do with this information? If our interest were specifically
in causal effect estimation, a natural next step would be to use this knowledge
to remove potential bias due to confounding, e.g., as Wang and Blei (2019)
do. In addition, we could consider richer model classes, such as richer causal
relationships or richer latent variable models. While exploring these avenues
would be practically relevant, we do not believe they would prove fruitful for
obtaining insights into the nature of the problem we are trying to solve.
Instead, we pursue richer models differently. In this chapter, we considered the
case where either all X are independent and jointly cause Y or all variables
X, Y are jointly confounded. This is, of course, a highly unrealistic assump-
tion, and we therefore next consider mixed types of causal and confounded
relationships. That is, under which conditions can we discover which subsets of
the observed variables X, Y are jointly confounded, and which are connected
by causal relationships? This is precisely Problem 2 of discovering a causal
network over X, Y and their potential confounders Z, which we move to next.



Chapter 3

Causal Discovery with
Hidden Confounders

“Causa Latet Vis Est Notissima – The cause is hidden, but
the result is known.”

Ovid: Metamorphoses IV, 287

While being able to tell whether a set of covariates X and a response variable
Y may be jointly confounded is a good start, in many disciplines, we are in-
terested in much more complex networks of causal relationships. In fact, in
many biological (Ramb et al., 2013; Parsana et al., 2019), medical (Compton
et al., 2023), social (Wunsch, 2007), economic (Angrist and Pischke, 2009), and
machine learning systems (Tennenholtz et al., 2021), the observed covariates
themselves are causally related, and multiple latent confounders lead to biased
causal estimates among different subsets of these variables.
It is, therefore, important not only to discover and correct for latent confound-
ing in a single set of causal estimates X → Y but to discover the entire causal
DAG G governing the causal relationships both between the observed variables
and also those between the latent confounders Z and the observed X. Nat-
urally, this is not possible without making a number of assumptions. In this
chapter, we will, therefore, stay close to the linear and Gaussian setting intro-
duced in Chapter 2. Interestingly, while this setting is the starting point for a
great many statistical methodologies due to its theoretical simplicity (Wasser-
man, 2004), it turns out to be one of the most challenging cases for causal
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discovery (van de Geer and Bühlmann, 2013; Peters and Bühlmann, 2014),
and this is only exacerbated by the inclusion of latent confounders.

Intuitively, the issue is as follows. Let X, Y be two jointly Gaussian variables.
Then, all of the following three models,

M1 : X = εX , Y = αX + εy

M2 : Y = εY , X = βY + εx

M3 : Z = εZ , (X, Y ) = (γ1, γ2)Z + (εx, εy) ,

with α, β, γi ∈ R can model any possible joint Gaussian distributions over X, Y .
That is, these models are indistinguishable based on observational data alone.

One might hope that, as in the previous chapter, the problem disappears as
more variables X are observed. Unfortunately, this is not the case. While
additional observed variables are indeed necessary to distinguish between the
different models, they are not, by themselves, sufficient. A key ingredient
will be the independence of causal mechanisms (Janzing and Schölkopf, 2010).
Specifically, we will show that when any subset of at least four variables XI are
jointly confounded by a low-dimensional Z, any proposed causal factorization
of X would be parametrized by a set of parameters lying on a low-dimensional
manifold, violating this independence. To discover these non-independences of
the causal mechanisms, we require additional structural assumptions about the
causal DAG so that different factors Zi ∈ Z have enough of a signal among ob-
served variables X but do not interfere too much with each other. This ensures
that the low-dimensional manifolds for different underlying causal models also
have trivial intersections, which is required for identifiability.

To explain our proposed framework and solutions, the chapter will be struc-
tured as follows. We start by formalizing the problem (Section 3.1.1) and
explaining in more detail why our problem is not solvable in the general case
(Section 3.1.2). We then take note of a useful structural property of causal net-
works discovered when causal sufficiency is violated (Section 3.2.1). Based on
this property, we introduce additional assumptions under which we can guaran-
tee the recovery of the causal network including the correct number and effects
of the latent confounders Z (Section 3.2.2). We then show that under the same
assumptions, the graph is not only identifiable but also learnable from data
using a score-based method (Section 3.2.3) and provide a practical algorithm
for doing so based on the idea of iteratively fitting causal models and extract-
ing sets of confounded nodes from these proposed causal models (Section 3.3).
Last, we observe that our approach not only has nice theoretical properties but
that it also works well in practice (Section 3.5). As in the previous chapter, we
include proofs for all theoretical statements in Appendix A.3.
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3.1 What Is To Be Done? And How Not To Do It

We formally introduce the problem we are interested in solving and then study
to what extent the commonly used approach of turning the causal discovery
problem into a problem of independent component analysis (ICA) can solve it.
In particular, we will show why the ICA-based approach can not be used due
to non-identifiability issues of the underlying causal graph.

3.1.1 Problem Setting

We assume that the observed variables X and unobserved Z follow a distri-
bution P (X, Z) that factorizes according to the causal DAG G∗ = G∗

X,Z with
nodes V = (X, Z) and edges E∗. Besides the standard conditions for causal
discovery, i.e., causal Markov, faithfulness, and sufficiency (over V ), we assume
that all Zj are jointly independent and that no reverse causation exists, i.e.,
Pa∗(Zj) = ∅ for all j. The joint distribution P (X, Z) can then be written

P (X, Z) =
m∏

i=1
P (Xi | Pa∗

i )
l∏

j=1
P (Zj) ,

where Pa∗
i = Pa∗

G(Xi) are the parents of Xi in G∗. We aim to recover the
true graph G∗ over both X and Z given information only about the observed
variables X. More specifically, we want to solve the following problem.

Problem Statement (Informal). Given a sample x from P (X), discover
• a (small) set of latent variables Z
• a (sparse) network GX,Z over X and Z
• and a (simple) joint distribution P (X, Z) such that

P (X, Z) =
m∏

i=1
P (Xi | Pai)

l∏

j=1
P (Zj) ,

factorizes according to the discovered G, with Pai = PaG(Xi).

We now explain how discovering the graph can be related to the well-known
framework of independent component analysis and why this does not solve the
problem we are interested in.

3.1.2 ICA Cannot Identify Latent Confounding

For simplicity, let the observed data X be generated by the linear SCM,

X = AX + BZ + ε , (3.1)
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where we only assume that var(εi) , 0, var(Zj) , 0 and independence of Z
and ε, but leave the distributions of ε and Z otherwise unspecified. In essence,
the inclusion of BZ amounts to an introduction of correlated source of noise
affecting the observed variables X. Since A, B describe the acyclic graph G∗,
there are no paths of length ≥ m among the observed X, so that Am = 0. All
eigenvalues of A are therefore 0, so that (I −A) is invertible, and thus we can
rewrite the model by writing X as a linear mixing of some source S,

X = (I −A)−1 (BZ + ε)

= (CB C)
(

Z
ε

)

= QS ,

where we abbreviate C = (I − A)−1, and Q = (CB C) is the mixing matrix
and S = (Z, ε)⊤ is the set of all sources generating X.
The problem of recovering the mixing matrix Q of this generating process is
referred to as independent component analysis (ICA; Comon, 1994). When
dim(S) ≥ dim(X), or equivalently dim(Z) > 0, it is more specifically referred
to as overcomplete ICA (OICA, Eriksson and Koivunen, 2004).
When the matrix Q has full column rank, no two columns of Q are collinear,
and the sources S are all (except for at most one) non-Gaussian, it has been
shown that the mixing matrix Q is identifiable up to permutation and scaling
of its columns (Eriksson and Koivunen, 2004),

Q′ = QPΛ .

These non-identifiabilities are unavoidable. That is, since there is no unique
order for the sources Si, we cannot distinguish between the models “S1 affects
X1, S2 affects X2” and the same statement with S1 and S2 switched. Further-
more, without additional assumptions on P (S) we cannot distinguish between
“X1 = 5 ·1S1 ” and “X1 = 1 ·5S1”. Without further assumptions, identifiability
up to permutations and rescaling is, therefore, the best one can do.
The conditions for identifiability are also natural from the point of view of the
generating causal model of Equation (3.1) that we started from. Clearly, if
rank(Q) < m, then QS could only generate degenerate distribution P (X) with
deterministic collinearities, which could only be consistent with Equation (3.1)
if one of the εi satisfies var(εi) = 0, in contradiction to our assumption.
The condition that no two columns of Q are collinear also has a natural in-
terpretation in our causal model. First, it entails that the exogenous noise
variables εi directly affect different variables Xi. Second, that the confounding
factors Zj each affect more than one Xi, and further when Zj , Zk have exactly
the same children, their relative weights on the children are not exactly the
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Figure 3.1: Nonidentifiability of causal ef-
fects in OICA. Even in this simple causal
model satisfying the assumptions of OICA
identifiability, it is impossible to distinguish
between correlations due to the causal path
X1 → X2 and the impact of the latent con-
founder Z on the observed variables.

same. That is, for any two latent confounders Zj , Zk there exists at least one
pair i, i′ of observed variables Xi, Xi′ such that bij/bi′j , bik/bi′k.
To justify the last assumption of non-Gaussianity, note that if the variables S
follow a joint independent Gaussian distribution with equal variances,1 then Q
is further non-identifiable due to orthogonal transformations. That is,

QS = QU⊤US ,

for any orthogonal matrix U ∈ O(n). Since US ∼ S have the same distribution
and are therefore both jointly independent, Q becomes unidentifiable.
Even when all assumptions hold, and Q is identifiable, this does not mean that
B and C themselves are identifiable. To see this, let us consider an example.

Example 3.1. Consider the following generating model for X (see Figure 3.1),

(
X1
X2

)
=
(

u a 0
v c b

)


Z
ε1
ε2


 ,

corresponding to causal model shown in Figure 3.1, with c = αa. Note that in
this case, we can decompose the matrix as

C =
(

a 0
c b

)
, B =

(
u/a

(v − cu/a)/b

)
.

However, by permuting the variables Z and ε1, we can also write

C ′ =
(

u a
v 0

)
, B′ =

(
a/u

(c− va/u)/b

)
,

which result in precisely the same observed mixing matrix Q (up to permuta-
tions) but different causal effects X1 → X2 as well as from Z towards X1, X2.
In essence, we have here re-derived algebraically that the correlations due to
an unmodeled confounding factor Z and due to an edge X1 → X2 are not

1This is w.l.o.g. since identifiability is only up to rescaling in the first place.
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distinguishable from each other in this generating model.

While in this example, we cannot distinguish between the two different decom-
positions, we will see next that confounding induces specific structures in the
marginal graph G∗

X over the observed variables X, which will help us determine
the correct decomposition of Q into its causal and confounded parts.

3.2 The Topology and Geometry of Latent Confounding

We now formalize the specific requirements properties and requirements that
permit us to discover latent confounding in observational data. We begin by
showing that latent confounding leads to cliques in the marginal graph before
exploiting the non-independence of implied causal mechanisms to recover the
true causal network over both X and Z.

3.2.1 Graphical Structure of Latent Confounding

The key to discovering which variables are jointly confounded lies in the fol-
lowing observation: Whenever a set of variables XI = (Xi)i∈I , I ⊆ [m], are
confounded by an unmeasured univariate Z, no pair of variables Xi, Xj ∈ XI
can be d-separated by conditioning on any subset W ⊆ X−{i,j}, where X−{i,j}
denotes the set of all variables in X except Xi, Xj (Elidan et al., 2000). To
d-separate them, we would have to condition on the unobserved Z itself. Thus,
any proposed DAG GX capturing the conditional independences of P (X) will
necessarily mutually connect all pairs of variables in XI . That is, GX contains
a clique, a fully connected subgraph, over the variables XI .

Proposition 3.1 (Confounders and Cliques). Let P (X, Z) be the joint distri-
bution of X, Z where Z is one-dimensional and let I = {i : Z → Xi} be the
set of indices of variables co-caused by Z. Then, any graph GX capturing the
correlations in P (X) contains a clique over XI .

Proof sketch. When Xi, Xj are jointly confounded by an unobserved Z, then
Xi ⊥⊥ Xj |W can happen only if W contains all the information in Z. But this
is not possible for any set of observed variables W ⊆ X−{i,j}.

When Z is multivariate, each Zj induces its own clique in GX , and these cliques
may share nodes. We show an example of this in Figure 3.2, where the edges
in GX are left undirected to indicate that any (acyclic) ordering would work.
Next, we show that this graphical characterization of confounding is already
sufficient to identify the true model in a restricted, sparse, linear setting.
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Figure 3.2: Effects of confounders on marginal graphs. When the confounders Z1, Z2 are
not observed, any causal graph capturing the independences among the observed variables
X will necessarily form cliques among the jointly confounded nodes (here {X1, . . . , X4}
and {X4, . . . , X6}). The cliques overlap at X4 since it is affected by both Z1 and Z2.

3.2.2 Identifiability for a Sparse Linear Confounded Model

Next, to leverage the above relationship between latent confounding and clique
structure of causal DAGs over the observed variables, we assume that P (X, Z)
is given by the linear structural causal model of Equation (3.1),

X = AX + BZ + ε ,

where A encodes the edges between variables X in the true DAG G∗, and B
encodes the edges between Z and X. We further assume the distributions of the
confounders, Z ∼ P (Z), and of the noise variables ε ∼ P (ε) to be symmetric
P (Z) = P (−Z) and P (ε) = P (−ε) so that in particular both have mean 0.

Example 3.2. We begin with three examples to motivate our assumptions.
a) Consider the following simple model: X = (X1, . . . , X4) consists of four

variables whose correlations are fully described by the univariate latent
confounder Z ∼ N(0, 1),

X = bZ + ε .

Then the correlations are given by σij = cov(Xi, Xj) = bibj . In particu-
lar, the six covariances can be fully described by a set of four parameters,
and the relationship between the σij is known as tetrad constraint (Silva
et al., 2006). We will see that, in this case, the observational data gives
us sufficient information about the underlying model to determine the
parameters b up to trivial invariances similar to ICA solutions.

b) Now consider the more complex model generating X = (X1, . . . , X4),
whose correlations are described by both the univariate latent confounder
Z, but also an adjacency matrix A describing a complete graph over X,

X = AX + bZ + ε .
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X1 Xk Xk+1 Xm· · · · · ·

I1 I2

Figure 3.3: Structural As-
sumptions A and B of our
model. Each Zi has an edge
towards each variable in Ii

(solid), but there are only few
edges incoming to each Ii from
other sources (dotted).

In this case, the six correlations would be parametrized by ten parame-
ters, and any hope of identifying the generating parameters is lost. This
is a different view on Example 3.1 in terms of the number of parameters.

c) Now consider the same model as in a), but with only three variables
X = (X1, . . . , X3). Then the three correlations σij can be described
either by three parameters describing direct causal effects between the
Xi, or by three parameters bi describing pure confounding. That is, we
require at least four variables to be able to distinguish between the cases.

Using these examples to guide our intuition about which models are identifiable
and which are not, we now introduce the following assumptions.

Assumption A (Sufficient Signal of Confounders). The variables X are split
into disjoint sets I1, . . . , Il of size |Ij | ≥ 4, such that Zj has non-zero influence
on each Xi ∈ Ij , i.e., bij , 0 for all Xi ∈ Ij .

This assumption guarantees that each confounder has enough children to allow
for recovering its effects. In particular, in this framework, we cannot distinguish
between causality and confounding for only two or three observed variables.

Assumption B (Sparsity). For each Ij , there are at most |Ij | − 4 edges
incoming to vertices in Ij , aside from those starting in Zj .

By adding this assumption, we ensure that not only does each Zj influence
sufficiently many of the observed variables but also that there are few other
influences on these variables. In the second example above, the parameters b
cannot be recovered because it is impossible to distinguish between correlations
due to the confounder Z and those due to causal relationships between the
observed variables. By restricting how many incoming edges each set Ij has,
we ensure that the parameter matrix B can be recovered. This restriction is
displayed by dotted edges in Figure 3.3. That is, I2 must have fewer incoming
edges from all other sources combined than it has incoming edges from Z2.
We depict the structural Assumptions A and B we make in Figure 3.3 and show
some example graphs satisfying them in Figure 3.4.
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Figure 3.4: Example graphs illustrating our structural assumptions. (a) All circle, draw
variables are confounded by the same factor Z1, and 6 edges exist between its children
I1. (b) Two different confounders affecting five nodes each, and one additional edge
incoming to each of the sets. (c) Z2 affects one of the nodes in I1. Furthermore, if we
added either of the dashed red edges, too many edges incoming into I1, respectively, I2
would violate our identifiability assumptions.

Assumption C (No False Positives). For all distinct Xi, Xj , Xu, Xv not in-
dependent given Z, with covariances σrs, we have σijσuv , σiuσjv.

This assumption ensures that we cannot find a set of causal effects that lead to
matching precisely the correlations entailed by a confounded model. That is,
while we could pick parameters A in a causal model without confounders so that
the correlation matrix Σ would match precisely the correlation matrix created
by Z and b in the first example above, this matrix A would be specifically fine-
tuned to satisfy all the constraints and would require the causal mechanisms to
not be picked independently. In a sense, this assumption is very similar to the
assumption of causal faithfulness in that we assume parameters are not picked
precisely so as to “cancel out” and look like perfectly confounded variables.
We call a linear model satisfying these assumptions a Sparse Linear Confounded
(SLC) model. When all assumptions hold, this causal model is identifiable.

Theorem 3.2 (Identifiability of the SLC Model). Let Z be of dimension l ≤
m/4, and let P (X, Z) be described by the linear SCM of Equation (3.1)

X = AX + BZ + ε .

Further, let Assumptions A–C hold. Then, both the number l of confounders
and its parameters B are identifiable up to trivial indeterminacies (column
permutations and rescaling). Furthermore, if either all noise variables εi are
non-Gaussian or all εi have equal variances, then A is also identifiable.

Proof sketch. Due to the imposed structural sparsity of the network, for any
target variables Xi, we can find a set of four distinct variables (Xi, Xu, Xv, Xw)
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such that b2
i = σiuσiv/σuv. Furthermore, once we know all the values in B,

we can recover P (X | Z), for which identifiability follows from known results
for non-Gaussian noise (Shimizu et al., 2006), or Gaussian noise with equal
variances (Peters and Bühlmann, 2014).

Note that we do not need to know the number l of confounders Zj , nor the
sets Ij to determine B. Instead, the correlation structure of the data along
with the tetrad constraints of Example 3.2 fully determine both the number of
confounders as well as the sets Ij up to permutations of its indices.
Note that these assumptions are not necessary ones but merely sufficient. In
fact, we can show that for very large randomly generated DAGs, we do not
require any sparsity to identify the causal network.

Theorem 3.3 (Identifiability for Large Dense Graphs). Let Assumptions A
and C hold and let the true causal graph G∗ over X, Z be sampled from a
directed Erdős-Rényi model ER(m + l, p), with m observed and l latent nodes
and edge probability p < 1. Then in the limit of infinitely many variables, the
matrices A and B are identifiable with probability 1,

lim
m→∞

P (A, B identifiable) = 1 ,

where the limit is taken over DAGs with fixed topological order.

Proof sketch. When p < 1, for any Zj with child Xi, for sufficiently large m
we are guaranteed to find a suitable quadruple Xi, Xu, Xv, Xw to estimate bij .
Given all bij , the entries of A corresponding to incoming edges into Xi are
identifiable for the same reason as in Theorem 3.2.

Here, by a directed Erdős-Rényi graph we mean that given a fixed topological
order Xπ−1(1) ⪯ · · · ⪯ Xπ−1(m) an edge (Xπ−1(i), Xπ−1(j)) exists with proba-
bility p if i < j, and with probability 0 if i ≥ j. This is the directed analog
of the standard Erdős-Rényi model where an edge between any two Xi, Xj

exists with probability p, such that the edges are now directed in accordance
with the topological order. Furthermore, when we say that the limit is taken
over graphs with a fixed topological order, we mean that when a node Xm+1
is added, the relative topological order among X1, . . . , Xm is unaffected. That
is, adding Xm+1 does not lead to any earlier edges being flipped.
Given that the model is identifiable in theory, can we learn the correct network
given enough data? The answer turns out to be “Yes”.

3.2.3 Learning Confounders

In Section 2.3, we developed our theory of the extended algorithmic Markov
condition to determine the existence of confounders. That is, when the observed



61 Causal Discovery with Hidden Confounders

variables X are generated from a model involving latent confounders Z, then
we would generally expect the full distribution P (X, Z) to satisfy

K(P (X, Z)) < K(P (X)) .

Conversely, when the set X is causally sufficient, then by Theorem 2.2, no
distribution P (X, Z) satisfying this inequality exists.
While the distribution P (X, Z) should satisfy this inequality, we do not know
this distribution. Further, if we try to find some distribution Q(X, Z) which
satisfies the inequality, we cannot guarantee that the causal relationships be-
tween Z and X are correctly captured. In particular, we cannot guarantee that
the sets Ij(Q) = {Xi : Zj → Xi} according to Q correctly recover the sets of
confounded nodes according to P , given by the index set I∗

j . That is, while
such a distribution Q(X, Z) with the correct sets Ij(Q) = I∗

j should exist, for
any given Q, it is not clear whether it, in fact, recovers the correct sets I∗

j .
While we cannot guarantee that we find the correct model for arbitrary linear
models, it fortunately turns out that for the SLC, the Bayesian information
criterion (BIC; Schwarz, 1978) is consistent under the additional assumption
that the latent confounders Z and noise variables ε are Gaussian.

Theorem 3.4 (Consistency of BIC for Gaussian SLCs). Let x = xn be a
sample from the SLC of Equation (3.1) with Gaussian distributions P (Z), P (ε)
and let Assumptions A–C hold. Let M be the corresponding model class and
M0 the subset of M with B = 0 fixed. Further, consider the score

L(xn, M) = − log P (xn | A, B, σ2
ε) + λ ∥A∥0 + λ ∥B∥0 , (3.2)

and denote its minimizers by Â, B̂. Then, for λ = log(n)/2, our score L is the
BIC score and is consistent for detecting confounders. That is,

lim
n→∞

P

(
min

M∈M
L(xn, M) < min

M∈M0
L(xn, M)

)
= 1 .

Furthermore, Â and B̂ converge to the true A, B with probability 1,

lim
n→∞

P (Â = A, B̂ = B) = 1 .

Proof sketch. Due to Assumptions A,B, we know that for any given Xi, there
exists a quadruple of variables Xi, Xu, Xv, Xw for which using parameters bij

of the matrix B is the way to parametrize their correlations with the fewest
number of parameters. Since the penalty λ ∥A∥0 + λ ∥B∥0 precisely counts
such parameters, we therefore have B̂ → B, and due to uniqueness of the
global minimum (van de Geer and Bühlmann, 2013) also Â→ A.
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While it is remarkable that in the SLC, the full causal model can be recovered
from only a sample x from P (X), we have to solve two more problems before
we can put this into practice. First, we know neither B, nor which of the
exponentially many subsets XI ⊆ X are affected by any one Zj , nor how
many Zj there are precisely in the first place. Second, even knowing B and Z,
optimizing Equation (3.2) is still NP-hard (Peters and Bühlmann, 2014). We,
therefore, next develop a heuristic as to which subsets XI are likely affected
by Z and show how standard causal discovery algorithms can be leveraged to
find a causal network over both the observed X and the latent Z.

3.3 Exploiting Observed Structures: The CDHC Algorithm

With the theory we developed, we can now introduce cdhc, our method for
Causal Discovery with Hidden Confounders.

3.3.1 cdhc in a Nutshell

The idea behind cdhc is quite simple. Our goal is to find a network GX,Z

over both X and Z and a corresponding joint distribution P (X, Z), which
captures the correlations of the observed X. To discover such a graph, we need
to determine which correlations are causal and which are due to confounding
by Z. To determine whether a particular set of correlations between a subset
XI of the variables is due to one or the other, we further need to evaluate the
different potential models, similar to our score from Chapter 2.
Our approach to dealing with these problems can be summarized as follows.

a) Run a causal discovery algorithm A over X ′ = X and find approximate
cliques in the discovered marginal graph GX′ (see Proposition 3.1).

b) Use MDL to evaluate competing causal and confounded explanations for
candidate confounded sets.

c) Include the best Ẑ into the variable set, X ′ = X ∪
{

Ẑ
}

.
d) Repeat steps a-c) until no more Ẑ can be found.
e) ???
f) Profit. (See Theorem 3.5 and Proposition 3.6.)

We now describe our approach in more detail.

3.3.2 Finding Confounded Variables

To find a causal network over both the observed X and its confounders Z, the
first step is to determine which subsets of X are likely to be confounded. In
Proposition 3.1, we showed that any (consistent) structure learning algorithmA
will, in the limit, discover a clique over the nodes XI when XI are jointly caused
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by the same latent variables. With only limited amounts of data, we are unlikely
to find exact cliques, but the nodes in XI should nevertheless form a densely
connected approximate clique in the discovered Ĝ. However, approximating
cliques is still a computationally hard problem (Feige et al., 1991), so we use
the following simple heuristic: If the XI are densely connected in a discovered
graph Ĝ, then the Markov blanket for different variables Xi ∈ XI should
all satisfy the approximate equality MB(Xi) ≈ XI . Therefore, we consider the
Markov blanket of each node as the seed sets I from which to start searching for
suitable candidates for sets of confounded nodes, over which we may infer latent
confounders. We then iteratively update these sets I to find those variables
that are best compressed by including latent variables, as we describe next.

3.3.3 Learning Latent Confounders

To evaluate a proposed set of confounded nodes and its associated graph G,
we introduce a causal model including latent factors as follows. Based on our
identifiability results from Theorem 3.2, given a graph G over (X, Z), we assume
that the data is generated from a model in a class M =M(G) similar to the
PPCA model of Equation (2.7), but with added edges between the observed X

Zi ∼ N(0, 1) , ε ∼ N(0, σ2
ε)

Aij ∼ N(0, σ2
a) , Bij ∼ N(0, σ2

b )
X = AX + BZ + ε ,

(3.3)

where entries of A, B are nonzero only when their corresponding edges are in
G. As in PPCA, we can marginalize out Z to obtain the reduced form

X | A, B ∼ N(0, C⊤(BB⊤ + σ2
ε)C) ,

where the matrix C is defined as C = (I − A)−1. Since the Aij are sampled
from a continuous distribution, Assumption C holds almost surely, so that,
unlike PPCA, we do not require that A = 0 to recover the model.
To evaluate the fit of our model class M to our data x, we use a similar score
L(x;M) as for the PPCA model in Equation (2.7) in the previous chapter,

L(x;M) = − log
∫

P (x | A, B)P (A, B)dAdB ,

which we estimate using standard methods (Kucukelbir et al., 2017). This score
is suitable in that it is consistent for causal discovery with latent confounders.
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Algorithm 3.1: cdhc
input : data x sampled from P (X), algorithm A
output : graph G and distribution P (X, Z)

1 G = (V, E)← Graph inferred over x using A;
2 do
3 foreach i ∈ {1, . . . , m} do
4 XI ← Markov blanket of Xi in G;
5 G′ ← (V ∪ {Z} , E ∪ {Z → XI});

// Forward phase
6 do
7 j ← arg minj<I L(x, G′ ∪ {Z → Xj});
8 (I, G′)← (I ∪ {j} , G′ ∪ {Z → Xj});
9 while L(x, G′) decreases;

// Backward phase
10 do
11 j ← arg minj∈I L(x, G′ \ {Z → Xj});
12 (I, G′)← (I \ {j} , G′ \ {Z → Xj});
13 while L(x, G′) decreases;
14 z ← sample from P (Z | X);
15 G[i]← Graph inferred over (x, z) using A;

// Use the model with the best confounder
16 G← arg minG[i] L((x, z), G[i]);
17 while G changes;
18 return G and the P (X, Z) associated with G

Theorem 3.5 (MDL Consistency for SLCs). Let the assumptions of Theo-
rem 3.4 hold. Then the minimizer Ĝ,

Ĝ = arg min
G

L(xn;M(G)) ,

converges to the ground truth graph G∗ with probability one,

lim
n→∞

P (Ĝ = G∗) = 1 .

Proof sketch. Since L(x;M) and L(xn, M) of Equation (3.2) are asymptoti-
cally equivalent, they have the same convergence guarantees (Grünwald, 2007).

With this guarantee that our score is sound, we now introduce our method for
discovering the entire causal network.
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3.3.4 Discovering the Causal Network

We can now put all of the above together and present cdhc. We give the
pseudo-code in Algorithm 3.1. We first (line 1) discover a graph G over the
observed data x using a score-based structure discovery algorithm A, such as
ges (Chickering, 2002), ggsl (Gao et al., 2017) or notears (Zheng et al.,
2018). We then consider every node Xi and initialize the confounded set XI
with the Markov blanket MB(Xi) and add a node Z and edges Z → XI to G.
(l. 4–5). We refine I by greedily adding nodes (l. 6–9), then removing nodes
(l. 10–13). After finding the locally optimal set I, we sample z from P (Z | X)
and fit a network over (x, z) using A (l. 14–15). Out of all these networks, we
update G to be the best of them (l. 16) and iterate until convergence (l. 17).
Finally, we return the discovered network G and distribution P (X, Z) over X
and its inferred confounders Z (l. 18).
Since our score strictly decreases at each step, our method necessarily con-
verges. Moreover, we can show that in the large sample limit, we are guaranteed
to recover the true set of confounded nodes.

Proposition 3.6 (Consistency of cdhc for Discovering Confounded Nodes).
Let xn be the an i.i.d. sample from P ∈ M(G∗) defined in Equation (3.3), let
Assumptions A–C hold and let I∗

i be the set of nodes affected by Zi. Assume
that

⋂
s∈I∗

i
MBG∗(Xs) \ {Zi} ⊊ I∗

i . Let A be consistent for recovering the
Markov equivalence class of the graph GX for distribution P (X). Let Îi be the
set of nodes confounded by Zi discovered by cdhc. Then

lim
n→∞

P (Îi = I∗
i ) = 1 .

Proof sketch. If A is consistent for recovering the graph, then in particular, it
is consistent for finding cliques of size ≥ 4, which can, due to Assumption B
exist if and only if there is a joint latent confounder for these variables.

Note that without further assumptions on A, we cannot guarantee that the
entire ground truth DAG G∗ will be recovered. That is, so long as A can
recover only the Markov equivalence class of a network, we cannot ensure that
the edges among the observed nodes are correctly directed. However, even if we
use an algorithm that can correctly direct edges in the absence of confounding,
we still cannot guarantee that this is true when unobserved confounders are
present, even if they are modeled explicitly.

3.3.5 Complexity

Last, we analyze the runtime complexity of cdhc. Let us denote the complexity
of the base causal discovery algorithm A as C(m, n). In general, C(m, n) will
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be linear in the number of samples n and (super-)exponential in the number of
variables m. For our analysis, however, we use that the complexity of A can
be lower bounded by C(m, n) = Ω(m4n). Then, the complexity of the inside of
the loop (l. 2–17) can be decomposed into two parts: fitting latent confounders
over different subsets of variables (l. 3–14) and fitting a new graph over the
extended variable set (l. 15). The former has complexity O(m3n) since for each
of m variables, we can do at most m forward and m backward steps, and for
each step, we can compute at most m candidates to be added or removed, and
fitting a confounder over at most m variables is also of the order O(m3n). The
complexity of refitting the causal graph is C(m, n). In total, the complexity
of the inner loop is therefore O(C(m, n) + m4n) = O(C(m, n)). Furthermore,
since we can find at most O(m) confounded sets (see Assumption A), our worst
case runtime is therefore on the order of O(mC(m, n)).
In practice, we expect only few confounders, l≪ m, to affect our observed data
so that our runtime is roughly O(C(m, n))—the same as that of A itself.

