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A B S T R A C T

Companies face a disruptive digital transformation, which forces them
to adapt their business model and innovate faster than ever before.
Companies that do not transform rapidly enough risk to fall behind
and fail in competition. On the other hand, changing existing business
processes with complex behavior is highly risky. Analyzing process
event logs promises to facilitate understanding, predicting and opti-
mizing processes, and thus supports a successful transformation. As
wrong transformation decisions impose an existential threat, under-
standable models in each of these steps are non-negotiable.

In this thesis, we propose novel approaches to discover inherently
interpretable models from process event data. First, we explore how
to summarize the actual behavior of complex processes in terms of
control-flow and how event data changes throughout a process. Sec-
ond, we study accurate yet interpretable event sequence prediction
and learning queueing behavior. Third, we alleviate the effort of mod-
elling optimization and AI planning problems by learning constraints
from exemplary solutions.



Z U S A M M E N FA S S U N G

Viele Unternehmen sehen sich mit einer disruptiven digitalen Trans-
formation konfrontiert. Diese zwingt sie dazu, ihr Geschäftsmodell
schneller anzupassen und Innovationen schneller voranzubringen als
jemals zuvor. Unternehmen, die sich nicht schnell genug transformie-
ren, riskieren im Wettbewerb zurückzufallen und zu scheitern. Gleich-
zeitig birgt jede Veränderung an bestehenden Prozessen aufgrund ih-
res komplexen Verhaltens ein hohes Risiko. Die Analyse von Ereig-
nisprotokollen verspricht, Prozesse leichter zu verstehen, vorherzusa-
gen und zu optimieren, und unterstützt somit eine erfolgreiche Trans-
formation. Weil falsche Transformationsentscheidungen eine existen-
tielle Bedrohung darstellen, sind verständliche und nachvollziehbare
Modelle für jeden dieser Schritte unabdingbar.

In dieser Arbeit schlagen wir neue Ansätze vor, um inhärent inter-
pretierbare Modelle aus Prozessereignisdaten zu lernen. Zunächst un-
tersuchen wir, wie sich das tatsächliche Verhalten komplexer Prozesse
in Bezug auf ihren Kontrollfluss und sich im Prozessverlauf ändernde
Ereignisdaten zusammenfassen lässt. Zweitens untersuchen wir präzi-
se und dennoch interpretierbare Vorhersagen von Ereignissequenzen
und das Erlernen von Warteschlangenverhalten. Drittens verringern
wir den Modellierungsaufwand für Optimierungs- und Planungspro-
bleme, indem wir Einschränkungen aus Beispiellösungen lernen.
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11
I N T R O D U C T I O N

Companies face a continuous challenge of even further improving their
business processes in terms of efficiency and effectiveness to remain
competitive. The current dynamics of a disruptive digital transforma-
tion [73] force them to adapt their business model and innovate faster
than ever before. Companies that do not transform rapidly enough
risk to fall behind and fail in competition [56]. Existing business pro-
cesses usually exhibit complex behavior of non-trivial interdependen-
cies within a large set of process activities as well as humans, machines
and business objects involved. This complexity impedes a rapid trans-
formation and makes changing processes risky.

To mitigate the risk of transformation, process owners would ideally
test any change to their process on a digital twin, i. e., an accurate digi-
tal representation of the process, before making expensive investments
such as buying new machines. Due to the complex and non-trivial be-
havior, creating a digital twin of an existing process involves both a
lot of manual effort and domain knowledge. Furthermore, manually
created models are often idealized, do not fit the actual behavior well
[1], and thus can lead to wrong decisions. Hence, process owners need
data-driven information about the actual process behavior.

Fortunately, companies usually use information systems such as
workflow engines or manufacturing execution systems to record the
actual behavior of their business processes in the form of event logs.
An event log is a set of traces, where each trace refers to a case, e. g.,
a single product in manufacturing or an order of a customer handled
during the process. Each trace consists of numerical and categorical
attributes and an event sequence. The attributes contain data about
the case, e. g., the customer of an order or the type of product. Each
event refers to an activity of the process such as a certain production
step, and contains event data attributes such as a timestamp when the
event occurred. Process mining [1] analyzes event logs to enable a bet-
ter understanding of the actual process behavior, and thus supports
identifying anomalies, inefficiencies and opportunities for automation.
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By process mining, companies make data-driven decisions and create
more accurate digital twins, which increases their chances to succeed
in the digital transformation [51, 143].

As real-world processes exhibit complex and non-trivial behavior,
so do their events logs. Furthermore, as any real-world data source, an
event log usually contains noise, and we must expect it to only show
an excerpt of all possible behavior in the process. Last but not least,
despite the complexity of the actual process, any model we derive from
an event log does not only need to be accurate, it also must be simple
enough for domain experts and process owners to understand and
trust the model. This makes process mining easier said than done.

In this thesis, we propose new and noise-robust solutions to discover
accurate yet simple models from event logs. While, as mentioned be-
fore, the overall goal is to optimize processes, the complexity of process
behavior and the resulting challenges of process mining requires pro-
cess analysts to deal with multiple research problems. Before we can
start thinking about optimizing, we need a thorough understanding
of the actual process behavior. This means, we must comprehend the
control-flow of events and how events modify the attributes of process
cases. From this, we derive the first research problem as

Problem 1 (Understanding Process Behavior) Given an event log, dis-
cover models summarizing the control-flow of events and how event data
changes throughout the process.

Understanding the past and current process behavior enables us to
identify anomalies and inefficiencies, which helps us to find poten-
tial areas for improvement. To avoid inefficiencies such as bottlenecks
due to overloading resources of a process, and to decide on counter-
measures such as changing the schedule of cases or investing into the
capacity of resources, looking into the presence and past is not enough.
Hence, we define the second research problem as

Problem 2 (Predicting Process Behavior) Given an event log, find models
to predict event sequences with their activities, event data and timestamps.

By understanding and predicting actual process behavior, domain ex-
perts and process owners identify and validate process improvements.
Modelling and solving optimization problems such as scheduling of
process cases supports companies in facing a continuous challenge of
improving their business processes in terms of efficiency and effective-
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ness to remain competitive. Since process optimization is the final goal,
we define our last research problem as

Problem 3 (Optimizing Process Behavior) Given an event log, find mea-
surements to improve and optimize process behavior.

Next, we discuss our contributions to these research problems.

contributions and outline

In this section, we give an overview of our contributions and present
the outline of this dissertation.

contribution 1 Real-world event data, such as production logs,
exhibit complex behaviors. These include sequences, choices, loops,
optionals, and combinations thereof that make it hard to gain insight
into what is going on, and how we can improve the process. We ad-
dress the first part of Problem 1 in Chapter 2, in which we summarize
the control-flow of events in an event log, and thus enable an initial
understanding of the actual process behavior. As a model, we define a
pattern graph, in which nodes correspond to event patterns such as se-
quences, choices or loops, and directed edges indicate the control-flow.
We need a noise-robust approach to deal with real-world event logs,
and we are interested in the best trade-off between model complex-
ity and fitting the data. Therefore, we use the Minimum Description
Length (MDL) principle for model selection, by which the best model
is the one with the smallest lossless description of the data. As finding
the best model is a NP-hard problem, we propose our greedy algo-
rithm Proseqo to discover good pattern graphs in practice. Since pro-
cesses with very complex behavior may require a complex MDL opti-
mal model, we additionally propose Prosimple to find pattern graphs
satisfying a user-defined complexity threshold, while using MDL to
minimize the loss of information.

contribution 2 In Chapter 3, we tackle the second part of Prob-
lem 1. Finding rules on how data changes throughout a business pro-
cess is a surprisingly understudied topic. To close this gap, we pro-
pose the Moody algorithm to discover interpretable if-then rules that
explain and predict data modifications throughout a process. Through
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extensive experiments on both synthetic and real-world data, we em-
pirically show Moody finds succinct rules, needs little data for accu-
rate discovery, is robust to sensible amounts of noise, and thus gives
valuable insight into data modifications.

contribution 3 To approach Problem 2 and predict event sequen-
ces for new traces in an event log from trace attribute data, we propose
ConSequence in Chapter 4 to learn a sparse event-flow graph over
the training sequences, and statistically robust rules that use trace
attributes to determine which paths to follow. Since both the event-
flow graph and the decision rules are easily human-readable, ConSe-
quence in contrast to deep neural networks enables truly interpretable
event sequence prediction. In our experiments including a case study
on real-world data, we show that ConSequence indeed produces com-
pact, interpretable and accurate models, is robust against noise and has
low empirical sample complexity.

contribution 4 Predicting time as well as detecting and prevent-
ing bottlenecks is particularly important in service-oriented and manu-
facturing processes. Queueing theory is mathematically well-founded
and enables interpretable sojourn and waiting time prediction. Queue-
ing models consist of servers with limited capacity and if the service
capacity is exceeded, new jobs must wait, until a free server becomes
available. Creating those models, however, requires both mathematical
and domain knowledge, a lot of manual effort, and often results in ide-
alized models not fitting the actual behavior well. Therefore, we pro-
pose CueMin in Chapter 5 to discover interpretable queueing models
from data. By extensive experiments on both synthetic and real-world
data, including a case study on call center data, we show that CueMin,
in contrast to the state of the art, finds inherently interpretable models,
which explain and predict behavior of waiting line processes.

contribution 5 Constraint programming and AI planning are
powerful tools for solving assignment, optimization, and scheduling
problems. They require, however, the rarely available combination of
domain knowledge and mathematical modeling expertise. Learning
constraints from exemplary solutions can close this gap and alleviate
the effort of modeling. Existing approaches either require extensive
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without the need of user interaction. Extensive experiments on con-
straint programming and AI planning benchmark data show UrPiLs
not only finds more succinct constraints, but also is more robust to
noise, and has lower sample complexity than the state of the art.

To discuss the connections between our contributions, we conduct a
short case study on the event log of the rolling mill process of a steel
producing company in Chapter 7. More specifically, we demonstrate
how we can combine our contributions to create a discrete-event sim-
ulation of the rolling mill. In Chapter 8, we finally draw a conclusion,
and discuss limitations as well as potential future work.

https://arxiv.org/abs/2312.14571
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The chapters of this thesis are based on publications. We list in
which chapter we used which publication in Table 1.1. The author of
this thesis is first author in all publications, contributed to the main
ideas, theoretical work, experiments, writing of the manuscript and
implementation for Chapters 2, 4, 5 and 6. The second publication
is based on shared first authorship. While the author of this thesis
focused on writing the manuscript, both first authors equally con-
tributed to the main ideas, theoretical work and experiments, and
Marco Bjarne Schuster provided the implementation.
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M I N I N G U N D E R S TA N D A B L E M O D E L S F R O M
C O M P L E X E V E N T L O G S

Before we can start to think about improving a process, we need to
understand the events and possible behaviors in that process. Data-
bases of event sequences encode the actual process behavior. However,
existing approaches for discovering models from event sequences ei-
ther cannot capture complex behavior and find over-simplified models
not fitting the actual process well, or they return complex and hardly
understandable models. In this chapter, we propose the Proseqo al-
gorithm to discover accurate models from potentially noisy event se-
quences. We select a graph-based model summarizing the event se-
quences using the Minimal Description Length (MDL) principle, by
which the best model gives the shortest lossless description of the data.
Whenever simplicity is more important than accuracy, we propose the
Prosimple algorithm to remove edges with the least loss of informa-
tion, until we satisfy a user-defined graph density threshold.

2.1 introduction

Suppose we are given a database of event sequences. How can we dis-
cover a high-quality yet easily understandable model of the data gen-
erating process? For instance, consider the event log of an industrial
plant, in which sequences correspond to manufactured products and
events to steps in their production. While every self-respecting plant of
course has some process models, these are idealized and do not neces-
sarily match reality in which human decisions, machine breakdowns,
bottlenecks, etc. all have their effects. A high-quality model of the ac-
tual behavior hence does not only allow valuable insight, the chance to
optimize, but also answering what-if questions.

This chapter is based on [158]: Boris Wiegand, Dietrich Klakow, and Jilles Vreeken.
“Mining easily understandable models from complex event logs.” In: Proceedings of the
SIAM International Conference on Data Mining (SDM), Virtual Event. 2021, pp. 244–252.
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Figure 2.1: [Example on real data] Directly-follows-graph representing the
raw data (left) versus the result of Prosimple (right) for the Rolling
Mill production log of steel producer Dillinger.

Real-world event data exhibits complex behavior patterns, such as
sequences, branches, loops, optionals, and combinations thereof. Thus,
gaining insight from such data is easier said than done. Simply looking
at the data does not bring us far. As an example, consider the left-
hand side of Figure 2.1, where we plot the production log of steel
manufacturer Dillinger as a directly-follows-graph – in which nodes
correspond to events, and directed edges from a to b represent that
somewhere in the log event b happened right after event a. Although
we recognize some structure, the graph is heavily cluttered: we and
our domain experts could barely make out the bigger picture, let alone
gain any non-trivial understanding.

Making sense of event data is a classic problem, which is studied by
both the pattern mining and process discovery communities. Existing
solutions, however, do not satisfactorily solve the problem. While pat-
tern mining methods [49, 63, 148] effectively discover and summarize
non-trivial behavior, they only return loose collections of local struc-
tures, rather than a global model for the data. Process discovery [11,
82] on the other hand creates global models, but these tend to look sim-
ilarly complex and hard-to-understand as the directly-follows-graph
in Figure 2.1. We combine the best of both worlds. To this end, we
propose to discover easily understandable models from complex event
logs in the form of pattern graphs. These are directed graphs with event
patterns as nodes, that together form a global model for the data.

We formulate the problem in terms of the Minimum Description
Length (MDL) principle, by which we identify the best pattern graph
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as the one providing the shortest description of the data. As the result-
ing optimization problem is NP-hard, we propose the greedy Pros-
eqo algorithm to discover good models from data. Starting from the
directly-follows-graph, we iteratively remove nodes and edges, as well
as replace them with patterns, until MDL tells us to stop. For whenever
this result is still too complex, i. e., has too many edges, we propose
Prosimple, which additionally removes those edges that minimally
harm our score until we satisfy a user-specified threshold.

We validate our methods through an extensive set of experiments. In
particular, we show they reconstruct the ground truth well with little
data needed, are robust against various types of noise, and scale well.
On real-world data and through a case study we confirm that, unlike
the state of the art, we discover models that are easily understandable
and fit the data well. As an example, we show the model that Prosim-
ple discovers on the steel production data as Figure 2.1. The model is
uncluttered, easy to understand, and our domain experts confirmed
it matches the production process well, while providing them novel
insight regarding anomalies.

Our contributions are as follows. We
(a) propose to discover pattern graphs,
(b) formalize the problem in terms of MDL,
(c) give the Proseqo and Prosimple algorithms to respectively dis-

cover good and simple models from data,
(d) evaluate via a large set of experiments,
(e) and make all code and data available.

Next, we introduce the notation of our pattern graph model in Sec-
tion 2.2. Then, we give a short introduction to the MDL principle in
Section 2.3. In Section 2.4, we formalize the problem of discovering a
pattern graph in terms of MDL. Afterward, we propose our heuristic
discovery algorithms Proseqo and Prosimple in Section 2.5. In Sec-
tion 2.6, we give an overview of related work, before we empirically
evaluate Proseqo and Prosimple in Section 2.7. We discuss potential
future work in Section 2.8 and conclude this chapter in Section 2.9.

2.2 notation for event sequences and pattern graphs

First, we introduce the notation we use in this chapter. As input data,
we consider databases of event sequences. Such a database D consists of
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n = |D| sequences. A sequence y P D consists of m = |y| events drawn
from a finite length alphabet Ω = ta, b, . . .u. To refer to the ith event in
y, we write y[i]. We denote the empty string as ϵ.

We model event sequences by pattern graphs. A pattern graph is a
directed and possibly cyclic graph G = (V, E), where each node corre-
sponds to a pattern. The simplest patterns are singletons e P Ω. Based
on this base case, patterns are recursively defined as sequences of pat-
terns. For example, [a] expresses that event a happens, whereas [a, b]
models that event a happens before event b. Patterns can be optional,
denoted by a question mark. For example, [a, b?] models that b may,
but does not necessarily have to happen after a. We also allow for
choices within a pattern, and denote these by parentheses and vertical
bars. With [a, (b|c)], for example, we model that b or c happens after
an a. To model repetitions, we allow for loops, which we denote with
a plus symbol. For example, [a, (b|c)]+ specifies that the pattern of a
followed by either b or c repeats itself.

In addition, a valid pattern graph has two special nodes, the empty
string ϵ and an end-of-sequence character ê that respectively serve
as source vs and sink ve. Since we are specifically interested in easily
understandable models, we require that every singleton event e P Ω
appears in at most one node v P V.

We can then describe any given event sequence y P Ωm with a pat-
tern graph G, simply by traversing G from vs to ve, and emitting events
according to the nodes that we visit. To determine what path to take
and which choices to make, we have to read codes from the code stream
C that corresponds to how the model explains, or covers the sequence.
Conceptually, we can split C into two parts: the model stream, Cm, which
encodes how to traverse the model, and the disambiguation stream, Cd,
which encodes the necessary details to decode the sequence.

We both give an example sequence y and the covers of it for three
different models M1, M2, M3 in Figure 2.2. The first model, M1, consists
of a graph over just singletons. To decode the data, we start at source
node vs and read the first code from Cm. This is a � code, which
means we emit the current symbol of the current pattern, i. e., ϵ, and
move on. As vs has only one outgoing edge we unambiguously arrive
at node a. We read the next code from Cm, which tells us to emit a,
and move onward. This time we can either go to node b or to node
c. To determine which path to take, we read the next code from the
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disambiguation stream, Cd. As we read the code corresponding to the
path to b, we take this path and carry on in similar fashion, until we
arrive at the sink ve and have decoded y without loss.

In the second example, we start again at vs, emit ϵ after reading
� , and arrive at a sequence pattern. We emit its first element (a) after
reading the next � , and arrive at its second element (b|c). To decide
whether to emit b or c, we read from Cd. To determine which edge to
follow, we read from Cd, and arrive at e. We emit e and follow the edge
to loop pattern d+. We emit the looped pattern (here, d) as often as we
read a ö from Cd, and one final time when we read a � . As there is
only one outgoing edge from d+, we unambiguously arrive at optional
pattern f ?. To decide whether to emit f , we read a + or � from Cd.
We then unambiguously arrive at g, which we emit, and are done.

In the third example, the pattern graph consists of a single large
pattern. We decode the a and b just like above, but then encounter a
? code in Cm. This code tells us that the next event is not captured by

the model. We decode this event by reading the code for a singleton
event e P Ω from Cp, which is the code for e, which we then emit. Next,
after decoding the two d’s via the loop, we encounter a ñ code in Cm,
which means that we move to the next element but do not emit. The
final � takes care of g, and we have again losslessly decoded y.

2.3 the minimum description length principle

For a given dataset, we want to find a pattern graph that both fits the
data well and is easily understandable by being as simple as possible.
Additionally, since real-world data usually contains noise, we need a
robust model selection criterion. Therefore, we use the Minimum De-
scription Length (MDL) principle [52, 123] for model selection. MDL
identifies the best model as the one with the shortest lossless descrip-
tion of the given data. Formally, given a set of models M, the best
model is defined by arg minMPM L(M) + L(D | M), in which L(M) is
the length in bits of the description of M, and L(D | M) is the length in
bits of the data encoded with the model. This form of MDL is known
as two-part or crude MDL. Although one-part or refined MDL pro-
vides stronger theoretical guarantees, it is only computable in specific
cases [52]. Hence, we use two-part MDL.
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Sequence y: a b e d d g

Cover 1: using a singleton-only graph

Cm: � � � � � � � �
Cd: b e d d g

M1: vs a
b

c

d

e
f g ve

Cover 2: using complex patterns

Cm: � � � � � � � �
Cd: b e d+ ö � �

M2: vs [a, (b|c)]

d+

e

f ? g ve

Cover 3: using a single pattern

Cm: � � ? � � ñ � � �
Cd: b e ö �

M3: vs [a, (b|c), d+, f , g] ve

Figure 2.2: [Cover toy example] Sequence y as covered by three different pat-
tern graph models M1, M2, M3.

Note that MDL requires the compression (L(M) + L(D | M)) to be
lossless in order to allow for fair comparison between different M PM,
and that we are only concerned with code lengths, not actual code
words. Since we measure the encoded length in bits, all logarithms are
to base 2, and we use 0 log 0 = 0.

Assume we want to compute the encoded length of a code stream C,
which is the sum of the encoded lengths of the individual codes in that
stream. According to Shannon Entropy, the length in bits of the opti-
mal prefix-free code for x P C is � log P(x), which follows the intuition
that the more frequent a code the shorter its encoded length should be.
However, this requires knowledge of the distribution of codes before-
hand. Prequential codes [52] are asymptotically optimal without having
to know the distribution of messages. The idea is remarkably simple.
Starting with a uniform distribution, we update the counts after every
received message, which means we have a valid probability distribu-
tion at every point in time, which permits optimal prefix codes [29].

To encode how often the model contains a certain structure, we must
encode natural numbers, where we do not know an upper bound be-
forehand. The MDL-optimal encoding for integers z ¥ 1 [124] is de-
fined as LN(z) = log� z + log c0, where log� z = log z + log log z + . . .,
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and we sum only the positive terms, and c0 = 2.865064 is set such that
we satisfy the Kraft-inequality – i. e., ensure it is a lossless code. When-
ever we must compute the encoded length of a real number z P R, we
encode z up to a user-specified precision p by the smallest integer shift
s such that z � 10s ¥ 10p. We then encode shift, shifted digit and sign,
i. e., LR(z) = LN(s) + LN(rz � 10ss) + 1 [92].

2.4 mdl for pattern graphs

The examples in Section 2.2 illustrate how we can model event sequen-
ces y using a pattern graph M, and, importantly, in what contexts to
expect what codes. We will now formalize these intuitions into a loss-
less MDL score, such that we can identify the best model M� PM for
given data D. We start by defining L(D | M), the encoded cost of a
given sequence database D for a given model M.

2.4.1 Encoded Length of the Database

At a high level, the encoded length of the data given a model is

L(D | M) = LN(n) + L(Cm) + L(Cd) ,

where we first encode the number n of the sequences in D, and then
proceed to encode the code streams Cm and Cd. To avoid any arbi-
trary choices in the model encoding, we use prequential codes (see
Section 2.3) to encode the model and disambiguation streams. To make
maximum use of the available information, we should use codes that
are conditioned both on where in the model and where in the data we are.
For the model stream Cm, which is a sequence over t�,ñ, ?u, we have

L(Cm) = �
|Cm |̧

i=1

log
usgi(Cm[i] | ei) + ϵ°

usgi( � | ei) + ϵ
,

where we encode whether we have to emit, skip, or fill a gap, condi-
tioned on what event ei P Ω we encoded right before message Cm[i].
Initializing with standard choice ϵ = 0.5, and usg0(�|�) = 0, we incre-
ment the usage counts upon receiving messages.

We encode the disambiguation stream Cd analogously. For the def-
inition of its encoded length it is helpful to consider it as three inde-
pendent parts, namely stream Cp of pattern codes that we expect after
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reading a ñ or � , stream Cg of codes we expect after reading a ? ,
and stream Cs of codes that we need to disambiguate loops, optionals,
and choices. That is, L(Cd) = L(Cp) + L(Cg) + L(Cs).

The codes in Cp refer to nodes in the model, and which nodes v P G
are possible depends on that node vi we are currently at. We have

L(Cp) = �

|Cp|¸
i=1

log
usgi(Cp[i] | vi) + ϵ°

usgi( � | vi) + ϵ
.

The messages in Cg correspond to singletons e P Ω, but only those that
we cannot directly reach from current node vi – we are after minimal
descriptions, after all. We hence have

L(Cg) = �

|Cg|¸
i=1

log
usgi(Cg[i] | vi) + ϵ°

usgi( � | vi) + ϵ
.

Finally, the messages in Cs are dependent both on the last decoded
symbol ei and what node vi we are at, i. e.,

L(Cs) = �
|Cs |̧

i=1

log
usgi(Cs[i] | ei, vi) + ϵ°

usgi( � | ei, vi) + ϵ
.

This gives us a lossless encoding of a database.

2.4.2 Model Encoding

Next, we define how we encode a model M in bits. Because we make
use of prequential codes in encoding the data, encoding the model is
relatively straightforward. Formally, we have

L(M) = LN(|Ω|) + log(|Ω|+ 1) +
¸
vPV

(log |T |+ L(v))

+ log(|V|2 + 1) + log
(
|V|2

|E|

)
,

where we first encode the size of the alphabet. This gives an upper
bound that we use to encode the number of pattern nodes in G (i.e. ex-
cluding vs and ve). We then encode the type (T = tsingleton, sequence,
choice, loop, optionalu) and content of each pattern node. Finally, we en-
code the graph among them by first encoding the number of edges,
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and then their layout. This we do via a data-to-model code [87], which
is an index over a canonically ordered set of all directed graphs of |V|
nodes and |E| edges. The only further details left are how to encode
the different types of nodes. Singletons are the base case, with

Lsingleton(v) = log |Ω| .

Optionals and loops are a wrapper for one subpattern v1, i. e.,

Loptional(v) = Lloop(v) = log |T |+ L(v1) ,

whereas sequences and choices consist of up to |Ω| subpatterns, i. e.,

Lsequence(v) = Lchoice(v) = log |Ω|+
¸
v1Pv

(log |T |+ L(v1)) ,

by which we have a lossless encoding of a model M.

2.4.3 Formal Problem Definition

With the above definitions, we now formally define our problem.

Minimal Pattern Graph Problem Let D be a sequence database over al-
phabet Ω, find the minimal pattern graph M P M and cover C of D, such
that the total encoded cost L(M) + L(D | M) is minimal.

The minimal pattern graph problem is a rather difficult problem. For
a given database Ω, there exist exponentially many models M, and
the score does not exhibit trivial structure, such as submodularity or
monotonicity, that we can exploit for efficient search. Moreover, there
exist exponentially many covers for a given model, and finding the
optimal cover is equivalent to aligning Petri nets and sequences which
has known to be NP-hard [83]. Hence, we resort to heuristics.

2.5 algorithm

To find good solutions to the Minimal Pattern Graph Problem in prac-
tice, we split the problem, and propose greedy algorithms to discover
a good cover of the data for a given model, and for iteratively discov-
ering good models from data. We discuss these algorithms in turn.
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Algorithm 1: Cover
input : sequence y, model M, cover C
output : cover C

1 v Ð vs;
2 foreach event e P y do
3 if pattern v can cover e then
4 add codes to C to encode e with v;

5 else if D pattern u P M : e P u and D path ϕ from v to u then
6 add codes to C to skip remainder of v;
7 add codes to C to skip all w P ϕ up to u;
8 add codes to C to encode e with u;
9 v Ð u;

10 else
11 add codes to C to encode e as ? ;

12 return C

2.5.1 Computation of a Good Cover

To compute L(D | M) we need a good cover C for a given sequence
y P D. As computing the optimal cover is NP-hard, we take a greedy
approach. Intuitively, we want to follow the model as much as we can,
and hence want to maximize the number of � codes in Cm. To do
so, we iteratively cover the events in y with patterns in the model, by
which we ensure a linear runtime regarding the sequence length |y|.

We give the pseudocode as Algorithm 1. In a nutshell, whenever
there exists a pattern u P M that can cover the next event e P y, we
see if there exists a path from the last-used pattern v to u, such that
we minimize the number of ñ codes in Cm. Whenever there exists no
such a pattern, or no such path, we cannot use a pattern to cover e,
and instead encode it with a ? in Cm and a code for e in Cd.

Since every edge has equal cost, finding the shortest path between
two pattern nodes reduces to a breadth-first-search with runtime com-
plexity O(|V|+ |E|). As we allow an event to be part in at most one
pattern node, the maximal number of nodes in the graph is bounded
by |Ω|. Therefore, covering all n sequences in D with sequence length
m has runtime complexity O(n � m � (|Ω|+ |E|)). The cover encoding
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Algorithm 2: Proseqo
input : sequence database D
output : model M for D

1 M Ð initialize with trivial model for D;
2 Q Ð create transformations based on M;
3 while Q is not empty do
4 t Ð pop first element of Q;
5 if L(D, t(M))   L(D, M) then
6 M Ð t(M);
7 Q Ð update Q based on M;

8 return M;

using prequential codes is order-invariant, hence, the cover algorithm
is sequence-order-invariant.

2.5.2 Discovering Good Models with Proseqo

To discover good models we propose the Proseqo algorithm, which
greedily improves the current model top-down until convergence. We
give the pseudocode as Algorithm 2. We start from the directly-follows-
graph (ln. 1), an overfit pattern graph where all singleton events are
nodes, i. e., V = Ω, and (v, u) P E whenever in any sequence in D,
u happens right after v. Then, we generate candidate transformations
of the current model (described below), and store these in a prior-
ity queue (ln. 2). We evaluate the candidates in descending order of
their individual gain, and update model and candidate transforma-
tions whenever we improve over the current model (ln. 3 – 7).

As candidate model transformations we consider the following three
types. We consider removing edges, and regard every edge (v, u) P E
whose removal does not cut the path from vs to ve as a candidate.
We consider removing nodes, and consider every node v P M whose
removal does not cut the path from vs to ve as a candidate. Finally,
we consider growing patterns, by which we replace current patterns
v P M with a new pattern v1. We create a candidate sequence [a, b]
for every edge (a, b) P E. Nodes with a common predecessor generate
choice candidates, loop candidates are created from loops in the pat-
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tern graph, and optional patterns are from nodes whose predecessors
are also connected to ancestors.

The main bottleneck is the computation of the cover both during
evaluation and to rank candidates, which requires a pass over the
whole sequence database. To gain efficiency, we do not re-generate
the entire candidate set Q in every iteration, but rather update it: we
remove those transformations from Q that are no longer possible, and
only add and compute the gains for new candidates – i. e., we do not
re-compute gains of previously generated transformations.

The number of generated candidates increases with the number of
edges in the pattern graph. A maximally dense graph with |E| = |Ω|2

generates |E| edges, |E| sequences, (|Ω|2 ) choices, |Ω| optionals and |Ω|
(self-)loops. In the worst case, each generated transformation improves
our score and leads to O(|Ω|) new candidates, which makes O((|Ω|+
|E|) � |Ω|) candidates in total. Considering the repetitive cover computa-
tion, Proseqo has a runtime complexity of O

(
n �m � (|Ω|+ |E|)2 � |Ω|

)
.

This means, Proseqo scales linearly with the number of sequences n
and sequence length m.

2.5.3 Discovering Simple Models with Prosimple

What if the MDL-optimal model, or its approximation by Proseqo, is
still too complex for a human? This happens if the underlying data gen-
erating process is inherently complex and any simplification results in
a huge loss of information. In such a setting, how can we discover
models that are easily understandable, while ensuring they do explain
the data as well as possible?

The main complexity of a process model, as confirmed by our do-
main experts, comes from its number of edges: it is hard to keep track
of all possible paths in a directed graph with many edges. This sug-
gests that we can ensure understandability by controlling the number
of edges in a model. How can we do so in a principled manner? Let
M(r) � M be the set of all models over Ω that have a degree ratio
|E|/|V| of at most r. It is trivial to re-write the Minimal Pattern Graph
problem accordingly: we are now after that model M� P M(r) that
minimizes the total encoded length.

We build upon Proseqo to find a good solution for this new prob-
lem. We give the pseudocode as Algorithm 3. First, we simply run
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Algorithm 3: Prosimple
input : sequence database D, degree ratio r
output : model M for D with degree ratio ¤ r

1 M Ð Proseqo(D);
2 while |E|

|V| ¡ r do
3 e� Ð arg min(u,v)PE|deg�(v)¡1^deg+(u)¡1 L(D, Ma (u, v));
4 M Ð Ma e�;

5 M Ð Proseqo(D, M);
6 return M;

Proseqo on D, which gives us a M P M (ln. 1). If M satisfies the
degree ratio threshold r, we are done. If it does not, we iteratively re-
move those edges from the model that ‘harm’ the MDL score least, un-
til we satisfy threshold r (ln. 2–5). To retain connectivity in the graph,
we do not remove edges, which would lead to dead ends or unreach-
able nodes. After removing one, or multiple edges it is possible that
Proseqo can further optimize the MDL score – for example by apply-
ing patterns or removing nodes. While ideally we would do this in
every iteration, for efficiency we do this only once, after we ensured
M PM(r) (ln. 5). We refer to this method as Prosimple.

In each iteration, we have up to |E| edges, which we can remove. For
each edge, we compute a cover to evaluate the score after removing
this edge. Since we have up to |E| iterations, the runtime complexity
of the edge removal part of Prosimple is O(|E|2 � n �m � (|Ω|+ |E|)).

2.6 related work

Discovering structure from event sequences is a classic research topic [6,
91]. Earlier proposals focused on efficient discovery of all frequent sub-
sequences with or without gaps [108, 164], resulting in overly many
and highly redundant patterns: the pattern explosion. Attention hence
shifted to reducing redundancy via closures [145, 146], statistical test-
ing [109, 144], or a pattern set mining approach [48, 147].

Subsequences and serial episodes can model interesting behavior,
but only have limited expressive power. There exist proposals that can
additionally model parallel behavior [146], choices [63], or periodicity
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[49], but each only extends in one direction. Petri nets [110] can jointly
model loopy, alternative as well as concurrent behavior, but existing ap-
proaches [148] rely on frequency-based interestingness measures, and
hence suffer from the pattern explosion.

While pattern mining is great for discovering interesting local be-
havior, the above methods only result in a set of disconnected patterns,
rather than a coherent model that explains the generating process in
terms of patterns. Towards this goal, the closest related field is process
discovery, which is a subfield of process mining [1], and deals with
the extraction of process models from event logs. The mainstream of
process discovery algorithms infers model structure from the directly-
follows-graph of the log [11, 82, 156]. The application of these state-of-
the-art approaches on complex real-world event logs leads, however,
either to highly complex models that are difficult to understand or
models that over-generalize and obtain only low precision [1, 11].

In contrast to the above, with Proseqo we discover compact, non-
redundant, and coherent models that explain the process behind the
data in terms of rich patterns. We do not only consider removing
edges (i.e. directly-follows-relations) but also nodes (symbols) to re-
duce model complexity. Moreover, if desired by the user, we provide
an easily interpretable hyperparameter that allows to further reduce
model complexity in a principled way.

2.7 experiments

In this section, we empirically evaluate Proseqo and Prosimple on
synthetic and real-world data. To ensure reproducibility, we make both
code and synthetic data generators publically available for research
purposes.1 We executed all experiments single-threaded on an Intel i7-
6700 CPU, with 16 GB of memory, running Windows 10. We report
wall-clock running times.

We compare to three state-of-the-art methods. SplitMiner [11] and
imf [82] are process discovery algorithms, whereas Squish [63] discov-
ers models that consist of sequential patterns. Proseqo and Squish
have no hyperparameters. We run imf and SplitMiner with the pa-
rameters set as recommended by the authors [11, 82].

1 https://eda.rg.cispa.io/prj/proseqo/

https://eda.rg.cispa.io/prj/proseqo/
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Figure 2.3: [Proseqo handles different types of noise] Mean F1 scores on
directly-follows-relations for respectively no, 5% Remove, 5% Ad-
dex, 5% Addnew, 5% Swap, and 3% of all noise types simulta-
neously, for Proseqo, SplitMiner, imf, Squish, and the trivial
directly-follows-graph that Proseqo departs from. Error bars in-
dicate standard deviation.

2.7.1 Synthetic Data

First, we consider synthetic data, where we both know and can con-
trol the ground truth. We start with a sanity check, in which we eval-
uate on data without structure. To this end, we sample 100 sequen-
ces of length ten uniformly at random from Ω = ta0, . . . , a9u, and
add a fixed START and END symbol to all sequences. Proseqo is
the only method recovering the ground truth, returning the model
[START, (a0|a1|a2|a3|a4|a5|a6|a7|a8|a9)+, END]. Squish almost recovers
the ground truth by returning the singleton-only model; however, it
additionally outputs the sequential pattern [START, a1]. While imf cor-
rectly identifies that all ten activities can happen in arbitrary order, it
explicitly does not allow any activity to happen more than once, which
contradicts the data generation process. SplitMiner overfits the data
and returns a model with 11 nodes and 18 edges.

Next, we examine how well Proseqo can reconstruct a non-trivial
model with different types and levels of noise. We generate ground-
truth models using the generator proposed by Jouck et al. [65] with the
following parameters: min = 40, mode = 50, max = 60, sequence =

0.5, choice = 0.4 and loop = 0.1. We convert the resulting process
trees into pattern graphs and sample sequence databases using ran-
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Figure 2.4: [Proseqo is noise-robust] F1 scores for varying amounts of Re-
move noise (left) and for varying number of sequences with 5%
Remove noise (right).

dom walks. To add noise, we apply the following noise models: Re-
move simulates missed recording of events, i. e., for each event in the
database we remove it with a given probability. Addex simulates record-
ing real events that did not happen, i. e., for every event in the database,
with a given probability, we insert a random event e P Ω. Addnew does
the same, but inserts a fixed noise event n R Ω. Swap simulates events
recorded in wrong order, i. e., for each neighboring pair of events, we
swap their order with a given probability.