3.4 Discovering Some Related Work

Over the years, a large number of methods have been proposed for causal
discovery under the assumption of causal sufficiency, such as nonparametric
methods on rank correlations (Lin and Peng, 2013; Yu et al., 2023; Keropyan
et al., 2023), as well as extensions of ANMs to the multivariate case (Peters
et al., 2014; Parida et al., 2018).
Most of these algorithms, however, do not apply when the assumption of causal
sufficiency is violated. In that case, a much smaller number of algorithms such
as the fci family (Spirtes et al., 2000; Colombo et al., 2012; Ogarrio et al., 2016),
3off2 (Affeldt et al., 2016) and convex optimization-based approaches (Chan-
drasekaran et al., 2010; Agrawal et al., 2023) can find causal networks in the
presence of latent confounding. Specifically, Nested Markov Models (NMMs;
Shpitser et al., 2014; Evans, 2016; Shpitser et al., 2018; Richardson et al.,
2012; Evans and Richardson, 2019) can sometimes provide identifiability of
causal models with latent factors by using Verna constraints. Bhattacharya
et al. (2021) directly recover a causal network in which all directly causal edges
are directed, and edges corresponding to latent confounding are distinct from
causal edges. The problem with these methods is that since they do not model
the latent confounder Z directly, they cannot tell us that multiple variables
are jointly confounded, leaving us with many different possible causal models
over X ∪ Z. In particular, they are generally difficult to interpret and cannot
determine which sets of variables share the same latent confounder.
To discover potential confounders, Tenzer and Elidan (2016) use a copula-
based approach to learning ideal parents, which are similar to our proposed
approach of latent factor models, but assume that the specific data obtained
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should be captured as well as possible, rather than the underlying distribution
approximated. Other research controls causal estimates for latent confounders.
To do so, Hoyer et al. (2008b) solve the overcomplete ICA problem in the
Linear Non-Gaussian Acyclic Model (LiNGAM) setting (Shimizu et al., 2006)
to correct the estimated causal effect of X on Y for confounders. Recent work
has also extended this approach to larger classes of noise (Salehkaleybar et al.,
2020; Adams et al., 2021; Chen et al., 2022), and showing that higher order
cumulants can be used to find OICA solutions (Cai et al., 2023). However,
besides using OICA to discover latent confounding, related approaches have
also been used to deal with measurement error (Ding et al., 2019).
Other work has focused on reducing the requirements for identifiability of the
causal model by providing weaker constraints (Kummerfeld and Ramsey, 2016;
Cai et al., 2019; Bellot and van der Schaar, 2024), and introducing generalized
independence criteria (Xie et al., 2020), and methods for employing proxy vari-
ables (Liu et al., 2023). In particular, recent work has extended the discovery
of latent confounding to include hierarchical structures (Huang et al., 2022; Xie
et al., 2022), as well as other models in which latent variables need not be root
variables in the full causal model (Ghassami et al., 2021; Yang et al., 2022).
In this chapter, we explicitly exploited the violations of independence of causal
mechanisms. To this end, we build on the work of Silva et al. (2006), who pro-
posed a model based on low-rank correlation structures between observed vari-
ables, similar to prior psychometric research (Thurstone, 1934) on the number
of latent factors required to describe a correlation matrix. Elidan et al. (2000)
proposed an algorithm for replacing semi-cliques in a discovered causal graph
with single nodes based on the idea that they are likely confounded. In con-
trast, we use the low-rank correlation structure between causal mechanisms in
the inferred marginal graph and leverage this structure to find a causal network
including both observed and latent variables.

3.5 Of Graphs and Goodness of Fit: Experiments

In this section, we evaluate cdhc empirically. We are interested in three things:
first, how robust it is to the choice of different base causal discovery algorithms
A; second, how well it recovers the sets of confounded nodes I∗

j ; and third, how
well it recovers the entire network. To test its robustness, we instantiate cdhc
with three different types of causal discovery algorithms A and refer to cdhc
using A as cdhc-A. Specifically, we use a score-based method ges (Chickering,
2002), a local-to-global graph learning method ggsl (Gao et al., 2017), and
the notears approach based on continuous optimization (Zheng et al., 2018).
When clear from the context, we write cdhc for cdhc-ges. Note that the
omission of constraint-based methods such as the PC algorithm (Spirtes et al.,
2000) is due to cdhc requiring scores to add additional latent confounders.
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Next, to evaluate it on the other two metrics, we compare cdhc against sev-
eral graph learning methods. First, as a baseline of a method that does not
account for latent confounding, we use notears (Zheng et al., 2018). To get
a better comparison on the front of discovering confounders, we also compare
it against the hybrid approach gfci (Ogarrio et al., 2016),2 the information-
theory based 3off2 (Affeldt et al., 2016), and the continuous-optimization
based dcd (Bhattacharya et al., 2021).
We implement cdhc in Python. For the base algorithms, for ges, we use the
version implemented in causal-learn (Zheng et al., 2024), while for notears
and ggsl, we use the implementations provided by the authors. For comparison
with other methods, we use the implementations provided by the respective au-
thors for notears, 3off2, and dcd, and use the version of gfci implemented
in the Tetrad library (Ramsey and Andrews, 2023). All experiments finished
within minutes on a commodity laptop. All code and data can be found online.3

3.5.1 Experiments on Synthetic Data

We evaluate cdhc on synthetic data by generating random acyclic graphs G of
size m from the Erdős-Rényi model ER(m + l, p) with m observed and l latent
variables, and edge density p = 0.3. We model the causal relationships via a lin-
ear SCM as in Equation (3.1), X = AX+αBZ+ε where Aij , Bij , 0 if and only
the corresponding edges are in G. Nonzero causal effects of A, B are all sampled
independently from ∼ N(0, 3), and Z, ε are sampled independently from distri-
butions P (Z), P (ε) ∈ {N(0, 1), Laplace(0, 1), LogNormal(0, 1), Uniform(0, 1)}.
The parameter α ∼ U [1, 8] determines the relative strength of confounding,
allowing us to study the effects of the strength of confounding on our ability
to recover the causal graph. Before we move to the general case, we begin by
studying how cdhc improves over the outputs of the base algorithms A on a
small illustrative example with dim(Z) = 1.

Comparison with Base Algorithms

To see the issues that the base algorithms A have when a latent variable affects
multiple observed variables and how cdhc improves on those results, we con-
sider the network shown in Figure 3.5a containing nodes X0, . . . , X6, of which
X1, X2, X3 are confounded by X0. When X0 is withheld, none of the base
methods find the correct structure over X1, X2, X3 (Figures 3.5b,d,f). Fur-
thermore, while gfci (Figure 3.5h) and dcd (Figure 3.5i) find the variables to

2GFCI is part of a group of methods, including fci and rfci. Preliminary ex-
periments corroborated previous research (Ogarrio et al., 2016) that gfci performs
better than its relatives.

3https://eda.rg.cispa.io/prj/cdhc/

https://eda.rg.cispa.io/prj/cdhc/
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Figure 3.5: Application of cdhc to synthetic data generated from the network shown in
(a). When X0 is withheld, all base algorithms A (b,d,f) find a clique of spurious edges
on X1, X2, X3 (red). gfci (h) and dcd (i) indicate that some pairs from X1, X2 and X3
are confounded (blue) but cannot tell that they share the same confounder. In contrast,
by applying cdhc (c, e, g), we discover a confounder capturing the effect of X0 (green)
and obtain higher quality networks in all cases.

be confounded, they cannot tell that all variables share the same confounder.
In contrast, by applying cdhc on top of different base algorithms A, we con-
sistently find X1, X2, X3 to be confounded while the quality of the remaining
edges unaffected by the confounder is maintained (Figures 3.5c,e,g).

Confidence and Performance

To test our approach more generally, we generate 1000 datasets over m = 50
variables, of which ten nodes are confounded by a univariate Z. As described
in Section 2.6, we care not only about the overall performance of cdhc but
also how well it correlates with its confidence. Thus, we again consider decision
rate (DR) plots. We compute the confidence for cdhc as

C B LA − Lcdhc-A

max {LA, Lcdhc-A}
≥ 0 ,

measuring how much value cdhc adds on top of simply running the base algo-
rithm A. For our competitor score-based methods notears and dcd, we do
not have access to such a gain—in the former case because notears does not
model latent confounding, and in the latter case because dcd cannot compute
a causal graph without latent confounding—so that we use the score differences
compared to the empty network,

C = L∅ − Lmin

L∅
.
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Figure 3.6: Evaluation on synthetic data. F1 scores for (a) network recovery and (b)
confounded set recovery (higher is better), and (c) Structural Hamming Distance and (d)
Structural Intervention Distance (lower is better). Each figure shows the average score
over increasing fractions of datasets, sorted in descending order by the confidence of each
method. We see that cdhc clearly outperforms its competitors regardless of algorithm A
used, and that different algorithms A deliver approximately equally good performance.

While this choice is not ideal, we see that both notears and dcd show the
desired behavior of decreasing performance as their confidence decreases, so
it seems to be a reasonable choice nonetheless. Furthermore, since neither
3off2 nor gfci are score-based methods, we cannot easily define a confidence
measure for them. Instead, in every evaluation, we always order the results most
favorably for these two methods. That is, 3off2 and gfci will, by construction,
show monotonically decreasing performance as their “confidence” decreases.
We evaluate each method based on four different criteria chosen to capture dif-
ferent aspects: (1) the F1 score for network recovery, including the confounder
(F net

1 ) measures how well we discovered the overall network, (2) the F1 score for
the recovery of the set of confounded nodes (F conf

1 ) measures how well the set of
confounded nodes specifically has been recovered, (3) the Structural Hamming
Distance (SHD) between the discovered and the true networks is another mea-
sure of the structural similarity, and (4) the Structural Intervention Distance
(SID) to measure differences in causal interpretations between the recovered
and the true causal networks (Peters and Bühlmann, 2015).
We show the results in Figure 3.6. As in the previous chapter, the left side is
where each method is most confident, and as we go toward the right, confidence
decreases. We see that cdhc both outperforms its competitors by a large mar-
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gin and that the relationship between its confidence and its evaluation metrics
is as we would like it to be. Interestingly, the choice of the base algorithm A
has little influence on the performance of cdhc.

Higher-dimensional Z

Next, we consider the effect of multiple confounders Zi in our model, each
influencing non-overlapping sets of 5 variables in a network of m = 50 variables.
We show the F conf

1 scores for one to five confounders in Table 3.1. We omit
notears, ggsl, and ges since none of them can recover confounded nodes.
We see that for one to three confounders, cdhc performs at a consistently
high level, but for four and five confounders, its performance decreases due
to the difficulty of finding additional sets of confounded nodes. In contrast,
while dcd, 3off2, and gfci perform well for single-dimensional confounders,
their performance precipitously drops the moment additional confounders are
introduced. This behavior highlights an important difference between their
approaches and ours: since they do not model the confounder but only indicate
which pairs of variables are confounded, they cannot distinguish between the
effects of many different confounders influencing different pairs of variables,
and a single confounder affecting many variables.

How Significant Are Our Results?

To verify whether cdhc significantly outperforms its competitors, we use the
Bayesian signed rank test (Benavoli et al., 2014). It explicitly models the
probability that one model is significantly better than the other in practice by
introducing a region of practical equivalence (rope) specified by parameter r.
Two methods are considered to perform equally well if the difference in scores
for the methods lies in [−r, r]. We pick r = 0.05 (Benavoli et al., 2014) but the
conclusion remains the same for values r ∈ (0, 0.15]. Since the test was designed
for two competing methods, for we compare cdhc with the dataset-wise best
competitor, which we refer to as opt. For each dataset k, we compute the F net

1
scores for both cdhc and opt and compute their differences.

Number of confounders
Method 1 2 3 4 5

cdhc 0.43 0.38 0.35 0.23 0.15
dcd 0.35 0.18 0.11 0.07 0.03

3off2 0.36 0.2 0.14 0.11 0.04
gfci 0.22 0.11 0.05 0.02 0.01

Table 3.1: Comparison of
cdhc, dcd, 3off2 and gfci
for varying numbers of latent
confounders. Only cdhc per-
forms well as the number of la-
tent factors increases.
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Figure 3.7: Significance assess-
ment of the improvement of cdhc
over its competitors, in barycentric
coordinates. Points in the bottom
left and bottom right regions indi-
cate opt, respectively, cdhc per-
forming significantly better, while
points at the top indicate practical
equivalence. Since all points lie in
the bottom right region, we con-
clude that cdhc practically signif-
icantly outperforms its competitors.

To compare the two methods over all samples, we aggregate the F1 scores
for both cdhc and opt and take their differences zk = F opt

1,k − F cdhc
1,k , k ∈

{1, . . . , q}. To include the prior assumption that both methods are equally
good, we include a pseudo-observation z0 = 0, i.e., that both methods are pre-
cisely equally good. We take weights w = (w0, . . . , wq) ∼ Dirichlet(s, 1, . . . , 1)
where s corresponds to the number of times we obtained z0. This is commonly
set to be s = 0.5, but due to our large number of experiments, its influence on
the posterior is minor. The posterior probabilities are computed as

θopt =
q∑

i,j=0
wiwjI(2r,∞)(zi + zj)

θrope =
q∑

i,j=0
wiwjI[−2r,2r](zi + zj)

θcdhc =
q∑

i,j=0
wiwjI(−∞,−2r)(zi + zj) ,

where θopt, θcdhc are the posterior probabilities that opt, respectively cdhc
are better by at least a margin r, while θrope is the posterior probability that
they perform practically equally well. The distribution of θ is not analytically
tractable, but we can evaluate it empirically by sampling values for w. We
depict the result of such a sample in Figure 3.7. Points in the bottom left
and bottom right areas correspond to opt outperforming cdhc, respectively
cdhc outperforming opt, while points in the upper area indicate both methods
performing equally well. Since all points lie in the bottom right corner, we see
that cdhc performs significantly better than opt across the board.
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Figure 3.8: [Higher is better] De-
cision rate plot for cdhc and its
competitors on the REGED dataset.
Overall, cdhc outperforms all other
methods across the board, both for
points where they are confident as
well as those where they are not.

3.5.2 Realistic Data: REGED

Next, we consider realistic synthetic data from REGED (Guyon et al., 2008)
based on human lung-cancer microarray gene expression data. Since the avail-
able m = 1000 samples are non-i.i.d., the causal relationships are nonlinear,
and the ground truth is known from gene intervention studies, it provides a
good test for cdhc when its assumptions are violated.
To make cdhc applicable to the REGED dataset, we consider the following
setup. For each node Xi in the ground truth graph G∗ with k ≥ 5 children,
the set of which we denote by K = Ki, we select a random subset R = Ri also
consisting of k nodes of G∗ which do not have a common parent in G∗. We
then consider the induced subgraph Gi over the nodes Ki ∪Ri ∪{i}. However,
the data given to each method is only over the variables XK∪R, so we should
recover the nodes in K = Ki to be jointly confounded.
We show the results for F net

1 for different methods in a DR plot in Figure
3.8. Even though the data violates our assumptions, cdhc outperforms its
competitors by a large margin. Moreover, even for those sets of variables where
cdhc is only moderately confident, it still performs better than its competitors
at their most confident. This suggests that cdhc works reliably even when the
true model deviates from our assumptions.

3.5.3 Case Study: Cellular Signaling

Last, we consider real-world data to investigate the interpretability of the re-
sults returned by cdhc. In particular, we consider the SOS DNA repair net-
work in E. coli (Ronen et al., 2002). This data consists of protein levels of
eight genes measured every five minutes for five hours, resulting in 60 samples.
Since the governing relationships in gene regulation are highly nonlinear, this
further tests the applicability of cdhc when our assumptions do not hold.
Since the ground truth network has been established (Perrin et al., 2003), we
can test cdhc by excluding a gene known to have a downstream causal effect
on other genes. An excellent candidate is lexA as it has a causal influence
on all of the other genes: it is upstream of six genes and has a bidirectional
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Figure 3.9: Results on SOS DNA repair network in E. coli. cdhc (b) discovers a
confounder Z capturing five out of the seven edges (green) in the ground truth network
(a). In contrast, gfci (c) and dcd (d) find many pairs of nodes that are confounded
(solid blue), and in the case of GFCI, more pairs yet which might be confounded (dotted).
However, they do not discover that all nodes share the same confounder, making the
resulting networks challenging to interpret.

relationship with the seventh (Figure 3.9a). Since 3off2 provides very similar
results to gfci, and notears cannot model confounders, we omit their results.
We show the results in Figure 3.9. For clarity, we focus only on discovering
which nodes are confounded, omitting causal edges for all methods. In Fig-
ure 3.9b, we find a striking similarity between the Z discovered by cdhc and
the true common parent lexA. cdhc correctly identifies five out of seven rela-
tionships: four out of six downstream effects and one of the two edges between
recA and lexA—which is the most a DAG can do, given that the two edges
are mutually exclusive. Next, for gfci (Figure 3.9c) and dcd (Figure 3.9d),
we indicate definite confounding by solid edges and pairwise correlations which
could be due to either confounding or causation by dotted edges. gfci indi-
cates definite confounding for only three out of 16 pairs, while we cannot be
certain for the other pairs. The resulting network of dcd indicates definite con-
founding for many pairs of variables. However, neither method can determine
that all variables share the same latent confounder. The results of both gfci
and dcd are consistent with many different confounder structures and provide
no well-founded way of choosing one over the other. Overall, despite the low
sample size and violations of our model assumptions, cdhc finds a more readily
interpretable network that is close to the ground truth.

3.6 Limits of Linearity: Navigating Nonlinear Networks

In this chapter, we tackled Problem 2a) and studied to what extent we can
discover the causal network underlying a distribution P (X) when the observed
variables X are affected by latent confounders Z. That is, we wanted to find
out whether, given a sample x from only P (X), we can recover the true causal
graph G∗ governing the factorization of P (X, Z).



75 Causal Discovery with Hidden Confounders

We began by relating our problem of recovering the causal graph to the com-
monly used framework of turning causal discovery with linear effects into a
problem of finding the mixture matrix in ICA. We noted that while the over-
all mixture matrix can be recovered under general conditions, it is impossible
to determine which correlations are due to direct causal effects between the
observed variables and which are due to latent confounding.
In order to obtain better identifiability results, we studied the graphical struc-
tures induced by latent confounding (Proposition 3.1), and from these struc-
tures, we derived sufficient conditions for the identifiability of the causal model.
In particular, when the causal model is a sparse linear causal (SLC) model, the
causal structure is identifiable up to trivial transformations. Unlike the stan-
dard ICA approaches, we can uniquely determine the full graphical structure
between observed and unobserved variables up to relabeling of the exogenous
variables (Theorem 3.2). Furthermore, in the limit of very large graphs, we
showed that sparsity is no longer required (Theorem 3.3).
We then showed that under the same assumptions, both BIC and MDL scores
are consistent for recovering the true model (Theorem 3.4 and Theorem 3.5).
Furthermore, we developed a general framework for discovering the causal net-
work by combining the output of any causal discovery algorithm relying on
causal sufficiency with standard latent factor modeling. We showed that so
long as the used causal discovery algorithm is consistent, this will indeed re-
cover the correct sets of latent variables (Proposition 3.6).
In several experiments, we showed that cdhc works well in practice on both
synthetic and real-world data. In particular, as with CoCa, we saw that its
confidence tracks its performance well, providing an excellent observable proxy.
For future work, one vector of improvement could be the theoretical guarantees.
For one, given a fixed number l of latent variables, our model constraints imply
that there are at most 2m − 4l parameters. In contrast, by modeling a full
causal graph, we could employ a total of m(m − 1)/2 parameters. That is to
say, from a pure parameter counting point of view, it should be possible to relax
Assumptions A and B dramatically and still maintain a sizeable gap between
the two kinds of model. As we have seen in Theorem 3.3, this is already borne
out for large graphs, but it would be good to have more precise thresholds on
what can, or cannot, be done.
Furthermore, while the complexity of cdhc is asymptotically not much worse
than running a standard causal discovery algorithm, it nevertheless currently
requires multiple passes over the data, learning causal networks repeatedly
over only slightly changing datasets. It would, therefore, be interesting to see
to what extent we can design a method that directly compares the different
options for causal edges and (local) confounders at each step of a graph learning
algorithm, reducing the overhead currently required.
Of course, another potentially large issue for the relevance of the method is
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its assumption of strict linearity. Unfortunately, even though we have seen
cdhc to work well in practice, the real world is rarely so kind as to match this
assumption precisely. In the next chapter, we move on to models with specific
kinds of nonlinearities, for which we can derive similar identifiability results
under some additional assumptions on the nonlinear functions used.



Chapter 4

Nonlinear Causal Discovery
with Latent Confounders

“There are more things in heaven and earth, Horatio, than are
dreamt of in your philosophy.”

William Shakespeare: Hamlet, Act I, Scene V

In the previous chapters, we focused on linear causal models. Unfortunately,
while much of the theory of causal inference and causal discovery has been
developed for linear SCMs (Angrist and Pischke, 2009; Shimizu et al., 2006,
2011), the real world is rarely so accommodating.
Especially in biological (Gourévitch et al., 2006), social (Nazlioglu, 2011) and
economic systems (Nishiyama et al., 2011), causal relationships are often far
from linear. Furthermore, our measurements are rarely perfect either, but
instead subject to certain nonlinear distortions (Hoyer et al., 2008a; Zhang and
Hyvärinen, 2010; Bühlmann et al., 2014). To deal with these domains and
issues, it is essential to develop theories that can deal with some, if not all,
types of nonlinearities that could affect our causal relationships.
We can write a nonlinear SCM with observed X, latent Z, and noise ε as

X = f(X, Z, ε), (4.1)

where f is some nonlinear function, corresponding to the graph G∗ where the
causal parents Pai of each Xi are precisely those variables for which fi is not
constant. Naturally, some nonlinear functions f will make recovering the causal

77
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graph G∗ easier than others. By building on the theory we have built in the
previous chapters, we will see that by using models of the form

X = τ((I −A)−1(BZ + ε)) ,

we can extend the analysis in the last chapter to the nonlinear case. Here
the nonlinearity τ is given by τ = (τ1, . . . , τm), where each component τi is a
univariate function τi(Xi). Then all correlations in the observed data are solely
due to the matrices A and B defining the causal structure, and the nonlinear
functions τi act as post-nonlinearities distorting the observed variables Xi in a
nonlinear manner (Zhang and Hyvärinen, 2010).
To tackle the issue of identifiability in this generating model, as in the previous
chapter, we begin by formalizing how nonlinear SCMs relate to linear SCMs
(Section 4.1.2) and put our problem in the framework of nonlinear ICA (Sec-
tion 4.1.3). In Section 4.2, we show that when the functions τi behave nicely,
the same identifiability results as for the linear case are obtainable.
Despite the similarity of the identifiability results of the causal graph G∗ and
the matrices A, B, learning these matrices is nevertheless difficult. Unlike in
the previous chapter, we need to learn not only A, B but also the nonlinear
transformations τ of the variables so that these causal matrices apply. To do
this, we use a variational autoencoder (VAE; Kingma and Welling, 2014), which
allows us to learn both τ and A, B simultaneously (Section 4.3). We show that
when τ = id, our proposed score is consistent for recovering the true matrices
A and B, and therefore the causal graph G∗. In Section 4.5, we then show
that nocadilac performs well in practice on synthetic and real-world data,
even beyond the linear setting for which we showed consistency. In particular,
it is robust to the dimensionality of the latent confounder and returns more
readily interpretable results than its competitors. As in previous chapters, we
postpone proofs for all theoretical statements to Appendix A.4.

4.1 Bending the Rules: Nonlinearity in Causality

We begin by introducing the specific causal model we consider in this chapter
and show that while the framework of nonlinear ICA provides relevant intuition
on the difficulties, it does not suffice to determine the causal graph.

4.1.1 Notation

As in the previous chapters, we assume that the observed X and unobserved Z
follow a joint probability distribution P (X, Z) which factorizes according to the
causal DAG G∗. Furthermore, nonlinear functions are written as τ, ν, and we
assume that τ denotes element-wise transformation τ(y) = τ(τ1(y1), . . . , τm(ym))
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where each τi is invertible and three times differentiable. From this differentia-
bility and invertibility, it follows that each τi is strictly monotonic.
As before, our goal is to recover the causal graph G∗ from a sample x from the
observed distribution P (X) without any knowledge about the latent Z, nor the
nonlinear transformations τ . To formalize this problem, we define the precise
SCMs from which we assume our data is generated.

4.1.2 Beyond Linear SCMs

In the previous chapter, we assumed that our data comes from the linear SCM,

X = AX + BZ + ε ,

where A, B are the matrices parametrizing the graph G∗. A general way to
extend this is to consider additive noise models (Hoyer et al., 2008a),

X = f(X, Z) + ε , (4.2)

where the function f takes the places of the matrices A, B. If f is linear in
X and Z, then we would simply find that A = ∇Xf and B = ∇Zf where
∇Xf = (∂X1f, . . . , ∂Xmf) is the gradient of f with respect to X and similarly
for ∇Z . If f is sufficiently well-behaved (Rudin, 1953), then we can “solve for
X” and there exists a function g such that we can write

X = g(Z, ε) = g(S) , (4.3)

where as in the previous chapter we denote by S = (Z, ε) all exogenous sources
of the causal model. As we have seen in Section 3.1.2, the linear SCM specifi-
cally can be rewritten as a linear mixture of S as

X = (I −A)−1 (BZ + ε) ,

so that a natural path from this description to the model of Equation (4.3) is
to add nonlinearities τ and write

X = τ
(
(I −A)−1 (BZ + ε)

)
, (4.4)

where τ is an element-wise transformation. In this model, all correlations are
purely due to the mixing matrices (I − A)−1 and B. This model is known as
post-nonlinear mixture model (Taleb and Jutten, 1999), and models nonlinear
distortions in the measured variables X.
Next, we will explore why the more general model class of Equation (4.3) is
not suitable for our purposes of causal inference with latent confounders.
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4.1.3 Nonlinear ICA and Causal Discovery

In Section 3.1.2, we saw that while linear ICA can identify parts of how the data
X comes about, it cannot distinguish correlations due to latent confounders
from those due to causal mechanisms between the observed variables.
In causal discovery without latent confounding, it is well-known that the addi-
tion of nonlinearities can often be beneficial to the identifiability of the under-
lying causal DAG (Bühlmann et al., 2014; Peters et al., 2014). In this section,
we investigate whether nonlinearities here serve a similar purpose.
To answer this question, let us study the model of Equation (4.3),

X = g(S) ,

for some independent sources S with dim(S) = s ≥ m = dim(X) and nonlinear
functions g = (g1, . . . , gm) : Rs → Rm. The goal is then to find a nonlinear
function h such that h ◦ g ≈ id, where we will specify ≈ more precisely below.
For linear ICA, we saw that under reasonable assumptions of non-Gaussianity
and distinguishability of sources, the mixing matrix can be identified up to
trivial indeterminacies. However, the problem of nonlinear ICA is generally
highly underdetermined, allowing for a great many indeterminacies.
Naturally, as in the linear case, we will again have indeterminacies of joint
permutations of the functions and sources, g1 ↔ g2, S1 ↔ S2. Furthermore,
similar to the linear case, element-wise rescaling gi 7→ gi(as), si 7→ si/a become
element-wise nonlinearities gi 7→ gi ◦hi, si 7→ h−1

i (si) where hi is any invertible
function. Since these correspond to the “trivial” indeterminacies of the linear
case, our notation ≈ above precisely corresponds to invertibility up to these
indeterminacies (Hyvärinen and Pajunen, 1999). That is, when we say that
h ◦ g ≈ id, we mean that h ◦ g = (ν1, . . . , νs) for some ν such that each νi(si)
is an element-wise nonlinearity. Whereas further indeterminacies can be ruled
out in the linear case by assuming non-Gaussian sources, this is unfortunately
no longer true in the nonlinear case.

Additional Indeterminacies in Nonlinear ICA

We give here two specific kinds (Hyvärinen and Pajunen, 1999; Darmois, 1953).
The first type is that of measure-preserving automorphisms (MPAs; Hyvärinen
and Pajunen, 1999), which correspond to the orthogonal rotations of Gaussian
sources of the previous chapter. The idea is simple: map the sources onto
a Gaussian distribution, rotate them, and then invert the map (Figure 4.1).
More precisely, let F (s) be the joint cumulative density function (CDF) of S,
and let Φ be the CDF of the standard multivariate Gaussian. Then

S̃ B F ◦ Φ−1 ◦ U ◦ Φ ◦ F −1(S) ∼ S ,
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(a) (b) (c) (d)

Figure 4.1: An example MPA of the distribution in (a). By mapping it first to a Gaussian
distribution (b), we can then rotate this distribution (c) and map it back to the original
space (d) to obtain an automorphism of the original distribution (a).

has the same distribution as S. That is, since Φ ◦ F −1 map S to a standard
Gaussian and F ◦Φ−1 map a standard Gaussian precisely to the correct distri-
bution of S, we can apply whatever orthogonal matrices U between these two
steps and leave the distribution the same. Therefore

(
g ◦ F ◦ Φ−1 ◦ U ◦ Φ ◦ F −1) (S) = g(S) ,

would be two different functions mapping S to exactly the same target dis-
tribution of P (X). By allowing for nonlinear functions, we implicitly opened
the back door to Gaussian source variables, for which MPAs are easy to find.
We illustrate this in Figure 4.1. While the distribution in Figure 4.1(a) has no
apparent symmetries, we can nevertheless subject it to a transformation as de-
scribed above to obtain a measure-preserving map of the distribution, making
identifiability without further assumptions impossible.

The second non-trivial indeterminacy is given by the Darmois construction (Dar-
mois, 1953; Skitovitch, 1953). The Darmois construction yields sources SD by

sD
i = fD

i (x1:i) = P (Xi ≤ xi | x1:i−1) ,

such that by construction, we have

X = (fD)−1(SD) .

Furthermore, each source SD
i is constructed to be independent of all SD

1:i−1
so that all sources SD are jointly independent. Furthermore, by changing the
order of the variables from X1, . . . , Xm to Xπ−1(1), . . . , Xπ−1(m), we obtain
different functions and sources fD, SD and fD

π , SD
π , giving us another source

of non-identifiability of the nonlinear ICA solution.
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Can We Save Nonlinear ICA?

In recent years, much progress has been made in finding conditions under which
nonlinear ICA models are identifiable, relying on additional structure of the
problem. We focus on three different approaches most relevant to our problem
here and explain why they do not solve the problem we are interested in.
First, Khemakhem et al. (2020) relate the study of nonlinear ICA models to
that of variational autoencoders (VAEs; Kingma and Welling, 2014). In their
setup, auxiliary variables U modeling varying contexts are used, and they as-
sume the generating mechanism to be of the form

X = g(S) + ε

S ∼ p(s | u) = h(s) exp(η(u)⊤T (s)−A(u)) , (4.5)

so that S is sampled from an exponential family whose parameters depend on
the auxiliary variables U . That is, the mechanism describing how X depends on
S is stable across contexts, while the distribution of S changes across contexts.
Here, the parameters η(u) are called the natural parameters of the exponential
family, and T (s) is called the sufficient statistic. They show that under some
technical conditions, such as g being injective, the model is identifiable when
data from a sufficiently large number of diverse contexts U is gathered. While
this is an interesting approach, it is unsuitable for our task since it requires data
from multiple contexts. Furthermore, while at first glance it may look as if this
approach is suitable for dealing with confounding, since including both sources
S and additional noise variables ε results in more sources total than observed
variables, this is not the case. This is because the noise ε in Equation (4.5) is
not part of the “mixed” variables introducing correlations between the observed
variables X, unlike noise variables ε in the SCM formulation of Equation (4.2).
Second, Gresele et al. (2021) propose a principle called independent mechanism
analysis (IMA). That is, starting from the algorithmic independence of causal
mechanisms (see Section 2.2.3), they propose that the functions g in the non-
linear ICA equation should all satisfy that at every point s the columns of the
Jacobian matrix Dg(s) are orthogonal to each other. That is, they require

Dg(s) = λ(s)U(s) ,

where λ(s) is a diagonal matrix and U(s) an orthogonal matrix. They show
that, in this case, the Darmois construction is no longer a non-identifiability of
nonlinear ICA. Furthermore, when λ(s) is a scalar, MPAs are also no longer
non-identifiabilities of nonlinear ICA (Gresele et al., 2021). In general, even
when the theoretical guarantees do not apply, empirical follow-up work shows
that their proposed approach recovers the correct mixing function for randomly
initialized multi-layer neural networks (Sliwa et al., 2022). However, by requir-
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Figure 4.2: Depiction of structural sparsity. Each
of the source variables Si has a subset of variables
XI ⊆ X that is uniquely jointly affected by Si. This
increases identifiability of the nonlinear ICA model by
ensuring that all sources have distinguishable effects
on the observed variables.

ing Dg(s) to have orthogonal columns, they require that dim(S) ≤ dim(X),
making it impossible to model latent confounding with this approach.
In contrast, Zheng et al. (2022) show that the model can be identified under
assumptions on the structural sparsity of g. More precisely, when g is smooth
and invertible, and for each source Si, there exists a subset of variables XI of
the variables X such that Si is the only source affecting all of the variables Xj ∈
XI . See Figure 4.2 for a graphical depiction of structural sparsity. However,
once more, this approach has only been shown to work when there are as many
sources as observed variables, dim(S) = dim(X).
In addition to the problems of dimensionality of the source space with all of
the above approaches, the latter two approaches differ from our goal at a more
fundamental level. That is, both approaches make assumptions about the
structure of the function g relating the sources S to the observed variables X
rather than assumptions about the function f relating the observed variables
X to each other. Since it is this latter function that we care about, it appears
pertinent to make assumptions about f rather than g. To see this more clearly,
let us consider the linear case again for a moment. By writing

X = Cε ,

and making assumptions about C, we do not obtain any interesting or inter-
pretable constraints for the matrix A of the equivalent parametrization

X = AX + ε .

That is, since inverses of sparse matrices are not generally themselves sparse,
the sparsity of C as proposed by Zheng et al. (2022) does not imply sparsity or
any other interesting structures in A = I−C−1. Similarly, the orthogonality of
the columns of C proposed by Gresele et al. (2021) does not correspond to or-
thogonality of columns in A, nor to any constraints about the matrix A that can
be readily interpreted or expected to hold in a real causal system. Conversely,
more natural assumptions in the causal parametrization of Equation (4.1), such
as sparsity or independence of causal mechanisms in the nonlinear function f ,
do not readily translate into assumptions on the mixing function g under which
the nonlinear ICA problem is known to be identifiable.
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Next, we show that in contrast to the general nonlinear ICA problem described
in Equation (4.3), the problem of finding a post-nonlinear model over both
observed and latent variables as described in Equation (4.4) is possible under
slightly stricter assumptions than those we developed in the previous chapter.

4.2 Nonlinearity? No Problem: Identifiability

As we have seen in the previous chapter, when the effects of latent confounders
are sufficiently distinct from each other and from causal effects between ob-
served variables, we have a chance at recovering the ground truth causal net-
work. More precisely, in addition to standard causal discovery assumptions,
we made the following structural assumptions in the previous chapter, which
we restate here for ease of readability.

Assumption A (Sufficient Signal of Confounders). The variables X are split
into disjoint sets I1, . . . , Il of size |Ij | ≥ 4, such that Zj has non-zero influence
on each Xi ∈ Ij , i.e., bij , 0 for all Xi ∈ Ij .

Assumption B (Sparsity). For each Ij , there are at most |Ij | − 4 edges
incoming to vertices in Ij , aside from those starting in Zj .

Assumption C (No False Positives). For all distinct Xi, Xj , Xu, Xv not in-
dependent given Z, with covariances σrs, we have σijσuv , σiuσjv.

These assumptions guarantee that the true network structure is sufficiently
sparse in a suitable manner and that the matrices A, B are not picked in an
adversarial manner. However, in addition to these structural assumptions, we
need to ensure that the nonlinearities τi are sufficiently well-behaved.

Assumption D (Super Linear or Superlinear). The confounder Z is Gaussian,
Z ∼ N(0, diag(σ2

Z)). Further, precisely one of the following holds:
a) τ = id and ε ∼ N(0, σ2

xI), or
b) τi is three times differentiable and strictly nonlinear for all i.

While this assumption is not strictly necessary to recover the effects of the
latent confounders Z, we require it to identify the matrix A determining causal
relationships between the observed variables X. The first case corresponds
to the well-known identifiability of causal models for linear Gaussian models
with equal noise variances (Peters and Bühlmann, 2014). The second case
corresponds to the identifiability of PNL models (Peters et al., 2014).
By adding this last assumption, we ensure that the identifiability result of
Theorem 3.2 translates into our current setting.
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Theorem 4.1 (Identifiability in the Sparse PNL Model). Let the distribution
P (X, Z) be described by the nonlinear SCM of Equation (4.4), i.e.,

X = τ
(
(I −A)−1 (BZ + ε)

)
,

for some Z of dimension l ≤ m/4. Further, let Assumptions A–C hold. Then
both the number l of confounders Z and the causal effects of the confounder, B,
are identifiable up to trivial indeterminacies (column permutations and rescal-
ing). Furthermore, if Assumption D also holds, then A is also identifiable.

Proof sketch. Due to the way the model is generated, all correlations between
observed variables X can be described entirely by linear relationships between
transformed variables τ−1(X), for which Theorem 3.2 applies.

As with Theorem 3.2, we do not need to know the number of confounders, nor
which subset of the variables X is confounded by each of the confounders Zj .
Instead, all of these can be recovered solely from the observed data. If we fur-
ther assume that the variances of Z are known, that the τi are normalized, and
that we have some domain knowledge, we can get more precise identifiability.

Corollary 4.2. Let the Assumptions of Theorem 4.1 hold and let all τi be
strictly increasing and standardized to satisfy τi(1) = 1. Further, let the vari-
ances σ2

Zj
of each Zj be known, and for each j let the sign of bij be known for

at least one Xi ∈ Sj. Then B is identifiable up to permutations of its columns.

Proof sketch. The additional assumptions that σ2
Zj

are known and that τi(1) =
1 fix the scale of B. The assumption that for each Zj , the value of at least one
bij , 0 is known fix the sign of B.

The required domain knowledge here is the knowledge of the signs of some
bij and the variance of Z. While this assumption may seem unreasonable at
first glance, in many scientific fields, we have a good idea of the potential
latent confounders and how they would affect some of the observed variables.
Examples of cases where these assumptions hold include various psychometric
constructs (Gerber et al., 2011; Grosse and Zhou, 2021), socio-economic status
in microeconomic or epidemiological analyses (Hajat et al., 2021), and GDP in
cross-country macroeconomic analyses (Hu et al., 2015).
Note that Theorem 4.1 makes no statement about the identifiability of the non-
linear functions τ . In fact, we are not interested in nonlinearities τi themselves,
but instead in discovering the underlying generating DAG G and the effects of
the latent confounder Z, so that this is not an issue for our purposes. As long
as we can find any element-wise nonlinearity ν such that ν(X) ∼ N(0, Σ) for
some Σ, we have achieved our goal. Therefore, we next develop a method to
find such a ν along with the graph G∗.



4.3. Learning with Variational Autoencoders 86

4.3 Learning with Variational Autoencoders

In order to learn a nonlinear function ν such that ν(X) is normally distributed,
we make use of variational autoencoders (VAEs; Kingma and Welling, 2014,
2019). We begin by giving a short introduction to VAEs and variational meth-
ods. Our goal is to estimate the evidence or marginal log-likelihood,

log p(X) = log
∫

p(X | H)p(H)dH ,

of a model, where we use H to denote whatever parameters or auxiliary vari-
ables we do not care about. For example, in a Gaussian mixture model, we
might want to know how probable the observed data is after marginalizing over
the “cluster assignments” for each data point. While the typical approach is to
evaluate the joint probability at the MAP cluster assignment to approximate
log p(X) ≈ maxH log p(X | H)p(H), this is a strict underestimate of the true
log p(X), especially when many values of H obtain roughly equally good scores,
such as when the joint distribution is multi-modal or when the modes are flat.
To obtain better lower bounds, we write (Kingma and Welling, 2014)

log p(X) = log
∫

p(X | H)p(H)dH (4.6)

= log
∫

q(H | X)p(X | H) p(H)
q(H | X)dH

≥
∫

q(H | X) log
(

p(X | H) p(H)
q(H | X)

)
dH

=
∫

q(H | X) log p(X | H)dH −
∫

q(H | X) log
(

q(H | X)
p(H)

)
dH

= Eq(H|X) [log p(X | H)]−KL (q(H | X) | p(H)) ,

where KL(p, q) =
∫

p(u) log (p(u)/q(u)) du is the Kullback-Leibler divergence,

and we used Jensen’s inequality in the third line (Durrett, 2019). The two
conditional distributions q(H | X), p(X | H) are called encoder, respectively,
decoder, corresponding to probabilistic maps X 7→ H and H 7→ X such that
their composition approximates the identity function.

The right-hand side of the inequality is referred to by the eminently sensible
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Encoder Decoder

X τ−1 I − A

µε

σε

µz

σz

ε

Z

BZ + ε

B

(I − A)−1 τ X̂

Figure 4.3: Proposed model architecture. The encoder outputs both noise ε and con-
founder Z. Shaded nodes are the learned mechanisms. Learnable parameters include the
adjacency matrix A of the causal model over the observed variables as well as the matrix
B containing the influence of Z on the observed nodes.

name evidence lower bound (ELBO; Kingma and Welling, 2014),

LELBO B Eq(H|X) [log p(X | H)]−KL (q(H | X) | p(H)) .

The two terms ELBO are the reconstruction error Eq(H|X) [log p(X | H)], mea-
suring the capacity of the “channel” defined by the encoder q(H | X) and the
decoder p(X | H) to recover the original data, and the divergence measuring
the similarity between the prior p(H) and the encoder q(H | X). Note that
the inequality in Equation (4.6) holds for any encoder q(H | X) and decoder
p(H | X). Hence, in order to approximate the evidence log p(X) as well as
possible, we can maximize this lower bound,

max
q(H|X), p(X|H)

LELBO ≤ log p(X) , (4.7)

over some class of encoder and decoder distributions, also known as proposal
distributions. Clearly, the larger the set of proposal distributions, the better
the approximation. Historically, due to computational limitations, variational
approaches were restricted to simple proposal distributions such as mean field
approximations, for which solutions were analytically tractable (Girardeau and
Mazo, 1973; Tanaka, 1998; Wainwright et al., 2008). With today’s abundance
of computational power, more modern variational approaches instead use more
expressive, but also more computationally expensive classes of distributions,
which therefore provide tighter lower bounds (Kingma and Welling, 2019).
Specifically, both the encoder qθ(H | X) and the decoder pλ(X | H) are gen-
erally chosen to be Gaussian distributions parameterized by neural networks
so that the optimization in Equation (4.7) is over some parameter vectors θ, λ
parametrizing the elements of these larger classes of distributions.
To apply this to our problem, we set H = BZ + ε. In order to estimate our
model evidence, what would be good choices for the encoder and decoder?
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Fortunately the causal model of Equation (4.4) already describes a decoder,

X = τ
(
(I −A)−1 (BZ + ε)

)
,

so that we only need to determine a suitable corresponding encoder. By rewrit-
ing this equation, the unobserved source variables can be written as

BZ + ε = (I −A)τ−1(X) ,

so that we can write a corresponding encoder as

H ∼ N((I −A)τ−1(X), σ2
z(X)BB⊤ + σ2

ε(X)I) .

Equivalently, we can split H into the effect of the latent confounding variables
Z and the independent noise variables ε by writing it in the form

H = BZ + ε where
Z ∼ N(µz(X), σ2

z(X)I)
ε ∼ N(µε(X), σ2

ε(X)I)
s.t. Bµz + µε = (I −A) τ−1(X) .

We show the full model in graphical form in Fig. 4.3. Note that absent any
penalties associated with µz, µε, we can simply set µz = 0 and µε(X) =
(I −A) τ−1(X). However, if we have reason to believe that µz should be used
to model the mean instead of µε, we can alternatively set

µz(X) = arg min
µ

∥∥(I −A) τ−1(X)−Bµ
∥∥p

p

µε(X) = (I −A) τ−1(X)−Bµz(X) ,

which would by construction minimize the p-norm ∥µε(X)∥p of µε(X) among
all valid solutions. Note, however, that since both solutions result in exactly
equal model scores, we have no principled reason to prefer one solution over
the other. Therefore, we will assume µz = 0 to ease computation.

For this process to learn well, the nonlinearity τ and its inverse τ−1 need to
be simple. In particular, τ needs to have a closed-form solution for its inverse
and allow for ease of gradient computation in the shared parameters θ. While
tanh activation functions satisfy these conditions, years of research in neural
network learning dynamics have established that rectified linear units (ReLU;
Fukushima, 1975) show better convergence in practice (Krizhevsky et al., 2012).
However, since ReLU activations are not invertible, we instead use parametric
ReLU (PReLU) functions (Maas et al., 2013), whose inverse are again PReLU
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functions, and which are defined as

ϕ(x; γ) =
{

γx if x < 0 ,

x if x ≥ 0

ϕ−1(x; γ) =
{

x/γ if x < 0 ,

x if x ≥ 0 .

To create a more expressive nonlinear function, we can then stack such PReLU
functions ϕ to create our nonlinearities τi,

τi(xi; θi) = ϕ(λi2ϕ(λi1x + βi1; αi1) + βi2; αi2)
and τ(x; θ) = (τ1(x1; θ1), . . . , τm(xm; θm)) ,

where θi is the set containing all parameters {λij , αij , βij}ij (He et al., 2015a).
While we could stack the PReLU functions ϕ to arbitrary depth, as a proof of
concept for the viability of this approach, we stick with only two layers.

Next, to ensure that our learned model not only reconstructs the data well
but also has a valid causal interpretation, we require the causal graph G
parametrized by the matrices A and B to be acyclic. Fortunately, by construc-
tion, the variables Z have no incoming edges and, therefore, cannot contribute
to any cyclic structures in the graph, leaving us to focus only on the matrix
A. To this end, we follow the approach introduced by Zheng et al. (2018) to
introduce a differentiable acyclicity constraint. To explain their approach, note
that the matrix Ak counts precisely the number of directed weighted paths of
length k in the graph G. More precisely, its entries are given by

(Ak)ij =
∑

p∈Pk(i,j)

∏

(u,v)∈p

auv ,

where Pk(i, j) is the set of all paths of length k leading from Xi to Xj , and the
product runs over the edges constituting the path p. In particular, if all entries
aij of A are non-negative, we have the following equivalence

i is not part of any cycle of length k ←→ (Ak)ii = 0 ,

so that by summing up all of these non-negative entries, we obtain

there are no cycles of length k ←→ trace(Ak) = 0 .

In practice, not all weights aij will be positive, but by taking the Hadamard
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product (A⊙A)ij = a2
ij , this can be resolved in a differentiable manner. Hence,

G is acyclic ←→
m∑

k=1
λk trace((A⊙A)k) = 0 ,

for any set of weights λk > 0. In particular, Zheng et al. (2018) used the
weights λk = 1/k!, leading to the matrix exponential

trace(exp(A⊙A)) = trace(I) +
m∑

k=1

1
k! trace((A⊙A)k) .

Since this algorithm is numerically unstable for large graphs, Yu et al. (2019)
proposed to use the weights λk =

(
m
i

)
m−i instead, leading to the score

h(A) B trace ((I + A⊙A/m)m)−m

=
m∑

k=1

(
m

k

)
trace((A⊙A/m)k) ,

which is numerically more stable. This score h(A) is fully differentiable in A
and satisfies h(A) = 0 if and only if the graph parametrized by A is acyclic. For
more details on these scores and other alternatives, see also Wei et al. (2020)

In general, we know not only that A is acyclic, but by assuming causal faithful-
ness, we know that the true DAG G∗ is the sparsest of all DAGs consistent with
the observed P (X) (Raskutti and Uhler, 2018). As such, we are interested in
finding sparse matrices A, B to capture the true causal DAG G∗. Under such
a sparsity constraint, we show that our score is consistent for linear SCMs.

Theorem 4.3 (Consistency under Sparsity). Let xn be a sample generated
from the model in Equation (4.4) with τ = id and let Assumptions A–D hold.
Let L be the L0-penalized ELBO score given by

L(xn; A, B) B −LELBO + λA ∥A∥0 + λB ∥B∥0 ,

and let Â, B̂ be its minimizers subject to acyclicity, i.e.,

Â, B̂ = arg min
A,B

L(xn; A, B)

s.t. h(A) = 0 .

Then for sufficiently small σε(X), σz(X) the score L is consistent for recovering
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the matrices A, B when λA = λB = log(n)/2:

lim
n→∞

P (Â = A, B̂ = B) = 1 .

Proof sketch. For the linear case and sufficiently small values of σ, the ELBO
score essentially reduces to modeling the sample correlations between variables,
so that this reduces to Theorem 3.5.

In practice, the regularizers ∥·∥0 are not differentiable, so we use the common
practice of replacing them with L1 norms, ∥·∥1, instead, and describe a practical
way of optimizing the resulting score next.

4.3.1 Optimization under Acyclicity

By replacing the sparsity penalty ∥·∥0 of Theorem 4.3 with the more tractable
∥·∥1, the overall learning problem, including the nonlinearities τ(·; θ) as well as
the sparsity and acyclicity constraints is given by

min
A,B,θ

f(xn; A, B, θ) B −LELBO + λA ∥A∥1 + λB ∥B∥1

s.t. h(A) = 0 .

To obtain a fully differentiable optimization target, we use the augmented La-
grangian approach for constrained optimization problems (Bertsekas, 1997)

L(A, B, θ, λ) = f(A, B, θ) + λh(A) + ρ

2 |h(A)|2 .

Of course, to optimize this objective, we first need to compute LELBO. Since the
expectation term is not fully analytically tractable, we can obtain estimates by
using Monte Carlo approximations with K samples from the encoder q(Z, ε | X)

Eq(Z,ε|X) [log p(X | Z, ε)]

≈ 1
K

K∑

k=1

m∑

i=1

(
Xi − µx(Z(k), ε(k))i

)2

2σx(Z(k), ε(k))2
i

− 2 log
(
σx(Z(k), ε(k))i

)
− c ,

where Z(k), ε(k) is the k-th sample from the encoder q(Z, ε | X). Next, since
both q(Z, ε | X) and p(Z, ε) are Normal distributions, the KL divergence term
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of the ELBO can be analytically computed as

KL (q(Z, ε | X) ∥ p(Z, ε)) = 1
2

(
− log det

(
σ2

zBB⊤ + σ2
ε(X)I

)

+ trace
(
σ2

zBB⊤ + σ2
ε(X)I

)

+
∥∥(I −A)τ−1(X; θ)

∥∥2
2

)
.

Writing ΣZ,ε|X = σ2
zBB⊤ + σ2

ε(X)I, the augmented Lagrangian is therefore

L(A, B, θ; λ, ρ)

≈ 1
K

K∑

k=1

m∑

j=1

(
Xj − µx(Z(k), ε(k))j

)2

2σx(Z(k), ε(k))2
j

− 2 log
(
σx(Z(k), ε(k))j

)

+ 1
2

(
− log det

(
ΣZ,ε|X

)
+ trace(ΣZ,ε|X) +

∥∥(I −A)τ−1(X; θ)
∥∥2

2

)

+ λA ∥A∥1 + λB ∥B∥1 + λh(A) + ρ

2 |h(A)|2 ,

and can be optimized using dual ascent (Bertsekas, 1997). Specifically, we use
the common updating schemes for A, B, θ and parameters λ, ρ given by

Ak, Bk, θk = arg min
A,B,θ

L(A, B, θ; λk, ρk)

λk+1 = λk + ρh(Ak)

ρk+1 =
{

αρk if h(Ak) > γh(Ak−1)
ρk otherwise ,

where α > 1, γ < 1 determine how quickly ρ increases (Yu et al., 2019).

Optimization of the first line can be done using any black box stochastic op-
timization algorithm readily available in machine learning toolboxes, such as
Tensorflow (Abadi et al., 2016) or PyTorch (Paszke et al., 2019). For the other
two equations, we use the values α = 10, γ = 0.25 suggested by Yu et al. (2019)
and found that the precise values did not significantly impact our results.

Note that the augmented Lagrangian L no longer forces the matrix A to be
strictly acyclic. Following Zheng et al. (2018), we prune the weights aij in
increasing order until the discovered graph G is acyclic.

Overall, we refer to our approach of learning the matrices A, B as nocadilac,
short for Nonlinear Causal Discovery with Latent Confounders.
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4.4 From ReLUs to Related Work

While most classical causal discovery methods have been based on combinato-
rial optimization, these algorithms do not benefit from a large number of recent
advances in automatic differentiation and differentiable programming (Abadi
et al., 2016; Baydin et al., 2018; Blondel and Roulet, 2024).
One class of approaches to leveraging these advances has been the use of gen-
erative flows (Deleu et al., 2022; Li et al., 2022), which parametrize a flow over
the space of DAGs on the data, and thereby find a locally optimal topological
older over the observed variables.
A much larger class of approaches has been ushered in with the introduction of
notears (Zheng et al., 2018), which reformulates network inference as a contin-
uous optimization problem by introducing a differentiable constraint measuring
how many cycles a matrix contains. While this approach was initially designed
for purely linear relationships, it has been generalized to permit nonlinear re-
lationships directly (Yu et al., 2019; Zheng et al., 2020). Furthermore, the pro-
posed differentiable constraint has been used widely in a large number of other
causal discovery methods, including autoregressive causal flows (Khemakhem
et al., 2021; Monti et al., 2020), reinforcement learning with or without graph
attention (Zhu et al., 2019; Yang et al., 2023), diffusion-based methods (Chao
et al., 2023), and others (Lachapelle et al., 2019; Zhang et al., 2023a; Kertel
and Klein, 2024; Bello et al., 2022; Waxman et al., 2024).
While this approach allows for the full suite of differentiable programming tools
to be leveraged, it should be noted that when care is not taken, simply optimiz-
ing the objective leads often leads to trivial results. In particular, on simulated
networks, due to the way that data generation processes are generally picked,
it is trivial to obtain results comparable to the state of the art simply by sorting
the variables in order of increasing variance (Chen et al., 2019; Reisach et al.,
2021), and that this can be used to manipulate the inferred graph by adversari-
ally rescaling some of the variables (Seng et al., 2022). It is, therefore, essential
to account for this fact, for example, by normalizing the data. Furthermore,
it has been shown that using the absolute value |A| instead of the Hadamard
product A⊙A, one can obtain better theoretical guarantees, albeit at the cost
of differentiability around 0 entries of the matrix (Wei et al., 2020).
As described in Section 4.1.3, other approaches focus on identifiability of nonlin-
ear causal networks by way of assumptions on the mixing functions in nonlinear
ICA (Khemakhem et al., 2020; Gresele et al., 2021; Zheng et al., 2022).
However, as with more classical approaches, all of the methods above rely heav-
ily on the assumption of causal sufficiency. Only more recently have methods
been proposed to either estimate causal effects under latent confounding (So-
leymani et al., 2020; Hu et al., 2021), as well as diffusion-based methods for
causal discovery under confounding (Shimizu, 2023). More interesting to us is
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again the dcd method and its nonlinear extension (Bhattacharya et al., 2021;
Ashman et al., 2023), which combine NMMs with the differentiable constraint
by Zheng et al. (2018) to discover a partially directed causal network indicating
which nodes are likely confounded. As we have seen in the previous chapter,
the resulting networks are nevertheless still difficult to interpret since they do
not model the confounder directly and, therefore, cannot determine if a set of
variables shares the same latent confounder.

4.5 Nonsense or Nuance: Experiments

In this section, we evaluate our method nocadilac empirically. As in the
previous chapter, we are interested in how well it recovers the set of nodes
affected by each Zj and how well it recovers the entire causal network. We
compare with other state-of-the-art methods for network discovery, including
those that permit latent confounding, gfci (Ogarrio et al., 2016), 3off2 (Af-
feldt et al., 2016), and dcd (Bhattacharya et al., 2021), and those assuming
causal sufficiency, notears (Zheng et al., 2018) and dag-gnn (Yu et al., 2019).
We implemented nocadilac in Python using Tensorflow (Abadi et al., 2016)
and perform optimization using Adam (Kingma and Ba, 2014). For our com-
petitors, we use the same implementations for gfci, 3off2, dcd, and notears
as in the previous chapter and use the implementation provided by the authors
for dag-gnn (Yu et al., 2019). We make all code and data available online.1

4.5.1 Evaluation on Synthetic Data

We begin by giving an overview of our data generation process. As before,
we generate a random DAG from the Erdős-Rényi model with p = 0.3. We
then generate a corresponding adjacency matrix with Aji ∼ U [−1, 1] when
(i, j) ∈ G and Aji = 0 otherwise. Our causal generating model is given by
v = Ag(v)+ε where g(v) = µ+α⊙f(v) where f is an element-wise function with
entries uniformly sampled from linear, quadratic, cubic, exponential, logistic or
sinusoidal functions, and (µ, α) ∼ U [−1, 1]2m are i.i.d. The noise is ε ∼ N(0, 1).
To generate the observed x, we sample v from the above model and remove
some source nodes z = (vk1 , . . . , vkl

). We consider first the performance when
the confounder is univariate, and study the effects of varying dimensionality of
Z later. For each experiment, we used n = 2500 samples and 500 repetitions.
We evaluate each method as in the previous chapter using F net

1 , F conf
1 , SHD, and

SID to measure its performance on different aspects. Furthermore, as explained
in Section 2.6, we use decision rate plots to show the relationship between
each method’s performance and confidence. The confidence for nocadilac

1https://eda.rg.cispa.io/prj/nocadilac/

https://eda.rg.cispa.io/prj/nocadilac/
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Figure 4.4: Evaluation on synthetic networks of size 25. We show F1 scores for (a) net-
work discovery and (b) confounded set recovery (higher is better), as well as (c) structural
Hamming distance and (d) structural intervention distance (lower is better). Each figure
shows the average score over increasing fractions of all datasets, sorted for each method
from most confident to least. We see that nocadilac outperforms its competitors at all
levels. In particular, in confounded set recovery (b), nocadilac performs better at its
worst than its competitors do at their best.

is computed as in the previous chapter, using the relative improvement by
including confounders over the unconfounded model

C = L(A, B = 0, θ, λ)− L(A, B, θ∗, λ)
L(A, B = 0, θ, λ) ,

whereas for all other methods, we use the same method to compute their con-
fidence as in the previous chapter. That is, for dag-gnn, notears, dcd, we
compare their scores against the scores under the null model, while for gfci
and 3off2, we order their decisions in the way most favorable to them.

Confidence and Performance

We now study the performance of nocadilac compared to its competitors on
networks of m = 25 observed variables. We show the decision rate plots in
Figure 4.4. For nocadilac, all metrics are monotonic in the confidence C,
suggesting that it can be used to determine which network inferences are more
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Figure 4.5: Evaluation on synthetic networks of different sizes. We show F1 scores for
(a) network discovery and (b) confounded set recovery (higher is better), as well as (c)
structural Hamming distance and (d) structural intervention distance (lower is better).

reliable than others. For notears and dag-gnn, their confidence correlates
with F net

1 , SID, and SHD, but since they are not designed to find confounders,
their F conf

1 score is zero throughout. Overall, nocadilac outperforms its com-
petitors by a large margin for all metrics at almost all levels of confidence.

Performance for different network sizes

To see how well nocadilac performs for larger networks, we next test all
methods for networks of sizes m ∈ {10, 25, 50, 100} and show the results in
Figure 4.5. We see that nocadilac outperforms its competitors by a large
margin across the board for almost all network sizes. While all methods show
decreasing performance for increasing network size m, nocadilac performs
best for increasing network sizes. As the network size increases, the gap be-
comes smaller for the F1 scores. This is due primarily to the latent confounder
affecting only a smaller fraction of variables as we increase the network size.
Meanwhile, especially for SID, the gap becomes more prominent as every in-
correct edge between nodes simultaneously affects many other pairs of nodes.
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Number of confounders
Method 1 2 3 4 5
NoCa-
DiLaC 0.35 0.33 0.29 0.26 0.19

dcd 0.23 0.14 0.11 0.07 0.03
3off2 0.22 0.12 0.08 0.05 0.03

gfci 0.15 0.07 0.03 0.02 0.01

Table 4.1: Comparison on
graphs with varying numbers
of latent confounders. While
all methods perform well for
a one-dimensional confounder,
only nocadilac maintains its
performance as the number of
latent factors is increased.

Higher-dimensional Z

To study the effect of including multiple confounders Zi, we show the overall
F conf

1 scores for one to five confounders in Table 4.1, with m = 50 observed
variables. As in the previous chapter, we omit notears and dag-gnn since
they cannot discover confounded nodes. We see that nocadilac performs
at a consistent level for one to four confounders, with a slightly larger drop
in performance for five latent variables. In contrast, all of dcd, 3off2, and
gfci perform less well from the start but also display a dramatic drop in
performance upon adding a second latent confounder. The reason for this is as
in the previous chapter: by modeling only pairwise confounding, they cannot
determine which variables share the same confounder. This remains true even
when we try to cluster nodes using spectral clustering of confounded variables.

4.5.2 REGED Benchmark Data

We again use the REGED data introduced in Section 3.5.2 and use the same
setup to obtain confounded and unconfounded subsets of data.
We show decision rate plots for all metrics in Figure 4.6. While all methods
perform worse than on synthetic data, nocadilac nevertheless performs best
by a large margin, and the overall pattern of relative performances between
methods is just as it was for the synthetic data above.

4.5.3 Application to a Protein Signaling Network

Last, to see how well nocadilac works on real-world data, we evaluate it on the
widely used Sachs dataset (Sachs et al., 2005) for protein signaling. It contains
n = 7466 continuous measurements for m = 11 phosphorylated proteins and
phospholipids in human immune system cells. The consensus network contains
20 edges, which we show in Figure 4.7a. Since the graph contains cycles, some
mistakes are inevitable. To make the data appropriate for our setting, we
remove the node PKC with out-degree four from the network. Note that the
edge from PIP2 to PKC violates our assumption that latent confounders have
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Figure 4.6: Evaluation on REGED. We show F1 scores for (a) network discovery and (b)
confounded set recovery (higher is better), as well as (c) structural Hamming distance
and (d) structural intervention distance (lower is better).

no incoming edges. We show the benefit of explicitly modeling confounders by
comparing nocadilac with dag-gnn and dcd.

We show the results of this experiment in Figure 4.7. In Figure 4.7b, we see
that nocadilac automatically discovers a substitute latent factor Z connected
to the correct variables (green edges) and thereby takes the place of PKC. For
the overall network, only three edges are missing entirely (gray), while two are
reversed (dashed), and another three are instead contained as paths of length
2 (dotted). This performance is similar to the result of other state-of-the-art
methods on fully observed data (Yu et al., 2019). In Figure 4.7c, we see the
result of dag-gnn. The absence of PKC from the observed data leads to dag-
gnn inferring a large number of edges (red) between nodes initially connected
to PKC while making more mistakes over the remaining variables. We see a
similar pattern in the results of dcd in Figure 4.7d. Many pairs of children
of PKC are considered to be potentially confounded (red), but so are many
other pairs of variables that do not have PKC as a parent. It is also unclear
which pairs share the same latent parent. Furthermore, dcd misses many more
edges than either nocadilac or dag-gnn. Overall, nocadilac produces more
accurate and interpretable results than its competitors.
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Figure 4.7: Results on the Sachs dataset. nocadilac discovers a confounder Z capturing
the influence of PKC (green edges). In contrast, dag-gnn finds many edges between
nodes influenced by PKC (red) and dcd contains indications of confounding for many
pairs of nodes, but neither method can determine that nodes share a confounder. All
methods make roughly the same number of errors regarding reversed edges (dashed),
including some edges only as indirect paths (dotted), and missing edges (gray).