As a metric of success, we consider the F1 score measured over cor-
rectly identified edges between events. We consider the average result
per method over 20 independently generated models, and for each
generate a database D of 1 000 sequences each. We plot the results for
all four methods, as well as those for the trivial model that Proseqo
starts from, in Figure 2.3. We see that Proseqo performs best: it re-
turns near-perfect models when there is no noise, obtains above 0.94
scores for 5% Remove, Addex, or Addnew noise, and still reaches an
F1 of above 0.85 when we apply all four noise types simultaneously
at 3% each. Our competitors fare less well. imf only performs well
when there is no noise, while Squish and SplitMiner tend to return
underfitting models with low recall and high precision.

Next, we evaluate robustness against varying levels of Remove noise,
and for varying number of samples y P D for a fixed amount (5%) of
Remove noise. We generate 20 models per setting and report average
F1 scores in Figure 2.4. We see Proseqo performs favorably, its F1 score
only dropping slightly for up to 20% noise, whereas it only needs 100
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Data n nu min |y| avg |y| max |y| |Ω|

Permits 1199 1170 4 46 103 291

Loans 31509 5623 9 17 56 26

Purchases 2000 365 3 9 317 28

Rolling Mill 1000 988 13 28 53 191

Table 2.1: [Statistics of real-world data] Number of sequences n = |D|, num-
ber of unique sequences nu, number of unique events |Ω|, as well
as minimal, average and maximal sequence length |y|, and size of
the event alphabet |Ω| in four real-world datasets.

sequences to converge. SplitMiner is in second place, whereas imf
and Squish trail by a wide margin. As they perform sub-par, we do
not consider imf and Squish in the remainder of this section.

2.7.2 Real-World Data

Next, we evaluate on four real-world event logs. Three stem from
the publically available Business Process Intelligence Challenge. Per-
mits [34] contains event data for building permit applications of a
Dutch municipality. Loans [35] corresponds to the recording of a loan
application process of a Dutch financial institute. Purchases [36] is data
on the purchase order handling of an un-named company. As the
above experiments showed low sample complexity for all methods, we
consider a random sample of 2 000 out of its in total 200 000 sequences.
Last, but not least, we consider the Rolling Mill production event log of
the steel producer Dillinger. We give their base statistics in Table 2.1.

Because we do not know the ground-truth model for real-world data,
we cannot compute F1 scores for these datasets. Instead, we hence re-
port on how complex the models are, and how well they explain (fit)
the data. We measure model complexity in terms of number of nodes,
number of edges, and structuredness S = maxt0, |Ω|�|Vs|

|Ω|�1 u, with Vs being
the set of nodes after reducing the graph with perfectly matching se-
quences, choices, optionals and loops. The more such patterns a graph
contains the easier it is to understand. A perfectly structured model
can be reduced to one single node and has S = 1.
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Figure 2.5: [Prosimple with varying degree ratio] Structuredness (left) and
Fitness (right) for Prosimple with varying degree ratio r on the
Rolling Mill dataset. For r = 7.0, Prosimple is equivalent to Pros-
eqo on this dataset.

SplitMiner Proseqo Prosimple, r = 1.5

Data |V| |E| t |V| |E| t |V| |E| t

Permits 683 1441 33s 181 33071 50h 42 49 51h

Loans 53 71 1s 22 135 2.5h 5 5 2.5h

Purchases 68 135 4s 26 163 4m 6 6 4m

Rolling Mill 427 817 9s 135 934 2.3h 68 101 2.5h

Table 2.2: [Results on real-world data] Given are the number of nodes |V|

and edges |E| of the discovered models by SplitMiner, Proseqo,
and Prosimple with r = 1.5 on four real world datasets, and dis-
covery runtime t for all methods.

We measure fitness by converting the models to Petri nets [110] and
computing the established fitness score for Petri nets [17]. We consider
both Proseqo and Prosimple. For the latter, we focus on simple mod-
els and set the degree ratio r to 1.5, which means that on average every
node in the model has 1.5 outgoing edges. A degree ratio of r = 1.5
gives a good trade-off between gain in structuredness and loss of fit-
ness, as we can see in Figure 2.5. We compare to SplitMiner. We run
each of the methods, and give the results in Figure 2.6 and Table 2.2.

We first consider Figure 2.6 and see Proseqo provides models that
fit the data best, SplitMiner discovers well-fitting but complicated
models, and that at cost of some fit, Prosimple returns by far the sim-
plest models. If we investigate the quantitative results in Table 2.2, we
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Figure 2.6: [Prosimple mines well-fitting yet understandable models] Fit-
ness (left, higher is better) and structuredness (right, higher is bet-
ter) for Proseqo, Prosimple with r = 1.5 and SplitMiner on four
real-world datasets.

again see that Prosimple creates by far the simplest models in terms of
number of nodes and number of edges in the graph. Computing covers
between pattern graph candidates and data is an expensive operation.
Therefore, runtime is significantly higher for Proseqo and Prosimple
compared to SplitMiner. Still, Proseqo and Prosimple discover use-
ful models of complex real-world data in a reasonable amount of time.

The importance of model simplicity becomes even more clear when
we visually inspect the models. In Figure 2.7, we show the models dis-
covered by Prosimple and SplitMiner for the Rolling Mill data. While
the latter is already much more structured than the trivial directly-
follows-graph, it is still a bowl of spaghetti that was not interpretable
for our experts; they complained it was too hard to follow the control-
flow. The result of Prosimple is much easier to understand: our ex-
perts confirm that the model as a whole, as well as the patterns therein
are semantically meaningful. That is, the model gives a high-level
overview of the production process, and the pattern nodes give de-
tailed insight into what production steps are executed in what order
and context. Now, we will have a closer look on the rolling mill process
and how Prosimple enables an understanding of it.
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Figure 2.7: [Prosimple discovers detailed yet easily understandable models]
Model discovered by SplitMiner (left) and Prosimple (with r =
1.5, right) on the Rolling Mill dataset. In the Prosimple model, we
highlight four essential parts of the production process (hot zone,
scissors, torches, and quality checks).

2.7.3 Case Study

Using the Prosimple model in Figure 2.7, we can highlight four parts
of the Dillinger rolling mill that are understandable to everyone. The
process starts with so-called slabs, cast steel cuboids. The green source
node (part 1) contains a nested sequence of eight low-level activities
that correspond to the hot zone of the rolling mill. The slabs are ei-
ther heated up in so-called pusher-type furnaces or in bogie-hearth
furnaces, such that they are soft enough to get rolled to mother plates
at two rolling stands. Some plates get special treatment and are cooled
down with water. After the hot zone, the mother plates are cut into the
plates ordered by the customers. This either is done using large scis-
sors for soft and thin enough (part 2) plates, or with cutting torches
if the plates are too hard and thick (part 3). The bottom part (part 4)
mainly consists of quality checks and corrections.

Not only does the model by Prosimple give a high-level overview of
the control-flow of the rolling mill process, it also contains details on
low-level behavior allowing for, among others, an anomaly analysis.
First, our domain experts questioned some of the modeled behavior
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Figure 2.8: [Proseqo and Prosimple scale favorably] Scalability of Proseqo
and Prosimple on Loans in terms of average fitness over ten runs
with standard deviation (left) and runtime in seconds (right) for
varying subsample size.

as violating their expectation. These all turned out to be due to rare
but re-occurring deviations from the normal behavior such as machine
failures, as well as alternative routing caused by high workload in
parts of the plant. For example, if needs be, thicker plates run through
parts of the rolling mill specialized for thinner plates and vice versa.

In a second step, we showed sequences deviating most from the
found model to our domain experts. Here, we identified anomalies
corresponding to additional and repetitive work necessary to meet cer-
tain quality goals. Better monitoring of these cases can support im-
provement of the process in terms of production efficiency, product
quality and reduced production loss.

2.7.4 Scalability

Finally, we report in Figure 2.8 on the performance and runtime of
Proseqo and Prosimple dependent on the size of a subsample of the
Loans data. Both methods show low sample complexity by achieving
stable fitness on the whole dataset with only 100 out of 31509 sequen-
ces, and their runtime scales linearly in the number of sequences.
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2.8 discussion

Although both Proseqo and Prosimple work well, we see many inter-
esting directions for future work. First of all, MDL is not a magic wand:
the encoding we propose includes choices. Different choices may lead
to different, and possibly better, models. While we consider a rich set
of patterns, it is easy to think of structure such as parallel behavior
that we currently cannot succinctly capture. On the topic of discover-
ing better models, it is likely worthwhile to incorporate bottom-up ap-
proaches from pattern mining for identifying promising parallel and
choice behavior, rather than the pure top-down approach we currently
take. Extending pattern graphs such that one event can be part of more
than one node could also lead to better models. We pick up the idea of
a bottom-up search and using events in multiple nodes in Chapter 4.
On the topic of scalability, it is worthwhile to investigate, whether it
is possible to formalize accurate and easy-to-compute estimates [45],
such that we can be more informed during the search.

We see many applications of pattern graphs. Describing the expected
behavior of a process, we see them useful for explainable anomaly de-
tection. Other potential applications include optimizing planning, and
especially towards simulation and answering what-if questions. To this
end, the formulation of model, problem, and inference would ideally
have to be redone in pure counterfactual terms [107].

2.9 conclusion

We studied the problem of discovering accurate yet easily understand-
able models from complex event sequence data. To this end, we pro-
posed to model data using directed pattern graphs, where the nodes
summarize complex behaviors such as sequences, choices, loops, op-
tionals, and combinations thereof in easily interpretable terms. We for-
mulated the problem in terms of the Minimum Description Length
(MDL) principle. As the search space is exponentially sized, and de-
termining the quality of a model is already NP-hard, we proposed the
greedy Proseqo algorithm to discover good models in practice. For
whenever understandability is of primary, and accuracy of secondary
importance, we propose the Prosimple algorithm that further prunes
the result of Proseqo up till an easily interpretable user-specified pa-
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rameter is satisfied. Experiments on both synthetic and real-world data
validate that our approaches work well in practice, and outperform the
state of the art by a margin.
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3
D I S C O V E R I N G D ATA M O D I F I C AT I O N R U L E S

Process discovery methods such as Proseqo and Prosimple from the
previous chapter provide an initial understanding of events and poten-
tial behaviors within a process. Like most discovery methods, however,
these two focus on finding patterns in the activities of event sequences,
and thus neglect how event attribute data in the form of categorical
and numerical variables changes throughout a process. In this chapter,
we propose a novel method to complete the picture and mine accurate
yet interpretable if-then rules of data modification rules.

3.1 introduction

Given a process event log, process mining [1] provides a better un-
derstanding of the underlying process and enables downstream tasks
such as monitoring, anomaly detection, simulation, and optimization.
Existing work, however, focuses on discovering patterns of event activ-
ities, but neglects how event attribute data changes during the process.
For instance, a textile company may have an ordering process with
the activities Request, Place, Delay and Receive. Process discovery algo-
rithms [11, 141] only infer a graph of event activities, where nodes
refer to activities and edges visualize the flow of execution. However,
how data changes over time is crucial for understanding the process as
we show in Figure 3.1. In our textile example, we only know price and
delivery date of an order after placing the order. Delaying an order,
e. g., due to a shortness of supplies, changes the delivery date.

Surprisingly, data has only been used to predict the occurrences of
event activities or the outcome of processes [150, 159]. To the best of
our knowledge, none of the existing work mines interpretable rules for
data modifications, and related work does not satisfactorily transfer

This chapter is based on [134]: Marco Bjarne Schuster, Boris Wiegand, and Jilles
Vreeken. “Data is Moody: Discovering Data Modification Rules from Process Event
Logs.” Under submission. arXiv: 2312.14571

https://arxiv.org/abs/2312.14571
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Request Place Delay Receive

product: shirt
amount: 100

product: shirt
amount: 100
price: $1000
delivery: 06-21

product: shirt
amount: 100
price: $1000
delivery: 06-28

product: shirt
amount: 100
price: $1000
delivery: 06-28

Figure 3.1: [Processes change data] Exemplary process for ordering textiles
with activities Request, Place, Delay and Receive. Arrows indicate
the flow of events. Further, we show how the data of an exemplary
order changes throughout the process.

to our problem. Subgroup discovery [118] and rule-based prediction
methods [163] lack the ability to model the sequential dependencies
present in event logs, and thus lead to unsatisfactory results with lim-
ited insight into the process behavior.

Given an event log, we are interested in finding accurate yet suc-
cinct and interpretable if-then rules how the process modifies data.
To this end, we formalize the problem in terms of the Minimum De-
scription Length (MDL) principle, by which we choose the model with
the best lossless description of the data. Additionally, we propose our
method Moody, which is short for Modification rule Discovery, to ef-
ficiently search for rule models in practice. Starting with an empty set,
we greedily add the best compressing rule to the model, until we no
longer find a rule that improves our MDL score. Through extensive
experiments on both synthetic and real-world data, we show Moody
indeed finds succinct and interpretable rules, needs little data for ac-
curate discovery, and is robust to noise.

In summary, our main contributions are as follows. We
(a) formulate the problem of finding data modification rules from

process event logs,
(b) formalize the problem using the MDL principle,
(c) propose the Moody algorithm to efficiently find accurate yet suc-

cinct data modification rules,
(d) run extensive experiments on both synthetic and real-world data,
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(e) make code and data publicly available.1

The structure of this chapter is as follows: Next, we introduce the
notation of our rule model in Section 3.2. In Section 3.3, we formalize
the problem of discovering data modification rules in terms of MDL.
Afterward, we propose our heuristic discovery algorithm Moody in
Section 3.4. In Section 3.5, we give an overview of related work, before
we empirically evaluate Moody in Section 3.6. We discuss potential
future work in Section 3.7 and conclude this chapter in Section 3.8.

3.2 notation for data modification rules

As input for finding data modification rules, we consider an event log
or dataset D collecting traces of a single process. Each trace refers to an
instance of the process, such as a specific customer order, and consists
of an event sequence. We describe data attributes of events by a set of
numerical and categorical variables V.

To model how a process modifies these variables, we use different
types of update rules. For a categorical variable v P V, we write v P
tα, β, . . . u, i. e., v takes one of the values in the set. For a numerical
variable v P V, we can set v to a specific value, v = α, or to a range
of values, v P [α, β]. We further denote relative changes by v = v + α,
v = v + [α, β], and v = α � v.

Updates typically only occur in certain circumstances. For instance,
the price of an order may be dependent on the order volume, where
a higher volume gives discount. Therefore, we model conditions for
update rules. In the simplest case, we check for a specific value v = α

or v � α. Further, we test lower and upper bounds of numerical values
by v ¤ α and v ¥ α. Finally, we can condition on value transitions
between the last and the current event with v : α Ñ β.

We combine a condition c and an update rule u into a data modifi-
cation rule IF c THEN u. To join multiple rules into a model M that
covers the full complexity of the process, we use an unordered set of
rules, since this allows for an independent interpretation of each rule
[163]. Furthermore, to avoid contradictory predictions, we only allow
acyclic models. For instance, if we condition on v1 to update v2, we are
not allowed to do the reverse in the same model.

1 https://eda.rg.cispa.io/prj/moody/

https://eda.rg.cispa.io/prj/moody/
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Model:

R1: IF amount = 10
THEN vendor = C

R2: IF product = shirt
THEN vendor P {B, C}

Code streams:

Cr: R1

Cm: ✓ ✓ ✗

Cv: C A A

Trace:

event: E1

shirt
20
C

product:
amount:
vendor:

E2 E3 E4

shirt
10
C

socks
10
A

socks
20
A

Figure 3.2: [Data encoding] Toy example of a rule model (top left) and the
corresponding code streams (top right) to encode the categorical
variable vendor of an exemplary trace (bottom).

3.3 mdl for data modifications

From an event log D, we aim to find a model M of data modification
rules, which accurately describe the data, yet are as succinct as possi-
ble, such that domain experts gain insight into the process. Since real-
world data is usually noisy, we need a robust model selection criterion.
Therefore, we formalize the problem in terms of the MDL principle. To
this end, we define length of the data encoding L(D | M), length of the
model encoding L(M), and finally give a formal problem definition.

3.3.1 Data Encoding

To encode a given event log with a model of data modification rules,
we encode the variable values at each event. For each event, we check
which rules in the model fire, i.e., have satisfied conditions, and use
the firing rules to encode the data values. Whenever the model makes
ambiguous predictions, we encode the specific value among all possi-
bilities. If no rule fires, we choose and encode a value from the whole
domain of the target variable. To ensure a lossless encoding and to
handle noisy data, we also encode any errors made by the model.
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Conceptually, we split the data encoding into three code streams: In
the rule selection stream Cr, we encode which rule among all firing
rules we use to encode the current variable value. In the model stream
Cm, we encode if the model predicts the correct value. If not, any value
of the target domain is possible. Whenever the model predicts multiple
values, we choose a value by a code in the value stream Cv.

We give a toy example of a data encoding in Figure 3.2, which we
use to describe how to decode the categorical variable vendor. First,
at event E1, we see that only rule R2 applies. Thus, we do not need
to select a rule by reading from Cr. Next, we find a checkmark as
the first symbol in Cm, i.e., the model predicts correctly. However, the
rule allows two values, B and C, which we disambiguate by reading C
from Cv. Next, at event E2, we observe that both rules apply. Therefore,
we check Cr to find that we should use rule R1 whose prediction is
correct according to the second symbol in Cm. Further, its prediction
is not ambiguous and we get the value C in the trace. Afterwards,
at event E3, we find that only rule R1 applies but its prediction is
incorrect according to the last element in Cm. We obtain the correct
value by reading A from Cv. Finally, no rule applies at event E4, so we
neither read from Cm nor from Cr. Instead, we read the last value from
Cv, A, by which we have successfully decoded the values for vendor.