4.6 Between Confounding Charybdis and Selective Scylla

In this chapter, we tackled Problem 2b) by building on the theory of identifia-
bility under a suitable type of sparsity we developed in Chapter 3. In particular,
we developed a framework for recovering the causal network, including latent
variables Z, when the causal mechanisms are not purely linear.
By choosing our causal model to be a post-nonlinear model, we related our
problem to the theory of nonlinear ICA, highlighting the difficulties of the
problem, and showing that recent advances in identifiability for nonlinear ICA
are not sufficient for solving the task we are interested in. While ideas of
sparsity and algorithmic independence have been proposed for this task of
nonlinear ICA, it is unclear under which conditions overcomplete nonlinear ICA
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allows for identifiability, which is necessary to deal with latent confounding.
To tackle this problem, we leveraged our insights from the previous chapter
about both the graphical structure entailed by latent confounding, as well as
the benefits of a certain type of sparsity. We further leveraged the structure of
the PNL model to generalize the results we derived there to this setting. By
adapting the ELBO score, we obtained a consistent score for recovering the
true causal network in the linear setting. Furthermore, by leveraging recent
approaches to learning causal networks in a fully differentiable manner, we can
optimize this ELBO score by adapting the commonly used VAE architecture
to encode our exogenous noise and confounding variables separately.
In several experiments we showed that nocadilac works well in practice on
synthetic and real-world data. In particular, as with CDHC, we saw that
its confidence tracks its performance well and that it returned more readily
interpretable outputs than competing methods.
For future work, we are interested in improved theoretical guarantees. As
discussed in the previous chapter, the gap between how many parameters we
can currently deal with and how many we should be able to deal with appears
to be large. For nocadilac, however, another difference is that we currently
cannot prove identifiability of the nonlinearity τ . While recovering τ is not
necessary to recover the causal structure G∗, it is nevertheless of interest for
the purpose of end-to-end learning of causal estimates.
Furthermore, another highly relevant avenue would be to provide theoretical
results for the more commonly used class of additive noise models (ANMs).
We can, in fact, write our PNL model in the equivalent form

X = ν(X) + BZ + ε ,

where the function ν is given by ν = id−
(
τ ◦ (I −A)−1)−1. Unlike τ , the

nonlinearity ν is not an element-wise transformation of the vector X. By
rewriting the PNL in this manner, all our identifiability results apply to this
specific kind of ANM with latent confounding. This approach might, therefore,
provide us with a path towards extending our identifiability results to general
ANMs with less restrictive forms on the nonlinearity ν in the future.
Nonetheless, in the next chapter we turn instead to a different major potential
source of bias in causal learning: selection bias.



Chapter 5

Identifying Selection Bias
from Observational Data

“It was a good answer that was made by one who when they showed him
hanging in a temple a picture of those who had paid their vows as having
escaped shipwreck, and would have him say whether he did not now
acknowledge the power of the gods, — ‘Aye,’ asked he again, ‘but where
are they painted that were drowned after their vows?’ And such is the way
of all superstition, whether in astrology, dreams, omens, divine judgments,
or the like; wherein men, having a delight in such vanities, mark the
events where they are fulfilled, but where they fail, though this happens
much oftener, neglect and pass them by.”

Novum Organon, Francis Bacon

In the previous chapters, we have considered the effects of latent confounding
on causal discovery and inference. Another related problem leading to biased
estimates of causal effects is that of selection bias. Selection bias is due to
preferential inclusion of some subjects over others based on unknown factors
causally downstream of the observed variables (Bareinboim et al., 2014).
As an example, consider the study by Kovács and Sharkey (2014) on Goodreads
book ratings. Employing a regression discontinuity design in a sample of 32
books, they studied the effects of winning an award on book ratings by compar-
ing books that won an award and matched runner-ups that did not. They found
that the average book ratings declined after winning an award (see Figure 5.1).
This pattern can be explained by the fact that there are two kinds of readers.

101
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Figure 5.1: Goodreads ratings for books that won an award (gray) and similar books
that did not (black) from Kovács and Sharkey (2014). The decline of the ratings for the
former is explained by an extended readership that is less predisposed to like the book.

Those who read a book before it won an award did so because they were likely
looking for books within a given genre and were, therefore, predisposed to like
it and thus more likely to give the book a good rating. Meanwhile, those who
read a book after it won an award were not predisposed to like it and are likely
to be more representative of the population as a whole. This kind of selection is
referred to as self-selection because subjects themselves join groups of readers
based on their literary (or other) preferences.
Similar and less benign issues occur everywhere in empirical sciences, such as
case-control studies in epidemiology (Glymour and Greenland, 2008), studies
using hospital-admission data (Berkson, 1946; Herbert et al., 2020), genet-
ics (Mefford and Witte, 2012), economics (Angrist, 1997), statistics (Kuroki
and Cai, 2006), psychology (Kaźmierczak et al., 2023), and many more.
In machine learning systems, too, predictive performance suffers from selec-
tion bias. When training samples are collected preferentially from some sub-
population, such as those who self-select into feedback programs, or Mechanical
Turk workers, or data from some hospitals but not others, covariate shift occurs
between training and test samples, leading to worse performance on the test
data (Bickel et al., 2009). Even when data from multiple contexts is collected,
such as multiple hospitals, care must be taken as naive combination of these
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datasets can lead to degradation of performance (Compton et al., 2023). Meth-
ods that adjust for such covariate shift (Sugiyama et al., 2007; Gretton et al.,
2009; Mallick et al., 2022) rely on the availability of independent training and
test datasets, in which the available test data is assumed to be unbiased. This
makes them unsuited for determining whether selection bias might be affecting
our data when we only have access to a single dataset.
Therefore, in this chapter, we study conditions under which selection bias is
identifiable from only a single biased dataset. We show that when the selection
effect is linear, the underlying distribution P (X) can be recovered in two cases,

a) parametrically, when P = Pθ lies in a known exponential family, e.g.,
when P = N(µ, Σ) is a Normal distribution (Section 5.2.1), and

b) non-parametrically, when P is known to satisfy certain invariances, such
that for some map j we have P = P ◦j For example rotational invariance,
P = P ◦ U , for a standard t-distribution (Section 5.2.2).

More specifically, we provide results for exponential families when selection is
a deterministic function of observed covariates and for the normal family when
selection is influenced by additive Gaussian noise. For the non-parametric
case, we show identifiability under the general assumption that the underly-
ing ground truth distribution is subject to some set of invariances, such as the
above-mentioned rotational invariances or more general measure-preserving au-
tomorphisms mentioned in Section 4.1.3.
Based on these theoretical results, we propose two practical methods to tell,
based on a single dataset, whether this data is subject to selection bias, as
well as how strong this bias is. By studying the behavior of a distribution
conditioned on selection bias, for parametric families we motivate the use of
alternate optimization between the parameters of the distribution and the se-
lection boundary (Section 5.3.1). In contrast, for non-parametric families with
a known set of potential (rotational) invariances, we propose to learn an invari-
ance of the distribution and use violations of the invariance to discover which
parts of the distribution may be subject to selection bias (Section 5.3.2)
Last, through an extensive set of experiments, including case studies on penguin
and exoplanet data, we show that our methods can provide valuable and novel
insight and significantly outperform baselines that try to control for distribution
shifts or latent confounding factors. As with previous chapters, proofs for all
theoretical statements are included in Appendix A.5.

5.1 Setting up for Selection

As before, we denote observed variables by X. Then, selection bias is the act
of conditioning on an unobserved variable Z causally downstream of X. This
causes a shift from the population distribution P (X) to a distribution P (X | Z),
resulting in potentially false inferences. We consider the most general case,



5.1. Setting up for Selection 104

X Y

Z

(a) Selection bias in a
graphical model.

0 0.2 0.4 0.6 0.8 1
0

0.2
0.4
0.6
0.8

1

x

y

(b) Noiseless selection.

0 0.2 0.4 0.6 0.8 1
0

0.2
0.4
0.6
0.8

1

x

y

(c) Noisy selection.

Figure 5.2: Selection bias. Left: A graphical representation of selection bias as the act
of conditioning on a common child Z of multiple observed variables. Middle: The effect
of selection on independently uniformly sampled points. Blue points are observed, gray
points are excluded due to selection. While X and Y are originally independent, they are
negatively correlated in the observed sample, as shown by the regression line (purple).
Right: Similar to (b) but the selection is noisy. Included and excluded points are no longer
nicely separated, making it more difficult to notice the effect of selection.

where Z = f(X, ε) can be a function of any or all variables in X and some
independent noise ε. We are interested in determining whether a given set of
observations x has been sampled from the true distribution P (X) or from a
biased distribution Q(X) = P (X | f(X, ε) ∈ S).
As an example, consider the setup in Figure 5.2. In Figure 5.2(a), we depict
the graphical structure of selection bias. In contrast to the case of confounding,
in which Z is causally upstream of X, Y and not conditioned on, in the case
of selection bias, it is causally downstream and conditioned on. Specifically,
in Figure 5.2(b), we let P (X, Y ) = U [0, 1]2, making them independent. We
then select samples satisfying X + Y > 1, leaving only the data in the top
right. We see clearly that there is a spurious negative correlation between X
and Y in the distribution Q(X, Y ) = P (X, Y | X + Y > 1). We call this type
of selection above noiseless because it depends solely on X, Y but no external
source of noise ε. Selection can also be noisy, as in the case X + Y + ε > 1
in Figure 5.2(c), where ε ∼ N(0, 0.05) is a small amount of noise. Clearly,
the presence of noise makes it more difficult to determine whether selection is
occurring and, if so, which parts of the distribution P (X) are affected by it.
In this chapter, we consider linear selection, Z = f(X, ε) = a⊤X + ε, where we
include a variable X0 = 1 to account for affine offsets. Our observed sample x
therefore comes from the distribution Qa = P (· | a⊤X + ε > 0) where a ∈ A
is unknown. When ε is symmetric around the origin, then a⊤ = 0 corresponds
precisely to the case of no selection bias. Since the condition of a⊤X + ε > 0 is
invariant under multiplication with a scalar, we further assume that each non-
zero vector a ∈ A is normalized in some way, e.g., via a1 = 1 or ∥a∥2 = 1. We
aim to recover a and P from a sample x ∼ Qa. Next, we outline the theoretical
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underpinnings of two different approaches to recovering these.

5.2 Of Identifiability and Invariances

In this section, we first show that linear noiseless selection effects are always
identifiable for exponential families and noisy selection with Gaussian noise
is identifiable for the family of normal distributions. We then show that for
non-parametric families of distributions, noiseless linear selection is identifiable
under assumptions on the set of potential invariances of P (X).

5.2.1 Identifying Selection Bias in Parametric Models

We assume that our distribution P (X) is described by a parametric distribution
Pθ belonging to an exponential family M parametrized by Θ, with density

pθ(x) = h(x) exp(η(θ)⊤T (x)−A(θ)),

where η(θ) are called the natural parameters, T (x) the sufficient statistic
and A(θ) the log-partition function. Further, all Pθ share the same support,
supp(Pθ) B {x : pθ(x) > 0}, which is independent of θ. Many, but not all,
common parametric families of distributions are exponential families.

Example 5.1. We give an example of exponential families and classes of dis-
tributions which are not exponential families.

a) A typical exponential family is the multivariate normal distribution N(µ, Σ).
Its natural parameters, sufficient statistics, and log-partition function are

η(µ, Σ) =
(

Σ−1µ
− 1

2 Σ−1

)

T (x) =
(

x
xx⊤

)

A(µ, Σ) = 1
2µ⊤Σ−1µ + 1

2 log det(Σ) .

b) The uniform distributions U [0, θ] on different intervals [0, θ] do not form
an exponential family because their supports are not equal.

c) The parametric family of Student’s t-distributions, tν(µ, Σ) does not con-
stitute an exponential family because its parametrization cannot be fac-
torized in the required manner.

d) In fact, the t-distribution is a special case of the general class of (uncount-
able) Gaussian mixture distributions, which are generically not exponen-
tial families. Other examples include non-centered Laplace distributions.
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(a) Densities Q(X) (b) Relative densities Q(X)/Q(0)

(Relative) Density under selection at X > −2 and X > −1

Figure 5.3: Density ratios under selection. While the densities (a) for the same distribu-
tion affected by different selection criteria are different in the unselected part, the density
ratios (b) are the same at every point that is left unaffected by the selection mechanism.

When the distribution Pθ is affected by selection bias parametrized by the
selection vector a ∈ A, we obtain the distribution

Qθ,a B Pθ(· | a⊤X + ε > 0) ,

and form the model class Ms = {Qθ,a : θ ∈ Θ, a ∈ A} of models with selec-
tion. Note that even if M is an exponential family, Ms no longer forms an
exponential family since its members do not share the same support.
Next, we move on to identifiability results for the parameters of the distribu-
tions Qθ,a ∈Ms. To see why this should be possible, we consider the behavior
of the distribution Qθ,a “away” from the (noiseless) selection boundary as fol-
lows. Let x, y be two points such that a⊤x > 0 and a⊤y > 0. Then we have

log Qθ,a(x)
Qθ,a(y) = log Pθ(x)/Pθ(a⊤X > 0)

Pθ(y)/Pθ(a⊤X > 0) (5.1)

= log Pθ(x)
Pθ(y)

= log h(x)
h(y) + η⊤(θ) (T (x)− T (y)) ,

which tells us that the “remainder” of the distribution Pθ, the part unaffected
by the selection mechanism, does not depend on a. See Figure 5.3 for a graphi-
cal depiction of this relationship between the density ratios. In particular, note
that this is (almost) a linear system in η(θ). As such, if η(θ) is r-dimensional,
we expect r+1 such density ratios to suffice to recover θ uniquely. The following
theorem tells us that this intuition is essentially correct.

Theorem 5.1 (Identifiability under Noiseless Selection for Exponential Fam-
ilies). Let M be an exponential family with parameter space Θ and sufficient
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statistics T (x) non-constant on every half-space. Further, let A be the set of
(normalized) selection vectors a such that

0 < Pθ(a⊤X > 0) < 1 , (5.2)

for all θ.1 Then the parameters (θ, a) of Qθ,a are identifiable. In particular, Pθ

is fully determined by the distribution Qθ,a.

Proof sketch. For a, θ and a′, θ′, from Equation (5.2) we obtain that a = a′,
and thus from Equation (5.1) that θ = θ′.

The assumption of Equation (5.2) that 0 < Pθ(a⊤X > 0) < 1 is both natural
and necessary. First, if Pθ(a⊤X > 0) = 0 then there is nothing left of Pθ,
and the distribution Qθ,a is not well-defined to begin with. Conversely, if
Pθ(a⊤X > 0) = 1, then no selection occurs, and the same would be true for
any a′

0 > a0, making the parameter a unidentifiable.
The intuition we developed above also applies approximately in the case of
noisy selection. However, when studying the density ratios, one must also
study deviations from equality, which depend on the distribution of the noise
ε and the distance from the selection boundary. Due to the difficulty of doing
this rigorously, we will next prove identifiability in the special case of noisy
selection in the Gaussian exponential family.

Theorem 5.2 (Identifiability of Noisy Selection Effects in the Gaussian Fam-
ily). Let M be the Gaussian exponential family with parameter space Θ =
{(µ, Σ)} and let ε ∼ N(0, 1). Further, let the biased distribution be

Qµ,Σ,a,ζ(X) = Pµ,Σ(X | a⊤X + ζε > 0) .

Then the parameters (µ, Σ) ∈ Θ, a ∈ A, ζ > 0 are jointly identifiable.

Proof sketch. This is simple but annoying algebra.

The assumption of Equation (5.2) is not necessary here because supp(Pθ) = Rm.
Next, we consider the case where our distributions are no longer necessarily of
a known parametric form but instead satisfy another regularity condition.

5.2.2 Beyond parametric distributions: Invariance

Assume that we have data either from a normal distribution N(µ, Σ) or from a
t-distribution tν(µ, Σ) with ν degrees of freedom. Then, while we do not know
the model class from which our data comes, we nevertheless know one crucial
fact about the underlying distribution: it is the same after reflection across

1Since all Pθ share a support, if the assumption holds for any θ, it holds for all θ.
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its mean, i.e., X and −X + 2µ have the same distribution. We call this an
invariance of P , similar to conservation laws in physics, or measure-preserving
automorphisms (MPAs) in the ICA literature (Hyvärinen and Pajunen, 1999).

Definition 5.1 (Invariance). Let P be a probability distribution and j be a
measurable bijective function. We say that j is an invariance for the distribu-
tion P if P (j(A)) = P (A) for all measurable sets A.

For a spherical normal distribution N(0, σ2I), the density p(x) depends on x

only through its distance from the origin ∥x∥2
2, so that any function j leaving

this norm the same would form an invariance of P . Therefore, a natural set
of invariances for N(0, σ2I) would be the set orthogonal matrices, O(m). The
function j can be arbitrarily complex and fine-tuned to P . For example, despite
its lack of obvious symmetry, the 1-dimensional exponential distribution Exp(λ)
has an invariance t 7→ − log(1 − e−λt)/λ, which is simply the mapping of its
q-quantile to its (1 − q)-quantile. In fact, by Sklar’s theorem (Sklar, 1959;
Jaworski et al., 2010), every multi-variate distribution P (X) with connected
support has an invariance group generated by mapping the distribution first
to a Gaussian distribution and rotating that distribution. These invariances
correspond precisely to the MPAs we showed in Figure 4.1 in the previous
chapter as one common non-identifiability in nonlinear ICA.
If P has a density p then for any two x0, x1 it has trivial invariances j(xi) = x1−i

and j(x) = x everywhere else. Such an invariance is trivial because it differs
from the identity only on a set of measure zero. To preclude such degenerate
cases, we consider what we call strongly distinguishable invariances.

Definition 5.2 (Strongly distinguishable invariances). We call a set J of in-
variances strongly distinguishable for the distribution P if for all j, j′ ∈ J we
have P (j(x) = j′(x)) > 0 if and only if j = j′.

Consider, for example, the normally distributed X ∼ P = N(0, σ2I). It is
invariant under the group of orthogonal matrices O(m). Further, for any two
U , U ′ ∈ O(m), the set K = ker(U−U ′) = {x : Ux = U ′x} is a linear subspace
of Rm with dim(K) < m so that P (UX = U ′X) = 0. Therefore, the set
of orthogonal matrices U is strongly distinguishable for any spherical normal
distribution N(0, σ2I). Furthermore, any invariance derived on the basis of
these, such as the invariance groups based on MPAs derived from mapping first
to a Gaussian distribution and then multiplying with an orthogonal matrix (see
Section 4.1.3), are also strongly distinguishable for any given P .
The importance of these invariances is that we can use them to detect selection
bias. If P is invariant under j, then selection bias will break such an invariance.

For example, when we discard all samples to the left of −1 of a standard
normal distribution, the invariance j : x 7→ −x no longer applies to the new
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(a) Symmetry without selection. (b) Partial symmetry with selection.

Figure 5.4: Broken symmetries. Where in the full distribution P , the symmetry x 7→ −x
applies to the entire range (a), in the presence of selection bias, those sets which are
affected by it (red) no longer respect the symmetry (b). Estimating which subsets do,
and which do not, gives us information about which parts of P are affected by selection.

distribution Q. However, it still applies to large parts of Q, indicating that
we can nevertheless obtain helpful information about P . Furthermore, once
we have found a good candidate for an invariance of P , we can consider those
regions where it does not apply. These are precisely where selection bias is
likely to be at work! See Figure 5.4 for a graphical depiction of the idea. We
formalize this intuition in the following theorem.

Theorem 5.3 (Identifiability of Selection under Invariance). Let M be a set
of probability distributions and J be strongly distinguishable for each P ∈ M.
Assume that for all P ∈ M there is j , id ∈ J such that P (X) = P (j(X)).
Let P ∈M and A be the set of a for which there exists j ∈ J such that

{
a⊤X > 0

}
∩ j−1 ({a⊤X < 0

})
, ∅ .

Then a is identifiable. Further, if all distributions P1, P2 ∈ M satisfy P1(· |
a⊤X > 0) = P2(· | a⊤X > 0) iff P1 = P2 then P is identifiable too.

Proof sketch. For an invariance j of P for which the intersection
{

a⊤X > 0
}
∩

j−1(
{

a⊤X < 0
}

) , ∅ is not empty, we can use this set to determine a by
comparing j

({
a⊤X > 0

}
∩ j−1(

{
a⊤X < 0

}
)
)

with
{

a⊤X > 0
}

.

The last assumption is true for many classes of distributions. In particular,
it holds for all exponential families, unions of multiple exponential families,
arbitrary finite mixtures of exponential families, and stationary Gaussian pro-
cesses (Bishop and Nasrabadi, 2006). Next, we develop methods to find selec-
tion effects for both exponential families as well as invariant distributions.

5.3 Manifesting Methods for Making Selection Manifest

In this section, we develop two complementary approaches to discovering selec-
tion bias in observational data based on the theoretical results we developed.
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The first directly fits an exponential family with selection bias to the data,
which we refer to as exp. The second finds an approximate invariance of the
true distribution and derives the selection boundary from it, referred to as inv.

5.3.1 Finding Selection Effects in Exponential Families

When we know that the data x comes from a given exponential family subject
to selection bias, based on the intuition we have developed in Equation (5.1),
the true parameters (θ∗, a∗) should be such that when we are given either of
them, the other can be found by optimizing for it while keeping the other
fixed. Consequently, we should be able to recover both the parameter θ and
the selection boundary a by alternately optimizing the two parameters. We
begin by writing the sample log-likelihood under Qθ,a in the form

lθ,a(x) B log qθ,a(x)

=
(

n∑

k=1
log pθ(xk)

)
− n log pθ(a⊤X > 0) .

Then, starting from a random initialization θ0, a0, instead of doing full opti-
mization at each step, we update our parameters via

θt+1 ← θt + λθ
∂

∂θ
lθt,at(x) (5.3)

at+1 ← at + λa
∂

∂a
lθt+1,at

(x) ,

with step sizes λθ, λa. As with exponential families in general, we cannot
provide convergence guarantees for our approach. However, we can provide a
partial characterization of the saddle points of this optimization.

Proposition 5.4. Let x be a sample from the distribution Qθ,a(X) with known
underlying exponential family M. Then, the saddle points (θ̂, â) of Equa-
tion (5.3) satisfy the following conditions:

a) â intersects the convex hull of x.
b) Furthermore, if η(θ) = θ, then (θ∗, a∗) is the unique global maximum of

the large sample limit of the data log-likelihood limn→∞
1
n lθ,a(x).

Proof sketch. a) This follows from the fact that in the noiseless setting, in
order to maximize the probability of the observed samples, we want to
cut away as much of the original distribution as possible.

b) â = a∗ follows from the fact that in the large sample limit, all other
faces of the convex hull of the sample cut away zero mass of the original
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distribution in the limit, combined with Theorem 5.1 and the consistency
of maximum likelihood estimates.

Further, we will see in the experiments that empirically, we obtain good esti-
mates of the true parameters. Note that here, we assume that the selection
effect is noiseless. While it would be straightforward to explicitly model the
effect of the noise and include the relevant update step for its parameter, we
did not find this to produce significantly better results in practice.

5.3.2 Finding Invariances and Selection Boundaries

Next, we move away from strict parametric model assumptions and instead de-
velop an approach based on invariances of the underlying distribution outlined
in Section 5.2.2. For the sake of feasibility, we restrict ourselves to the simple
yet expressive class of orthogonal matrices—but remark that some progress on
discovering larger classes of symmetries has been made recently (Desai et al.,
2022; Gabel et al., 2023; Yang et al., 2023).
To motivate our approach, recall that if P is invariant under U∗, the sample
U∗x should look indistinguishable from the sample x. Hence, given the sample
x from the distribution Qa = P (· | a⊤X > 0), we would like to maximize
some similarity measure of the datasets U∗x and x. Since selection is at play,
however, even the true invariance U∗ cannot apply to all samples xi, as we saw
in Figure 5.4. To address this issue, we will have to learn an invariance while
simultaneously considering that some parts of our obtained data will not be
consistent with this learning task, as we shall describe below.
To begin with, we will base our approach of measuring the similarity between
the distribution P and P ◦ U for a given U on the well-established theory of
kernel mean embeddings µP of P (Muandet et al., 2017), given by

µP =
∫

k(·, x)P (x)dx ,

where k(·, ·) is a kernel function. One can show under general conditions—the
kernel k being generic—that µP = µQ if and only if P = Q (Gretton et al.,
2012). In particular, µP = µP ◦U if and only if U is an invariance of P .
In the absence of selection bias, our goal would be to find the matrix U that
minimizes the distance between these embeddings, ∥µP − µP ◦U∥. The empiri-
cal estimate of this distance for a sample x is given by (Gretton et al., 2012)

1
N2

∑

i,j

k(xi, xj) + 1
N2

∑

i,j

k(Uxi, Uxj)− 2
N2

∑

i,j

k(Uxi, xj) ≥ 0 .
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To reduce the number of terms that need to be computed, it will be useful to
use an isotropic kernel, k(Ux, Uy) = k(∥Ux− Uy∥) = k(∥x− y∥). Fortunately,
the commonly used Gaussian kernel k(x, y) = exp(−λ ∥x− y∥2) satisfies both
this property and is also characteristic in the above sense of distinguishing any
two distributions. Using such an isotropic kernel, the first two terms above are
independent of U so that we can maximize

L(U ; x) = 1
N2

∑

i,j

k(Uxi, xj) .

If k(x, y) = ⟨x, y⟩, this would measure a weighted average of the cosine simi-
larity between the rotated data Uxi and the original data xj .

Unfortunately, due to selection bias, not all samples available to us are “good”
samples that respect symmetry. To understand the problem, we should under-
stand what happens for a true invariance. That is, if U∗ is an invariance of P ,
how does the selection mechanism a⊤X > 0 affect this?

Clearly, those points for which a⊤U∗xi > 0 are unaffected in the above score.
Meanwhile, those points for which a⊤U∗xi ≤ 0 are far away from every point
xj in the available sample, incurring a large penalty. Hence, the score L would
be improved if we recomputed the average without the terms k(U∗xi, xj) for
these points which lie far away. As such, we propose the following approach
to determining which samples are “good” samples. First, we optimize L(U ; x)
with respect to U , as described below in detail. Then, for each point xk we
check if for I = {1, . . . , k − 1, k + 1, . . . , n} we have

L(U ; x, I) = 1
N |I|

∑

i∈I,j∈[n]

k(Uxi, xj)≫ L(U ; x) .

In other words, we check if the set of points {Uxi}i∈I contains significantly
fewer outliers relative to x than the sample {Uxi}i∈[n]. We then temporarily
remove all “bad” points and set I = [n] \ {k1, · · · , kl}. We rerun the opti-
mization of U starting at its previously discovered optimum, using the score
L(U ; x, I) instead. After each optimization step over U , we evaluate L(U ; x, [n])
and recompute the set I by removing indices from [n]. We do this instead of
removing points from I cumulatively because some of the points we previ-
ously considered “bad” might only have appeared thus due to U being poorly
optimized. We repeat this process until the pair (U, I) stops changing.

Next, we must deal with the question of how to actually optimize the score
L(U ; x, I) over U . The trouble is that optimization over elements of the or-
thogonal group O(m) is difficult due to the requirement that gradient steps
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stay within the manifold. In other words, our goal of solving

max
U

L(U ; x, I)

s.t. U ∈ O(m) ,

is made difficult by the fact that O(m) is not a convex set. One way to deal
with this would be to use the Lie group structure of O(m) by using Givens
rotations (Shalit and Chechik, 2014) to perform coordinate descent, but we
have found this method to be both slow and not result in very good solutions.
Instead, we can turn the problem into an optimization problem with a convex
constraint. To optimize L(U ; x, I) over the set of (special) orthogonal matrices,
we use the Cayley transform (Wen and Yin, 2013)

U = (I −A)(I + A)−1 ,

where A is a skew-symmetric matrix, A⊤ = −A. Since we can write any
skew-symmetric matrix A as the difference B − B⊤ where B is strictly upper
triagonal, this turns the constrained optimization problem of L(U) with respect
to orthogonal matrices into an optimization problem L(B) over the convex set
of strictly upper triagonal matrices B.
Note that while the matrices U parametrized in this way are all rotation matri-
ces that lie in the special orthogonal group SO(m), i.e., det(U) = 1, this is not a
concern for us. If P is invariant to U , it is also invariant to U2 ∈ SO(m). Since
our primary use for the matrix U is to determine the effects of selection bias,
this purpose is equally well-served by working only with matrices in SO(m).
Once we have obtained an orthogonal matrix U and the index set I, we can
use these to estimate the selection boundary. Let Ic = [n]\I. Then the points
xk for which k ∈ Ic are such that Uxk is far from observed samples xi and
are likely to lie in the region a⊤Uxk < 0, i.e., the other side of the selection
boundary. We therefore use a linear classifier such as an SVM to separate the
two sets of points {xi}i∈[n] and {Uxk}k∈Ic . We will see in the experiments
that this simple approach already produces good results.

5.4 Selected Related Works

While a fair amount of research has been done on dealing with the effects of
latent confounding in causal discovery and inference, selection bias is much less
well-studied. It is well-known that selection bias can have detrimental effects
on statistical inferences, especially regarding public health advice (Berkson,
1946; Herbert et al., 2020), and that working with samples subject to selection
bias can also reinforce stereotypes, causing issues with regard to the fairness
of algorithmic decision-making (Caton and Haas, 2024). Furthermore, work
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with such biased data leads to problems regarding the transferability of derived
results to other populations (Naci and Ioannidis, 2013; Averitt et al., 2020).
Most work done on the topic of selection bias focuses on conditions under which
selection bias can be controlled for (Bareinboim and Pearl, 2012; Bareinboim
et al., 2014; Bareinboim and Pearl, 2016; Forré and Mooij, 2020; Versteeg et al.,
2022; Kundu et al., 2024), generally assuming that the selection variable is
measured. In the bivariate setting, previous research has worked on the identi-
fiability of causal directions under selection (Zhang et al., 2016) and to perform
linear regression under self-selection bias (Cherapanamjeri et al., 2023).
In contrast, little work has been done to discover whether there is selection bias
in the first place. Our concern is precisely under which conditions it is possible
to determine whether selection bias is a likely concern for a given dataset.
Some related approaches are those dealing with covariate shift (Gretton et al.,
2009; Sugiyama et al., 2007) using kernel-based methods, or propensity scor-
ing (Wang and Kim, 2021; Schoeler et al., 2023). However, they generally re-
quire access to multiple datasets, making them unusable when only one dataset
subject to selection bias is available. Similar methods use the idea of covari-
ate shift differently and instead attempt to provide robust estimates which are
valid for any (small) amount of selection effect (Cortes-Gomez et al., 2023), or
to combine data from biased and unbiased sources (Elliot, 2009).
Instead, we focus on the question of to what extent we can do this from a single
dataset in which it is not known beforehand that it is affected by selection bias.
Our approach for exponential families is an EM-like approach (Dempster et al.,
1977) and has, since the publication of the paper on which this chapter is based,
been extended to arbitrary selection criteria (Lee et al., 2024), although the
authors of that paper appear to have little interest in the ensuing biases.
The study of symmetries in probability distributions garnered much atten-
tion at the start of the century (Fang et al., 1990; Chikuse, 2003; Kallenberg,
2005). More recent theoretical work has focused chiefly on providing theoreti-
cal frameworks to explain the benefits of symmetries for predictive tasks (Lyle
et al., 2020; Fortuin, 2022; Chen et al., 2020; Dao et al., 2019). A different
line of research has focused on learning models invariant to a given symmetry
group T . van der Wilk et al. (2018) developed invariant Gaussian processes f
by averaging a Gaussian process g over the orbit of T . Further work also ex-
tended this line of work to neural networks (van der Ouderaa and van der Wilk,
2022). Note that these approaches assume that T is known beforehand. Benton
et al. (2020) relax this assumption by parametrizing the set of transformations.
Other recent work has focused on leveraging the benefits of symmetries, espe-
cially in image recognition systems (Ravanbakhsh et al., 2017; Worrall et al.,
2017; Immer et al.). However, these approaches focus on exploiting symmetries
in the data-generating process to achieve a specific supervised task.
In contrast, SymmetryGAN (Desai et al., 2022) uses a generative adversarial
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network (GAN) to learn a linear volume-preserving transformation that leaves
the data invariant. Other work has also been done on discovering symmetry
groups rather than individual symmetries (Yang et al., 2023).

5.5 A Selection of Experiments

In this section, we perform a comprehensive experimental analysis of our pro-
posed methods. We are interested in seeing how well we recover the selection
boundaries and which variables are subject to selection bias. To verify that our
methods work, we compare them with two different approaches. First, we use
the kernel mean matching (kmm; Gretton et al., 2009) algorithm, designed to
tell whether there is a distribution shift between two datasets. Second, we use
dcd (Bhattacharya et al., 2021), designed to discover confounding. It models
non-causal edges, although we will see that it does not perform well at detecting
selection bias. We implement our methods in Python using Tensorflow (Abadi
et al., 2016) and use the publicly available implementations of kmm and dcd
by the respective authors. All code and data can be found online.2

5.5.1 Data generation

As before, we start by generating a random directed Erdős-Rényi (ER) network
G with probability of an edge being added being p. We define the distribution
over X1, . . . , Xm via the structural model Xi = fi(Pai, εi) for appropriate
functions fi and noise variables εi, where Pai are the parents of Xi in G.
For the multivariate Gaussian distribution, this is Xi = β⊤

i Pai +εi where β⊤
i ∼

N(0, σ2
βI) and εi ∼ N(0, σ2

ε). For data generation from the t-distribution, we
use the formulation of Kotz and Nadarajah (2004).
We generate samples x = (x1, . . . , xm) from P (X) and then pick a random
sink node Z from G and remove all samples for which Z + a0 < 0 where
a0 ∼ N(0, σ2(fZ)). For the Gaussian distribution, we pick σ2(fZ) = β2

i1
where

i1 is the first parent of Z in the topological ordering. Note that this is the
setting used in Theorem 5.2 if P (X) is Gaussian. For each instantiation of the
parameters, we generate data points until a total of 1000 points are included
in the observed data. We further run each experiment 1000 times.

5.5.2 Recovering the selection boundary

We start our evaluation by checking how well each method predicts the correct
selection boundary in a dataset that is known to be subject to selection bias. To
this end, we generate data from three-dimensional Gaussian and t-distributions

2https://eda.rg.cispa.io/prj/sprite/

https://eda.rg.cispa.io/prj/sprite/
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Figure 5.5: [Higher is better.] Decision rate plots of the cosine similarity between discov-
ered and true selection boundary. Left: Experiments on Gaussian distributed data. exp
outperforms inv slightly, and both outperform KMM significantly. Right: Experiments
on t-distributed data. inv outperforms both exp and KMM significantly. In both cases,
all methods significantly outperform random guessing.

N(µ, Σ) and tν(µ, Σ) subject to selection bias as described above, where we set
p = 0.3 for our ER network. We then compute the cosine similarity 0 ≤

a⊤a∗

∥a∥∥a∗∥ ≤ 1 between the true selection boundary a∗ and the estimated a. A
result closer to 1 corresponds to better performance.
We compare only with kmm here as DCD is not capable of estimating a∗. For
kmm, we make some modifications to the data it has access to in order to
make it applicable to our setting. Since kmm requires two datasets, besides
the one subject to the true selection boundary a∗, we also give it access to a
second dataset subject to the selection boundary a′, which is a slightly per-
turbed version of the true a∗. Thus, the original data x and the secondary
dataset x′ share similar distributions, which are nevertheless different and are
therefore amenable to analysis using kmm. In particular, by adding a minor
permutation to the selection boundary, the distinction between points that are
included in one dataset but not the other should make it possible to detect the
selection boundary by distinguishing between assigned weights ≈ 1 by kmm,
and assigned weights ≈ 0. More precisely, we use two similar datasets with a∗

and a′ where a′ = Ua∗ with an orthogonal matrix U . To this end, we sample
random orthogonal matrices via the Cayley transform until the two selection
boundaries are similar enough in the sense that a′⊤a∗

∥a′∥∥a∗∥ ≥ 0.95.
We show the results in a decision-rate plot in Figure 5.5. As before, on the
x-axis is the decision rate, i.e., the fraction or number of datasets evaluated so
far, ordered from most to least confident for each method. On the y-axis, we
show the cosine similarity between the recovered and true selection boundary.
We see clearly that for all three methods, the confidence strongly correlates
with their performance on both datasets. On the left, we see that for Gaussian
generated data, exp with a Gaussian exponential family performs slightly bet-
ter than inv, although not significantly. Both methods significantly outperform
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Figure 5.6: [Higher is better.] Decision rate plots of the Jaccard similarity between recov-
ered and true set of variables affected by selection bias. Left: Experiments on Gaussian
data. exp outperforms inv slightly, and both outperform kmm and dcd significantly.
Right: Experiments on t-distributed data. inv outperforms exp, which in turn outper-
forms kmm and dcd significantly. All methods significantly outperform random guessing.

kmm. On the right, for t-distributed data, inv significantly outperforms exp,
which in turn significantly outperforms kmm. Lastly, all methods significantly
outperform random guessing on both datasets at all levels.

5.5.3 Recovering variables affected by selection

Next, we consider the task of discovering which variables are affected by selec-
tion bias. As described above, we generate data from a ten-dimensional joint
distribution with p = 0.3 for the ER Graph. Then, the parents of the variable
Z we condition on are the variables we would like to recover.
For evaluation, we compute the Jaccard similarity between the true set S∗ =
PaG(Z) of variables subject to selection and our recovered S,

J(S, S∗) = |S ∩ S∗|
|S ∪ S∗| ∈ [0, 1] ,

where higher values tell us that S is more similar to S∗.
We compare our methods with kmm and DCD in this setting. For our methods
and kmm, we use the discovered selection boundaries a and consider those vari-
ables Xi whose ai is significantly different from zero to be subject to selection.
For DCD, we run the method to obtain pairs of variables whose correlations are
estimated to be (partially) non-causal. We then estimated the set of variables
affected by selection to be all variables included in at least one such pair.
We show the resulting decision rate plots in Figure 5.6. As in the previous sec-
tion, for Gaussian generated data, exp outperforms inv slightly. Further, both
of our methods outperform both kmm and DCD significantly. For t-distributed
data, inv again outperforms exp significantly, which in turn significantly out-
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(b) Result on exoplanet dataset. The
regression line (dark blue) is negative and
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selection due to technological limitations.

Figure 5.7: Results on Palmer penguin (a) and exoplanet datasets (b). Since we don’t
know the true selection effect for the exoplanet dataset, we can neither use kmm on this
data, nor provide an oracle selection boundary to compare against.

performs both kmm and DCD. Further, all methods significantly outperform
random guessing of the set of variables affected by selection.

5.5.4 Real Data

Next, we want to see if our methods can provide novel and interesting insight
into real data. We, therefore, evaluate them on two real-world datasets.

Palmer Penguins

We begin by evaluating our methods on the Palmer Penguins dataset (Gorman
et al., 2014), collected at Palmer Station, Antarctica. It contains samples from
three different species of penguins. Among the measured variables are bill
depth, bill length, flipper length, and weight of each penguin.
Clearly, each of the variables should be positively correlated with the weight
of the penguin. We can, therefore, pose the hypothetical question, “what if we
had only measured the lightest penguins because they were easier to capture
and transport?” Since both larger bill size and flipper size lead to larger weight,
we expect that conditional on weight, these variables will become negatively (or
at least less positively) correlated with each other. To test whether we could,
in fact, find such results in this dataset, we preprocess our data as follows. We
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split the data by penguin species, and then for each of them, we select the 80%
of penguins with the lowest weight from that species, leading to selection bias.
We show the results for Adele penguins in Figure 5.7a, where gray points have
been removed in the preprocessing step. We see that the selection boundary
estimated by our approach are reasonable, while the one estimated by kmm is
not. In fact, when compared to a Linear Discriminant Analysis (LDA; Fisher,
1936; Bishop and Nasrabadi, 2006) fit on all data with known labels of which
data have been excluded, the selection boundaries discovered by inv is almost
identical to the optimal linear separator between included and excluded points.

Exoplanet Discovery

Next, we consider data from the Open Exoplanet Catalogue using ExoData (Rein,
2012; Varley, 2016). It contains data about exoplanets and their stars, including
the distance d from the earth and their absolute magnitude—a measure of their
brightness, measured in terms of −2.5 log10 B, where B is the star’s brightness.
Hence, bright stars have low magnitude, and dim stars high magnitude.
It is generally believed that the universe is uniform at large scales (Liddle,
2015), i.e., the universe should look the same on average independently of
which direction we look and far out we look. The distance of stars from us
should therefore be independent of their absolute magnitude. However, due to
technological constraints, the further away a star is, the brighter it has to be
for us to detect exoplanets in its system. As such, we expect selection effects
should be expected, making it a good case study for our methods.
We show the data in Figure 5.7b. One thing that stands out from the very
first glance is that the top right corner of our dataset (dim points that are very
far away) is only sparsely populated. Indeed, the linear correlation between
log(d) and magnitude (dark blue) is negative and significant at the 10−21 level.
Applying inv, we obtain the selection boundary seen in Figure 5.7b, suggesting
that too few points lie in the top right corner (far away dim stars). We see
that the selection boundary found by inv is consistent with our speculations
of selection effects based on technological limitations.

5.6 From Isolated Insight to Environmental Ensembles

In this chapter, we tackled Problem 3 and studied to what extent we can
discover whether a set of variables is affected by selection bias or not.
We began by introducing selection bias as the preferential inclusion of some
data points over others due to conditioning on a variable that is causally down-
stream of the observed variables and described the specific linear selection
model we studied. We then studied how such selection effects can be recovered
in two different settings. First, we saw that for exponential family models, the
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density ratios between different points unaffected by the selection mechanism
are the same regardless of the precise selection mechanism, and leveraged this
information to show identifiability of the underlying parameters (Section 5.2.1).
Second, for nonparametric models for which we know only that a certain kind
of invariance exists, we showed that the partial violation of such invariances
due to selection can be used to recover the selection boundary (Section 5.2.2).
From these characterizations, we then derived two algorithms, one for each ap-
proach. For exponential families, we employed a simple alternating optimiza-
tion scheme and characterized the saddle points of the optimization procedure
in Proposition 5.4. Meanwhile, for the nonparametric approach, we introduced
an optimization to find an orthogonal matrix that leaves the underlying distri-
bution invariant. By characterizing the difference between points that will and
those that will not respect the learned invariance and employing the Cayley
transform to turn the optimization into an unconstrained optimization prob-
lem, we obtained a fast and reliable solution to this problem.
One direction for future work is to use richer selection models. In this chapter,
we considered only linear selection boundaries, but this is often not very real-
istic in practice. We can readily see two different approaches for generalizing
this model of selection. The first way is to replace all occurrences of a⊤X with
a kernelized version k(a, X), corresponding to an inner product taken in some
higher-dimensional space. This approach may be suitable when selection oc-
curs on the measured variables but is simply nonlinear. In contrast, selection
may also occur in some lower-dimensional space, such as when X lies on some
lower-dimensional manifold. While the selection boundary in this case is also
nonlinear, it is, in fact, still linear in the parametrization of the data manifold.
Unfortunately, it is not immediately clear how to learn such a latent representa-
tion in a selection-aware manner, such that the representation does not distort
the data but can still be used to capture the relevant selection mechanisms.
A second direction for future work is the implementation of richer models of
invariance, such as the MPAs we have seen in the previous chapter. That is, the
observed variables X could be produced as a nonlinear mixture of some source
variables S, where it may be simpler to specify the invariances on S. It is quite
clear that this and the previous point on learning representations on which
selection occurs are tightly connected, and it would be exciting to study the
connections and possibilities of such an approach in more detail. Naturally,
with this connection also come problems of how we can learn the nonlinear
mixing, invariance, and selection mechanisms on the underlying sources.
The common thread running through these last four chapters has been the use
of relatively strong (mostly parametric) assumptions on the true distribution
of our data, which permit us to derive our desired quantities from a single
dataset. Next, we shift our attention to the case of multiple environments and
study how much such additional data helps us discover latent confounding.



Chapter 6

Discovering Confounders
from Independent
Mechanism Shifts

One for sorrow,
Two for mirth,
Three for a funeral,
And four for birth.
Five for heaven,
Six for hell,
Seven for the devil, his own self.

One for Sorrow

In the previous chapters, we have seen that in order to discover latent con-
founding or selection bias and to recover the true causal networks and effects
in spite of these influences, we need to make relatively strong assumptions about
the shape of the underlying distribution, in terms of its parametric form, its
structural sparsity, or its underlying symmetries.
Perhaps the most significant advance in causal discovery has been the principle
of invariant causal mechanisms (Peters et al., 2016; Arjovsky et al., 2019; Huang
et al., 2020; Mooij et al., 2020) across environments, permitting us to leverage
multiple datasets gathered under different conditions to learn additional in-
formation about the underlying causal structure. Consider, for example, the
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Figure 6.1: Confounding introduces dependent mechanism shifts. We consider two
systems, one causal (left) and one confounded (right) in five different contexts. The true
causal mechanisms P ⋆ (top) change independently of each other, here due to targeted
interventions in certain contexts (colored). If there is an unobserved confounder Z,
however, we observe dependencies in the mechanism shifts of X and Y (bottom right).

case of gene regulation. Modern tools (Dominguez et al., 2016) allow us to
activate or silence specific genes directly. The idea is that if we knew the true
(causal) gene regulation networks, the regulation mechanisms corresponding to
other edges in the network should be unaffected by such an intervention. That
is, the causal mechanisms that are not directly affected by an intervention
should invariant under such changes. Reality does not quite match this ide-
alized scenario, and off-target effects are not unheard off (Zhang et al., 2015).
As such, other methods emphasize not the strict invariance of causal mecha-
nisms, but instead the fact that the number of violations is minimal in the true
graph (Mameche et al., 2022, 2023; Perry et al., 2022).
In this chapter, we investigate to what extent we can leverage similar ideas to
discover latent confounding among several observed variables. The basic idea
is quite simple. Let X, Y be two observed variables, and Z be unobserved, and
assume that the joint distribution P s(X, Y, Z) can depend on an extra influence
s, such as an index telling us which variable has been intervened upon. Then,
what evidence would we expect to see in the case that Z influences both X
and Y ? In Figure 6.1, we show the difference between the two cases where Z
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does (right) or does not (left) influence X and Y . The fundamental insight
is that in the confounded model, whenever the distribution of the unobserved
Z changes, so do the observed distributions of both X and Y . In particular,
if we assume that interventions performed on X and Y are independent of
each other, these joint shifts induced by the confounder Z lead to a testable
statistical criterion by measuring whether the shifts in the mechanisms of one
variable are predictive of the mechanism shifts of another.
We formalize and explain our setup and assumptions in Section 6.1. In Sec-
tion 6.2, we then show that under these assumptions, we can recover not only
which variables are confounded but also how many latent confounders there are,
as well as the true causal graph over both observed and unobserved variables.
In Section 6.3 we then provide an efficient algorithm to detect confounders for
groups of variables. Finally, in Section 6.5 we show that coco performs much
better at recovering which variables are confounded and also which variables
are causally related than its competitors, before wrapping up in Section 6.6.
As before, proofs for all statements are postponed to Appendix A.6.

6.1 The More the Merrier

In this section, we present our problem setting and state our assumptions.

6.1.1 Problem Setting

We consider a system of observed variables X and unobserved variables Z,
collectively called V = X ∪ Z. The values of X, Z may be continuous, cate-
gorical, or mixed. We assume that the system is observed in multiple settings
(also known as environments or contexts), represented by a categorical vari-
able S taking values s ∈ S, and denote their number ns = |S|. We allow the
distribution P s(V ) = P (V | S = s) to depend on s, as described below.
We assume that the causal relationships between variables V will be described
by a fixed DAG G∗ = (V, E∗), independent of s ∈ S. W.l.o.g. the indices of Xi

and Vi are assumed to be ordered such that, whenever clear from the context,
we can write Pa∗

i to denote the parents of Xi. As before, we assume that all Z
are jointly independent and that no reverse causation X → Z exists.
We assume causal sufficiency to hold over all variables X ∪Z ∪S, but not over
X ∪ S. We can now state our problem informally as follows.

Problem Statement. Given data over the observed variables X in contexts
s ∈ S, which of the observed variables among X are jointly confounded?

To solve this problem, we next provide a describe in more detail how the causal
model varies across contexts, and how these variations are formed.
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6.1.2 Causal Mechanism Shifts

We now describe the data-generating process across multiple settings. While
we assume that the same causal structure applies in all settings, in many ap-
plications such as gene editing experiments (Barrangou and Doudna, 2016), a
system is subject to interventions or other causal mechanism changes. That is,
the generating process P s(Vi | Pa∗

i ) of each variable Vi may be different across
settings. Nevertheless, as interventions typically affect only a small number
of causal mechanisms at a time, the causal mechanism governing a specific Vi

will generally be the same for most c ∈ S and differ only between few. To
represent this, for every variable Vi, we partition the settings so that the causal
mechanism remains constant within each set. That is, for each Vi we have a
partition Π∗

i =
{

π1
i , . . . , πki

i

}
of S = π1

i ∪ . . . ∪ πki
i into disjoint πj

i such that
P s(Vi | Pa∗

i ) = P s′(Vi | Pa∗
i ) for s, s′ in the same π ∈ Π∗

i . We refer to the set
π containing s as Π∗

i (s), and call the corresponding mechanism P π
i (Vi | Pa∗

i ).
We allow all partitions Π∗

i to be distinct. More precisely, we regard partition
Π∗

i of the contexts S as random variables and assume that there exists some
joint distribution P (Π∗) over all partitions Π∗

i of Vi. We hence assume the
distribution of the observed V to be as follows.

Assumption A (Markov Property under Mechanism Changes). The distri-
bution P (V ) can be written as a mixture

P (V ) =
∫

P S(V )dP (S)

=
∫ ∏

i

P Π∗
i (S)(Vi | Pa∗

i )dP (S)

=
∫ ∏

i

P Π∗
i (Vi | Pa∗

i )dP (Π∗) .

In other words, the variables V are assumed to be conditionally exchangeable,
with the same Causal Bayesian Network G∗ applying in every context s ∈
S (Guo et al., 2024). Importantly, the distribution P (V ) does not depend on
P (S) itself, except insofar as P (S) affects the joint distribution of P (Π∗).
For an overview, we refer to Figure 6.1, as introduced in the introduction.
The causal graph over X, Y, Z is shared across all environments s ∈ S, and
mechanism shifts are indicated by hammers at the top and multiple edges at
the bottom. Each variable is associated with a partition Π∗

i , showing which
mechanism applies in which environment (colored boxes). Next, we introduce
the properties of causal mechanism shifts relevant to confounder identification.
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6.1.3 Independent Mechanism Shifts

In Chapter 2, we introduced the independence of causal mechanisms—causal
mechanisms of different variables contain no information about each other—
and leveraged it in a single setting. We now extend this principle to multiple
settings. That is, not only do we want P s(Vi | Pa∗

i ) to be uninformative of
P s(Vj | Pa∗

j ) for i , j, but also a change in mechanisms P s(Vi | Pa∗
i ) , P s′(Vi |

Pa∗
i ) for s , s′ should not tell us anything about the existence of a change in

the mechanism P s(Vj | Pa∗
j ) , P s′(Vj | Pa∗

j ) for Xj . In particular, we assume
that all partitions Π∗

i , Π∗
j are jointly independent.

Assumption B (Independent Mechanism Shifts). We assume that the mecha-
nism changes of P s(Vi | Pa∗

i ) are independent and identically distributed across
environments. More precisely, we assume that

P (Π∗) =
∏

Vi

P (Π∗
i ) ,

Note that we assume that all distributions P (Π∗
i ) are equal. This is not strictly

necessary but allows us to simplify notation and exposition. Even so, inde-
pendence of mechanism shifts is, of course, not a sufficient constraint. The
mechanisms of Vi and Vj , both differing across all (or no) environments, would
trivially satisfy this condition, but this would reveal no information about the
core causal mechanisms we are interested in. Instead, we want to have (a
number of) environments s, s′ between which precisely one of the mechanisms
of Vi and Vj changes. To ensure that such environments exist, we addition-
ally assume that mechanism shifts are sparse so that mechanisms remain the
same across most environments, so that joint mechanism changes due to latent
confounding can be detected (Guo et al., 2024; Schölkopf et al., 2021).

Assumption C (Sparse Mechanism Shifts). Let S and S′ be two i.i.d. samples
from the same distribution P (S). We assume that for all variables Vi, the
probability of mechanism changes between two contexts is given by

p = P (Π∗
i (S) , Π∗

i (S′)) < 0.5 .

With this, we assume that mechanism shifts occur infrequently, implying that
causal functions persist across the majority of environments. This assumption
is valid in many study settings where specific targets are interventions in only
few contexts and has been adopted in the causal discovery literature (Perry
et al., 2022; Mameche et al., 2023).

Example 6.1. Let us consider a few examples to gain an intuition for when
this assumption does or does not hold.
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a) Let each variable Xi have a distribution over Π∗
i =

{
π∗

i,1, . . . , π∗
i,r

}
, given

by P (S ∈ π∗
i,j) = pj . Then

p = 1−
∑

j

p2
j ,

is precisely the Gini index of the distribution. In particular, if all π∗
i,j

have the same probability 1/r then p = 1− 1/r ≥ 0.5 for any r ≥ 2.
b) In contrast, if there is a distinguished set π∗

i,0, e.g., corresponding to a
purely observational setting, containing most of the datasets, then

p ≤ 1− p2
0 ,

which is ≤ 0.5 so long as π∗
i,0 contains at least a fraction of 1/

√
2 of

all datasets. This is commonly the case, as observational data is much
easier to obtain than interventional data.

c) Note that since we assume independence of mechanism shifts, designs
such as diagonal intervention designs in which each variable i is inter-
vened on in precisely one environment,

Π∗
i (s) =

{
πi,1 if s = i

πi,0 otherwise ,

are not permitted within this framework.

Conversely, we assume that when two settings s, s′ are assigned to different sets
of the partition Π∗, the corresponding causal mechanisms indeed change.

Assumption D (Π-faithfulness). Let Π∗
i be the partition of Vi. Then for any

two s, s′, we have the equivalence

Π∗
i (s) , Π∗

i (s′)←→ P s(Vi | Pa∗
i ) , P s′

(Vi | Pa∗
i ) .

This faithfulness condition ensures that our partitions capture precisely the
changes in causal functions. Next, we show how these assumptions, which we
assume to hold when variables in V are measured, are violated when some
latent factors Z are not observed.

6.2 Identifying Confounding from Mechanism Shifts

We begin by analyzing the effects of latent confounding on the observed parti-
tions of causal mechanisms. Then, we propose an information-theoretic score
for determining whether a given set of variables is jointly confounded and pro-
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vide consistency guarantees for both the recovery of the sets of jointly con-
founded variables and the underlying causal network.

6.2.1 Confounding Introduces Dependent Mechanism Shifts

All assumptions we made in the previous section are about the true partitions
Π∗

i of the true causal mechanisms over the true causal parents Pa∗
i . Since we

are not able to observe all variables, the situation changes. To see this, we can
consider the following simple example.

Example 6.2. Let X, Y, Z be related by the following linear relationships

Z ∼ N(0, σ2
z(s))

X = αZ + εx

Y = βX + γZ + εy ,

where the only source of mechanism shifts is the non-constant variance σ2
z(s)

of the unobserved confounder Z. Then, by regressing Y on X, we obtain

X ∼ N(0, σ2
x + α2σ2

z(s))

β̂Y |X = cov(X, Y )
var(X) = βσ2

x + αγσ2
z(s)

(σ2
x + α2σ2

z(s)) , (6.1)

so that in general clearly both the distributions P s(X) and P s(Y | X) change
as the variance σ2

z(s) of the latent variable Z changes.

As before, in exceptional circumstances of fine-tuned parameters, the above
does not apply. If the parameters are chosen as β = 1 and α = γ in Equa-
tion (6.1), then β̂Y |X = 1 will not change even if σ2

z changes. This kind of
fine-tuning of the parameters likely happens only in adversarial cases. As in
previous chapters, if the parameters are sampled from a continuous distribu-
tion, then the probability of obtaining a set of parameters where a change in the
mechanism of the confounder Z does not translate into a change in the mech-
anisms affecting X and Y is zero. This leads us to the following assumption.

Assumption E (Latent Shift Faithfulness). Let Z be an unobserved common
parent of all variables in XI ⊆ X. Then, each mechanism change in Z between
s, s′ entails a mechanism change between these contexts for each Xi ∈ XI .

Note that we do not strictly need all mechanism shifts of Z to be reflected in
X, Y , but only that some (non-zero) fraction is captured. Essentially, we could
restrict our analysis to that subset of environments for which these changes are
reflected and obtain the same results. Without loss of generality, and to ease
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the exposition in the following, we therefore work with the above assumption.
Hence, changes in the causal mechanism of Z lead to correlations between the
observed partitions Πi of variables affected by Z. We, therefore, now turn to
the question of how to measure these correlations.

6.2.2 Mutual Information of Mechanism Shifts

To measure whether the mechanism changes of variables are dependent, we
consider the Mutual Information (MI) between partitions. For two partitions
Π1, Π2 of contexts S into r, s sets, we consider the contingency table T ,

T =




n11 n12 . . . n1s

n21 n22 . . . n2s

...
...

. . .
...

nr1 nr2 . . . nrs


 ,

where nij measures the number of contexts in the intersection πi
1∩πj

2 of πi
1 ∈ Π1

and πj
2 ∈ Π2, and with row margins ui = |πi

1| and column margins vj = |πj
2|

counting the size of partition elements.
If the partitions describe causal mechanism shifts of two variables Xi, Xj , then
a latent confounder affecting both Xi, Xj leads to correlations between these
partitions. To measure these, we consider the mutual information between Π1
and Π2. The marginal entropy of Π1 and joint entropy of Π1, Π2 are

H(Π1) = −
∑

i

ui

N
log ui

N
,

H(Π1, Π2) = −
∑

ij

nij

N2 log nij

N2 ,

with H(Π2) similar, and their mutual information is given by

I(Π1, Π2) = H(Π1) + H(Π2)−H(Π1, Π2)

=
∑

ij

nij

N
log nijN

uivj
.

This is an empirical estimate of the true mutual information based on a sample
from the underlying random variables Π1, Π2, also known as the plug-in esti-
mate of the true mutual information. In general, given data from only a finite
number of contexts, this plug-in estimate of the mutual information between
partitions will be positively biased (Vinh et al., 2009). We can correct for this
by comparing it against the expected MI for two independent partitions.
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Expected Mutual Information under Independent Shifts

We first consider two independent partitions Π′
1, Π′

2 with contingency table T
with column sums u and row sums v. To define their mutual information, the
hypergeometric model of random partitions has been adopted in the litera-
ture (Vinh et al., 2009, 2010). That is, given the marginal counts u, v, the joint
counts are assumed to follow a hypergeometric distribution Nij ∼ H(u, v, N),
with probability mass function given by

P (nij | u, v, N) =
(

nij

vj

)(
N−vj

ui−nij

)
(

N
ui

) .

The expected mutual information between independent partitions is then

E [I(Π′
1, Π′

2)] =
∑

T
I(T )P (T )

=
∑

ij

∑

nij

I(nij)P (nij | u, v, N) ,

where I(nij) = nij

N log nijN
uivj

and the inner sum runs over the counts nij ∈
[max{0, ui + vj −N}, min{ui, vj}]. By replacing the term I(nij) by I(nij)2,
one can similarly compute the second moment, and thus the variance

var(I(Π′
1, Π′

2)) = E
[
I(Π′

1, Π′
2)2]− E [I(Π′

1, Π′
2)]2 .

With this, we can compute the standardized score of our observed mutual
information I(A, B), which is given by

t = I(Π1, Π2)− E [I(Π′
1, Π′

2)]√
var(I(Π′

1, Π′
2))

, (6.2)

and show next that we can use it to find confounded pairs of variables.

6.2.3 Identifying Confounded Variable Pairs

We show that in the bivariate case, when the causal direction between a pair
X, Y is known, we indeed obtain the correct results with high probability when
using the score above to determine whether the variables X, Y are confounded.

Lemma 6.1 (Significance and Power). Let X, Y be unconfounded and X → Y .
Let ΠX , ΠY be the corresponding partitions. Then

lim
ns→∞

P (t > q1−α)→ α ,
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where q1−α is the 1 − α-quantile of the standard normal distribution. Con-
versely, if X, Y are confounded, then for α > 0 in the limit we obtain power

β = lim
ns→∞

P (t > q1−α)→ 1 .

Proof sketch. The statement about significance follows from the fact that t is
asymptotically normal (Vinh et al., 2009). For the statement about power, we
need to note only that EI(Π1, Π2) ∝ ns when variable X1, X2 are confounded,
but that EI(Π′

1, Π′
2) = o(ns) for random partitions.

This result tells us that with data from enough environments, we are guaranteed
to discover which pairs of variables are confounded. Of course, for any fixed
α, there will be some false positives, but as ns → ∞, we should be able to
pick decreasing values of α. Unfortunately, determining how to pick the value
α(ns) → 0 such that β → 1 nevertheless holds would require a more detailed
analysis, which we are unaware of how to do. Instead, we will include an
empirical investigation of these values among our experiments in Section 6.5.

6.2.4 Beyond Confounded Pairs

To determine whether a set of variables shares a joint confounder, we extend
our score beyond pairs of variables. A natural extension of mutual information
for a set of partitions is total correlation (Watanabe, 1960),

T (Π1, . . . , Πs) =
∑

i

H(Πi)−H(Π1, . . . , Πs)

=
∑

i

I(Πi, Π>i | Π<i) ,

where Π<i = {Π1, . . . , Πi−1} and similarly for Π>i. It is straightforward to
correct this score as we did above for the pairwise mutual information score.
As both corrected and uncorrected scores are asymptotically equivalent, we
will consider T as is in our theoretical analysis.
First, we discuss how to use this score to detect joint confounding. To this
end, consider three variables X1, X2, X3. By Assumption E and Lemma 6.1,
we know these can only be jointly confounded if and only if all Xi, Xj are pair-
wise confounded. It could, of course, be that rather than jointly confounded,
there are three disjoint confounders Z12, Z13, Z23 affecting each of the individ-
ual pairs. Can we distinguish these two cases? Yes, if all three variables share
the same latent confounder Z, then knowing about the partition of one vari-
able explains away some of the correlation between the other two partitions, so
that we have I(Πi, Πj | Πk) < I(Πi, Πj) for any permutation of the variables.
Meanwhile, for three pairwise confounders, this is not the case.
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In general, for a set of size s to permit such an equivalent explanation in the first
place, we would need to add a total of

(
s
2
)

confounders with s(s− 1) outgoing
edges to obtain the same structure of pairwise confounding. While this may
plausibly occur for small sets of variables that appear to be pairwise correlated,
we assume the true graph G∗ to be causally minimal in the following sense.

Assumption F (Confounder Minimality). For every subset XI of at least
|I| ≥ 4 variables, there are at most 2 |I| edges incoming into XI from latent
confounders Zj with at least three children in XI .

This minimality assumption ensures that variables that appear to be jointly
confounded are indeed confounded by the same latent variable. Equivalently,
when few latent variables suffice to explain the observed correlations, there
should indeed exist only few confounders. With this, we can guarantee that
the identification of joint confounding is possible from the total correlation T .

Theorem 6.2. Let XI be a set of variables such that all Xi, Xj ∈ XI are
pairwise confounded. Then XI is jointly confounded if and only if for each
triple Xi, Xj , Xk ∈ XI we have

lim
ns→∞

P (T (Πi, Πj , Πk) < I(Πi, Πj) + I(Πj ., Πk))

=
{

1, Xi, Xj , Xk jointly confounded
0, otherwise .

Proof sketch. This follows from Assumption F because in order to make all
variables in XI triplet-wise mutually confounded, without using one single
confounder Z, requires the use of at least 2 |I|+ 1 edges.

With this, we can recover how many latent confounders Zj there are, and sets
of jointly confounded nodes by each Zj are uniquely identifiable by our score.
Due to the large number of tests involved, potential biases in all the involved
tests, and a lack of a search criterion to determine which subsets should be
tested in the first place, we propose a more efficient and robust method using
spectral clustering based on our pairwise scores in Section 6.3.
As we assumed causal directions among all variables to be known up to this
point, the remaining question is what happens if this is not the case.