We compute the length of the data encoding by summing the code
lengths in Cr, Cm and Cv. Whenever we have to disambiguate multi-
ple firing rules in Cr, we assume all rules in the model are equally
important. We compute the encoded length of Cr by

L(Cr) =
|Cr |̧

i=1

log |Ri| ,

where |Ri| denotes the set of firing rules at the i-event.
When we compute the encoded length of Cm, we do not know the

probabilities of codes for checkmarks and crosses in advance. There-
fore, we use a prequential plug-in code (see 2.3) to compute L(Cm):
We initialize uniform counts for checkmarks and crosses and update
counts after each event, such that we have a valid probability distribu-
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tion at each step in the encoding. Asymptotically, this gives an optimal
encoded length of Cm. Formally, we have

L(Cm) =
|Cm |̧

i=1

usgi Cm[i] + ϵ

usgi ✓ + usgi ✗ + 2ϵ
,

where usgi Cm[i] denotes how often the i-th code in Cm has been used
before, and ϵ with standard choice 0.5 is for additive smoothing.

To compute code lengths in Cv, we use the conditional empirical
probability of values. Let ui be the update rule we selected in Cr to
encode the i-th value in Cv. If no rule fires or we encoded an error
in Cm, ui falls back to all possible values in the domain of the target
variable. We formally define

L(Cv) = �
|Cv |̧

i=1

log
fr(Cv[i])°

jPui
fr(j)

,

where fr(Cv[i]) denotes how often value Cv[i] occurs in the data, and
we normalize this by the frequencies of all values j possible accord-
ing to the update rule ui. To encode numerical variables, we assume
a histogram-based discretization, by which we can compute all neces-
sary probabilities and code lengths.

Altogether, this gives us a lossless data encoding.

3.3.2 Model Encoding

To define the length of the model encoding L(M), we need to encode
the number of rules in the model and all conditions c and update
rules u in the model. Since the number of rules is unbounded, we use
the universal MDL encoding for natural numbers LN. Denoting the
number of modification rules in the model as |M|, which can be zero,
we then obtain the encoded length of the model as

L(M) = LN(|M|+ 1) +
¸

(c,u)PM

L(c) + L(u) .

To encode a condition c, we specify its type, which single variable
v P V is tested by c, and all constants used in the condition. Formally,
we define

L(c) = log |t=,�,¤,¥,Ñu|+ log |V|+
¸
αPc

L(α) .
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To encode the value α P dom v for a categorical variable v, we have

L(α) = log |dom v| ,

and for a real-valued α, we have LR(α).
To encode an update rule u on a variable v, we first specify the

type of u, which is one of v P tα, β, . . .u, v = α, v P [α, β], v = v + α,
v = v + [α, β], or v = α � v, for which we need log 6 bits. Then, we
encode which variable v P V is updated by u, and we encode the
constants in u the same way we do for conditions. Formally, we have

L(u) = log 6 + log |V|+
¸
αPu

L(α) .

This gives us the encoded length of the model L(M).

3.3.3 Formal Problem Definition

With this, we have all the ingredients to formally define our problem.

Minimal Modification Rules Problem Given an event log D with vari-
ables V, find an acyclic model of data modification rules M that minimizes
the total encoding cost L(D, M) = L(M) + L(D | M).

In practice, it is infeasible to solve this problem optimally due to the
potentially large number of acyclic models. To approximate this num-
ber by a lower bound, we consider the rule dependency graph of a model,
which is a directed acyclic graph with variables as nodes and their de-
pendencies induced by modification rules as edges. We give a simple
example of a rule dependency graph in Figure 3.3. Since each edge
requires at least one rule, there are at least as many models as rule de-
pendency graphs. According to Rodionov [127], the number of acyclic
graphs with n nodes and up to m edges is

A(n, m) =
ņ

i=1

(�1)i�1
(

n
i

) m̧

j=0

(
i(n� i)
m� j

)
A(n� i, j)

 ,

with A(1, �) := 1. Because A(n, m) grows exponentially in the number
of nodes n and the number of edges m [27, p. 1186], the number of
acyclic models grows exponentially in the number of variables |V| and
the number of modification rules in the model |M|.
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IF product = pants THEN vendor = A

IF product = bag THEN amount = 20

amount product vendor

Figure 3.3: [Rule dependency graph] We represent the variable dependen-
cies of the model (top) as a graph (bottom), where ovals repre-
sent variables, and arrows show whether and in which direction
a modification rule induces a dependency between variables.

Furthermore, our search space has no trivial structure such as sub-
modularity or monotonicity, which we could exploit to find an optimal
solution in feasible time. Hence, we resort to heuristics.

3.4 the moody algorithm

To efficiently discover good sets of data modification rules in practice,
we prune the exponentially sized search space with a quickly com-
putable estimate of our score that avoids repetitively passing the whole
event log, and we introduce a greedy search.

3.4.1 Estimating the MDL score

Computing the MDL score L(D, M) requires a pass over all events in
the event log, because we must check for each event, which of the rules
in the model fire. To avoid iterating over the event log each time we
evaluate adding a new rule to the model, we prune the large set of
potential candidate rules by a quickly computable estimate pL(D, M).
We optimistically assume that a newly generated rule is the only rule
in the model which predicts its target variable, such that we do not
need to update Cr or Cm.

By assuming independence between rules, we can independently
estimate the contribution of a single rule with condition c and update
rule u to L(Cv). We give the pseudocode for estimating L(Cv | c, u) as
Algorithm 4. First, we compute the support supp(c), i. e., at how many
events c fires (ln. 2). For each value j predicted by u, we compute
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Algorithm 4: Estimate L(Cv)

input : Rule (c, u)
output : pL(Cv | c, u)

1 pL(Cv | c, u)Ð 0;
2 b Ð supp(c);
3 forall j P u ordered by increasing fr(j) do
4 ∆b Ð mintb, fr(j)u;

5 pL(Cv | c, u)Ð pL(Cv | c, u)� ∆b � log fr(j)°
iPu fr(i) ;

6 b Ð b� ∆b;

7 return pL(Cv | c, u);

how many codes we must add to Cv, which is the minimum of the
remaining events to cover, b, and the frequency fr(j) of j (ln. 4). We
compute the length of all these codes and add it to our estimate (ln. 5).
At the end of each iteration, we update how many codes we still must
add to Cv (ln. 6).

While computing the support requires a pass over the dataset, we
only need a single pass when creating the candidate. By assuming
independence between rules, we do not need to update the estimated
code lengths of all candidate rules, every time we add another rule to
the model. Using pL(D, M) we can prune out rules with high encoding
costs, and avoid computing L(D, M) for those. Next, we use pL(D, M)

and L(D, M) to find good modification rules from an event log.

3.4.2 Finding Good Modification Rules

To reduce the search space, we let the domain experts control how
much time they want to invest in model search, and introduce two
hyperparameters for a greedy search. Instead of generating conditions
with all possible combinations of variables, signs and values, we only
generate the Nc most frequently observed combinations of variables
and values in the dataset for each sign of the set t=,�,¤,¥,Ñu. For
a given condition, instead of generating update rules with all possible
combinations of variables and values, we only generate the Nu most
frequent combinations of variables and values in the dataset for each
type of update rule.
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Algorithm 5: Moody
input : event log D with variables V
output : model of data modification rules M

1 M ÐH;
2 do
3 forall v P V do
4 Q Ð priority queue of rules r predicting v ordered bypL(D, MY tru);
5 r� ÐH;
6 while Q � H and pL(D, MY ttop(Q)u)   L(D, MY tr�u)

do
7 r1 Ð pop element from Q;
8 r� Ð arg minrPtr�,r1u L(D, MY tru);

9 if L(D, MY tr�u)   L(D, M) then
10 M Ð MY tr�u;

11 while M was extended in the last iteration;
12 return M;

We provide the pseudocode of our greedy search Moody as Algo-
rithm 5. Our search starts with an empty model (ln. 1). We iteratively
extend this model by modification rules for all target variables (ln. 3).
Since computing L(D, M) needs a pass over the whole dataset, we
manage the candidate rules in a priority queue sorted by an estimate
of our score pL(D, M) (ln. 4), such that we check promising rules early.
Next, we search the candidates from most promising to least promis-
ing and compute their actual encoded length L (ln. 6-8). To not waste
computation time for computing L on inferior rules, we perform this
search as long as the estimate pL is better than the best actual code
length L that we have seen so far (ln. 6). After evaluating the candi-
dates, we only add the best candidate to our model if it reduces the
total encoded length (ln. 9-10). Finally, we end when no candidate for
any target variable could improve our score (ln. 11) and return the
resulting model (ln. 12).

In the worst case, all generated candidates improve our MDL score.
Since the number of candidates grows linearly with Nc and Nu, the
outer loop of Moody grows linearly with Nc and Nu. In the worst case,
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our estimate does not prune any candidate, and we must compute our
score for all the O(Nc �Nu) candidates. Since we loop over all variables,
and computing our score requires a pass over the whole dataset, the
runtime complexity of Moody is O

(
(Nc � Nu)2 � |V| � |D|

)
.

3.5 related work

While the problem of finding succinct and interpretable data modifi-
cation rules from process event logs has been neglected so far, related
work on similar problems exists. Krismayer [74] discovers if-then rules
for data modification from software execution logs. However, he only
creates a large set of potentially redundant candidates, which must be
manually filtered by domain experts. Other work [47, 153] infers ex-
tended finite state machines from software execution logs. Since busi-
ness process event logs in contrast to software event logs are usually
noisy and contain nondeterministic behavior, these methods are not
applicable to our problem.

While process mining [1] focuses on business process event logs,
most of the work only models the flow of process activities, and little
work deals with additional data. Mannhardt et al. [90] and Mozafari
et al. [97] detect at which event data changes, but do not model condi-
tions or update values for these changes. Schönig et al. [132] find rules
which cover data modifications. However, since they rely on support
and confidence to filter a large set of candidate rules, their method
suffers from pattern explosion, i. e., it finds many redundant rules.

Rule-based prediction is closely related to our problem. Classy [119]
and its successor Turs [163] find classification rules by minimizing
an MDL score. Both methods, however, require defining features and
predicted variable beforehand, whereas we are interested in finding
relationships without any initial knowledge of the data. Similarly, sub-
group discovery algorithms such as SSD++ [118] find rules for differ-
ently behaving subgroups of a given dataset. None of these methods
are able to model sequential relationships present in event logs.

In contrast to the above, Moody finds compact and interpretable
rules for data modifications from process event logs, needs little data
for accurate discovery, and is robust to noise.
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3.6 experiments

In this section, we empirically evaluate Moody on both synthetic and
real-world data. When we defined our MDL score, we assumed dis-
cretization of numerical variables. In our prototype implementation,
we discretize numerical values into variable-width histograms. For ef-
ficiency, we determine the histogram boundaries by percentiles. We
use 50 bins in all our experiments.

We run all our experiments in a Docker-based environment on a
Linux server with an Intel® Xeon® Gold 6244 CPU. In all experiments,
we observe 16 GB of RAM suffice. As a simple baseline, we consider
the empty model M = H. In addition, we learn if-then-else rules using
the rule-based classifier Turs [163], and using the subgroup discovery
method SSD++ [118]. To ensure reproducibility of all our results, we
provide code and data in the supplementary material.

3.6.1 Synthetic Event Logs

To control data properties such as noise, we first experiment on syn-
thetic event logs, such that we know the generating ground-truth rules.
We randomly generate ten independent ground-truth models in our
modeling language, where each model contains five rules, two categor-
ical variables and two numerical variables. Since SSD++ cannot model
sequential dependencies v : α Ñ β, we only create models with con-
ditions v ¤ α, v ¥ α and v = α. From these ground-truth models, we
generate event logs with |D| = 2000 events. To test noise-robustness,
we add different amounts of noise, where we randomly swap values of
variables. 10% swap noise means that for each variable in the dataset,
we randomly swap 10% of its values.

Turs in contrast to SSD++ only discovers rules for categorical target
variables, and cannot predict numerical values. Therefore, we sepa-
rately evaluate on models predicting only categorical variables and on
models predicting only numerical variables. However, in both setups,
we generate conditions containing categorical and numerical variables.

choosing hyperparameters Such that the user can control run-
time by reducing the search space, we introduced hyperparameters Nc

and Nu when we proposed Moody. For efficiency, we only search for
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Figure 3.4: [Choosing Nc] Median F1 score on categorical variables (left) and
median RMSE on numerical variables (right) for different values
of Moody’s hyperparameter Nc for 10% and 20% swap noise in
the training set. Error bars show interquartile ranges.

the most compressing update rule given a condition and set Nu to
1. To evaluate the accuracy of a set of rules, we compute its median
F1 score on predicting categorical variables, and its median root mean
squared error (RMSE) in predicting numerical variables. We report the
influence of Nc on prediction accuracy in Figure 3.4. We see that the
prediction accuracy drops for only very small Nc, and is relatively con-
stant for larger values. This means, the conditions with the highest
support in the dataset tend to give the best compression and accuracy.
To have a safety margin on unknown data, we set Nc to 50.

results on categorical variables Next, we compare results
on synthetic data with different amounts of swap noise for Moody
against all baselines in Figure 3.5. We see in the left plot that Moody
achieves by a wide margin the highest F1 score on categorical vari-
ables for data with 0% and 10% noise. Up to 20% noise, Moody shows
good noise-robustness and still has the highest median F1 score. For
30% noise, the F1 score of Moody drops down to the F1 score of the
empty model. We note that 30% noise may sound low, but swapping
30% of the values for each variable in the dataset accumulates to a
much higher noise-ratio. Hence, Moody predicts well under reason-
able amounts of noise.

results on numerical variables We see similar results on
predicting values of numerical variables in the center plot of Figure 3.5.



44 discovering data modification rules

3

0 0.1 0.2 0.3

0.0

0.2

0.4
0.6

0.8

1.0

Noise proportion

Te
st

F 1
sc

or
e

0 0.1 0.2 0.3

0

10

20

30

5

15

25

Noise proportion

Te
st

R
M

SE

0 0.1 0.2 0.3

0

20

40

60

80

100

Noise proportion

N
o.

of
ru

le
te

rm
s

Moody Turs SSD++ empty model ground-truth model

Figure 3.5: [Moody predicts well under reasonable amounts of noise] Me-
dian F1 scores on categorical variables (left, higher is better), me-
dian root mean squared errors on numerical variables (center,
lower is better) and number of rule terms in the discovered models
(right, lower is less complex) at different noise levels for Moody,
SSD++ and Turs. Error bars indicate interquartile ranges.

Since Turs cannot predict numerical variables, we compare Moody to
SSD++ and the empty model. Moody shows by far the smallest test
root mean squared error (RMSE) for training data with up to 20%
noise. For 30% noise, Moody’s RMSE converges to the RMSE of the
empty model. We again note swapping 30% of the values for each
variable in the dataset accumulates to a much higher noise-ratio than
we expect in any real-world event log. Hence, Moody predicts well
under reasonable amounts of noise.

model complexity Not only does Moody give the best predic-
tion results under reasonable amounts of noise. It also discovers the
rule sets with the lowest total number of rule terms as we show in
the right plot of Figure 3.5. Both Turs and SSD++ find rule sets with
a significantly higher number of rule terms. We see Moody’s mod-
els have similar complexity compared to the ground-truth models for
data with low amounts of noise. If the noise level increases, Moody
converges to the empty model. This means, Moody is robust against
finding spurious rules on noisy data.

sample complexity To empirically evaluate sample complexity,
we compute F1 scores on the test set dependent on the number of
events in the training set. For a realistic setup, we add 10% swap noise
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Figure 3.6: [Moody shows low sample complexity and scales well] Median
test F1 score on categorical variables (left) and median runtime
(right) dependent on the number of training events for Moody,
Turs and SSD++. Error bars show interquartile ranges.

to all training sets. We report results for Moody, Turs, SSD++ and the
empty model in the left plot of Figure 3.6. We see Moody predicts
better the more training data is available, while all baselines do not
improve with more training data. Already with 500 training events,
Moody shows higher median F1 score than the baselines.

runtime We report wall-clock runtime for single-threaded execu-
tion dependent on the number of training events in the right plot of
Figure 3.6. As we expect by our theoretical runtime analysis, we see
that Moody scales well and shows a growth of runtime linear to the
number of training events. While SSD++ shows a constantly fast, al-
most zero runtime, Moody still finishes within reasonable time and is
significantly faster than Turs.

3.6.2 Real-World Event Logs

Next, we evaluate on two publicly available real-world event logs, for
which we give the base statistics in Table 3.1. The first one, Sepsis [89],
contains event traces from treating Sepsis patients in a Dutch hospital.
The second one, Traffic Fines [84], [90, p. 20] is an event log of handling
road-traffic fines by the police of an Italian city. To reduce runtime,
we randomly sample 20% of the original 150370 traces in the Traffic
Fines event log. Furthermore, we parallelize candidate generation and
candidate evaluation of Moody on twelve CPU cores.
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Data |D| ||D|| |Ω| |Vcat| |Vnum|

Sepsis 782 15214 18 25 7

Traffic Fines 30074 112245 11 4 5

Table 3.1: [Real-world event logs statistics] Number of traces |D|, number of
events ||D||, number of different activities |Ω|, number of categor-
ical variables |Vcat|, and number of categorical variables |Vnum| for
the Sepsis and Traffic Fines real-world datasets.

IF group = C THEN activity = ER Triage

IF group = E THEN activity = Release A

IF group = W THEN activity = Admission IC

IF group = P THEN activity = Admission IC

IF group = F THEN activity = Admission NC

IF group = O THEN activity = Admission NC

Figure 3.7: [Responsibility rules for the Sepsis log] Different groups in the
hospital are associated with different activities.

IF Leukocytes ¤ 4.7 THEN Infusion = True

IF Leukocytes ¤ 2.8 THEN Diagnose = GB

IF Leukocytes = 7.8 THEN Diagnose = AA

Figure 3.8: [Leukocytes rules for the Sepsis log] Lower values for leukocytes
are associated with certain diagnoses and infusions.

First, we look at the insight we gain from some exemplary rules we
find with Moody on these event logs. Then, we evaluate how well the
discovered rules generalize to unseen test data.

sepsis rules On the Sepsis dataset, Moody finds in total 82 rules
with an approximate runtime of two hours. 23 of these rules express a
correlation between the group attribute and the activity of an event, for
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IF amount ¤ 68.77 THEN points = 0.0

IF 143.00 ¤ amount THEN points P [0.0, 10.0]

IF 131.00 ¤ amount THEN points = 0.0

IF amount = 80.00 THEN points P [0.0, 2.0]

Figure 3.9: [Traffic Fines rules] Moody finds multiple relationships between
the fine amount and the number of points deducted from the of-
fender’s driving license.

which we show a subset in Figure 3.7. The rules indicate that certain
groups in the hospital are specialized in certain activities.