6.2.5 Spurious Spurious Correlations

We now address the case where the true causal structure is unknown and esti-
mate partitions in the presence of misdirected edges. Can we still use our score
based on mutual information to determine which variables are confounded?
Can we perhaps even use it to recover the true causal network? It turns out
that if the underlying causal network is sparse enough, the answer is yes.
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First, let us return to the case of two variables X, Y such that in the true graph
G∗, the causal direction X → Y applies. What would happen if we instead
considered the partitions obtained by considering the graph G differing from
G∗ by inverting this edge to be Y → X instead? To compare the resulting
partitions, we write ΠX , ΠY for the partitions of causal mechanisms in G, and
similarly Π∗

X , Π∗
Y for the true partitions corresponding to G∗.

It turns out that, with high probability, the misdirected edge will introduce
additional correlations between the inferred partitions ΠX , ΠY . Intuitively,
this is because distribution shifts in P s(Y ) now need to come with matching
mechanism shifts of P s(X | Y ) to ensure that P s(X) does not change (Huang
et al., 2020). This leads to the following asymptotic result.

Proposition 6.3 (Consistency for Pairs of Variables). If a variable pair X, Y
is confounded by a variable Z, then there exists some constant ρ > 0 such that

P (I(Π∗
X , Π∗

Y ) < I(ΠX , ΠY )) = 1−O(e−ρns) .

Proof sketch. This follows from noting that the mutual information terms are
determined by the number of joint shifts between the partitions of X and Y and
that this number is larger with high probability in the direction Y → X.

When X, Y are part of a larger graph, the situation becomes more involved.
Based on the ideas from Perry et al. (2022), we show that among those graphs
of the Markov equivalence class of the marginal P (X), those which correctly
capture the relationship between a target variable Xi and its true parents will
minimize the mutual information between its partition, and the partitions of
its recovered parents. As we have seen in Chapter 3, however, due to the
effects of latent confounders, the MEC over P (X) will contain large numbers
of additional edges. We, therefore, show that so long as the number of latent
confounders affecting and spurious siblings of a given target Xi are not too
large, then we can still recover the correct parents of the target.

Proposition 6.4 (Consistency for Recovering Parents). Let Xi be a target
variable and let G and G′ be two graphs in the MEC of the marginal distribution
P s(X). Assume that only one of the two graphs correctly recovers the parents
of Xi, Pai = Pa∗

i and Pa′
i , Pa∗

i , and further assume that the number of latent
confounders affecting Xi plus spurious siblings is bounded by log(0.5)

log(1−p) . Then

P (I(Πi, {Πj : j ∈ Pai}) < I(Π′
i,
{

Π′
j : j ∈ Pa′

i

}
))

= 1−O(e−ρns) .

Proof sketch. The idea is the same as for Proposition 6.3, except that now
the presence of spurious neighbors in the marginal graph introduces additional
sources of joint mechanism shifts that need to be accounted for.
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To show that we can consistently discover a causal graph in which the causal
ordering between all observed variables X is correctly recovered, we can sum
over all the scores in the above Proposition.

Theorem 6.5 (Consistency). Let G∗ be the true graph over V and let G∗
x

be the induced graph on X, and assume that for all Xi the number of latent
parents plus spurious siblings is at most log(0.5)

log(1−p) . Then with high probability,
G∗

x and its partitions Π∗
1, . . . , Π∗

k are the unique minimum of total correlation,

P

(
arg min

G,Π1,...,Πm

T (Π1, . . . , Πm) = (G∗
x, Π∗

1, . . . , Π∗
m)
)

= 1−O(e−ρns) .

Proof sketch. By using that T (Π1, · · · , Πm) =
∑

i I(Πi, {Πj : j ∈ Pai}), the
result follows from taking a union bound over all the terms in Proposition 6.4.

With these theoretical guarantees in hand, we now move on to provide an
effective algorithm for discovering which variables are indeed confounded.

6.3 Discovering Confounders from Different Contexts

Based on the framework we developed in the previous sections, we now intro-
duce the coco algorithm for discovering Confounders from different Contexts.

Determining Causal Mechanism Shifts

To develop our algorithm, we use existing approaches for discovering causal
mechanisms and their changes in multiple contexts. Since it agrees well with
our shift testing approach, we build upon the MSS estimator developed by Perry
et al. (2022), which starts from the correct MEC and directs edges to minimize
the number of mechanism shifts. For each causal mechanism of a target variable
Xi and each pair of environments, we perform a conditional independence test
to detect mechanism changes, resulting in the following p-values,

ps,s′ = p-val
(

P s(Xi | Pai) , P s′
(Xi | Pai)

)
.

We here use the Kernel Conditional Independence test (KCI; Zhang et al.,
2011) for all practical purposes, but other instantiations are possible (Park
et al., 2021). In case a variable has no parents in G, the above reduces to
testing the marginal distributions P s(Xi) for equality, for which we use the
Maximum Mean Discrepancy (MMD; Gretton et al., 2012).
As the pair-wise p-values between pairs of contexts are correlated and hence do
not allow a well-defined dependency measure, we convert them to a partition
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Figure 6.2: Components of coco. In a DAG G with unobserved confounders Z1, Z2
(top left), we consider each pair of nodes (top right) discover their partitions, and test
them for dependency using MI (bottom right). We obtain an affinity matrix showing
which nodes are affected by the same confounder (bottom left).

to use our MI-based measure. We obtain a clustering naively from the pair-
wise tests by including si, sj in the same group if and only if the pair-wise
testing does not indicate that Π(si) , Π(sj). Hence, if there are disagreements
between the correlated tests, we resolve these in favor of more mechanism
changes, although other options are possible depending on the sensitivity of
the test. In the bivariate example shown in Figure 6.1, for instance, we obtain
partitions ΠX and ΠY |X corresponding to the shown changes in P̂X and P̂Y |X ,
which we test for independence as described in the following.

Discovering Confounding Variables

Next, for every pair of variables Xi, Xj , we determine whether it is confounded
by computing the p-values of our MI score based on Equation (6.2),

pij = Φ−1


I(Πi, Πj)− E

[
I(Π⋆

i , Π⋆
j )
]

√
var(I(Π∗

i , Π∗
j ))


 ,

where Φ is the cumulative density function of the standard normal distribution.
In the second stage, we aim to discover those subsets of variables affected by the
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Algorithm 6.1: coco
input : Data over X, S; causal DAG G
output : Subsets of X that are jointly confounded by a latent

variable Zj

1 foreach variable Xi do
2 foreach pair of contexts s, s′ do
3 ps,s′ = p-val

(
P s(Xi | Pai) , P s′(Xi | Pai)

)

4 Convert {ps,s′} to a partition Πi

5 foreach pair of variables Xi, Xj do
6 pij = Φ−1

((
I(Πi, Πj)− E

[
I(Π′

i, Π′
j)
])

/
√

var(I
(
Π′

i, Π′
j

)
)
)

7 Construct an affinity matrix J
8 Discover subsets XI of X that are connected components in J , using

spectral clustering
9 return Confounded subsets XI

same latent variable. While our theoretical analysis suggests considering the
total correlation over variable subsets, performing such a test for every given
subset XI ⊆ X is both infeasible and results in a multiple testing problem
involving enormous numbers of tests. We therefore infer confounders directly
from pairwise tests by using Assumption F directly.
If our tests for discovering causal mechanism shifts and confounding were per-
fect, variables affected by the same confounder would form distinct clusters
with high pairwise MI, which could be used as direct estimates of confounded
variable sets. In practice, we will find some variable pairs to be incorrectly
judged (un-)confounded. While this is the same issue we faced with CoCa
in Chapter 2, we cannot use the same solution here. Since we are not ex-
plicitly modeling any distributions here, we cannot fit a latent confounder Z
to minimize a score function. Instead, we cluster the pairwise mutual infor-
mation terms directly. More precisely, we consider the affinity matrix J with
entries Jij = I(Πi, Πj), using MI as pairwise similarity, and use spectral clus-
tering (Donath and Hoffman, 1972) to discover strongly connected components.
The resulting clusters XI are then likely subject to the same confounder.

CoCo

To summarize, we present the pseudocode for coco in Algorithm 6.1, and an
illustration in Fig. 6.2. In the first phase, for each variable, we test all pairs of
contexts for mechanism shifts (l. 1–4) in order to obtain its partition. In the
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second phase, we test all pairs of variables for confounding (l. 5–6). Last, we
cluster the variables into subsets affected by the same confounder (l. 7–8).
Regarding the complexity of our method, shift testing is in O(|G| · |S|2), testing
for confoundedness in O(|G|2), plus spectral clustering in O(|G|3).

6.4 Independent and Related Work

It has been commonly acknowledged that special care must be taken when
datasets from multiple sources are to be combined to derive a common set of
statistical or causal estimates (Dahabreh et al., 2020). When data is combined
naively, the resulting causal model can be worse than if the data had only been
considered in isolation (Compton et al., 2023).
When done correctly, however, combining observational and experimental data
can lead to improved causal networks (Kallus et al., 2018; Kocaoglu et al.,
2019). However, these methods are generally restricted in their ability to rule
out or corroborate the existence of latent variables due to scarcity of experi-
mental data. Furthermore, experimental data is not in fact unbiased (Deaton
and Cartwright, 2018; Naci and Ioannidis, 2013; Averitt et al., 2020), leading to
the failure of these methods (Statnikov et al., 2015; Colnet et al., 2024; Cheng
and Cai, 2021; Kladny et al., 2023) Other approaches attempt to study the sta-
bility of parameters under confounding and selection (Oster, 2013) and develop
methods that are robust to future mechanism changes (Shen et al., 2023).
There is also a growing literature on relaxing the i.i.d. assumption in causal
discovery, showing that one can obtain stronger identifiability results by using
the information inherent in distribution shifts of observed variables (Zhang
et al., 2017; Rothenhäusler et al., 2019; Huang et al., 2020; Mooij et al., 2020;
Gamella et al., 2022; Mey and Castro, 2024). Recent approaches leverage
the independent change (Mameche et al., 2023) and sparse shift principles to
discover fully directed causal DAGs from multiple environments, such as the
Mechanism Shift Score (MSS; Perry et al., 2022).
The aforementioned approaches consider an exogenous context variable, which
can be viewed as a special form of confounding (Huang et al., 2020). However,
in practice, not all confounding can be fully explained by the effects of the
environment. For example, when confounding effects are genetic, then while
differences in the values of the confounder can be partially explained by mem-
bership of a subpopulation, the variance within any subpopulation is still large.
That is, there may still be a confounder within each context. Most related to
our method is the Joint Causal Inference (JCI) framework (Mooij et al., 2020)
when instantiated with a discovery algorithm that does not require sufficiency,
such as FCI (Spirtes et al., 2000). Other related work includes those which
propose mutual information estimators to estimate the similarity of distribu-
tions (Reddy et al., 2022), as well as the work by Karlsson and Krijthe (2023)
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also address violations in exchangeability under latent confounding (Guo et al.,
2024) but focus on causal effect estimation under a fixed graph structure.

6.5 A Shift in Focus: Experiments

To conclude, we empirically evaluate coco on synthetic and real-world data.
We implemented coco in Python and make all code available online.1

CoCo and Oracles

To separate the effects of discovering latent variables, mechanism changes, and
causal directions, we include different oracle versions of coco. To study our
confounding test in isolation, we consider an oracle for the true partitions,
named coco-Π∗. We combine it with mechanism shift testing in coco-G∗,
which takes the causal structure G∗ as background knowledge. Finally, we
combine our approach with MSS (Perry et al., 2022) using the kernelized con-
ditional independence test (Zhang et al., 2011) to discover a fully directed DAG
G. As MSS starts from a Markov Equivalence class, we provide all methods,
including all competitors, with the correct MEC as a starting point.

Competitors

Our main competitor is jci (Mooij et al., 2020) instantiated with the fci al-
gorithm (Spirtes et al., 2000), referred to as jci-fci. It applies fci to an
augmented causal model, including the context variable and appropriate edge
constraints (Mooij et al., 2020), and returns for each variable pair whether
causal, confounded, potentially confounded, or none of the above. We also
apply fci to the pooled data from all contexts, fci-S, and to the data of each
context individually, reporting the best such result, fci-s∗.

Synthetic Data Generation

Following Huang et al. (2020), we generate an Erdős-Rényi graph G∗ with edge
probability p, and generate data from the model,

X
(s)
i =

∑

j∈Pa∗
i

ω
(s)
ij fij

(
X

(s)
j

)
+ σ

(s)
j N

(s)
j , (6.3)

with weights ω
(c)
ij ∼ U(0.5, 2.5), uniform or Gaussian noise with equal proba-

bility, and functions f sampled uniformly from {x2, x3, tanh, sinc}. For each
1https://eda.rg.cispa.io/prj/coco/

https://eda.rg.cispa.io/prj/coco/
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Figure 6.3: Recovery depends on the number of mechanism shifts of observed and latent
variables. We show the power of our confounding test over pairs of nodes (higher is
better) depending on the observed mechanism shifts sX (left) and latent shifts sZ (right)
over ns = 20 contexts. We can identify confounding when observed mechanism shifts are
sparse (sX < 10, red plots on the right) unless the confounder changes in almost every
context (sZ > 15, blue plots on the left) or does not change at all (sZ = 0).

mechanism change, we re-sample from Equation (6.3). Finally, for our con-
founders Zj , we remove source nodes with edges to at least two variables.

6.5.1 Importance of Sparse Mechanism Shifts (Assumption C)

To begin with, we study the influence of our key assumption, the sparse mech-
anism shift hypothesis, as we formulated it in Assumption C (Guo et al., 2024;
Schölkopf et al., 2021). It states that distribution changes result from only a
small number of changes in causal mechanisms. This is consistent with the
view of causal mechanisms as independent modules that do not influence each
other and is closely related to the invariance principle whereby causal mecha-
nisms remain the same even in different contexts (Peters et al., 2016; Huang
et al., 2020). While sparsity has recently been proposed as a relaxation of
the i.i.d. assumption (Perry et al., 2022), it is not easily testable in practice.
Hence, we want to empirically investigate how sensitive our confounding test
is to an increasing number of causal mechanism changes.
To this end, we we vary the number of changes for the observed (sX) and latent
variables (sZ) in a fixed set of contexts, here ns = 20. We generate data as in
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our main experiments and test with coco-Π∗ for confounding between all node
pairs in a causal DAG. To show the empirical power of our confounding test,
we show the true positive rate (TPRconf) over these decisions in Figure 6.3.

Observed Shifts In Figure 6.3a, we show the effect of increasing sX . We
run the experiment for each sZ , and color plots red if latent shifts are sparse
(sZ < 10) and blue otherwise. We observe a tipping point at sX = 9 where
the observed nodes have partitions with ten different groups of the 20 contexts;
that is, exactly when mechanism shifts are no longer sparse, the power of our
test decreases. For sX < 10, we have perfect power in most cases. Note that in
the special case where all variables are identically distributed in all contexts,
sZ = 0, sX = 0, the confounding effect is not measurable using our method.

Latent Shifts In Figure 6.3b, we show the same result when we increase
sZ instead. Sparse shifts with sX < 10 are again colored red, and dense shifts
blue. We can see a clear separation between the two cases, which confirms our
observations above. In particular, under sparse shifts of sX , we can tolerate up
to sZ = 15 shifts of the confounder.
We conclude that our approach works best in settings where the sparse shift
assumption holds for the observed variables, while we can handle more shifts
for the latent variables. Ideally, both numbers are in an intermediate range.

6.5.2 Empirical Significance and Power (Lemma 6.1)

Next, we revisit Lemma 6.1, which guarantees a power of 1 of our test as we
observe more contexts, ns → ∞. To give a more practical result for fewer
contexts, we investigate the power and significance of our test empirically.
We consider coco-Π∗ to study our confounding test in isolation and show true
positive rates (TPRconf) and false positive rates (FPRconf) to show the power,
respectively significance, of the test. As in our main experiment, we test for
confounding between all pairs of nodes in a causal DAG and consider m = 10
nodes in ns = 10 contexts, where one confounder influences a random set of
between two and m nodes, and where nodes undergo sX = 1 mechanism change
and the confounder sZ = 2 changes. We show the results in Figure 6.4. We
consider up to m

2 = 5 confounders because each confounder always affects at
least two variables, and up to ns − 1 = 9 mechanism changes because this
corresponds to a change in every context.

Power We find that our test already works well with few contexts, with
perfect power starting from ns = 8 contexts (Figure 6.4a). We point out the
special case sZ = ns − 1, where the confounder changes in every context. In
this case, the (adjusted) mutual information of the observed (single-group) is
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Figure 6.4: Empirical Power and Significance. We show the true positive rate (top,
higher is better) and false positive rate (bottom, lower is better) of our confounding
test depending on the number of contexts, variables, confounders, and mechanism shifts,
starting from ns = 10, |X| = 10, |Z| = 1, sX = 1, sZ = 2.

zero, and we cannot detect confounding, as we can see for ns = 3 (Figure 6.4a)
and sZ = 9 (Figure 6.4e). Otherwise, the number of latent shifts does not
significantly impact our results (Figure 6.4e), and only the shifts of the observed
variables do (Figure 6.4c), as we discussed above. The sensitivity of our test
is not affected by the number of variables (Figure 6.4b) and decreases slightly
when we add more confounders to the system (Figure 6.4d).

Significance As the false positive rates show, our test rarely detects uncon-
founded variable pairs as confounded, with FPRconf remaining around 0.1 and
below 0.2 in almost all experiments. We notice a change when there is more
than one confounder (Figure 6.4d). To explain, in this case, we also check
whether variables are affected by the same confounder, and our method may
discover a variable pair Xi, Xj as confounded when they are each affected by a
different confounder, Zk → Xi, Zl → Xj . In particular, this happens if Zk, Zl

have joint mechanism shifts coincidentally, in which case the mechanism shifts
of Xi, Xj also appear correlated. However, even in this case, FPRconf remains
relatively low (Figure 6.4d), suggesting that our method can mostly separate
which variables are affected by which latent variable.
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Figure 6.5: Detecting Confounding and Causality with coco. We evaluate coco on
discovering confounding in DAGs G over multiple contexts. We compare (top) coco with
MSS and the KCI test (green) to oracle versions that start from the true partitions Π⋆

(purple) respectively the fully directed DAG G⋆ (blue). We compare (middle, bottom)
against jci-fci (yellow), fci-S on pooled data, and fci-s⋆ per context (blue). We report
F1 scores computed over each pair of nodes, evaluating whether it is confounded (top,
middle), respectively causally related (bottom).

6.5.3 Detecting Confounding with CoCo

To begin with, we consider whether coco discovers confounding in a multi-
context DAG G. We do this for varying parameters, including the number of
contexts (ns), the number of observed (m) and latent (nZ) variables, and the
number of observed (sX) and latent (sZ) mechanism shifts. Unless otherwise
indicated, we use the parameters ns = 10, m = 10, nZ = 1, sX = 1, sZ = 2.
We first perform an ablation study on coco, based on the kind of oracle it has
access to. We show our results in the top row of Figure 6.5. As we expect from
our theory in Section 6.2, coco works best for more contexts, larger numbers of
invariant environments for each variable, and an intermediate number of latent
mechanism shifts. In contrast, when mechanism shifts are dense, i.e., when
ns − sX = 1 or sZ = ns − 1, or when there are no shifts, we cannot discover
any confounding. Overall, the gap between the oracle versions and the version
in which everything needs to be inferred is small in this experiment. This
suggests that confounding detection works well even when causal directions
are unknown, supporting our results of Section 6.2.5.
Next, in the middle row of Figure 6.5, we see that coco (green) clearly out-
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Figure 6.6: Confounding effects of PKC. On the Sachs et al. (2005) data coco recovers
confounding effects of PKC on most variables (solid green), in addition to two extra
variables (dashed green). In contrast, jci-fci misses all of the truly confounded variables
(dashed orange), while finding only two spurious ones instead.

performs jci-fci (yellow) by a large margin in discovering confounders. At the
same time, jci-fci, in turn, has a slight advantage over fci on best-scoring
single-context respectively pooled data (blue). As the fci variants can only
determine potential confounding for pairs of nodes, we evaluate confounding
decisions across pairs of nodes in G using F1-scores.
Last, we compare how many of the causal edges are correctly directed in the
bottom row of Figure 6.5, starting from a given Markov equivalence class. As
expected, we do well under sparse shifts and with more contexts, while all the
versions of fci generally only discover few causal edges.

6.5.4 Real-world Cell Signaling Data

We end with a case study on the flow cytometry dataset by Sachs et al. (2005).
It contains samples of eleven protein and phospholipid components in human
immune cells, studied under different molecular interventions. To study con-
founding effects, we start from the consensus causal network in Figure 6.6.
As in Section 4.5, we keep PKC hidden and use the data over the remaining
variables in the nine different contexts included in the data.
As we illustrate in Figure 6.6, coco correctly discovers a confounder Z and
all of its outgoing edges (green) as well as two spurious ones (dashed). While
the edge between the confounder Z and PIP3 is indeed spurious, we study the
relationship between Raf and Mek in more detail below. In contrast, jci-fci
discovers multiple false positive confounded edges.
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Figure 6.7: Hidden confounding between Raf and Mek. In the cell signalling net-
work (Sachs et al., 2005), coco discovers confounding between the molecules Raf and
Mek (a). Although the consensus network only contains the edge Raf → Mek, many
causal discovery methods also report a pathway Mek → Raf (Perry et al., 2022), sug-
gesting that there may be feedback. We illustrate this in (b), where we show the data
in the observational context (gray) and in an interventional context (blue) where the
reagent U0126 was added (Mooij et al., 2020). While U0126 is presumed to only directly
influence Mek, we see a change in the abundance of Raf. With coco, we discovered
a joint mechanism change of both conditionals P (Raf | PKC) and P (Mek | Raf) in the
interventional context, and overall found that partitions for Raf and Mek are correlated.

Is Mek Really Spuriously Confounded?

To check whether the results returned by coco are spurious, we repeat the
experiment while keeping each node hidden in turn. Overall, coco returns
few confounding effects that disagree with the consensus network. Notably, we
always discover Raf and Mek to be confounded, suggesting the possibility of
unmeasured confounding even in this highly controlled study.
Mooij et al. (2020) already discussed the relationship between these signaling
molecules in detail as an example, suggesting that the consensus network may
be incomplete. As shown in Figure 6.7, this network includes the pathway Raf
→ Mek, and the only intervention targeting either of the molecules is the Mek
inhibitor U0126 (Sachs et al., 2005). Consider the data shown in Figure 6.7b.
We show the observational context (gray) and the interventional context where
the reagent U0126 was added (red) and can see that there is a distribution shift
of Raf under U0126. This suggests that either U0126 also targets Raf or that
there is a feedback loop between Mek and Raf (Mooij et al., 2020).
We found that coco detects this observation. In the partitions for Mek and
Raf, reflecting changes in the conditional distributions P (Mek | Raf) and
P (Raf | PKC), we discover a joint mechanism shift of both signaling molecules
in the interventional context U0126, and higher than expected mutual infor-
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mation of the partitions, hence deciding that Raf and Mek are confounded. In
conclusion, coco discovers a dependent mechanism shift of Raf and Mek un-
der the intervention with U0126, thus pointing to potential hidden confounding
between the cells that is consistent with the data.

6.6 E Pluribus Unum?

In this chapter, we tackled Problem 4, determining to what extent we can
leverage data from multiple settings, such as observational and interventional
contexts, to discover latent confounding non-parametrically.
We began by introducing the necessary framework of causal discovery from
multiple environments, in which causal mechanism shifts are assumed to be
independent. We then showed that this independence of mechanism shift in
the complete set of variables X ∪Z leads to correlated mechanism shifts when
we observe data only from the distribution P (X). This dependence is precisely
what we leveraged in our approach: by measuring the dependence between the
partitions induced by mechanism shifts, we showed that we can discover both
which variables share the same latent confounder (Theorem 6.2), as well as
recover the true causal order among the observed variables X (Theorem 6.5).
From this characterization of the properties of our score, we then derived our
algorithm coco for recovering the sets of jointly confounded variables given
the MEC. We showed that it works well on synthetic and real-world data.
For the future, one relevant question is whether can we obtain better results
by making better use of the shared mechanism shifts across multiple variables.
That is, if l variables all share the same latent confounder Z, then they all
jointly share the same mechanism shifts induced by shifts in Z. Right now we
cluster variables based on the pairwise structure, but it would be interesting
to see whether we can algorithmically extract larger structures directly.
Another interesting avenue is whether we can use what we have learned so far
to deconfound our observed variables. Once we have determined that a set XI
are jointly confounded by a latent factor Z, can we in some way determine and
account for the joint mechanism shifts induced by this latent variable Z, and
determine the true causal graph over the observed X?
A related question is whether we can adjust our causal mechanisms to account
for such knowledge. Consider the example of observed variables U, X, Y , such
that only X → Y and all three variables are jointly confounded by a latent Z.
Clearly, if we knew both the true causal structure over U, X, Y , and that they
are jointly confounded, we should be able to use U as a proxy variable for Z
to adjust whatever causal mechanism X → Y we fit. It is less clear, however,
to what extent this is still possible in more complex causal networks.



Chapter 7

Conclusion

Alice: Would you tell me, please, which way I ought to go from here?
Cheshire Cat: That depends a good deal on where you want to get to.
Alice: I don’t much care where.
Cheshire Cat: Then it doesn’t much matter which way you go.
Alice: ...So long as I get somewhere.
Cheshire Cat: Oh, you’re sure to do that, if only you walk long enough.

Lewis Carroll, Alice in Wonderland

In the last five chapters, we have tried to answer the question to what extent
we can perform causal discovery in the presence of unobserved latent variables
that create biases in the distribution of our observed variables. Such biases can
be created either by not conditioning on variables that should be conditioned
on—latent confounding—or by conditioning on variables that should not be
conditioned on—selection bias. In particular, we tried to answer whether we
can discover such biases and studied the conditions under which this is possible
and to what extent we can simultaneously learn a causal model over both
observed and unobserved variables despite the incompleteness of our data.
In this concluding chapter, we will summarize the contributions of this thesis
and relate them to the wider landscape of the field of causality in its cur-
rent state. In particular, we extrapolate some lines of current development in
causality and machine learning and see where our ideas may be of use.

145
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7.1 Biases in Causal Learning

The first problem we tackled was the basic question of to what extent we can
distinguish between causally related and jointly confounded variables at all.

Problem Statement 1 (Confounded or Causal). Given covariates X and a
target variable Y , does X cause Y , or are the correlations best explained due
to latent confounding caused by not controlling for an unobserved variable Z?

To answer this question and to provide a generically useful tool with which to
think about the effects of latent confounding more generally, we extended the
algorithmic model of causality to allow for explicit inclusion of latent variables
in the lowest complexity causal factorization of our observed distribution. In
particular, we made explicit the reason why the algorithmic independence of
causal mechanisms is violated in the presence of latent confounding.
We then showed that by constraining the Kolmogorov complexity to a subset of
all possible distributions, we can use the MDL principle to form a theoretically
and statistically well-founded upper bound for model classes both in- as well
as excluding latent confounders. This provides us with a principled approach
for deciding whether the data is, in fact, better described by endogenous causal
relations or by the effects of latent factors.
We showed empirically that the number of observed variables relative to the
number of latent confounders is a crucial factor in distinguishing between these
two classes of models: when too few covariates are observed, it becomes impos-
sible to distinguish between causal and confounded models. It turns out that
while the common adage “just collect more data” is misguided in its usual sense
that controlling for more covariates will somehow provide reasonable causal esti-
mates, it is true in that collecting more covariates permits us to more accurately
determine whether latent confounding is a concern in the first place.
The relationship between the number of observed variables and the number
of latent confounders, as well as the structure of how the latent confounders
affect the covariates, became clearer still as we turned to our second question:
to what extent can we learn the causal model over both observed and latent
variables when we never observed the latter?

Problem Statement 2a) (Causal Discovery with Hidden Confounders—Lin-
ear Case). Given data only for the observed variables X, and assuming that all
causal relationships between both the unobserved Z and the observed X are
purely linear, can we discover a joint causal network over both the observed
variables X as well as the unobserved Z?

By studying the structure of the correlations between observed variables, we
determined that in the case where latent confounding affects at least four vari-
ables, we can distinguish between joint latent confounding and causal connec-
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tions between the observed variables. It turned out that in the case of joint la-
tent confounding and some assumptions of structural sparsity, the correlations
of the observed variables co-dependently lie on a low-dimensional manifold,
permitting us to exploit violations of the independence of causal mechanisms.
Therefore, the joint causal model over observed and unobserved variables is
identifiable even when we do not know the true number of latent confounders.
We then showed that, perhaps surprisingly, with no need for additional as-
sumptions beyond linearity and structural sparsity of the causal graph, both
the BIC as well as MDL-derived scores are consistent for recovering the true
causal model over both observed and unobserved variables.
To learn the desired causal model over both observed and latent variables, we
propose an elementary approach that can be applied in essentially any score-
based causal discovery framework. We start by running an (arbitrary) causal
discovery algorithm, resulting in a proposed causal graph over the observed
variables. By considering our proposed MDL score, we find latent factors for
subsets of the observed variables, which reduce the total score, and add that
latent factor, which minimizes the overall score. This yields an extended set
of variables, over which we then run the same causal discovery algorithm once
more. By iterating this process, we show that if our model assumptions hold,
we are guaranteed to find the correct set of confounded nodes. Empirically,
we further show that our approach works well on both linear and nonlinear,
synthetic and real-world data. As before, we observe that the number of ob-
served and latent variables plays a crucial role in our ability to recover both
the confounded nodes and the complete causal graph.
Since the assumption of strict linearity is a strong one, a natural next question
was whether we can include nonlinear causal relationships between variables.

Problem Statement 2b) (Causal Discovery with Hidden Confounders—Non-
linear Case). Given data only for the observed variables X but not the unob-
served variables Z, do nonlinear causal mechanisms exist for which we can
discover a joint causal network over X and Z?

We showed that within the framework of PNL causal models, in which the
nonlinear relations between observed variables arise from independent nonlinear
transformations of each of the observed variables, this is indeed possible. The
essential insight here is that due to the nature of the nonlinearities, there exist
element-wise nonlinear transformation ϕ of the observed variables such that
the “causal” graph over the variables ϕ(X) is fully linear so that the previous
chapter’s results for identifiability apply under minor additional assumptions
on ϕ−1—smoothness and strict nonlinearity.
While identifiability is straightforward, given our preliminary work, learning the
true causal network requires a different approach. Since we need to disentangle
the nonlinearity ϕ and the causal structure induced by the linear relations
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between observed and latent variables, we use a VAE-inspired structure to learn
the causal model. We show theoretically that in the linear case, this approach
is consistent for network discovery, and empirically that it works both for linear
and nonlinear synthetic and real-world data.
Next, we took a detour to consider another source of bias that crops up re-
peatedly in questions of causal discovery and inference: selection bias. This
problem is, in a certain sense, dual to that of latent confounding: instead of not
conditioning on a variable that is causally upstream of the observed variables,
we do condition on a latent variable that is causally downstream of the observed
variables. The question of to which extent we can determine whether variables
are affected by selection bias was, therefore, a natural next consideration.

Problem Statement 3 (Dealing with Selection Bias). Given data for the
observed variables X, are they causally connected, or are the correlations best
explained by selection effects due to conditioning on an unobserved collider Z?

We obtained a positive answer to this question both in the setting of parametric
families as well as in the setting of non-parametric distributions subject to
certain known classes of invariances. We showed that, just as confounding
results in specific patterns in the correlation structure of the observed data,
selection bias results in specific patterns in the observed data distribution. In
a certain sense, selection effects are local in that they significantly affect only
a part of the distribution. By looking at the relatively unaffected part of the
distribution, we can still learn the correct parameters, or invariances, for the
underlying distribution and exploit local deviations from the entailed structure
to infer which parts of the space are affected by selection.
We showed theoretically that both approaches result in identifiable causal mod-
els even in the face of selection bias and empirically that both models work well
on synthetic data and can provide us with novel insight into real data.
After this excursion into the land of selection bias, we returned once more to
the topic of latent confounding. But this time around, we leveraged ideas from
the literature on causal discovery given data from multiple environments.

Problem Statement 4 (Confounding across Contexts). Given data only for
the observed variables X across multiple contexts c ∈ C, but not the unob-
served variables Z, how readily can we determine which variables are jointly
confounded by the same latent factor Zi ∈ Z?