Furthermore, Moody finds rules, where leukocytes measurements
imply the diagnosis and the treatment of sepsis, as we show in Fig-
ure 3.8. These rules enable to ask targeted questions to domain experts
and thus are a valuable start to gain insight into this process.

traffic fines rules On the Traffic Fines dataset, Moody finds in
total 117 rules with an approximate runtime of 4.5 hours. While we
would expect that a higher fine amount correlates with a high number
of points deducted from the offender’s driving license, the rules con-
tradict this intuition, as we show in Figure 3.9. A closer look on the
dataset indeed confirms there is no monotonic relationship between
these two attributes. Discovering counter-intuitive but data-supported
rules like these gives valuable insight into the underlying process.

generalization Finally, we evaluate how well the rules discov-
ered by Moody generalize to unseen data. To this end, we split the
Traffic Fines event log into a training set and a test set with a distinct
20% of traces each. Then, we compare the F1 score respectively RMSE
on the training set and the test set for each rule, which Moody discov-
ers on the training set. We show results in Figure 3.10. As we see, most
of the rules have a low prediction error on both sets. The gap between
training and test performance is small, which means that Moody finds
well-generalizing rules.
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Figure 3.10: [Moody generalizes well] Train and test F1 score on categorical
variables (left) and train and test root mean squared error on
numerical variables (right) for each rule found by Moody on the
Traffic Fines event log.

3.7 discussion

In our experiments, Moody does not only discover simple and thus
interpretable rules to unveil the data modifications within a process. It
also finds rules that accurately predicts the data values, and is more
robust to sensible amounts of noise than all baselines.

Nonetheless, we think of multiple interesting research directions to
improve Moody. First, extending the modeling language of Moody
would allow understanding data modifications of very complex pro-
cesses. For example, this involves rules with complex conditions that
consist of many condition terms joined by (and) and (or). We see adapt-
ing our MDL score to such rules is relatively easy.

However, a more complex modeling language implies an even larger
search space, and thus we see the need to improve the runtime effi-
ciency of Moody. As in many MDL-based methods, the bottleneck of
Moody is discrete combinatorial search. Hence, we see an approach
for mining data modification rules based on differentiable pattern set
mining [46] as a promising future direction.

Furthermore, we would like to put a stronger focus on causality of
the discovered rules. To this end, we may use well-defined measures
for the causal effect of a rule [23]. Alternatively, we would like to ex-
amine the link between causality and two-part MDL codes in terms of
algorithmic independence [93], and how to use this during search for
causal data modification rules.
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Last but not least, we see many interesting applications for Moody.
As the most compressing rules found by Moody define normal be-
havior, it would be interesting to use them for anomaly detection [98].
Since the behavior of real-world processes usually changes over time,
we see Moody could help to identify and understand concept drift [21,
131]. Finally, predicting data attributes with Moody may be used in
the simulation of process behavior for process optimization [57].

3.8 conclusion

We studied the hitherto largely neglected problem of discovering ac-
curate yet concise and interpretable rules how event attribute data
changes throughout a business process. We formalized the problem in
terms of the Minimum Description Length (MDL) principle, by which
we choose the model with the best lossless description of the data. To
efficiently search for rule models in practice, we proposed our greedy
algorithm Moody. Through extensive experiments on both synthetic
and real-world data, we showed Moody indeed discovers succinct and
interpretable if-then rules, needs little data for accurate discovery, is
robust to sensible amounts of noise, and thus gives valuable insight
into data modifications.

Besides applying Moody on downstream tasks such as anomaly de-
tection, concept drift detection and simulation, future work involves
extending the rule language of Moody to model more complex condi-
tions for data changes, and runtime optimizations to enable search for
such complex rules in feasible time.
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P R E D I C T I N G E V E N T S E Q U E N C E S

In the previous chapters, Proseqo and Prosimple provided us with an
initial understanding of events and potential behaviors within a pro-
cess, while Moody revealed how data changes throughout that process.
Now, we transition from comprehension to prediction as we delve into
the challenge of predicting an event sequence. Specifically, we are in-
terested in learning easily interpretable models capable of accurately
generating a sequence based on a given attribute vector.

4.1 introduction

Real-world event sequences are often accompanied by additional meta-
data. For example, event logs of manufacturing processes contain se-
quences of production steps with product properties and attributes by
the customer’s order. Usually, there is a relationship between these at-
tributes and the observed event sequence, like certain product groups
require different manufacturing activities. To gain a better understand-
ing of the underlying data generating process, we are often interested
in uncovering this mechanism.

In a predictive scenario, for example, production planners want to
know the event sequence for a given product in advance, such that they
can avoid bottlenecks and optimize the process flow. Rules in produc-
tion planning systems are often hand-crafted and do not necessarily
display the true complexity of the real process. Existing process mod-
els tend to show idealized, high-level behavior and thus give a limited
picture of the real process [1, p. 30].

We are not the first to study sequence prediction based on metadata.
Existing neural network approaches [24, 105, 150] can achieve high ac-
curacy given sufficient training data and hyperparameter tuning; how-

This chapter is based on [159]: Boris Wiegand, Dietrich Klakow, and Jilles Vreeken.
“Discovering Interpretable Data-to-Sequence Generators.” In: Proceedings of the 36th
AAAI Conference on Artificial Intelligence (AAAI), Virtual Event. 2022, pp. 4237–4244.
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ever, the resulting models are inherently difficult to interpret. As the
key applications, such as optimizing planning, require interpretation,
these solutions do not suffice in practice. Surprisingly little work re-
sults in interpretable models being accurate and robust to noise.

We take a different approach. We propose to model the event se-
quences as a directed graph with classification rules on the metadata
to determine which paths to follow. Such an event-flow graph should fit
the data well, but at the same time have a low model complexity to
increase interpretability by humans. Therefore, we formalize the prob-
lem in terms of the Minimum Description Length (MDL) principle, by
which we identify the best model as the one giving the shortest lossless
description of the data.

Due to NP-hardness of the resulting optimization problem, we pro-
pose the greedy method ConSequence, which first discovers a di-
rected graph for a given set of event sequences and then finds clas-
sification rules on the metadata for nodes with multiple successors.
While in practice any rule-based classifier can be plugged in, we pro-
pose the algorithm GERD, which uses a reliable rule effect estimator
to find compact and meaningful rules. Through extensive experiments
including a case study, we show ConSequence discovers compact, in-
terpretable and accurate models for the generation of event sequences
from data. Our method has low sample complexity, works well under
noise and deals with different real-world data.

Our main contributions are
(a) formulate the problem of interpretable yet accurate prediction of

event sequences from metadata with MDL,
(b) an efficient heuristic to discover event-flow graphs with classifi-

cation rules for event sequence prediction
(c) an extensive empirical evaluation,
(d) make all code and data publicly available.1

Next, we introduce the notation of our event-flow graph model in
Section 4.2. In Section 4.3, we formalize the problem of discovering an
event-flow graph in terms of MDL. Afterward, we propose our algo-
rithms ConSequence and GERD in Section 4.4. In Section 4.5, we give
an overview of related work, before we empirically evaluate ConSe-
quence and GERD in Section 4.6. We discuss potential future work in
Section 4.7 and conclude this chapter in Section 4.8.

1 https://eda.rg.cispa.io/prj/consequence/

https://eda.rg.cispa.io/prj/consequence/
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4.2 notation for event-flow graphs

Before we formalize the problem, we introduce notation and concepts
used in the remainder of this chapter. As input data, we consider
datasets of event sequences with meta data. Such a dataset D consists
of n instances (x, y), where x is a vector with meta data, and y is a fi-
nite event sequence as defined in Chapter 2. We write X to refer to all
meta data vectors, and Y to refer to all event sequences in the dataset.

We propose to model the prediction of event sequences from meta-
data with event-flow graphs. An event-flow graph M = (G, R) consists
of a directed graph G and a rule relation R. As any directed graph, G is
defined by a tuple (V, E), where the nodes correspond to events from
Ω. Multiple nodes are allowed to refer to the same event. In addition,
a valid event-flow graph consists of a source node vs and a sink node
ve, which do not refer to any event. We use a path from vs to ve to
represent an event sequence y.

To model the relationship between metadata and event sequence, we
assign classification rules to nodes. At a given node v, such a rule pre-
dicts the next node to follow. Formally, we denote a rule by γ Ñ u,
where γ : X Ñ tJ,Ku is the condition, that for a given metadata vector
x either evaluates to true (J) or false (K), and u P succ(v) is the conse-
quence. A condition consists of multiple terms that we stack together
using and (^) and or (_), e. g., γ = (θ1^ θ2)_ θ3. A condition term θ al-
ways consists of an attribute a P A, an operator from the set t¡,¤,=u
and a value for comparison q P dom a. We combine multiple rules to
decision lists [125], which are ordered rule sets, where the classification
output is determined by the first firing rule, i. e., for which γ(x) = J.

Given an event-flow graph M, we describe or cover a sequence y P
Ω� by traversing M from vs to ve. Since real-world processes and data
usually contain noise, we allow errors while traversing the graph to
enable succinct models. To reconstruct a sequence from a given cover,
we read instructional codes from the code stream C, which together
with the rules in the graph determine the path through M and correct
missed or redundant events. Conceptually, we split C into the model
stream Cm, which encodes how to traverse the model, and the disam-
biguation stream Cd, which encodes ambiguous choices of events.

For better illustration, we give a toy example for the cover of a se-
quence using a simple event-flow graph in Figure 4.1. Starting at the
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Data: x: (color = red, size = 1.4) y: a d b c

Model:

vs
a

c
b

c

e
b ve

[color = red Ñ a,J Ñ c]

[size ¡ 1.2 Ñ c,J Ñ e] Cover:

Cm: � ? � � ñ �
Cd: d b

Figure 4.1: [Cover] Toy example for a sequence y with metadata x and a cover
of the sequence using a simple event-flow graph.

source node vs, we read the first code from Cm. The � tells us to
move one step forward in the model and emit the next event we arrive
at. Since the color attribute of our exemplary data x has the value red,
the rule at vs only allows us to go to a, which we then emit. We read
the next code from Cm, ? , which means the next event is not captured
by the model. To disambiguate the choice between the events in Ω, we
read from Cd and get the code for d. The next code in Cm is � , so
we go forward in the model and emit an event. From a, we can either
go to b or to c, and this time, there is no rule telling us, which path to
follow. Therefore, we read again from Cd and go to b, which we also
emit. We continue by reading � from Cm, we evaluate the rule on the
size attribute and go to and emit c. The next code in Cm, ñ , tells us
to go forward, but not to emit the event, i. e., the event in the model
is redundant. From c, we can only go to b. Finally, we read the last �
and arrive at ve, which means we have reconstructed y without loss.

We now take this concept of sequence cover to define an MDL score
that will formalize how a good event-flow graph for a given dataset
should look like.

4.3 mdl for event-flow graphs

A good event-flow graph should fit the data well and at the same time
avoid unnecessary complexity. We use the MDL principle to formalize
this requirement, i. e., we are looking for a model with low overall
encoding cost. First, we define how to compute the length of the data
encoding using the cover concept as introduced in the former section.
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4.3.1 Data Encoding

Let Y be a given set of sequences, X the corresponding attribute vectors
and M an event-flow graph. Then, the encoded length of the data is

L(Y | M, X) = L(Cm) + L(Cd) ,

i. e., we have to compute the encoded length of the model stream Cm

and the disambiguation stream Cd in the cover.
Since we do not know the distribution of the codes in Cm and Cd

beforehand, we use prequential codes (see Section 2.3). We condition
code lengths on the current node in the event-flow graph while cov-
ering a sequence to make maximal use of available information, and
to avoid that local changes in the graph change encoding lengths at
all nodes. For the model stream Cm, which contains the codes � , ñ
and ? , this results in an encoded length of

L(Cm) = �
|Cm |̧

i=1

log
usgi(Cm[i] | vi) + ϵ°

usgi( � | vi) + ϵ
,

where usgi(Cm[i] | vi) denotes how often the i-th code in Cm has been
used before at the current node vi, and ϵ with standard choice 0.5 is
for additive smoothing.

The codes in Cd refer to events in Ω. Which codes are possible at one
point of time depends on the last code in Cm. If we go forward in the
model after reading a � or ñ code, only events of the directly follow-
ing nodes in the graph are possible, whereas reading a ? enables all
events in Ω. Therefore, we conceptually split Cd into three individual
streams, with Cc being the stream for correctly modeled events after
reading � , Cr being the stream for redundant events after reading
ñ and Cx for missed events after reading ? . Then, all three streams
follow the same computation scheme as Cm. For example,

L(Cx) = �
|Cx |̧

i=1

log
usgi(Cx[i] | vi) + ϵ°

usgi( � | vi) + ϵ
.

This gives us a lossless encoding of the data using an event-flow graph.
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4.3.2 Model Encoding

Since we are using prequential codes for the data encoding, the com-
putation for the encoded length of an event-flow graph L(M) is quite
simple. Intuitively, a graph with more nodes, more edges and more
rules should have a higher encoding length. Formally, we have

L(M) = LN(|V|+ 1) + |V| � log |Ω|+ log(|V|2 + 1)

+

(
|V|2

|E|

)
+
¸
vPV

L(v) ,

where we first encode the number of nodes in the graph, then the
events of the nodes, the number and layout of the edges and finally
the rules at each node. We encode the number of edges with 0 as a
lower bound and |V|2 as an upper bound. For the edge layout, we
use a data-to-model code [87], which is an index over a canonically
ordered set of all directed graphs of |V| nodes and |E| edges.

If a node has less than two successors, no rule to decide which path
to follow is necessary, and L(v) = 0. Otherwise, we compute the en-
coded length of the rules at node v with

L(v) = LN(|v|) +
¸

γ,cPv
L(γ) + log deg+(v) ,

where we first encode the number of rules and then the conditions
and consequences. The encoded length of a condition is computed
depending on its type. For a simple term θ that makes a comparison
on attribute a with operator o, we have

L(θ) = log |tor, and, termu|+ log |A|+ L(o | a) + log |dom a| ,

i. e., we encode among the three possible options that we have a simple
term, and then specify an attribute, an operator and a value for com-
parison. The encoded length of the operator depends on the chosen
attribute: For categorical attributes, the only possible operator in our
rule language is (=), i. e., L(o | a) = 0, whereas for numerical attributes,
we have to distinguish between (¡) and (¤), i. e., L(o | a) = log 2 = 1.
Like in many rule mining or decision tree algorithms, we assume a dis-
cretization grid for cut points in conditions [41], such that we can use
log |dom a| to compute the encoded length for both categorical and
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numerical attributes. If a condition consists of multiple subconditions
either joined with (_) or (^), we compute the encoded length by

L^(γ) = L_(γ) = log |tor, and, termu|+ LN(|γ|) +
|γ|̧

i=1

L(γi) ,

where we again first choose the type of the term, and then specify the
number of subconditions, before we recursively encode each subcondi-
tion, which is either a simple term or again consists of subconditions.

Altogether, this gives us a lossless encoding of an event-flow graph.

4.3.3 Formal Problem Definition

We now have all ingredients to formally define our sequence predic-
tion from metadata problem.

Minimal Event-Flow Graph Problem Given a dataset with attributes
and event sequences (A, X, Y), find the rule-containing event-flow graph M
and cover C, that minimizes the total encoded cost L(M) + L(Y | M, X).

Solving this problem optimally is infeasible in practice. Just finding the
optimal cover for a given sequence and event-flow graph is already NP-
complete. This is due to the equivalence of event-flow graphs and 1-
safe nets, for which computing the optimal alignment with a sequence
has been proven as NP-complete, even if the model is acyclic [5, 25].

Furthermore, we do not know the event-flow graph to begin with.
The search space for event-flow-graphs is large, because event-flow
graphs are directed acyclic graphs and their potential number grows
super-exponentially with the number of nodes [126]. Finally, at every
branch in the model, we need to mine a rule list that predicts which
path to follow. Mining optimal decision trees or rule sets with minimal
model complexity, however, is also NP-complete [8, 59].

Since the search space of the problem does not show any trivially ex-
ploitable structure, such as monotonicity or submodularity, we resort
to heuristics.

4.4 algorithm

To discover good event-flow graphs in practice, we split the Minimal
Event-Flow Graph Problem into multiple parts, i. e., computing a cover,
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Algorithm 6: Cover an Event Sequence
input : event sequence y, event-flow graph M, beam width w,

heuristic h
output : a cover for y using M

1 Q Ð queue containing the empty cover;
2 while true do
3 C Ð pop top element from Q;
4 if C covers both y and M then
5 return C

6 foreach possible extension C1 to C do
7 c Ð number of ? and ñ in Cm;
8 insert C1 into Q using priority c + h(C1);

9 Q Ð the w best candidates in Q;

discovering an event-flow graph, and finding classification rules for
path prediction. Since each part is already hard to solve by itself, we
propose greedy solutions to each of the subproblems separately. We
discuss the algorithms for these in turn.

4.4.1 Computation of a Cover

We start by finding a good cover for a given model M, i. e., a cover C
with low L(Y | M, X). To compute a cover with near-optimal encoding
length, we use the intuition that the better a model fits the data, the
shorter the encoded length of the cover should be. This is equivalent
to minimizing the number of ? and ñ codes in Cm. This formulation
of the problem is equivalent to finding an optimal alignment between
a Petri net and a sequence, where the standard approach to solve this
problem optimally is to apply an A* search strategy [5].

We follow this approach, for which we give the pseudocode as Algo-
rithm 6. We start with an empty cover, which we iteratively extend, un-
til we find a complete cover, i. e., after decoding we have reconstructed
the whole sequence and have arrived at ve. The candidates are ranked
by their cost, i. e., the number of errors the model makes in terms of
? and ñ codes in the cover, plus a heuristic h, which is an estimate

of the cost for making the candidate a complete cover. If the heuristic
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function h is admissible, i. e., a lower bound of the true cost, and con-
sistent, i. e., non-increasing for following states, A* finds the optimal
solution [55]. One admissible and consistent heuristic for our problem
is the number of uncovered events in the sequence for which there is
no corresponding node reachable [5, p. 66].

Unfortunately, always having the guarantee to find the optimum
comes quite with a cost of runtime. Therefore, to cover a sequence in
feasible runtime, we modify the A* search in a beam search fashion,
where we only keep the w best candidates in each iteration.