We show that in this setting, we require no parametric assumptions on the
form of the true distribution nor assumptions on the sparsity of the underlying
causal graph. Instead, using only relatively weak assumptions on the frequency
of mechanism shifts across environments, we show that we can determine with
high probability which variables are jointly confounded and recover the true
causal graph over both observed and unobserved variables.
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The basic idea is that changes in the distribution of a latent variable across
environments lead to correlated changes in the apparent causal mechanisms
between observed variables. This is, once more, another kind of violation of the
independence of causal mechanisms, this time across environments. Combined
with well-known results indicating that the number of causal mechanism shifts
is minimal in the true causal graph, we show that these correlated mechanism
shifts suffice both theoretically and empirically to recover the true network.

7.2 Making Observation Great Again

As a deluge of data has brought on a slew of new statistical and machine
learning models, with some theoretical as well as empirical results on the per-
formance of such models as data and compute are scaled, along with jobs
such as “data scientist”, “data engineer”, “prompt engineer”, and a host of
others, our understanding of the applicability and suitability of these meth-
ods for any given task is severely lagging behind. Whether it is recommender
systems, credit score models, cancer prediction from X-ray images, macroeco-
nomic models, genome-wide association studies, or any other machine learning
model, practitioners often implicitly treat the predictions made as causal. It is
quite common, even for statistically well-trained scientists, to run purely cor-
relational analyses, claim that these are by no means causal, only then proceed
in their discussion section to speak of their results as if they were, in fact,
causal (Shapiro, 2004; Rutter, 2007).
Practitioners may often attempt to verify the accuracy of such causal inter-
pretations by controlling for additional observed covariates in an attempt to
remove the effect of latent confounding. However, as we noted in the intro-
duction, controlling for a variable implies (some) knowledge of the underlying
causal graph. That is, the validity of controlling for a variable relies funda-
mentally on that variable being neither mediator nor collider for the predictors
and the outcome (Wysocki et al., 2022). However, these assumptions are rarely
verified, nor do most practitioners employing these kinds of controls realize
that there are assumptions to verify in the first place.
While we can consider this as practitioners simply making the best of a bad
situation, the question remains: how can we do better? One line of answers is
given by the classical econometrics literature on estimating treatment effects.
This usually involves doing RCTs (such as A/B tests; Kohavi et al., 2020; Aus-
trian et al., 2021), finding instrumental variables or proxies (Angrist et al.,
1996), finding apropriate natural experiments (Rosenzweig and Wolpin, 2000),
doing regression discontinuity designs (Imbens and Lemieux, 2008), employ-
ing differences in differences (Card and Krueger, 1993), or using any one of a
number of other approaches (Angrist and Pischke, 2009).
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In a second, related line of thinking, one tries to combine data from different
sources. The most common approaches in the literature on this are combining
observational data with more controlled data, e.g., RCT data or data from
other study designs outlined above, and combining the effects obtained from
these varying data sources to obtain the true, or at least a less biased, causal
estimate. However, one fundamental assumption often made by both this and
the previous line of thought is that the data obtained from the RCTs (or other
experiment designs) is unbiased (Statnikov et al., 2015; Colnet et al., 2024;
Cheng and Cai, 2021; Kladny et al., 2023). In reality, however, this assump-
tion is commonly violated due to stringent selection criteria on the partici-
pants of the RCTs (Naci and Ioannidis, 2013; Averitt et al., 2020), or limited
variation in experimental setups rendering causal estimates derived from these
sources incomparable to effects we would find in the wild. As such, the common
motivation to combine unbiased RCT data with biased observational data in
order to obtain lower variance estimates at the cost of larger bias is fundamen-
tally misguided from the start. While other attempts, such as causally valid
meta-analyses of RCTs on different populations, have been made (Wiernik and
Dahlke, 2020; Dahabreh et al., 2020; Markozannes et al., 2021), they do not
leverage the vast amount of available observational data available to us.
The third line of approaches is to understand what makes causal identifiability
from purely observational data impossible in general and, conversely, which
assumptions do make at least partial identifiability possible. Being the line we
have followed in this work, we believe it to hold potential both theoretically as
well as practically. That is, as we have shown in Chapters 2, 3, and 4, there are
distinct patterns to the effects of low-dimensional latent confounders, which are
fully generic within the algorithmic model of causality, and which we can detect
from observational data in the linear and specific nonlinear cases. We expect
that the study of more general patterns will reveal that confounding may be
detected under relatively general assumptions for sufficiently rich datasets.
One interesting connection between the second and third lines of thought is
to what extent data combination can be leveraged not only between unbiased
and biased datasets but also between multiple observational datasets biased
in different ways. These datasets may be studying the same effects in differ-
ent settings, across different populations, in different locations, or at different
points in time. It has been shown that simply combining datasets from differ-
ent environments can be detrimental to a model’s performance in theory and
practice (Compton et al., 2023). The idea is that so long as either the true un-
derlying causal mechanism stays the same and the sources of bias change—e.g.,
observational data and RCT on a subset of the same population—or the sources
of bias stay the same but may vary in distribution, while the underlying causal
mechanisms can change, then data from such multiple contexts or environments
allow us to identify the common underlying structure (Bareinboim and Pearl,
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2016). Unfortunately, such approaches are, as of yet, uncommon in the liter-
ature, and data merging approaches generally focus on the case where causal
sufficiency holds in all, or at least some, of the datasets used to estimate the
causal mechanisms. Two exceptions to this dreary lack are the work by Karls-
son and Krijthe (2023) and our work in Chapter 6. In particular, Karlsson and
Krijthe (2023) focus on violations in exchangeability (corresponding to our As-
sumption A in Chapter 6), which are entailed in the case of causal sufficiency,
but they focus on the effect of a single treatment on a single outcome variable.
In contrast, in Chapter 6, we focused on fully non-parametric identifiability
of the underlying causal network and showed that under relatively weak as-
sumptions on the mechanism changes, we can recover the true causal network
with high probability. In the next section, we outline some more related and
different lines of thought as they may affect the field of causality in the future.

7.3 Some Speculation on the Future of Causality

Given how fundamental causality is to our scientific endeavor as a whole, it is
heartening to see many sub-fields of causality thriving. However, many of these
novel fields are still in their infancy and have yet to grapple with the biases
that our analyses are otherwise sensitive to.

7.3.1 Biases in (Causal) Representation Learning

Much has been written about learning good representations, for example, in
the context of image recognition. A typical example is the cow on a meadow
versus a cow on the beach. Since datasets on which our model is learned will
generally contain many images of cows on meadows but few images of cows
on beaches, many image recognition models will do a good job detecting the
cow in the first but not the second setting. More likely, it will output that the
cow is some other kind of animal that is more likely to exist on a beach. In
this case, we say that the representations of the cow and its environment are
entangled. From a purely predictive point of view, this entanglement is only
natural. After all, if the presence of a cow is predictive of a meadow, it would be
inefficient not to use this information. However, from a perspective of not only
human interpretability but also of carving nature at its joints (Plato, 1952),
a representational cow-meadow mixture is hardly very appealing, even though
in many respects, human cognition works the same way (Köhler, 1967). That
is, what we desire are disentangled representations in which, in this example,
foreground (the cow) and background (the meadow or beach) are represented
independently of each other (Wang and Jordan, 2021).
Many papers have been written about how to resolve this issue, whether it
be via interventions (Ahuja et al., 2022), Hausdorff factorized supports (Roth
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et al., 2022), or one of many other methods (Wang et al., 2022), as well as results
on the theoretical impossibility of the task without further constraints (Lo-
catello et al., 2019; Träuble et al., 2021). Only few, however, have written
about the underlying reasons why such entangled representations occur in the
first place. The correlation between the presence of cows and meadows is not
a bug, it is a feature of the real world. The fact that many images of cows on
meadows but few on beaches are included in the data is not a fact to be wished
away; it should instead be modeled as part of the data-generating process.
We believe that this can, and should, be fruitfully modeled in terms of selection
bias. Of course, this is not the same kind of selection bias we have been
concerned about, where preferential inclusion of some images causes biases in
the outputs. In contrast, such a preferential selection to remove correlations
between the presence of cows and meadows is, in fact, precisely the goal of
many researchers in the field of representation learning. That this is misguided
is easy to see by analogy with a bivariate linear regression: if we desire to
regress Y on X1, X2, but these two variables are correlated with each other,
then restricting the range of X1, X2, Y to a part of the distribution in which
X1, X2 are not correlated will not solve the problem but instead introduce
uncontrolled bias in the regression parameters. Rather, cows are in fact more
often found on meadows than on beaches, and this would be true even without
human intervention (such as animal farms). The selection mechanisms here are
natural selection and the ecological niche to which cows are adapted.
The disconnect between disentangled representations and reality is the enforce-
ment of positivity where it does not apply. Even in a world where there are
literally zero cows on beaches, perhaps this is how it should be. Enforcing
positivity on the (cow, beach) probability would fundamentally misjudge the
underlying reality of the world that we are trying to represent in the first place.
It is, therefore, essential to distinguish between what we are trying to represent
and what we are trying to generate. Instead, we should model the presence of
entangled representations by jointly fitting a disentangled representation and
the selection mechanisms giving rise to the observed non-positivity of the (cow,
beach) pair. This solution has the benefit that we model both the true distri-
bution while also providing us with disentangled representations that can be
used to interpret the latent space and generate new samples from it. It might
also give us a more readily interpretable model as to why the observed entan-
glements occur in the first place, and thus help us determine whether there is
concern about the fairness of our representations (Zemel et al., 2013).
In the last years, instead of disentangled representation learning, another idea
cropping up is that of causal representation learning Schölkopf et al. (2021).
Given some data, such as an image, can we find the causal factors underlying
the data? One of the most promising areas for these kinds of representations
is biology. We can display the distribution of RNA across many different cells



153 Conclusion

in terms of an image collected via RNA-seq (Wang et al., 2009) or for single
cells via scRNA-seq (Butler et al., 2018; Stuart et al., 2019). Of course, the
individual pixels of the image do not cause each other; instead, underlying all
the pixels are genes determining the expression levels of proteins, which in turn
regulate other genes. The question that causal representation learning asks in
this context is, therefore, to what extent can we recover the gene regulation
network from the observed image (Squires et al., 2022b; Sturma et al., 2023)?
As stated, this task is underspecified, but theoretical results indicate that given
enough types of interventional data, we can recover the underlying causal
graph (Squires et al., 2022a; Ahuja et al., 2022, 2023; Liang et al., 2023a;
Buchholz et al., 2024; von Kügelgen et al., 2023). This makes the biologi-
cal domain well-suited for this: by using CRISPR (Barrangou and Doudna,
2016), we can intervene on specific genes and observe how the resulting image
changes (Squires et al., 2022b; Zhang et al., 2023b). Furthermore, gene ex-
pression can be measured in multiple ways, in individual cells or in aggregates,
allowing us to leverage multimodal observations to improve the identifiability
of the underlying causal network (Trask et al., 2022; Sturma et al., 2023). In
many of these identifiability results, however, it is assumed that the number of
variables in the latent representation is known. What if this is not the case?

How Many Latent Dimensions Do We Need?

While we can give an upper bound on the number of dimensions of the causal
representation in the case of gene regulation, given our knowledge about the
number of genes for the organism in question, finding a representation for all
genes would require too much data, and biological modularity and sparsity of
the gene regulation network suggest that this should not be necessary (Leclerc,
2008; Vattikuti et al., 2014). If our goal is to discover which genes are responsi-
ble for a specific disease, by comparing the gene expression levels of healthy and
sick patients, we expect differences in expression levels to be causally driven by
relatively few genes. But how can we determine the correct number of latent
variables, and what happens if we use too few or too many latent factors?
The case of too many latent factors appears to be relatively uninteresting with
superfluous dimensions modeled as disjoint from the relevant variables, at least
in certain domains (Lippe et al., 2023). While this suggests that we should
choose “too many” dimensions in the representation, this is quite difficult in
that we generally have little basis on which to judge whether a given number
of dimensions is large enough. Therefore, it is still important to consider what
happens if we do use too few dimensions in the latent representation. This
case of too few latent factors is by far more interesting. For example, what
might happen if we try to model a system that contains five underlying causal
variables using only four variables instead of the correct five?
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While we are unaware of any empirical or theoretical analyses of the behavior
of the latent representation when too few dimensions are available for causal
representation learning specifically, we can draw parallels to the study of latent
factors in psychometrics and consider different cases for the behavior of the la-
tent representations. Unfortunately, the study of what, in fact, does happen in
causal representation learning is beyond the scope of this section. As such, we
will consider different cases of what might happen and how they would affect
our ability to obtain usable results. The first, most unfortunate, outcome is that
the four-dimensional representation is simply a superposition of the original five
dimensions. That is, each factor in the lower-dimensional representation is a
(non-)linear combination of the higher-dimensional factors. While this may be
optimal as far as reconstruction of the original data goes, and in fact, certain
kinds of superpositions seem to permit computations as if all factors are rep-
resented (Elhage et al., 2022), in terms of modeling any “causal” relations in
the discovered representation, we would have to consider such a representation
to be a complete failure. A second alternative is that only two of the original
factors are collapsed into one dimension, which in the psychometrics literature
is considered a desirable indicator that the discovered latent factors are, in fact,
meaningful constructs (McCrae et al., 1996; Johnson and Bouchard, 2005; Lee
and Ashton, 2010; Condon, 2014). In this case, the causal relations between the
remaining factors would remain accurate, and the relations between these and
the collapsed dimension ideally amount to some combination of the original
causal relations, although this may not be the case, especially if the collapsed
variables do not occupy similar ranks in the causal ordering. The last alterna-
tive is that the four-dimensional representation drops one of the true variables
without representing it at all and proceeds to learn the appropriate (marginal)
“causal” graph over the remaining variables. Clearly, the structure of the re-
sulting causal representations varies dramatically depending on which of the
variables is not modeled. That is, while excluding a sink variable or a medi-
ator between precisely two other variables would have relatively little impact
on the discovered causal structure, excluding a common parent of other vari-
ables would produce latent confounding between the remaining variables and
distort the causal structure. By looking at these different cases, we see that
the robustness of the causal representations to misspecified dimensions depends
critically on the exact outcome of fitting an insufficiently high-dimensional rep-
resentation. It is, therefore, critical to investigate these avenues in detail, both
theoretically and empirically. Furthermore, it is essential to discover ways that
permit us to judge whether enough latent dimensions are used, as well as how to
determine the correct number of variables in the causal representation. Unfor-
tunately, unlike with standard methods in latent factor models, such as PCA,
we cannot determine the “correct” number of latent dimensions by checking
the fraction of variance explained at each number of latent variables included
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since the dimensions we care about are not orthogonal.
Of course, other sources of bias in causal representation learning may occur just
as for any other setup. Whether individuals are selected according to certain
strict inclusion criteria, or whether they self-select into the data collection, e.g.,
via sending their data to 23andMe or other biomarker testing kits (Landeck
et al., 2016; Goetz and Schork, 2018), or by self-selecting into surveys (Maul,
2017), selection bias is always a concern that needs to be accounted for lest
it leads to incorrect causal conclusions. However, while such selection effects
are a concern, they are also an opportunity for study, allowing us to investi-
gate to what extent (self-)selection criteria, operating on a phenotypic level,
correspond to selection effects in the discovered causal representation, modeled
at a genotypic level, and how we might adjust the latter for the former. In
particular, it might give us a better understanding of the relationship between
phenotypic and genetic correlations (Crespel et al., 2024). In general, the effects
of such selection biases depend strongly on the laws governing the relationship
between the variables we care about and the variables that are inadvertently
selected. These variables are often of different modalities, and thus, we turn to
the causal relationships between modalities next.

7.3.2 Multimodality and Consilience

Within the sciences, the most common way to distinguish between correlation
and causation is the use of experiments to intervene on parts of a system and
see what effects result from this. As such, one of the most important advances
in the field of causal discovery and causal effect estimation is the insight that
interventions are simply a specific type of distribution shift, and that other
non-interventional shifts often already suffice to permit us to obtain better
causal conclusions than we otherwise could. That is, by collecting data from
multiple different contexts, such as different hospitals, we can direct more of
the causal edges and also obtain more insights into the potential presence of
latent confounders or other biasing factors (Chapter 6). Of course, some data
sources are more easily accessible than others, and optimally combining across
these contexts is an open problem.
More broadly, the relative cost and availability of data exist not only across
different contexts—such as observational and experimental—but also across
modalities. For example, in the case of causal representation learning for gene
regulation networks, bulk transcriptome information across millions of cells is
much cheaper to obtain (on a per-cell basis) than single-cell transcriptome in-
formation, which, due to their nature of destroying the cells, are necessarily
measured in different cells (Sturma et al., 2023). Of course, while bulk data
is much cheaper to obtain, single-cell data is much more informative about
causal effects. Similarly, satellite images can not only supplement sensor mea-
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surements to measure earth’s weather and climate (Council, 2000; Bi et al.,
2023) but also estimate crop yield (Gallego et al., 2014), as well as economic
growth (Ahn et al., 2023; Lehnert et al., 2023).
Regardless of the type of modality in which measurements are made, the causal
mechanisms underlying these measurements are fundamentally the same. Any
causal model that is not consistent with measurements at all levels can be
discarded. For example, if the predictions of a dynamical system at the micro
scale are not consistent with macro scale behavior, such as the temperature of
the system, then the dynamical system is known to be wrong. Furthermore,
humans’ ability to learn from very few examples may be based on the use of
domain-general causal models (Goodman et al., 2011).
The combination of such multimodal data is a fundamental problem across
sciences: how can we perform meta-analyses on data in which the used con-
structs are different (Bun et al., 2020; Dahabreh et al., 2020), how do genetic
and phenotypic correlations relate to each other (Crespel et al., 2024), what
can genetics tell us about psychometric traits, and vice versa (de la Fuente
et al., 2021; Kim et al., 2023), how do we combine micro- and macroeconomic
models (Imbens and Lancaster, 1994; Jhun, 2021), or perform systems biology
across multiple spatial and temporal scales (Dada and Mendes, 2011)?
The first question, then, is to what extent progress in causality, especially
causal representation learning, can help us develop methods that can be widely
employed to deal with questions of deriving joint models from disparate modal-
ities. Vice versa, it is also important to ask to what extent insight into these
problems can help inspire new methods for causal discovery and representation
learning. In other words, how can the supervenience structure of the natural
world be used to derive better causal models?
More ambitiously, to what extent can knowledge about causal structures in
one field of study be transferred to other fields? The general principle that
tools found to be successful in one field can often be successfully employed in
different fields is a fact that has previously been called consilience (Wilson,
1999). Some examples include the use of tools developed in statistical mechan-
ics to explain the structure of NP-hard problems (Mezard and Montanari, 2009;
Marino, 2023), as well as to explain machine learning models (Deshpande and
Montanari, 2014; Bahri et al., 2020; Decelle, 2023; Lauditi et al., 2023), the ap-
plication of information theory to understand the population dynamics induced
by natural selection (Adami, 2012; Baez, 2021; Kwessi, 2024), and tools from
evolution to understand economic systems (Mirowski, 1983; Hodgson, 1996).
To the extent that such transfer between fields is possible and that understand-
ing in scientific fields is obtained by discovering causal principles underlying the
respective phenomena under study, it is clear that the success of transfer be-
tween different fields is due to shared features of these causal structures. The
question is how the required synthesis can be performed on the level of the
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underlying causal patterns and what methods will be required to capture such
similarities quantitatively. Some research in this direction has been done in
the field of causal meta-learning, in which knowledge of how to learn causal
networks in one domain (or for one distribution) is applied to learning causal
networks under different conditions (Ton et al., 2021; Chen et al., 2023). How-
ever, the field is still in its infancy, and little is known about the use and
generalizability of such methods.
Of course, this is a general problem that can be leveraged against the field
of causality as a whole: given the lack of commonly used causal benchmark
datasets, do we actually know how well any method truly works?

7.3.3 (Not) Benchmarking and Causal Research Progress

Much recent progress in machine learning has been enabled by thorough bench-
marks. The idea that benchmarks drive progress is not new: in many compet-
itive sports, this is the main contributing factor to improved performance:
since the 4-minute mark for 1-mile runs—previously thought impossible—was
broken, world records have decreased linearly over time. Similarly, scores in
Olympic disciplines are benchmarks par excellence, and Go players’ ratings
and move quality have been rising rapidly since the release of the open source
Go program Leela (Choi et al., 2023). Closer to home, computer architecture
benchmarks such as SPEC in general, and MLPerf and MLCommons more
specifically for machine learning, are used to measure the performance of new
architectures (Reddi et al., 2020).
Within machine learning itself, the biggest move towards benchmarks happened
with the introduction of ImageNet (Deng et al., 2009) in computer vision,
leading to dramatic increases in performance within a few years until the error
rate of computer vision models was lower than that of humans themselves.
In the field of NLP, we also have a large number of benchmark datasets such
as the Stanford Question Answering Dataset (SQuAD; Rajpurkar et al., 2016),
the General Language Understanding Evaluation (GLUE; Wang et al., 2018),
and SuperGLUE (Sarlin et al., 2020), and recently the use of tests designed for
humans to benchmark Large Language Models (LLMs) such as GPT4 (OpenAI
et al., 2023). More benchmark datasets exist for a large number of other tasks
and can be found at Papers with Code (PWC),1 and Hugging Face.2
It has been argued that while the majority of our efforts go into developing
new models, more value, lies in the preparation of good data both for training
purposes (Sambasivan et al., 2021) and to benchmark methods (Koch et al.,
2021). Of course, benchmarks are not without their dangers, and it has been

1https://paperswithcode.com/
2https://huggingface.co/

https://paperswithcode.com/
https://huggingface.co/
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shown both that historically, benchmark datasets such as ImageNet were bi-
ased (Paullada et al., 2021), but also that the provenance of such benchmarks
lies in the hands largely of a few large institutions (Sambasivan et al., 2021). A
more general concern is Goodhart’s law: “when a measure becomes a target, it
ceases to be a good measure” (Strathern, 1997). That is, do benchmark results
accurately track progress in a given research field? Given the progress in both
CV and NLP, the answer certainly seems to be yes.
In contrast, within causality, there are only relatively few commonly used
datasets, such as the Tübingen cause-effect-pairs (Mooij et al., 2016) for bi-
variate causal discovery, and the Sachs dataset as one of the most commonly
used datasets in causal discovery (Sachs et al., 2005). The only larger bench-
mark dataset for causal network inference that we are aware of is Causal-
Bench (Chevalley et al., 2022). At the time of this writing,3 the PWC website
contains only 39 datasets containing the word “causal”, of which only two are
tagged as “causal discovery”, one as “causal inference”, and of which more than
half (20) are marked as text datasets. Of the 64 datasets on Hugging Face con-
taining the word “causal”, every single one of them is either related to LLMs
or has no documentation available.
Why is it that are there so few benchmark datasets in the field of causality?
We can think of a number of reasons for this. First, causality started out as
a highly theoretical field with both Pearl and Rubin (Rubin, 1974; Pearl and
Verma, 1995), and a quick look at recent publications shows that not much
has changed (of course this thesis is no exception). After all, it is all well and
good if things work in practice, but do they work in theory? This is largely
in contrast to fields such as computer vision, which, while having a significant
theoretical component, are nevertheless primarily empirically driven, and this
trend has only become stronger with the rise of deep learning methods.
Second, due to this focus on theory in the causal literature, the goal is rarely to
improve at one specific task but rather to find different variations of the problem
for which novel results can be proved and novel methods developed. That is,
for any one set of assumptions for which the causal parameters are known
to be identifiable, there are a handful of different methods to recover these
parameters. Instead, more research is being conducted to discover different
settings where parameters are not yet identifiable.
Third, on a related note, the risk profile in causal discovery and inference differs
from other fields. If a computer vision model tells us that an image is a llama,
rather than a cow, it is easy for us to inspect its output and realize that a
mistake has been made. As such, while mistakes can be problematic when a
faulty model is deployed, the cost of discovering such faults is relatively low. In
contrast, in causal discovery, such inspection is almost impossible—if humans
were good at determining causality, we would not need our models—and it

3April 8, 2024
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would require experimentation to validate a model’s output. Furthermore, since
causal models underlying scientific theories guide health, economic, and other
policies, mistaken causal estimates are likely to have more severe downstream
effects than mistakes in other models.
Fourth, obtaining good data on which to test causal inference and discovery
methods is costly and often challenging. Where computer vision data can be
collected at a relatively low cost from publicly tagged data (Rios et al., 2021)
or by paying Mechanical Turk workers, no such cheap sources of causal ground
truth are available in the real world. Unless, of course, they are.

7.3.4 Of Word Models and World Models

Given the time at which this thesis was written, it would be remiss not to
touch on the topic of Large Language Models (LLMs). LLMs such as GPT4
have been shown to have a surprisingly large number of capabilities that we
would not intuitively expect them to have (Bubeck et al., 2023), and perform
at, or close to, human level on many tasks such as summarization (Pu et al.,
2023), deception (Park et al., 2024), moral judgments (Dillion et al., 2023), cre-
ativity (Koivisto and Grassini, 2023), scientific feedback (Liang et al., 2023b),
and chess (Karvonen, 2024). Furthermore, sophisticated prompting techniques
such as chain of thought or analogical reasoning (Wei et al., 2022; Meincke et al.,
2024; Yasunaga et al., 2023), as well as document retrieval (Andriopoulos and
Pouwelse, 2023; Zhang et al., 2024), and feedback from bigger models (Olausson
et al., 2023), can significantly improve performance on many tasks.
Even so, these models show a number of biases due to the way they are trained,
so that GPT4 is much better, for example, at ROT13 encodings than at ROT2
encodings (McCoy et al., 2023). Similarly, LLMs tend to overestimate rare
events since everyday events often go unmentioned (Shwartz and Choi, 2020),
and that changing variable names in code also decreases performance (Hooda
et al., 2024). Two common failure modes in LLM evaluations, leading to inflated
performance, are to neglect how much data has been memorized (Chang et al.,
2023) and to include the benchmark questions in the training data, whether
this is done deliberately or not (Li and Flanigan, 2024).
More importantly for our purposes here, LLMs have also been claimed to
perform well on tasks of causal inference and discovery (Ortega et al., 2021;
Jin et al., 2023; Jiang et al., 2023a; Kıcıman et al., 2023; Jiralerspong et al.,
2024), and to develop internal representations of space and time (Gurnee and
Tegmark, 2023), as well color (Patel and Pavlick, 2022), among others (Marks
and Tegmark, 2023; Yildirim and Paul, 2024; Kosinski, 2023). Furthermore,
given some measured variables, they are able to suggest latent confounders
that might be affecting the results (Sharma and Kiciman, 2020; Blöbaum et al.,
2022). While it would be easy to dismiss these results as trivial due to memo-
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rization or come up with countless examples where they fail, many such objec-
tions could be just as well leveraged against humans. More interesting is why
these claims might be true, and if so, what we can do.
To start with the first question, we need to start with understanding what LLMs
are doing. At their heart, LLMs try to solve the unsupervised task of modeling
language by turning it into the supervised task of next token prediction. Despite
the simplicity of this approach, it has been shown that modeling the conditional
distribution of the next state of a Markov chain suffices to correctly model the
entire joint distribution over all states (Shalizi and Crutchfield, 2001). That
is, next token prediction is equivalent to learning the structure of the entire
language. This joint distribution and the structure it is endowed with is what
we will refer to as word model. Of course, real models are both constrained
by guardrails (or, more euphemistically, safety features), and they are far from
modeling the distribution perfectly. While these concerns are important in
practice, they are of little interest in answering what LLMs can do in theory.
What we really care about in learning about causality is to develop what has
been called world models in the literature on reinforcement learning (Ha and
Schmidhuber, 2018). That is, what are, or would be, the effects of taking a
given action in our current state? This is similar to the mental models humans
build as they interact with the world, but unlike LLMs, humans have access to
drastically more data sources than mere language.
We can now rephrase our questions as follows: why would building a word
model suffice to build a world model, and how would such a world model be
represented? We are far from determining any precise answers to these ques-
tions, but we can make some attempts at conceptually framing the problem.
The first thing to note is that learning causal relationships from purely textual
sources is not so uncommon, even in humans. When we say that gene A reg-
ulates gene B, for the vast majority of people, this is not due to their having
first-hand experience with the process in such a way that we could draw infer-
ences from data; instead, it is pieced together from our understanding of gene
expression, gene regulation, and various other bits of information about biol-
ogy, many of which are learned from textbooks or similar sources. Of course,
this is not to say that language suffices to teach us everything about the world.
In fact, many domains are too complex for such descriptions, and we often say
that we cannot put our thoughts into words. This is a question of commen-
surability between the representational capacity of language and the problem
we wish to represent. That is, some domains are so complex that language
does not suffice to describe them, and we would, therefore, not expect LLMs
to perform well at causality in such domains. For example, while the law is
formulated mainly in large volumes of text, the domain is intrinsically so much
more complex than Newtonian mechanics that we should not be surprised if
LLMs perform better at questions of the results of interventions in classical
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physics than the results of changes in the law.
Of course, humans do not learn solely from text. Instead, large parts of what
we learn are due to observing and interacting with the world, obtaining both
observational and interventional data in the process of doing so, and deriving
causal relationships from observing the results of our actions. Notably, many of
the representations by which we learn to understand the world are not textual
in any way. Learning to catch a ball flying at us is not related to any explicit
physics we have learned from textbooks, nor based on any other text we have
read. So, despite humans learning (some) things from purely textual data, the
world models that we build internally are grounded in perceptual data and
active engagement with our surroundings. In contrast, LLMs have no such
grounding, but multimodal models may change this.
The answer as to why this may work is that the representation space con-
tained within language has been pretrained by humans in two ways. First, lan-
guage is fundamentally metaphorically structured out of perceptually grounded
experiences (Lakoff and Johnson, 1980), so that large parts even of abstract
mathematical concepts are constructed out of embodied metaphors (Lakoff
and Núñez, 2000). For example, when we speak of somebody “climbing the
ranks”, this statement is a metaphor derived from the physical activity of a
person climbing, and in fact, it implies agency and deliberate effort of said
person. In contrast, the metaphor “rising through the ranks” implies no such
deliberate effort. Second, it has been argued that linguistic concept formation
leads to concepts mapping onto convex regions of representation space (Gär-
denfors, 2004, 2014). For example, despite color terms being different the world
over (Berlin and Kay, 1969), there exists no language with a name for “red or
green but not yellow”, which would form a non-convex region in the human
color representation space (Gärdenfors, 2014).
Moreover, while language has acquired a great many purposes over time, two
of its most fundamental purposes are the creation of social cohesion and the
ability to explain the world. This is reflected by the fact that the oldest stories
we know of are myths whose dual purpose was invariably to both explain “who
we are and how we got here” and to foster social cohesion through such ex-
planations (Frankfort and Groenewegen-Frankfort, 1946; Barber and Barber,
2006). Another tool to foster social cohesion is common knowledge of the char-
acters of the members of the group. That is, it is essential for us to know if
somebody is trustworthy and kind or untrustworthy and unkind. This led to
what is now known as the lexical hypothesis, the idea first formulated by Galton
(1884) that commonly used language contains all the information we need to
describe personalities. This was confirmed by Thurstone (1934) and has since
been the basis for most major personality tests such as the HEXACO and Big
Five tests (de Raad and Mlačić, 2015). More important to us, however, is the
fact that this personality structure is contained in LLM embeddings (Cutler
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and Condon, 2022). That is, by looking at the first five principal components
of the embeddings of adjectives used in personality descriptions, we recapture
the same constructs as the Big Five personality test, with precisely the same
correlations between factors, independently of the precise language model used.
By leveraging the dual purpose of language in human communication, we might
expect that causal structures, too, are represented within language, which we
may call the causal lexical hypothesis. This seems to be further supported by the
fact that young children are leveraging their parents’ causal language to refine
their own causal models (Meltzoff, 2007; Bonawitz et al., 2010). The question,
then, would be how the causal structure is represented. Do the embeddings of
“X causes Y ” and “Y causes X” relate to each other the same way, regardless
of what X and Y are? Does “he killed her” relate to “he caused her death”
in the same way that “he bankrupted the company” relates to “his decisions
lead to the company’s bankruptcy”, and can we extrapolate this to get stronger
or weaker causal statements? Do the embeddings of the correct and incorrect
causal directions have anything in common with the linear geometry of truth
proposed by Marks and Tegmark (2023)? How complex is the geometry of
causality? How large does an LLM have to be for it to be represented? How
can we finetune or steer LLMs to better represent it?
Of course, even if language does encode causality in some way, why should an
LLM, whose only goal is to predict the next token, “know” about this? Pre-
cisely because it predicts the next token! An optimal next token predictor is
an optimal language compressor in the Kolmogorov sense, so it should learn
all computable structure contained in language. The question is how we can
access this knowledge. If language is ergodic, then the algorithm of Ziv and
Lempel (1978) is also an asymptotically optimal compressor, but we would not
be able to easily access the structures it learned. Precisely such a method has
been developed using the gzip algorithm, although it is unfortunately not com-
petitive with any large models (Jiang et al., 2023b). In contrast, LLMs appear
to represent concepts we are interested in mostly in a linear manner (Cutler
and Condon, 2022; Gurnee and Tegmark, 2023; Marks and Tegmark, 2023).
One may object that none of the things contained within the text data are of an
interventional nature. Much of what humans learn about the world is learned
by interacting with it, thereby intervening on the causal mechanisms affecting
the objects around them. However, this is hardly necessary to distinguish
causal from non-causal explanations of events. Whether one decides to actively
test the hypothesis that the crowing rooster causes the sun to rise (by moving
elsewhere) or whether the rooster falls ill and does not crow one day is of no
importance when the hypothesis is falsified by the sun rising even absent the
rooster’s crows. That is, the important ingredient is not the ability to intervene
but to observe data from different contexts, which may or may not arise from
one’s interventions. Given the vast amounts of data that modern LLMs are
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trained on, it is reasonable to assume that they have seen more data on almost
any topic from more different contexts than almost any individual expert in
their own domain. Of course, this is simply a restatement of the arguments
mentioned in Chapter 6. That is, much progress has been made on the topic
of causal learning by recognizing that interventions are simply one form of
distribution shift, and other types of distribution shifts can work just as well to
give us extra information about the underlying causal structure (Huang et al.,
2020; Mooij et al., 2020; Perry et al., 2022). Moreover, there is no reason why
the same should not apply in the language domain.
Now, assuming that LLMs can, in fact, model causality, the next question is,
of course, how well? Unfortunately, the empirical analysis required for this is
far beyond this section, but as mentioned above, some work has been done on
this (Ortega et al., 2021; Jin et al., 2023; Jiang et al., 2023a; Kıcıman et al.,
2023; Jiralerspong et al., 2024). Instead, we can ask what kind of training data
would help us do better. Based on the idea that distribution shifts across con-
texts reveal information about causal structures, we suggest that there is only a
small gap between learning simple models to make probabilistic predictions and
learning the underlying causal structures in a sufficiently rich setting. Suppose
we can learn to predict the conditional probabilities P (Y | X) for widely vary-
ing variables X and Y . If we are correct, this permits us to learn something
about the causal structure underlying these variables.
While it turns out LLMs are already surprisingly competent at the task of
predicting events even with their current training (Schoenegger et al., 2024;
Pham and Cunningham, 2024), it seems likely that to do better we would need
much larger amounts of data to successfully train models on this task. Of
course it may be that no amount of ability to perform probabilistic prediction
will allow us to bootstrap true causal understanding in LLMs, but even if that
is the case, it will nevertheless be interesting to see just where it fails, and how
these shortcomings can be dealt with.
Overall, just like Alice, we live in an exciting time, and wheresoever we may
go, we will find more problems in causality so long as we continue walking.
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Appendices

A.1 Coding of the Tübingen Pairs

Here we give a full list of which pairs of the Tübingen pairs dataset we consid-
ered to be mainly causal, confounded, or which we were uncertain about.