The runtime of computing a cover depends on the branching factor
b, which is the average number of expansions for nodes during search,
and on the depth d of the search tree. Without limiting the capacity
of the candidate queue, A* has worst-case runtime complexity O(bd).
With the beam width parameter w, the number of expanded nodes in
the worst-case scenario is

°w�1
i=0 bi + wb(d + 1� w), i. e., the runtime

grows linearly with depth d and exponentially with beam width w.
The branching factor b strongly depends on the average degree in the
event-flow graph. When expanding an existing partial cover, we can
go to any successor of the current node in the event-flow graph using
a � or a ñ , or we can have a ? without moving in the model. This
leads to the upper bound b ¤ 2 |E|

|V| + 1.
We find a complete cover by the latest after as many ? codes as

events in the sequence, and as many ñ codes as the length of the
shortest path from vs to ve. In other words, we can cover sequence and
model independently of each other, which gives an upper bound on
d. Since, in any sensible event-flow graph, the shortest path from vs

to ve is not longer than the longest sequence in the dataset, the upper
bound is d ¤ 2 maxyPY |y|.

4.4.2 Discovering an Event-Flow Graph Without Rules

With the cover algorithm, we can now compute our optimization target
L(M, Y, X) = L(M) + L(Y | M, X). To reduce the search space, we first
try to find a compact event-flow graph without rules. One can interpret
this as an event-flow graph with optimal rules emulated by the cover
algorithm. After having an event-flow graph, we can learn rules that
try to reproduce the routing choices of the cover.
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Algorithm 7: Discover Event-Flow Graph
input : event sequences Y
output : event-flow graph M

1 M Ð empty graph;
2 foreach unique sequence y P Y in descending frequency do
3 M1 Ð MY y;
4 if L(M1, Y)   L(M, Y) then
5 M Ð M1

6 return M

To find a good event-flow graph without rules for a given dataset,
we propose a greedy bottom-up search, for which we provide the pseu-
docode as Algorithm 7. We start with an empty graph, which just con-
sists of source vs and sink ve. Iteratively, we add paths to the model
corresponding to the most frequent sequences in the dataset. We only
keep paths, that improve the objective score.

In the worst-case, every sequence in Y is unique, which means that
we need n = |Y| iterations. In each iteration, we compute the cover to
find extension points in the model for an uncovered sequence y, and to
compute the total encoded length to decide whether we keep or reject
the extension. This makes the cover algorithm the main bottleneck in
the discovery algorithm.

4.4.3 Finding Classification Rules for Path Prediction

After having found an event-flow graph and a cover, we now discover
rules to reproduce the routing decisions by the cover. At each node
with more than one successor, we learn a rule-based classifier, that pre-
dicts the next node for given metadata. The learning algorithm should
produce rules, that fit the data well, which leads to small L(Y | M, X),
because the rules reduce entropy and thus code lengths in the code
stream of the cover. At the same time the rules should not get too
complex, which would result in high L(M).

One should notice that each node contains its own classification
dataset. If this node corresponds to infrequent yet relevant behavior,
the number of instances in the dataset will be low. To deal with datasets
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containing many attributes, we need a statistically robust learner that
needs little data to infer meaningful, well-generalizing rules.

To this end, we try to find rules with a high effect e on predicting the
next event node u P V, e(γ, u) = P(u | γ)� P(u | γ̄). A positive effect
means that setting attributes x such that γ = J increases chances to
observe u as the next node. The effect is robustly estimated by

ê(γ, u) =
nγ,u + 1
nγ + 2

�
nγ̄,u + 1
nγ̄ + 2

�
β

2
a

nγ + 2
�

β

2
a

nγ̄ + 2
,

where nγ,u and nγ̄,u are counts how often node u is observed as next
node, if condition γ evaluates to J or K, nγ and nγ̄ are counts how
often condition γ in total evaluates to J or K, and β is a confidence
parameter. Higher values for β require more evidence to compute a
positive effect and increase robustness to outliers. [23]

Maximizing the effect e minimizes our MDL defined objective score:
Applying the logarithm for an information theoretic interpretation of
probability distributions, one can transform P(c | γ) � P(c | γ̄) into
� log (P(c, γ)� P(c)P(γ))� log P(γ). This means, rules that have high
predictive power on the next node in the event-flow graph, decrease
L(Y | M, X). The term � log P(γ) can be seen as a regularizer for
infrequent rules, which has a positive effect on minimizing L(M).

Since mining rules with minimal model complexity is NP-complete
[8, 59], we propose a greedy approach for finding rules with maximal
effect. We call our method greedy effective rule discovery (GERD) and
give its pseudocode as Algorithm 8. Stating with an empty rule list, we
iteratively add rules until we have covered all instances in the dataset.
To greedily find a rule with high effect, we first look at rules with one
term (ln. 3) and only keep the rule with the highest effect (ln. 4). If
this rule does not have a positive effect, we replace it with the default
rule (ln. 6), which is a rule that always fires and predicts the node
with the highest support. Otherwise, we try to extend the rule with
one additional term using (^) and (_), such that the effect of the rule
increases (ln. 8-11). If this is successful, we again try to extend the
rule, else we append the rule to the list of found rules. We repeat this
process until the list of rules covers all instances in the dataset.

Computing the effect of a rule needs a pass over all n instances.
Since at least one instance is covered in every iteration, the outer loop
is called at most n times. Finding a rule with one term respectively
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Algorithm 8: Rule Discovery (GERD)
input : attribute vectors X, label vector z, confidence β

output : a list of rules R
1 R Ð [ ];
2 while |X| ¡ 0 do
3 R1 Ð possible rules with one term;
4 r� Ð arg maxrPR1 ê(r, X, z, β);
5 if ê(r�, X, z, β) ¤ 0 then
6 r� Ð default rule;

7 else
8 repeat
9 R1 Ð possible one term extensions of r�;
10 r� Ð arg maxrPR1Ytr�u ê(r, X, z, β);
11 until r� remains unchanged;

12 append r� to R;
13 remove instances from X, z covered by r�;

14 return R

extending a rule with one term scales linearly in the number of at-
tributes |A|. Since we require an improvement over ê in every iteration
of the inner loop, the number of newly covered instances by a rule is
at least as high as the number of inner iterations. In other words, each
additional inner iteration reduces the number of outer iterations. This
leads to a worst-case runtime complexity of O(n2 � |A|).

4.5 related work

Event sequence prediction is a broadly studied topic. Much work deals
with predicting the next event in a sequence based on past events, with-
out considering additional metadata. This includes association rule
mining [128], Markov models [14] and pattern mining [162].

Recent work using metadata to predict sequences is mostly based on
neural networks. The approaches mainly differ in their chosen feature
encoding and their concrete network architecture. Proposed methods
include Long short-term memory (LSTM) networks [58] with one-hot
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encoding [149], LSTMs with embedding techniques [24], convolutional
neural networks [105] and adversarial LSTMs [150].

While some research applies approaches from explainable artificial
intelligence [95] to neural networks for business process prediction,
only a limited amount of work focuses on more accessible models.
One recent exception is the data-aware transition system DATS [113]:
The observed prefixes of event sequences are used to create a state
machine. Which prefixes are mapped to which state is determined by
a state abstraction function. Examples are the list function, where each
unique prefix is mapped to its own state, and the set function where
prefixes with the same set of events are mapped to the same state.
For predicting future events given an attribute vector, a Naïve Bayes
classifier estimates the transition probabilities between states and the
path with the highest probability is predicted.

Inferring state machines from event data is also studied in software
engineering with the goal of anomaly detection and test case genera-
tion but not sequence prediction [88, 154]. Model complexity and inter-
pretability play a minor role in these approaches and software traces
are usually much less noisy than business process traces.

Data-to-text generation deals with the creation of text, which can
be seen as a kind of event sequence, from data. While much of today’s
work is based on neural networks, traditional approaches generate text
by handcrafted rule-based templates for sentences [50]. First work tries
to reduce the manual effort in creating those templates, but human
supervision is still required [80].

Outstanding from the above, ConSequence enables sequence gen-
eration and prediction from data with an accessible white-box model,
while requiring no handcrafted templates or rules and with minimal
need for hyperparameter tuning.

4.6 experiments

In this section, we evaluate ConSequence on both synthetic and real-
world datasets. We measure accuracy of sequence prediction by Lev-
enshtein similarity [85] between actual and predicted sequence. Let
ρ(y1, y2) be the minimal number of deletions, insertions and replace-
ments needed to transform sequence y1 into sequence y2. Normalized
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Levenshtein similarity is defined by NLS = 1� ρ(y1,y2)
max(|y1|,|y2|)

, i. e., NLS P
[0, 1] and y1 = y2 Ñ NLS = 1.

We run all experiments on a server with two Intel(R) Xeon(R) Silver
4110 CPUs, 128 GB of RAM and two NVIDIA Tesla P100 GPUs. Ex-
cept for LSTM, which uses the GPU, we report wall-clock runtimes for
single-thread execution.

4.6.1 Baseline Methods

We compare ConSequence to various baselines that show different
strengths and weaknesses on our task. First, we compare to a data-
to-sequence LSTM. To prevent overfitting, we use dropout and early-
stopping. We tune the size of the network, the batch size and the
amount of dropout by conducting five runs with a random search on
the hyperparameter values. We report results for the model with the
highest accuracy on a hold-out validation set.

To show that the order of events matters, i. e., it is not sufficient to
just predict occurrence and frequency of events, we also compare to
the rule-based multilabel classificator Boomer [120]. To get a simple
baseline for ordering the predicted multiset of events, we put events to
positions in the sequence, where we have seen them most frequently
in the training set. Formally, we solve the linear program

maximize
ņ

i

ņ

j

cijxij

subject to
ņ

i

xij = 1, j = 1, . . . , n

ņ

j

xij = 1, i = 1, . . . , n

xij P t0, 1u ,

where n is the number of events in the multiset, cij is the number of
times event i occurs at position j, xij = 1 means event i is set to position
j, and the constraints ensure, that all positions in the sequence will be
filled and no event will be set to more than one position.

Since Boomer uses ensemble learning to infer the set of rules, its
focus is on prediction accuracy and less on model complexity. Boomer
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has a hyperparameter to prune individual rules, which we activate,
such that single rules do not have unnecessarily many condition terms.
We additionally post-process the rule set by removing the rules with
the lowest weight in the ensemble until prediction accuracy on a held-
out validation set decreases.

As additional baselines, we use KNN that predicts the event se-
quence with a k-nearest neighbor classifier (k = 5), and DATS as de-
scribed in the related work section. To build the transition system for
DATS, we use list state abstraction, since it shows best NLS in our ex-
periment setting, which matches the results in the original paper [113].
When preparing the experiments, we observed that DATS struggles
with complex event logs, which results in large and overfitting tran-
sition systems. Therefore, we preprocess the data before building the
transition system: Let y� be the most frequent sequence in the dataset
and supp y denote the support or absolute frequency of y. Then, for a
given threshold α P [0, 1], we only keep sequences in the dataset with
supp y

supp y� ¥ α. In our experiments, we try α P t0, 0.1, 0.2, 0.3, 0.4, 0.5u and
report results for the run with highest NLS.

As our last baseline, PosCl, we use GERD to predict events for each
possible position in the sequence. This means, if the longest sequence
in the training set has length 100, then we learn 100 independent classi-
fiers. The length of the predicted sequence is determined by the lowest
positioned classifier that predicts end-of-sequence.

4.6.2 Synthetic Data

First, we evaluate on synthetic data, such that we know and can control
the ground-truth model of the data.

Generation of Synthetic Data and Models

To generate one synthetic dataset and ground-truth model, we first
generate categorical and numerical attributes in the dataset. For each
metadata instance in the dataset, we sample a value for each of its
categorical attributes from a discrete uniform distribution over a given
number of possible categories. For numerical attributes, we sample
from a uniform distribution over the interval [0, 1].
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In the second step, we generate an event-flow graph as ground-truth
model. To this end, we generate a list of nested if-then-rules, e. g.,

IF num-feature-3 ¡ 0.043 THEN

Append 7, 19

ELSE

Append 2, 0, 6

IF cat-feature-1 = 3 THEN

Append 1, 11, 17

ELSE

IF cat-feature-2 = 2 THEN

Append 11

Append 1 ,

which we then convert to an event-flow graph with branching rules.
Finally, we use the generated ground-truth model to predict sequences
for the generated metadata instances.

Our implementation of this synthetic data generator allows to adapt
many hyperparameters to control complexity of both the dataset and
ground-truth model. Examples include the number of instances, the
number of categorical and numerical attributes, the number of cate-
gories per categorical attribute, and the length and depth of the if-then-
rules. For further details, we refer to our code and documentation.

Results on Synthetic Data

In our first experiment, we test noise-robustness. We independently
generate ten synthetic datasets and divide each of them into a training
set with 8000 instances and a test set with 2000 instances. Then, we
inject noise into the training data. We consider destructive noise, where
we remove each event in the dataset with some probability p, and
additive noise, where at each position in the dataset, we add a random
event from Ω with probability p. In Figure 4.2, we show the average
NLS on the test set for various sequence predictors dependent on the
amount of noise injected into the training set. We see ConSequence
performs well under realistic amounts of noise, especially being more
robust to noise than its competitors.
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Figure 4.2: [ConSequence is noise-robust] NLS (higher is better) on test set
dependent on the amount of destructive (left) and additive noise
in the training set (right).
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Figure 4.3: [GERD is fast and produces small models] Runtime in seconds
(left) and model complexity in number of condition terms (right)
for GERD, CAntMinerPB and Classy on synthetic data with a
varying number of attributes.

While in theory, we allow any classifier for the prediction of succes-
sors in the event-flow graph, we propose using GERD for good reason.
In Figure 4.3, we compare the use of ConSequence with three differ-
ent rule-based classifiers. Besides GERD, we examine CAntMinerPB
[103], which uses an ant colony optimization to mine a decision list
with low prediction error, and Classy [119], which uses MDL to se-
lect a set of classification rules. GERD produces models with a lower
number of decision terms, which are thus easier to be understood by
humans. Furthermore, due to its scaling behavior, it deals with a larger
number of attributes in a lower amount of time than its competitors.
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Data n nu avg |y| |Ω| |A|

Production 255 209 13 57 2

Sepsis 782 733 19 18 23

Rolling Mill 49233 1639 39 270 175

Software 500 200 151 24 12

Table 4.1: [Real-world dataset statistics] Number of sequences n, number of
unique sequences nu, average sequence length |y|, event alphabet
size |Ω|, and number of attributes |A| for four real-world datasets.

Data ConSequence LSTM DATS Boomer PosCl

Production 24s 82s 1s 3s 4s

Sepsis 2.5m 6m 5s 13s 16s

Rolling Mill 5h 5h 13m 2.5h 14d

Software 16m 6m 2s 5s 37s

Table 4.2: [Runtimes] Mean runtime on the training set of four real-world
datasets for ConSequence, LSTM, DATS, Boomer and PosCl.

4.6.3 Real-World Data

To show ConSequence performs well in practice, we now evaluate
on four real-world datasets with different properties as summarized
in Table 4.1. Production [86] is a collection of event sequences from a
production process, which contains only 255 relatively short sequen-
ces, from which 209 are unique. Sepsis [89] contains trajectories of
Sepsis patients in a Dutch hospital. We filter out incomplete sequen-
ces and only consider attributes which are available at the beginning
of a sequence. Rolling Mill is a manufacturing event log of a German
steel producer. It stands out with its high number of instances, unique
events and attributes. Software, the last dataset, is a profiling log of the
Java program density-converter [40] that takes image files as input and
converts them to different formats and densities, such that they can be
used on different target platforms like Android or iOS. The events in
this dataset refer to classes called during program execution, and the
attributes refer to command line arguments.
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Figure 4.4: [ConSequence predicts well] Mean normalized Levenshtein sim-
ilarity (higher is better) on the test set of four real-world datasets
for ten independent runs on a random 80% train-test-split.

We run Boomer, PosCl, DATS, LSTM and ConSequence ten times
on these datasets with a random train-test-split of 80%. We give an
overview of the runtimes of all competitors for discovery on the train-
ing set in Table 4.2, except for KNN, which has no training time.
While ConSequence is not the fastest, it still runs within a reasonable
amount of time. In particular, its single-thread runtime is compara-
ble to training an LSTM. Since we learn a list of classification rules at
each branch in the event-flow graph, we can trivially parallelize Con-
Sequence to reduce the overall runtime.

To evaluate accuracy of the predicted sequences, we report NLS on
the testset of all methods in Figure 4.4. ConSequence achieves the
highest NLS on the testset for datasets with few instances, and es-
pecially outperforms other methods on the Software dataset with a
large average sequence length. As expected, the black-box LSTM per-
forms well with a large training set, which is only available for the
Rolling Mill data, while ConSequence still beats the other white-box
approaches by a large margin.

Next, we evaluate the model complexity of all white-box methods.
Since both ConSequence and DATS produce graph-based models of
the event sequences, we count the number of nodes to measure model
complexity, and show results in the left plot of Figure 4.5. ConSe-
quence produces graphs with fewer nodes and thus better under-
standable models on the Production, Sepsis and Rolling Mill dataset.
On the Software dataset, ConSequence outputs a significantly larger
graph. This complexity, however, is justified by the significantly higher
NLS of ConSequence on this dataset compared to DATS.
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Figure 4.5: [ConSequence discovers simple models] Number of nodes in the
event-flow graph of ConSequence versus number of nodes in the
transition system of DATS discovered on four real-world datasets
(left, lower is less complex) and number of conditition terms in the
rules discovered on four real-world datasets for ConSequence,
Boomer and PosCl (right, lower is less complex).
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Figure 4.6: [ConSequence has low sample complexity and scales linearly]
Normalized Levenshtein similarity on the test set (left, higher is
better) and training runtime in minutes (right) depending on the
number of training instances in the Rolling Mill dataset.

Since ConSequence, Boomer and PosCl produce rule-based mod-
els of the event sequences, we count the number of condition terms in
the rules to measure model complexity, and show results in the right
plot of Figure 4.5. We see the models by ConSequence generally have
less condition terms than found by Boomer and PosCl.

To empirically evaluate sample complexity, we report how the size of
the training set impacts the training time and the NLS on the test set in
Figure 4.6. ConSequence already achieves its best performance with
1000 training instances in the Rolling Mill dataset. Although there are
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Figure 4.7: [The cover algorithm has low sensitivity to the beam width pa-
rameter] Normalized Levenshtein similarity on the testset (left)
and runtime (right) for the cover algorithm on 1000 instances of
the Rolling Mill dataset with varying beam width parameter w.

certainly faster methods such as DATS, ConSequence shows a linear
scaling behavior regarding the number of instances. Together with the
low sample complexity, this enables applicability on a wide range of
real-world datasets.

4.6.4 Hyperparameter Sensitivity

In this section, we evaluate the hyperparameter sensitivity of ConSe-
quence. Since we modeled the problem using MDL, we are almost
free of hyperparameters. The cover algorithm we give as Algorithm 6
contains a beam width parameter, that provides a trade-off between
runtime and quality of the search. In GERD, we have a confidence pa-
rameter β to control robustness of the discovered classification rules.

First, we examine the influence of the beam width parameter w in
the cover algorithm, and report the results in Figure 4.7. We see that the
choice of the beam width has only marginal influence on the prediction
accuracy in terms of NLS on the testset. For the Rolling Mill dataset,
we observe a slight increase of the NLS from 0.88 for w = 1 to 0.91
for w = 20; however, w = 10 is already large enough to reach a NLS
of 0.91. Obviously, the choice of w largely impacts the training time of
ConSequence, because a greater beam width increases the number of
necessary computations in the cover algorithm. Since the relationship
between training time and beam size looks exponentially, we conclude
that the used heuristic in the cover algorithm does its job, i. e., steering
the search into the right direction.
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Figure 4.8: [Hyperparameter sensitivity of GERD] Normalized Levenshtein
similarity on the testset (left) and model size in terms of condition
terms (right) for ConSequence using GERD on 1000 instances of
the Rolling Mill dataset with varying confidence β.

Next, we evaluate the influence of GERD’s confidence parameter β

and report results in Figure 4.8. We see the NLS on the test set is rela-
tively independent of β. However, β has a huge impact on the number
of discovered condition terms: A lower β leads to significantly bigger
models, because adding rules into the model requires more evidence.

To produce the results in our experiments, we set w = 10 and β =

2.0. We especially choose β = 2.0, because the same value is used by
the authors who proposed the rule effect estimator ê, where β = 2.0
corresponds to a 95.45% confidence level [23].

4.6.5 Case Study on Sepsis Dataset

Next, we show that ConSequence finds an understandable and mean-
ingful model of the Sepsis dataset, and show its discovered event-flow
graph in Figure 4.9. One can clearly recognize the typical flow of a
Sepsis patient in the hospital. The process starts with the arrival in the
emergency room (ER). If the patient has an Oligurie (malfunction of
kidneys) or for other reasons needs an infusion, he or she is provided
with liquid and antibiotics. In any case, leukocytes are counted for fur-
ther diagnosis. After admission to normal care (NC), patients without
certain symptoms, which are potentially younger, are released soon,
while other patients need further treatment.
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Figure 4.9: [Model for Sepsis Dataset] Event-Flow Graph as found by Con-
Sequence on the Sepsis dataset.



74 predicting event sequences

4

ω

ε

Figure 4.10: [Event-flow graph of the Rolling Mill] Event-flow graph with-
out rules found by ConSequence on the Rolling Mill dataset.
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Figure 4.11: [Model for the Hot Zone of the Rolling Mill] Excerpt show-
ing the source part of the model found by ConSequence on the
Rolling Mill dataset. Dashed arrows indicate skipped nodes.

4.6.6 Case Study on Rolling Mill Dataset

Finally, we show details of the model found by ConSequence on the
Rolling Mill dataset. First, we depict the complete event-flow graph
without rules in Figure 4.10. We clearly see that the model is well-
structured and easy-to-follow. However, the graph is too large to dis-
cuss all rules in full detail. Therefore, we provide a closer look on the
beginning and the end of the graph.

We show the source part of the Rolling Mill model in Figure 4.11,
and explain the beginning of the underlying rolling process. First, the
plates are rolled at rolling-stands to meet their customer defined thick-
ness. This happens at high temperatures and forces, otherwise, thick-
ness reduction would not be possible. Therefore, this part of the rolling
mill is called hot zone. The large rolling stands cannot completely level
the plate surface, which is compensated by a special leveler. In addi-
tion, plates with a special accelerated cooling (ACC) treatment or with
a special requirement on their use, need a pre-leveler activity (rule 1).
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Figure 4.12: [Model for the End Part of the Rolling Mill] Excerpt showing
the end part of the model found by ConSequence on the Rolling
Mill dataset. Dashed arrows indicate skipped nodes.

After leveling, plates need to cool down before further processing.
At this rolling mill, production splits up into a part for thicker plates
and a part for thinner plates, which both have their own cooling beds
(rule 2). After the cooling bed, production of thicker plates temporarily
splits into interim storage of plates into stacks and bunkers (rule 3).
While thin and thick plates flow through different parts of production,
both type of plates go through a surface check.

Eventually, plates wait at the end of the rolling mill for release as we
show in Figure 4.12. Before a plate can be delivered to the customer,
different probes must confirm that the plate meets the product quality
requirements (rule 4). For some plates, an external inspector conducts
additional checks (rule 5). Delivery is the last activity in the process.

4.7 discussion

In our experiments, we showed ConSequence finds succinct and un-
derstandable models that yet accurately predict event sequences from
meta data. Nonetheless, we see many interesting directions to extend
and improve ConSequence. First, we choose GERD to predict the next
node in the event-flow graph, because it gives a good trade-off between
speed, noise-robustness and sample complexity. Other classifiers may
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lead to better results depending on the amount of training data, the
number of attributes, and the degree of noise present in the data.

To explain and predict more complex behavior, it is promising to ex-
tend the event-flow graph model by using event patterns such as loops
and concurrency. Instead of predicting one single event sequence, we
could discover rules modeling the stochastic behavior, where multiple
routing choices are possible. While ConSequence focuses on predict-
ing whole event sequences from sequence meta data, predicting run-
ning cases given an event sequence prefix and event meta data may be
an interesting extension.

Besides explaining and predicting event sequences, we see many
applications for event-flow graphs. Using the discovered event-flow
graph with rules as a definition of normal behavior builds the foun-
dation of explainable anomaly detection. Many factories use business
rule engines for production planning, which includes planning event
sequences of production steps. Maintaining a large set of rules, where
rules permanently change to meet new requirements in the process,
is a challenging task. Mining event-flow graphs from actual data and
from planning data, together with our MDL score, could help to iden-
tify redundant and unnecessarily complex rules.

Last but not least, we see how event-flow graphs integrate into pro-
cess simulation to predict and prevent bottlenecks during production
planning. Having an executable process model that is able to predict
waiting and service times of different stations in the process, ConSe-
quence can predict the sequence of stations for a given set of process
cases. We elaborate this idea in Chapter 7.

4.8 conclusion

We studied the problem of accurate yet interpretable sequence predic-
tion from data. For this, we modeled event sequences with directed
graphs and discovered classification rules to explain the relationship
between attributes in the dataset and paths in the graph. We formal-
ized the problem in terms of the MDL principle, i. e., the best model
is the one that compresses the data best. As the resulting optimiza-
tion problem is NP-hard, we proposed the efficient ConSequence al-
gorithm to discover good models in practice.
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Through an extensive set of experiments including a case study, we
showed that our approach indeed produces compact, interpretable and
accurate models, is robust against noise and has low sample complex-
ity, which enables applicability on a wide range of real-world datasets.

Future work might extend ConSequence to more applications like
prediction of running cases given an event sequence prefix, where
metadata belongs to events instead of the whole sequence. A richer
modeling language for event-flow graphs, using patterns instead of
single event nodes, could result in even more succinct models, that
better fit complex behavior like concurrent events.
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P R E D I C T I N G S O J O U R N A N D WA I T I N G T I M E S

Knowing the flow of events in a process and being able to predict
event trajectories, we now focus on the time dimension of processes.
More specifically, we aim to discover interpretable queueing models
that explain and predict sojourn and waiting times.

5.1 introduction

We have all stood in a waiting line, wondering why is it taking so
long and how much longer we have to wait. Explaining and predict-
ing waiting times is a highly relevant topic in service-oriented and
manufacturing processes. Process time prediction methods [113, 150]
usually assume independence between jobs and neglect varying wait-
ing times due to queueing. On the contrary, waiting time is the core
concept of queueing models [129], in which servers process incoming
jobs. If all servers are busy, arriving jobs must wait until a server be-
comes available. Although queueing models have been used in many
domains such as customer service, traffic control, manufacturing and
healthcare [53], modeling processes typically involves intensive hand-
crafting by domain experts, which often results in idealized models
that do not fit the actual process behavior well [1].

Existing approaches to discover queueing models from data [138,
139] are restricted to first-come first-serve order, which results in poor
fitness on processes with different behavior. They generally discover
only one specific part of a queueing model, such as number of servers
[66] or batch sizes [69], and require expert knowledge for the remain-
ing parts. Neural networks can predict service times with high accu-
racy [101]; however, they require large training datasets and extensive

This chapter is based on [160]: Boris Wiegand, Dietrich Klakow, and Jilles Vreeken.
“Why Are We Waiting? Discovering Interpretable Models for Predicting Sojourn and
Waiting Times.” In: Proceedings of the SIAM International Conference on Data Mining
(SDM), Minneapolis, MN. 2023, pp. 352–360.
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hyperparameter tuning. Their black box nature impedes what-if anal-
ysis like what happens if we increase the number of available servers.

In practice, we frequently face datasets with arrival and departure
times of jobs, but without any knowledge about the underlying wait-
ing and service times [138]. We propose a novel approach to discover
interpretable queueing models with rich modeling language from such
data. To this end, we formalize the problem in terms of the Minimum
Description Length (MDL) principle, by which we identify the best
model as the one giving the shortest lossless description of the data.
Since the resulting optimization problem is computationally hard, we
propose our greedy algorithm CueMin (a pun of the spice cumin and
cue miner) to find good queueing models in practice. CueMin discov-
ers the key parts of a queueing model, i. e., service order, number of
servers, batch sizes and service time. Furthermore, CueMin considers
additional features in the data, such as the type of product in manu-
facturing, to explain service order and to predict service time.

Through extensive experiments on both synthetic and real-world
data including a case study on call center data, we show that CueMin
in contrast to the state of the art discovers inherently interpretable
models, which explain and predict behavior of waiting line processes.
Our main contributions are as follows. We
(a) formulate the problem of discovering queueing models in terms

of the MDL principle,
(b) propose an efficient heuristic to find interpretable yet accurate

models to predict waiting and sojourn time from data,
(c) perform an extensive empirical evaluation,
(d) make code and data publically available.1

The structure of this chapter is as follows: Next, we introduce the
necessary notation of queueing models in Section 5.2. In Section 5.3,
we formalize the problem of discovering a queueing model from data
in terms of MDL. Afterward, we propose our algorithm CueMin in
Section 5.4. In Section 5.5, we give an overview of related work, before
we empirically evaluate CueMin in Section 5.6. We discuss potential
future work in Section 5.7 and conclude this chapter in Section 5.8.

1 https://eda.rg.cispa.io/prj/cuemin

https://eda.rg.cispa.io/prj/cuemin
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5.2 notation for queueing models

In queueing theory [53, 129], a queueing model M consists of c servers
that process incoming jobs. We denote the arrival time of the i-th job
as ai P N. If all servers are busy, jobs must wait until a free server is
available. We use wi P N to refer to the waiting time of job i. Servers
can process jobs in batches. We refer to B as the univariate discrete
batch size distribution. If the current batch size is k � B, a server waits
until k jobs are available to get served.

We model with different univariate discrete distributions [64]. Fa-
voring a concise notation, we write, whenever clear from context, P(x)
instead of P(X = x) for the probability mass function (pmf). Below,
we consider four distributions which are particularly commonly used
in queueing theory. We note, however, that our theory accepts any dis-
tribution with a pmf of a finite set of parameters. The simplest distri-
bution we consider is a degenerate, or fixed distribution F(k). We use
it to model constant values, because it has only support for a single
value k P N, i. e., P(k) = 1^ @x � k : P(x) = 0. As a more flexible
distribution, we denote the Poisson distribution with expected value
k as Pois(k) with pmf P(x) = e�kkx

x! . For a geometric distribution with
success probability p and pmf P(x) = (1� p)x�1 p, we write Geo(p).
The negative binomial distribution NB(k, p) with number of successes
k and success probability p has pmf P(x) = (x+k�1

k�1 )pk(1� p)x.
Servers process jobs in service order R. We consider first-come, first-

served (FCFS), last-come, first-served (LCFS) and priority queueing
(PQ), where jobs own priority classes and jobs with same priority are
either served FCFS (PQ + FCFS) or LCFS (PQ + LCFS). The service
time of a job is drawn from the service time model S. In its simplest
form, S is a univariate discrete distribution. If service time depends on
additional features like heavier products in manufacturing need more
time, S can be a regression function fS : Rm Ñ R, plus an additive
error distribution ES. Load on the system may lead to different service
times. Therefore, S can consist of k submodels S11, � � � , S1k, where k� 1
load thresholds τ1, � � � , τk�1 P N define when to use which submodel.
If the number of jobs in the queue is between τj�1 and τj, service time
is predicted by S1j. We denote the service time of the i-th job as si.

When a job has been served, it leaves the system. We denote the
departure time of the i-th job as di = ai + wi + si. The sojourn time
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Figure 5.1: [Data Encoding] Toy example of jobs (top) with arrival times a,
departure times d, and two possible processing models M1 and
M2 and their corresponding data encodings C1 and C2.

v is the time span between arrival and departure, i. e., vi = di � ai =

wi + si. This gives us an interpretable yet powerful model to explain
and predict waiting, service and sojourn times.

5.3 mdl for queueing models

We favor queueing models that are simple and interpretable yet at
the same time are sufficiently rich to fit real-world process behaviors.
Therefore, we formalize the problem of discovering a queueing model
in terms of the MDL principle. We encode the data given a model with
codes in a code stream or cover C, where we specify how the model
serves arriving jobs. Conceptually, we split C into three streams: CB

encodes the batch sizes in which jobs are served, CS encodes service
times, and CE encodes errors to ensure a lossless encoding.

We show a toy example of data, model and cover in Figure 5.1.
Model M1 consists of a single server that processes jobs in LCFS order,
batch sizes are Poisson and service times are geometrically distributed.
Now, we decode the departure times d from the arrival times a using
cover C1. We start by reading the size of the first batch from CB, which
tells us the next two jobs are served in a batch. Then, we read the ser-
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vice time of this batch from CS. Now, we know the server waits until
the first two jobs arrive and needs five time steps to serve this batch,
which results in a departure time of eight for both jobs. For each of
the jobs, we correct the departure time if necessary by reading a code
from CE. In this example, we read 0, i. e., the observed departure time
equals the departure time given by the model.

We continue by reading the next batch size, two, from CB. When
the server becomes free at time step eight, job 3, 4 and 5 are waiting.
Due to LCFS order, job 4 and 5 are served next. We read the code for
service time six from CS, which results in departure time 14. The next
two codes in CE tell us that 14 is correct. We decode the remaining two
jobs as before and are done.

In model M2, we have two servers processing jobs in FCFS order
with batch size one. Now, we use cover C2 to decode departure times
of the arriving jobs. Job 1 and job 2 are served in batches of size one
using separate servers. After the first two jobs leave, job 3 blocks one
server until the end of our example, and when job 4 leaves at time step
14, job 5 requires zero service time. However, the geometric service
time distribution of M2 does not allow zeros. Therefore, CS contains a
code for service time one, which is corrected by two codes in CE, giving
us sign and magnitude of the error. We decode job 6 analogously by
which we decoded all jobs.

5.3.1 Data Encoding

We define length of the data encoding as the sum of the code lengths
in the code stream C. Formally, we have

L(D | M) = �
¸

bPCB

log PB(b)�
¸

sPCS

log PS(s) +
¸

ePCE

L(e),

where we first encode the batch sizes with optimal prefix-free codes
using the model’s batch size distribution, then we encode the service
times also with optimal prefix-free codes using the service time model,
and we encode the errors of the modeled departure times, which en-
sures a lossless encoding as required by MDL.

We encode an error e P CE by first encoding its sign sgn e P t�1, 0, 1u
and then its magnitude. If we knew the distribution of the signs be-
forehand, we could compute lengths of optimal prefix-free codes with
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Shannon entropy. To avoid any arbitrary choices in the model encod-
ing, we use prequential codes (see Section 2.3). Formally, we define the
encoded length of the error by

L(e) = � log
usg(sgn e) + ϵ°

usg(�) + ϵ
+

$&%0, if e = 0

LN(|e|), otherwise,

where usg(sgn e) denotes how often the code for sgn e has been used
before, ϵ with standard choice 0.5 is for smoothing. This gives us a
lossless encoding of the data.

5.3.2 Model Encoding

We encode all model parts separately. For the service order R, we use
log 3 bits to encode whether we have FCFS, LCFS or PQ. In case of PQ,
we additionally encode, which of the categorical features in our dataset
contains the priority classes, and encode the order of the categories by
an index over all possible orders. Since multiple waiting jobs can have
the same priority class, we use one bit to encode whether the default
order is FCFS or LCFS. This results in

L(R) = log 3 +

$&%log mcat + log k! + 1, if R = PQ

0, otherwise,

where mcat denotes the number of categorical features and k the num-
ber of categories of the chosen feature.

For the batch size distribution B, we specify the type of the distri-
bution and encode its parameters. Distinguishing between four types
of univariate discrete distributions costs two bits. In general, the distri-
bution parameters have arbitrary values. Therefore, we encode integer
parameters with LN and real parameters with LR.

We defined three types of service time models S, i. e., encoding the
type costs log 3 bits. If S is a distribution, we encode it like the batch
size distribution. In case of a regression function, we encode the pa-
rameters using LR and encode the error distribution as before. If ser-
vice time is load-dependent, we encode the number and values of the
load thresholds using LN, and encode the submodels accordingly. We
define the encoded length of the model by

L(M) = L(R) + L(B) + L(S) + LN(c),
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which gives us a lossless encoding of the model.

5.3.3 Formal Problem Definition

We now have all necessary parts to formally state the problem.

Minimal Queueing Model Problem Given a dataset D of arrival and
departure times, find the queueing model M and cover C, such that the total
encoded cost L(D, M) = L(D | M) + L(M) is minimal.

Finding the optimal cover for a given model is computationally hard:
There is no product-form solution to compute the future state of a
queueing model [67], i. e., whenever we choose batch size and service
time at one point of the cover, we must compute the impact on all later
time steps. Due to many valid choices of batch size and service time at
each step, we face an intractable, exponentially growing search space.

Finding the optimal model is not easier. Without a product-form
solution for queueing states, every change in the model requires re-
computation of the cover. We cannot search for different parts of a
model independently: Different service orders lead to completely dif-
ferent service times, and a change of batch sizes requires adapting
service times or the number of servers. Hence, we resort to heuristics.

5.4 the cuemin algorithm

Since solving the minimal queueing problem is difficult, we divide it
into two and propose greedy solutions for finding a cover and discov-
ering a model separately.

5.4.1 Finding a Cover

To find a good cover, we first need to know which jobs are served as
one batch, such that we can estimate the corresponding service times.
Similar to the existing BatchMiner [69], we discover batches by jobs
with the same departure time; however, we restrict batch sizes to val-
ues that we can explain by the batch size distribution B of the model.