• Causal: 13–16, 25–37, 43–46, 48, 54, 64, 69, 71–73, 76–80, 84, 86–87, 93,
96–98, 100

• Confounded: 65–67, 74–75, 99
• Uncertain: 1–12, 17–24, 38–42, 47, 49–53, 55–63, 68, 70, 81–83, 85, 88–

92, 94–95

For example for pairs 5–11 it was unclear to us to what extent the age of an
abalone should be considered as a causal factor to its length, height, weight,
or other measurements, and to what extent all of these should simply be con-
founded by the underlying biological processes of development.
As another example, for pair 99 we believed that it is reasonable to suggest that
the correlation between language test score of a child and socio-economic status
of its family might more plausibly be explained by the unmeasured intelligence
of parents and child — which are strongly correlated themselves due to high
heritability of intelligence.

A.2 Proofs for Chapter 2

Lemma 2.1. Let X ∼ P and f be some (measurable) function. Then X and
f(X) are statistically independent if and only if f is constant.

165



A.2. Proofs for Chapter 2 166

Proof of 2.1. If X and f(X) are independent, then for any two measurable sets
A, B we have that

P (X ∈ A ∩ f−1(B)) = P (X ∈ A, f(X) ∈ B) = P (X ∈ A)P (f(X) ∈ B) .

In particular by setting A = f−1(B) we obtain

P (f(X) ∈ B) = P (f(X) ∈ B)2 ,

which can only happen when P (f(X) ∈ B) ∈ {0, 1}. In particular, by setting
B = (−∞, b], we see that

f(X) = b0 = arg min
b
{b : P (f(X) ≤ b) , 0} ,

so that f is indeed constant on the range of X.

Theorem 2.2 (Kolmogorov Does Not Incorrectly Detect Confounders). For
any distribution P (X), the following inequality holds

inf
P (X,Z)∈P s

K(P (X, Z))
+
≤ K(P (X)) ,

where the infimum is over the set P s of all joint distributions P (X, Z) with fixed
marginal P (X) and jointly independent Z. Conversely, if a joint distribution
P (X, Z) ∈ P s exists such that the inequality

K(P (X, Z))
+
< K(P (X)) ,

holds, then the true generating mechanism of X includes latent variables influ-
encing some subset XS ⊆ X of the observed variables.

Proof of Theorem 2.2. To prove the first statement, let Z be jointly indepen-
dent and let there be no edges X → Z. Pick P such that P (Z = 0) = 1. Then Z
contains no information about X so that K(P (X, Z)) ≤ K(P (X))+K(P (Z)) =
K(X) + O(1), with constant K(P (Z)) = O(1) independent of P (X).
For the second statement, consider the case where the true generating mech-
anism for X does not include any latent variables for any subset XS . Then
as noted in Equation (2.1) and the discussion preceding it, all information
needed to compress P (X) is already present in the graph G∗

X giving the opti-
mal factorization of P (X). Hence K(P (X, Z)) ≥ K(P (X)) + K(P (Z|X)) >
K(P (X)).
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Theorem 2.3 (Consistency of coco). Let xn, yn be n be samples from the
distribution M∗ which is contained in Mca ∪Mco. Then

lim
n→∞

n−1 (Lco(xn, yn)− Lca(xn, yn))
{
≤ 0 if M∗ ∈Mco
≥ 0 if M∗ ∈Mca ,

with strict inequalities if M∗ is contained in precisely one of the two classes.

Proof of 2.3. Let xn, yn be samples from M∗ ∈ Mca. Then by MDL con-
sistency we know that in the limit n → ∞, we have that Lca(xn, yn) =
L(xn, yn | M∗) + o(n) (Grünwald, 2007). But since this is the best any com-
pression scheme can asymptotically perform in the limit n→∞, it follows that
lim n−1Lco(xn, yn)− Lca(xn, yn) ≥ 0. Conversely, when M∗ ∈ Mco, the same
holds in the other direction.

A.3 Proofs for Chapter 3

Proposition 3.1 (Confounders and Cliques). Let P (X, Z) be the joint distri-
bution of X, Z where Z is one-dimensional and let I = {i : Z → Xi} be the
set of indices of variables co-caused by Z. Then, any graph GX capturing the
correlations in P (X) contains a clique over XI .

Proof of Proposition 3.1. For any two i, j ∈ S we know that, since they are
direct descendants of Z, Xi ̸⊥⊥ Xj | U for any U ⊂ {X1, . . . , Xm} \ {Xi, Xj}.
Hence all edges {Xi, Xj} are in G so that S is a clique in G.

Theorem 3.2 (Identifiability of the SLC Model). Let Z be of dimension l ≤
m/4, and let P (X, Z) be described by the linear SCM of Equation (3.1)

X = AX + BZ + ε .

Further, let Assumptions A–C hold. Then, both the number l of confounders
and its parameters B are identifiable up to trivial indeterminacies (column
permutations and rescaling). Furthermore, if either all noise variables εi are
non-Gaussian or all εi have equal variances, then A is also identifiable.

Proof of Theorem 3.2. We prove this statement in two steps. First, we show
that all bij are identifiable. Let i ∈ {1, . . . , m} and j ∈ {1, . . . , l}. Then, by
assumption (A2) there exists a distinct quadruple (Xi, Xu, Xv, Xw) of nodes
that are conditionally independent given Zj . In order to make every quadruple
(Xi, Xu, Xv, Xw) be dependent conditional on Zj , it would have to have either
an edge between them or a common predecessor, which would require at least
|Sj | − 3 incoming edges to Sj from sources that are not Zj .
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Therefore, for any two variables (Xλ, Xµ) in our quadruple we know that σλµ =
cov(Xλ, Xµ) = bλbµ and in particular

σiuσvw = bibubvbw = σivσuw .

We can therefore write

b2
i = σiuσiv/σuv .

Furthermore, no quadruple (Xi, Xu′ , Xv′ , Xw′) this is not conditionally inde-
pendent given Z can satisfy the constraint σiuσvw = σivσuw by assumption
(A3). Hence, all b2

ij are identifiable, and since we assume that Zj is symmetric
around 0, so is the effect bijZj of Zj on Xi. Now, knowing these effects bijZj

on each Xi, we can determine the distribution P (X | Z), which depends only
on A and σ2

ε . Now, if X | Z is either a linear SCM with non-Gaussian noise
variables, identifiability follows from LiNGAM (Shimizu et al., 2006). Mean-
while, if the noise variables are all Gaussian with equal noise variances, the
result follows from Peters and Bühlmann (2014).

Theorem 3.3 (Identifiability for Large Dense Graphs). Let Assumptions A
and C hold and let the true causal graph G∗ over X, Z be sampled from a
directed Erdős-Rényi model ER(m + l, p), with m observed and l latent nodes
and edge probability p < 1. Then in the limit of infinitely many variables, the
matrices A and B are identifiable with probability 1,

lim
m→∞

P (A, B identifiable) = 1 ,

where the limit is taken over DAGs with fixed topological order.

Proof of Theorem 3.3. To prove this result, we need to show that for any
p < 1, for every variable Xi, we can find triples (Xu, Xv, Xw) such that
(Xi, Xu, Xv, Xw) are conditionally independent given Zj as in the previous
proof by which to identify the value of bij .
We do this through a simple counting argument. Let Y = Xi be fixed, and
U = Xu ∈ X be another variable. What is the probability that U is not
admissible in a quadruple as above? There are two possibilities:

a) Either, U is ruled out by there existing an edge X – U or edges X ←
R→ U .

b) Or, U is ruled out by being mutually connected to too many other nodes
V , which are not ruled out by step 1.

We begin with the first case. The probability of this occurring is r B p + p2 −
p3 = p + (1 − p)p2 where the last term is subtracted because otherwise, we
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would be counting the intersection twice. Note that for p < 1, we have r < 1.
Next note that for any r < 1 and any s < 1 we have

r + (1− r)s < 1 .

Hence we need to show that the probability s of the second case above is < 1.
This is, however, trivial since U can only be ruled out in this way if there is at
least one edge to another variable V , i.e., it cannot have zero edges, such that
the probability s < 1 for any p < 1.
Therefore, the probability of a node U being ruled out is strictly less than
1 so that in the limit m → ∞, we are guaranteed to find at least one valid
quadruple.

Theorem 3.4 (Consistency of BIC for Gaussian SLCs). Let x = xn be a
sample from the SLC of Equation (3.1) with Gaussian distributions P (Z), P (ε)
and let Assumptions A–C hold. Let M be the corresponding model class and
M0 the subset of M with B = 0 fixed. Further, consider the score

L(xn, M) = − log P (xn | A, B, σ2
ε) + λ ∥A∥0 + λ ∥B∥0 , (3.2)

and denote its minimizers by Â, B̂. Then, for λ = log(n)/2, our score L is the
BIC score and is consistent for detecting confounders. That is,

lim
n→∞

P

(
min

M∈M
L(xn, M) < min

M∈M0
L(xn, M)

)
= 1 .

Furthermore, Â and B̂ converge to the true A, B with probability 1,

lim
n→∞

P (Â = A, B̂ = B) = 1 .

Proof of Theorem 3.4. As we’ve seen in the proof of Thm. 3.2, for each Xi there
exists a distinct quadruple of variables (Xi, Xu, Xv, Xw) that are conditionally
independent given Zj by Assumption B. Hence, all correlations between these
four variables can be explained by the parameters in B. Furthermore, by
Proposition 3.1, no pair of variables Xµ, Xλ can be d-separated in any DAG
over X, so that by setting bij = 0 we would require at least four additional
entries of A to be non-zero, instead of only one in B.
Hence, since in the limit we have b̂ij b̂vj − σiv → 0, the matrix B̂ converges
towards B. Furthermore, given a good approximation of P (X) and of B, due
to the joint continuity of L(xn, M) in the matrices A, B, we obtain a good
approximation of A from the results of van de Geer and Bühlmann (2013).
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Theorem 3.5 (MDL Consistency for SLCs). Let the assumptions of Theo-
rem 3.4 hold. Then the minimizer Ĝ,

Ĝ = arg min
G

L(xn;M(G)) ,

converges to the ground truth graph G∗ with probability one,

lim
n→∞

P (Ĝ = G∗) = 1 .

Proof of Theorem 3.5. From standard MDL theory we know that the Bayesian
MDL score L(xn,M(G)) is asymptotically equivalent to the BIC score L(xn, M)
in the sense (Grünwald, 2007)

|L(xn,M(G))− L(xn, M∗(G))| = o(1) ,

where M∗(G) is the best model in M. But since for any G , G∗ we have

L(xn, M∗(G))− L(xn, M∗(G∗)) ∝ log(n) ,

the same is true for L(xn;M(G)) and so we are guaranteed to pick the same
minimizing Ĝ = G∗ in the limit.

Proposition 3.6 (Consistency of coco for Discovering Confounded Nodes).
Let xn be the an i.i.d. sample from P ∈ M(G∗) defined in Equation (3.3), let
Assumptions A–C hold and let I∗

i be the set of nodes affected by Zi. Assume
that

⋂
s∈I∗

i
MBG∗(Xs) \ {Zi} ⊊ I∗

i . Let A be consistent for recovering the
Markov equivalence class of the graph GX for distribution P (X). Let Îi be the
set of nodes confounded by Zi discovered by coco. Then

lim
n→∞

P (Îi = I∗
i ) = 1 .

Proof of Proposition 3.6. By Proposition 3.1 we know that in the limit I∗
j

forms a clique in the marginal graph ĜX inferred over X by a consistent A.
This clique is maximal due to our assumption no node being in the Markov
Blanket of all s ∈ I∗

j . Further, since xn is a sample from Equation (3.3) we
know from the MDL principle for selecting nested model classes (Grünwald,
2007) that in the limit no other set can be compressed better by introducing a
confounder than the set I∗

j itself.
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A.4 Proofs for Chapter 4

Theorem 4.1 (Identifiability in the Sparse PNL Model). Let the distribution
P (X, Z) be described by the nonlinear SCM of Equation (4.4), i.e.,

X = τ
(
(I −A)−1 (BZ + ε)

)
,

for some Z of dimension l ≤ m/4. Further, let Assumptions A–C hold. Then
both the number l of confounders Z and the causal effects of the confounder, B,
are identifiable up to trivial indeterminacies (column permutations and rescal-
ing). Furthermore, if Assumption D also holds, then A is also identifiable.

Proof of Theorem 4.1. Note first of all that for any variables Xi, Xj we have
that the mutual information I(Xi; Xj) = I(τ−1

i (Xi); τ−1
j (Xj)). Hence, since

X = τ((I − A)−1(BZ + ε)), it suffices to study the fully linear Gaussian case.
Note that for two Gaussian variables, we have

I(Xi; Xj) = −1
2 log(1− ρ2

ij) ,

where ρij is the pair’s correlation coefficient.
It, therefore, suffices to show that the parameters ρij fully determine the matri-
ces C and B when Assumptions A–D hold. To this end, note that the variances
of each variable are observable and therefore ρij and σij = cov(Xi, Xj) contain
equal amounts of information.
Hence, b2

ij and the effects bijZj on Xi are identifiable as in Theorem 3.2. Given
these effects, the matrix C (and therefore A) is identifiable by the general
identifiability result of Corollary 31(ii) (Peters et al., 2014) when all τi are
strictly nonlinear. When τi = id and all noise variables share the same variance,
then identifiability is again guaranteed by Peters and Bühlmann (2014).

Corollary 4.2. Let the Assumptions of Theorem 4.1 hold and let all τi be
strictly increasing and standardized to satisfy τi(1) = 1. Further, let the vari-
ances σ2

Zj
of each Zj be known, and for each j let the sign of bij be known for

at least one Xi ∈ Sj. Then B is identifiable up to permutations of its columns.

Proof of Corollary 4.2. In the above, we could identify B only up to sign and
scale due our results only distinguishing between b2

ij , and the influence of σ2
Zj

and τi. However, by assuming precisely that τi(1) = 1, we fix the scale of
τ−1(X), and by assuming that σZ2

j
are known, we fix the scale of Z. Further-

more, by assuming that for each Zj we know the sign of at least one bij , 0,
we obtain the signs of all bij , so that B becomes identifiable up to column
permutations.
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Theorem 4.3 (Consistency under Sparsity). Let xn be a sample generated
from the model in Equation (4.4) with τ = id and let Assumptions A–D hold.
Let L be the L0-penalized ELBO score given by

L(xn; A, B) B −LELBO + λA ∥A∥0 + λB ∥B∥0 ,

and let Â, B̂ be its minimizers subject to acyclicity, i.e.,

Â, B̂ = arg min
A,B

L(xn; A, B)

s.t. h(A) = 0 .

Then for sufficiently small σε(X), σz(X) the score L is consistent for recovering
the matrices A, B when λA = λB = log(n)/2:

lim
n→∞

P (Â = A, B̂ = B) = 1 .

Proof of Theorem 4.3. Let us write x̂ for our reconstruction of x. A typical
sample loss of our LELBO score is then given by (Yu et al., 2019)

−LELBO = 1
2
∑

(xij − x̂ij)2 + 1
2
∑

H2
ij .

Furthermore in the case τ = id the reconstruction is perfect, x̂ = x and H =
(I −A)x so that the LELBO can be written as

−LELBO = 1
2 ∥x−Ax−Bz∥2

F .

As before, the goal is therefore to model the empirical correlations between
variables. Using Assumptions A–D, as in the proof of Theorem 4.1, for each i,
there exists a distinct quadruple which is independent given Zj , which permits
us to explain the correlations between them by way of the parameters bij and
since the variables cannot be rendered independent without reference to Zj ,
any explanation of the same correlations involving only variables Xu would
need six parameters aiu instead of the four parameters bij , so that due to the
use of ∥·∥0 penalties the explanation using Zj is preferred. We therefore have
b̂ij b̂uj − σiu → 0 so that B̂ converges to B.

Furthermore, given the matrix B describing how Z affects X, we can learn the
matrix A from the consistency result of van de Geer and Bühlmann (2013).
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A.5 Proofs for Chapter 5

Theorem 5.1 (Identifiability under Noiseless Selection for Exponential Fam-
ilies). Let M be an exponential family with parameter space Θ and sufficient
statistics T (x) non-constant on every half-space. Further, let A be the set of
(normalized) selection vectors a such that

0 < Pθ(a⊤X > 0) < 1 , (5.2)

for all θ. Then the parameters (θ, a) of Qθ,a are identifiable. In particular, Pθ

is fully determined by the distribution Qθ,a.

Proof of Theorem 5.1. Let (a, θ), (a′, θ′) be two pairs of parameters as in the
assumptions and denote Q B Qθ,a, Q′ B Qθ′,a′ . Note that in particular we
have supp(Q) = supp(Q′) so that

supp(Pθ) ∩
{

a⊤X > 0
}

= supp(Pθ′) ∩
{

a′⊤X > 0
}

,

so that from Pθ(a⊤X > 0) ∈ (0, 1) it follows that a = a′.
Now given a = a′ it follows that for u ∈

{
a⊤X > 0

}
we have

Pθ(u)
Pθ(a⊤X > 0) = Q(u) = Q′(u) = Pθ′(u)

Pθ′(a⊤X > 0) ,

so that

log Pθ(u) = log Pθ′(u) + log
(

Pθ(a⊤X > 0)
Pθ′(a⊤X > 0)

)
.

Now if the second term on the right is zero, the claim θ = θ′ follows because
Pθ form an exponential family. If it is not, then w.l.o.g. we can assume it is
> 0 so that Pθ assigns strictly larger probabilities to every value of u than Pθ′ .
But since Pθ′ is a probability distribution that would imply that

∫
dPθ(u) >

∫
dPθ′(u) = 1, which is in contradiction to Pθ being a probability distribution.

Theorem 5.2 (Identifiability of Noisy Selection Effects in the Gaussian Fam-
ily). Let M be the Gaussian exponential family with parameter space Θ =
{(µ, Σ)} and let ε ∼ N(0, 1). Further, let the biased distribution be

Qµ,Σ,a,ζ(X) = Pµ,Σ(X | a⊤X + ζε > 0) .

Then the parameters (µ, Σ) ∈ Θ, a ∈ A, ζ > 0 are jointly identifiable.
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Proof of Theorem 5.2. Let θ = (µ, Σ, a, ζ), θ′ = (µ′, Σ′, a′, ζ ′) be two different
vectors such that Q = Qθ = Qθ′ = Q′. Let q, q′ be the corresponding densities
for Q respectively Q′. By plugging in the definition of the Gaussian density,

1 = q(u)
q′(u) = e−(u−µ)⊤Σ−1(u−µ)Φ(a⊤u/ζ)

e−(u−µ′)⊤Σ′−1(u−µ′)Φ(a′⊤u/ζ ′)
.

By taking logarithms we obtain for all u

0 =
(
−∥u− µ∥2

Σ + ∥u− µ′∥2
Σ′ + log ϕ− log ϕ′

)
,

where ∥·∥Σ is the Mahalanobis norm for Σ and ϕ = Φ(a⊤u/ζ). By taking
derivatives we obtain

0 = A⊤(u− µ)−A′⊤(u− µ′)

+ Φ′(a⊤u/ζ)
ϕ

a

ζ
− Φ′(a′⊤u/ζ ′)

ϕ′
a′

ζ
.

Note that if A , A′ we have Φ′(a⊤u/ζ) → 0 but
∥∥(A−A′)⊤u

∥∥ → ∞. Hence
A = A′. By setting u = 0 we obtain that a

ζ − a′

ζ = A⊤(µ − µ′). However,
by setting u = µ′ we also obtain Φ′(a⊤µ′/ζ)

ϕ
a
ζ −

Φ′(a′⊤µ′/ζ)
ϕ′

a′

ζ′ = A⊤(µ′ − µ) =
−( a

ζ − a′

ζ′ ) which can only hold if a = a′ and ζ = ζ ′. But then also µ = µ′ and
we have proved what we wanted to prove.

Theorem 5.3 (Identifiability of Selection under Invariance). Let M be a set
of probability distributions and J be strongly distinguishable for each P ∈ M.
Assume that for all P ∈ M there is j , id ∈ J such that P (X) = P (j(X)).
Let P ∈M and A be the set of a for which there exists j ∈ J such that

{
a⊤X > 0

}
∩ j−1 ({a⊤X < 0

})
, ∅ .

Then a is identifiable. Further, if all distributions P1, P2 ∈ M satisfy P1(· |
a⊤X > 0) = P2(· | a⊤X > 0) iff P1 = P2 then P is identifiable too.

Proof of Theorem 5.3. Let j ∈ J be an invariance such that E =
{

a⊤X > 0
}
∩

j−1(
{

a⊤X < 0
}

) , ∅. Then by definition j(E)∩
{

a⊤X < 0
}
, ∅ and the points

y ∈ j(E) ∩
{

a⊤X < 0
}

are uniquely separated from points in
{

a⊤X > 0
}

by
the boundary a.

Proposition 5.4. Let x be a sample from the distribution Qθ,a(X) with known
underlying exponential family M. Then, the saddle points (θ̂, â) of Equa-
tion (5.3) satisfy the following conditions:
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a) â intersects the convex hull of x.
b) Furthermore, if η(θ) = θ, then (θ∗, a∗) is the unique global maximum of

the large sample limit of the data log-likelihood limn→∞
1
n lθ,a(x).

Proof of Proposition 5.4. a) If d = dist(â, C) > 0, where C is the convex
hull of x, then by shifting â towards â′ which is closer to C by any distance
d− ε for ε > 0, we would obtain a set

{
â′⊤X < 0

}
⊋
{

â⊤X < 0
}

, which
has strictly larger mass since Pθ is a continuous probability distribution.

b) In the limit n→∞, the only boundary a that does not discard sampled
points x ∈

{
a⊤X > 0

}
, but is such that P

({
a⊤X < 0

})
> 0 is â = a∗.

But then, once a∗ is known, the θ which maximizes log Pθ(xn | a∗xn > 0)
is θ∗.

A.6 Proofs for Chapter 6

Lemma 6.1 (Significance and Power). Let X, Y be unconfounded and X → Y .
Let ΠX , ΠY be the corresponding partitions. Then

lim
ns→∞

P (t > q1−α)→ α ,

where q1−α is the 1 − α-quantile of the standard normal distribution. Con-
versely, if X, Y are confounded, then for α > 0 in the limit we obtain power

β = lim
ns→∞

P (t > q1−α)→ 1 .

Proof. Since t is asymptotically normal (Vinh et al., 2009), the first assertion
follows directly. For the converse statement, note that for two confounded
variables X1, X2, their partitions satisfy

EI(Π1, Π2) ≥ ns

2 H(p)≫ EI(Π′
1, Π′

2) ,

where H(p) = −p log(p)− (1− p) log(1− p) is the binary entropy of the prob-
ability p of two different contexts belonging to different sets of the partition
as defined in Assumption C. Note that the relation ns

2 H(p) ≫ EI(Π′
1, Π′

2)
follows from the fact that limns→∞

1
ns

I(Π′
1, Π′

2) = 0 P-almost surely so that
EI(Π′

1, Π′
2) cannot be extensive in ns. Since I(Π1, Π2) also concentrates around

its mean, the result follows.
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Theorem 6.2. Let XI be a set of variables such that all Xi, Xj ∈ XI are
pairwise confounded. Then XI is jointly confounded if and only if for each
triple Xi, Xj , Xk ∈ XI we have

lim
ns→∞

P (T (Πi, Πj , Πk) < I(Πi, Πj) + I(Πj ., Πk))

=
{

1, Xi, Xj , Xk jointly confounded
0, otherwise .

Proof. As we have seen, the condition T (Πi, Πj , Πk) < I(Πi, Πj) + I(Πj , Πk)
is equivalent to I(Πj , Πk | Πi) < I(Πj , Πk), which is true if and only if the
correlations between the partitions are shared, which can only happen due to
joint confounding of more than two variables at a time. Now, let us assume that
some set I of s ≥ 4 pair-wise confounded nodes satisfying this inequality, does
not share the same confounder between all nodes. Without loss of generality
let us call these variables X1, . . . , Xs. Then the way for every triplet to have a
shared confounder, and which requires the least number of edges into the set, is
for three distinct confounders to affect the sets {X1, . . . , Xs−1}, {X2, . . . , Xs},
and {X1, X2, Xs}. This requires 2(s − 1) + 3 = 2s + 1 edges into the set
X1, . . . , Xs in contradiction with Assumption F.

Proposition 6.3 (Consistency for Pairs of Variables). If a variable pair X, Y
is confounded by a variable Z, then there exists some constant ρ > 0 such that

P (I(Π∗
X , Π∗

Y ) < I(ΠX , ΠY )) = 1−O(e−ρns) .

Proof. Following Perry et al. (2022) we show more precisely that

P(I(Π∗
X , Π∗

Y ) < I(ΠX , ΠY )) = 1−O
(

(p + (1− p)(1− p + p2))⌊ns/2⌋
)

,

by splitting the contexts into pairs c2i, c2i+1 and note we will get a wrong
result if and only if for all these pairs of contexts we have that a change in the
mechanism of Y does not introduce an additional change in the mechanism of
X | Y .
The probability of this not happening for any one pair is given by three parts:
either the mechanism of Z already changes between the environments (prob-
ability p), or it does not (probability 1 − p) and either Y does not change
(probability 1− p) or both X and Y change (probability p2).
Since the changes between any two environments c2i, c2i+1 are independent of
each other, the probability of this happening in all environments is therefore
(p + (1− p)(1− p + p2))⌊ns/2⌋ and since p + (1− p)(1− p + p2) ≤ 1 as convex
combination of 1 and (1− p + p2), the result follows.
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Proposition 6.4 (Consistency for Recovering Parents). Let Xi be a target
variable and let G and G′ be two graphs in the MEC of the marginal distribution
P s(X). Assume that only one of the two graphs correctly recovers the parents
of Xi, Pai = Pa∗

i and Pa′
i , Pa∗

i , and further assume that the number of latent
confounders affecting Xi plus spurious siblings is bounded by log(0.5)

log(1−p) . Then

P (I(Πi, {Πj : j ∈ Pai}) < I(Π′
i,
{

Π′
j : j ∈ Pa′

i

}
))

= 1−O(e−ρns) .

Proof. More precisely, we will show that

P(I(Πi, {Πj : j ∈ Pai}) < I(Π′
i,
{

Π′
j : j ∈ Pa′

i

}
))

= 1−O
((

(1− (1− p)r) + (1− p)r(1− p + p2)
)ns/2

)
,

where r is the number of latent parents of Xi plus the number of other variables
with which it is pair-wise confounded. In essence, these variables are precisely
those which could make us not detect changes between two environments, just
as in the previous proof changes in the mechanism of Z between environments
could prevent us from detecting changes in the mechanisms of X or Y .

To this end, note that if Pa′
i , Pa∗

i then there exists either a variable in Pa∗
i

that is missing in Pa′
i or a child of Xi in Pa′

i. In either case, additional joint
shifts are introduced between Xi and these variables and therefore the mutual
information increased. This increase in mutual information is guaranteed by
the fact that r ≤ log(0.5)

log(1−p) , so that the probability of mechanism between shifts
in Xi is less than 0.5.

Theorem 6.5 (Consistency). Let G∗ be the true graph over V and let G∗
x

be the induced graph on X, and assume that for all Xi the number of latent
parents plus spurious siblings is at most log(0.5)

log(1−p) . Then with high probability,
G∗

x and its partitions Π∗
1, . . . , Π∗

k are the unique minimum of total correlation,

P

(
arg min

G,Π1,...,Πm

T (Π1, . . . , Πm) = (G∗
x, Π∗

1, . . . , Π∗
m)
)

= 1−O(e−ρns) .

Proof. Let m be the number of observed variables and r be an upper bound
on all the r = max {ri} from the above Proposition. Then we specifically show
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that

P
(

arg min
G

T (Π1, . . . , Πm) = {G∗
x}
)

= 1−O

(
m2(m− 1)

2
(
(1− (1− p)r) + (1− p)r(1− p + p2)

)ns/2
)

.

To this end let us assume that the true causal ordering over X is given by
X1 ≤ · · · ≤ Xm. Then note that by construction we have T (Π1, . . . , Πm) =∑

i I(Πi, {Πj : j ∈ Pai}) so that the inside of our statement here is simply the
sum of all terms in Proposition 6.4. As such, the total correlation is the unique
minimum if the above proposition holds for all i and when compared against
any other graph G, resulting in the union bound above.
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