We give the pseudocode of FindBatches as Algorithm 9. Initially,
all servers j have empty batches at any time t (ln. 1). To consider all
changes in the model state, we iterate over all arrival and departure
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Algorithm 9: FindBatches
input : dataset D, queueing model M
output : list of detected batches Z

1 bt
j ÐH @j P t1, . . . , cu, t P ta1, . . . , dnu;

2 foreach t P ta1, . . . , dnu do
3 foreach job i waiting for M at time t do
4 if Dj : bt

j � H and i should be in bt
j then

5 bk
j Ð bk

j Y tiu @k = t, . . . , di;

6 else if Dj : bt
j = 0 then

7 bk
j Ð tiu @k = t, . . . , di;

8 foreach j P t1, . . . , cu do
9 if bt+1

j = H then
10 add bt

j to Z;

11 return Z;

times (ln. 2). In each iteration, we try to find a suitable batch for each
job in the waiting line. We first check if we should add the job to an
already existing batch (ln. 4): We add the job to a batch if the model
demands a higher batch size (PB(|bt

j |) = 0), or if the job has the same

departure time as the jobs in the batch (bdi
j � H) and the model sup-

ports a larger batch (PB(|bt
j |+ 1) ¡ 0). In this case, we mark the job to

be part of batch bj blocking server j until departure time di (ln. 5). If
we could not add the job to an existing batch, we create a new batch
if there is a free server (ln. 6-7). Whenever a batch has been processed,
we add it to our list of detected batches (ln. 10).

Using FindBatches, computing the cover is fairly easy. We give the
pseudocode of FindCover as Algorithm 10. Starting with an empty
cover, we iterate over all batches found by FindBatches. We add the
size of the batch to CB (ln. 3) and compute the required service time
s to meet the departure time of the batch (ln. 4), where t denotes the
current time. If the model cannot produce the required service time s,
we replace s with the most likely service time of the model (ln. 5-6).
Next, we add the code of s to CS (ln. 7). Then, for each job in the batch,
we compute the error on the departure time and add its code to CE
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Algorithm 10: FindCover
input : dataset D, queueing model M
output : cover (CB, CS, CE)

1 CB ÐH, CS ÐH, CE ÐH, t Ð 0;
2 foreach b P FindBatches(D, M) do
3 append |b| to CB;
4 s Ð db1 � t;
5 if PS(s) = 0 then
6 s Ð arg max PS(�);

7 append s to CS;
8 foreach i P b do
9 ei Ð s + t� di;
10 append sgn ei to CE;
11 if ei � 0 then
12 append |ei| to CE;

13 t Ð service start time of next batch;

14 return (CB, CS, CE);

(ln. 8-12). At the end of each iteration, we set the current time t to the
service start of the next batch (ln. 13). This gives us a cover for a model.

FindBatches has runtime O(nc), i. e., it scales linearly with the num-
ber of observed jobs n and the number of servers c. Hence, it is fast
enough to compute sufficiently many covers during model search. The
runtime of FindCover is mainly driven by FindBatches, i. e., O(nc).

5.4.2 Discovering a Good Queueing Model

With FindCover, we are able to compute our MDL score, which we
now use for model selection. The overall idea is to discover a model
for each possible service order and take the one with the lowest total
encoding cost. While FCFS and LCFS are non-parametric, we select the
most promising categorical attribute for priority queueing PQ. To this
end, we choose the attribute and the permutation of its categories π

that interpreted as priority classes minimize the conditional entropy
on the departure order of jobs for the observed arrival order. Formally,
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Algorithm 11: BruteForce
input : dataset D, service order R, upper bound on the number

of servers cmax

output : queueing model M
1 M ÐH;
2 foreach c P t1, . . . , cmaxu do
3 M̂ Ð (R, B, S, c);
4 foreach S, B P FitService(D,R, c) do
5 if L(D, M̂)   L(D, M) then
6 M Ð M̂;

7 return M

if Y is a random variable of the category of the next leaving job and X
is a random variable of the predicted category by the order of π, we
minimize H(Y | X) = �

°
xPX,yPY P(x, y) log P(x,y)

P(x) .
We restrict the search space by a simple yet effective upper bound

on the number of servers, which is the smallest number of servers such
that all jobs can be served without waiting time. Any greater number
leads to unused servers and cannot be inferred from data.

bruteforce We propose two different search strategies to discover
a model with a given service order. The first one is a naive brute-force
search, for which we give the pseudocode as Algorithm 11. We gener-
ate service time and batch size distribution candidates for each possi-
ble number of servers, and select the model with the best score. We
always generate the batch size distribution candidate F(1), i. e., batch
size is constantly one. In addition, we use maximum likelihood esti-
mation to fit a candidate for each type of distribution we introduced
in Section 5.2 on the number of jobs with the same departure time. We
then use the batch size distribution candidates to compute required
service times for each job as we did in line 4 of FindCover in Algo-
rithm 10.

Next, we generate service time candidate models. We fit distribu-
tions by maximum likelihood estimation. For regression models with
an error distribution, we first fit the regression model and then fit
a distribution on the residuals. We generate load dependent service
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Algorithm 12: CueMin
input : dataset D, service order R, upper bound on the number

of servers cmax

output : queueing model M
1 M ÐH;
2 c Ð 1, δ Ð 1;
3 repeat
4 foreach S, B P FitService(D,R, c) do
5 M̂ Ð (R, B, S, c);
6 if L(D, M̂)   L(D, M) then
7 M Ð M̂;

8 if L(D, M) improved then
9 δ Ð δ � 2;

10 else if δ = 1 then
11 δ Ð �1;

12 else
13 δ Ð

P
δ
2

T
;

14 c Ð max t1, min tcmax, c + δuu;
15 until δ = 0;
16 return M

time models by finding τ1, . . . , τk�1 for multiple values of k, and then
fit k submodels, i. e., distributions or regression models. For given k,
we choose τ1, . . . , τk�1 such that we minimize

°k
i=1
°

sPKi
(s� K̄i)

2, with
Ki being the i-th cluster of service times implied by τ1, . . . , τk�1 and K̄i
the average service time of the cluster.

By this, we discover a good queueing model M for a given dataset
D. However, if cmax is large, BruteForce wastes a lot of runtime by
searching through models with few servers.

cuemin We propose CueMin as an efficient alternative to Brute-
Force. Although our score is not strictly convex, it does exhibit convex-
like behavior that we can exploit towards discovering good models.
In particular, whenever a model contains too few servers, it will incur
a heavy penalty because it has trouble serving jobs on time; adding
more servers will reduce this penalty. In contrast, when a model has
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too many servers, it also incurs a heavy penalty because it serves jobs
too early; reducing servers reduces this penalty.

We give the pseudocode of CueMin as Algorithm 12. We start by
finding the best model for one server. Whenever the current number
of servers leads to an improvement of the MDL score, we increase
the step size δ (ln. 9), which determines the next candidate number
of servers (ln. 14). This way, if the number of optimal servers is large,
we quickly jump over values, which are much too low. At some point,
large steps do not lead to better models. We then start to decrease the
step size (ln. 13). If increasing the number of servers does not have an
effect anymore, we repeat the search in the opposite direction in case
we jumped over the optimum (ln. 11).

As we show in Section 5.6, CueMin works well. It finds models as
good as those by BruteForce, while being significantly faster. Domain
experts can, if wanted, easily include knowledge into the search: They
can restrict the number of servers to speed up the search or adapt any
part of the model to their expectation. For instance, they can create a
domain-specific service order or service time distribution.

runtime complexity The runtime of BruteForce is strongly de-
pendent on the upper bound on the number of servers cmax. In each
of the cmax iterations, we compute our score with runtime complexity
O(nc), which results in a total runtime complexity of O(nc2

max). De-
pending on the dataset and the underlying data generating process,
cmax is so large that this runtime becomes unacceptable. In practice,
we can either restrict the number of servers with domain knowledge
or use heuristics to speed up the search.

Instead of exhaustively searching over all possible number of servers,
CueMin skips unpromising candidates through its adaptive step size
δ. Since our MDL score is not convex, in the worst case, every second
search candidate improves the score. This means, δ alternates between
one and two, and we test all cmax possible values of c. Hence, in the
worst case, CueMin has runtime complexity O(nc2

max), i. e., it falls back
to BruteForce. In practice, however, CueMin is significantly faster
than BruteForce as we show in Section 5.6.
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5.5 related work

Before we show our evaluation, we first give an overview of related
work. Predicting event duration in business processes is closely related
to our problem. Polato et al. [113] predict future events of running pro-
cess instances based on a Naïve Bayes classifier and use support vector
regression to estimate event duration. Deep learning leads to more ac-
curate predictions; however, existing approaches [24, 150] equally ne-
glect dependencies between jobs and thus cannot consider increased
waiting times due to queueing effects in the process.

Surprisingly little work deals with the discovery of queueing models
from data. Senderovich et al. [139] coin the term Queue Mining and
pioneer in synthesizing data mining and queueing theory to predict
delays in service processes. In addition to arrival times and departure
times, they assume availability of observations on the waiting times.

In case waiting times are not available, Senderovich proposes K-PHF
for waiting time prediction from arrival and departure times only [138].
Assuming FCFS order, K-PHF clusters sojourn times by k-means and
infers a phase-type distribution for each cluster. The clusters corre-
spond to different load states such as low, moderate and high.

Unfortunately, K-PHF does not provide any information about batch
service or the number of servers. Keith et al. [66] propose COrder to
estimate the number of servers in a FCFS queue. They also propose
a LCFS version of COrder; however, one needs to know the service
order to choose the right version.

Klijn and Fahland [69] detect service batch sizes through jobs with
close departure time, but do not consider other queue modeling as-
pects. Ojeda et al. propose RAS [101] to combine queueing theory and
adversarial deep learning with Wasserstein loss [9] to predict sojourn
times and their distribution from an embedding of arrival times [38]
and covariates of jobs in a queue.

In contrast to the above, CueMin finds models for the prediction
of process behavior, where all parts of the model are based on in-
terpretable building blocks from queueing theory. To the best of our
knowledge CueMin is the first method that jointly discovers batch ser-
vice, service order, number of servers and service time.
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5.6 experiments

Now, we evaluate CueMin on both synthetic and real-world datasets.
We conduct all our experiments on a PC with an Intel i7-6700 CPU and
32 GB of memory, running Windows 10. We report wall-clock running
times for single-threaded execution, except for RAS, which uses our
GeForce RTX 2080 Ti during training.

5.6.1 Synthetic Data

We start with experiments on synthetic data. We sample 1000 ground-
truth models with R P tFCFS, LCFSu, c P [1, 30], B = F(1) and a large
set of different service time distributions. We generate data by sam-
pling job arrivals from several interarrival distributions from which
we sample departure times with the ground-truth models.

First, we evaluate CueMin’s ability to find the ground-truth num-
ber of servers c compared to BruteForce, COrder [66] and a naive
baseline DeltaMax [66]. Since intuitively more servers are needed
to explain a greater difference between arrival and departure order,
DeltaMax enumerates arriving jobs from 1 to n, and estimates c by
the maximal index difference of consecutively leaving jobs. For a fair
comparison, we feed our knowledge of the ground-truth service order
into COrder, whereas CueMin and BruteForce additionally have to
discover the service order.

We report the mean absolute error (MAE) on estimating the number
of servers on the left of Figure 5.2. Computing the MAE dependent
only on the number of observed jobs to evaluate sample complexity
would overpenalize complex ground-truth models with more servers,
which need more jobs to utilize all servers. We therefore normalize the
number of jobs by the number of ground-truth servers. As expected,
all methods improve with more data. Although we give COrder the
advantage of knowing the ground-truth service order, we see CueMin
and BruteForce have a competitive MAE and significantly beat the
naive DeltaMax baseline. CueMin produces almost equivalent results
to the exhaustive search by BruteForce.

Next, we show the MAE dependent on the type of ground-truth
queueing model on the right of Figure 5.2. The left group of bars (M1)
refers to the left line plot, i. e., the assumptions of COrder still hold.
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Figure 5.2: [Number of servers estimation] Mean absolute error (MAE) on
estimating the number of servers c P [1, 30] of a R P tFCFS, LCFSu
queue with B = F(1) dependent on the number of observed jobs
per server n

c (left) and MAE dependent on the type of model
(right). M1 refers to the model type of the left plot, M2 extends
M1 by Poisson batch sizes, and M3 serves jobs with R = PQ. We
show standard error in both plots.

If we add Poisson batch size distributions to the ground-truth models,
both COrder and DeltaMax significantly lose accuracy as we show
in the middle bar group (M2), whereas CueMin successfully detects
batch service. Service order based on priority classes, i. e., R = PQ,
heavily violates the assumptions of COrder. We add three uniformly
distributed categorical features with three categories each to the jobs
and randomly select one of the features as the priority class. In this
scenario (M3), we see that COrder has an even higher increase of
MAE. CueMin considers the service order in its search for the number
of servers, and thus shows stable performance under varying service
order and batch size.

Finally, we report accuracy and runtime on discovering the ground-
truth service order for CueMin and BruteForce in Figure 5.3. We see
that CueMin achieves accuracy equivalent to BruteForce, while being
magnitudes faster. As expected, more jobs in the training data lead to
higher service order detection accuracy. We see that the difference in
runtime between CueMin and BruteForce becomes larger the more
jobs per server are in the training data.
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Figure 5.3: [CueMin vs. BruteForce] Accuracy on discovering service order
R in synthetic data dependent on the number of observed jobs per
server n

c (left) and average runtime in seconds (right) for CueMin
and BruteForce. We show standard error in both plots.

Data n m mnum v̄train v̄test

Callcenter 21703 3 2 246s 191s

Laser 196 2 1 51h 28h

Lapping 224 2 1 79h 129h

Steel A 6969 4 3 82167 44739

Steel B 6961 4 3 1966 2232

Steel C 16458 4 3 440 635

Table 5.1: [Real-world datasets] Number of jobs n, number of all features m,
number of numerical features mnum and mean sojourn time of train
v̄train and test timespan v̄test for six different real-world datasets.

5.6.2 Real-World Data

Next, we show practical applicability of CueMin by evaluating on six
real-world datasets of different domains, for which we give base statis-
tics in Table 5.1. The Callcenter dataset [22] contains service calls along
with customer priority, weekday and daytime of an Israeli bank. Laser
and Lapping consist of arrival and departures times together with prod-
uct category and work order quantity at two stations of a production
process [86]. With relatively few jobs, they test the ability to learn from
little data. Finally, Steel A, Steel B and Steel C correspond to three sta-
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Figure 5.4: [Sojourn time predictions] Mean absolute scaled error (MASE,
lower is better) with standard error on predicted sojourn times of
six real-world datasets for CueMin, RAS, K-PHF, RF and AW+RF.

tions in the rolling mill of the German steel producer Dillinger. We
split all datasets into a train timespan followed by a test timespan
with roughly 20% of all jobs. The difference between the mean sojourn
time v̄train of the training data and the mean sojourn time v̄test of test
data indicates, that any method learning from the training data must
generalize well to predict behavior of the test data.

We use CueMin to discover a queueing model on the training data,
and run 1000 simulations on all arrivals to predict a distribution of
sojourn times for each job. We do the same for a re-implementation
of the ideas from K-PHF [138] and set hyperparameters as suggested
by the authors. Furthermore, we compare to RAS [101] for which we
conducted an extensive hyperparameter search and selected the best
performing. As an additional baseline, we train a random forest (RF) to
predict sojourn times just by the features of jobs and thus ignoring any
dependence between jobs and system load. We also train a random
forest (AW+RF) on the interarrival times and features in a window
of k jobs to consider system load. We select hyperparameters of the
random forests by grid search and cross-validation.

To compare across datasets with different timescale, we evaluate pre-
dicting sojourn time of individual jobs by the mean absolute scaled er-
ror (MASE). MASE is the mean absolute error (MAE) of the individual
predictor divided by the MAE of the naive predictor that predicts the
mean of the training data. We show the MASE on the test set for all
methods in Figure 5.4. We see CueMin always beats the naive base-
line, i. e., MASE   1. On all datasets, it performs on par or better than
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Figure 5.5: [Distribution fitting] KS distance (lower is better) between pre-
dicted and actual sojourn time distribution of six real-world
datasets for CueMin, RAS, K-PHF, RF and AW+RF.

K-PHF, and with exception to the Steel C dataset, performs on par or
better than RF and AW+RF.

During process performance analysis, domain experts are especially
interested in the distribution of sojourn times and not in individual
jobs. We report the Kolmogorov-Smirnov (KS) statistic between pre-
dicted and actual sojourn time distribution in Figure 5.5. We clearly
see that the random forests suffer from regression to the mean. K-PHF
and CueMin provide a much better approximation of the distribution
than RF and AW+RF. Between the two, CueMin outperforms K-PHF
especially on the Steel A and Steel B dataset.

5.6.3 Case Study: Call Center

We finish evaluation with a case study on the Callcenter dataset, in
which we highlight the insight we can gain from the model discovered
by CueMin. CueMin finds a FCFS queue with nine servers, batch size
one and a load-dependent service time. Although the dataset contains
an attribute for customer priority, we see CueMin favors FCFS over
PQ. According to the dataset description, customers are served by their
waiting time. Prioritized customers are assigned 1.5 minutes of initial
waiting time. CueMin discovers that this is a neglible advantage and
FCFS captures the actual behavior of the process.

We see batch size one is the correct description for calls being served
one after another. Nine servers almost perfectly match the eight agents
in the call center. The service time distribution is NB(1.4, 0.007) if six or
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Figure 5.6: [CueMin predicts distributions] Distribution of predicted wait-
ing time and sojourn time of a single job in the Callcenter dataset
for 1000 simulation runs of the model discovered by CueMin.

fewer customers are in the line, and changes to NB(2.2, 0.007) if there
are more calls. A former study on this dataset [22] confirms increased
service time due to system load.

We predict the total call duration, i. e., sojourn time, and the waiting
time of the call center’s customers by conducting 1000 simulation runs
of the model discovered by CueMin. We show the predicted waiting
and sojourn time distribution of a single, exemplary customer in Fig-
ure 5.6. CueMin reveals the whole bandwidth of stochastic behavior of
a service call. The customer has a high chance to have no waiting time
at all, but if the preceding calls take more time, the waiting time for
this customer increases. We see a small probability for a call duration
of a few seconds due to technical issues, and we see the chance of a
very long service call.

Since CueMin discovers queueing models that are inherently inter-
pretable, domain experts can modify the model to simulate different
scenarios and to find potential process optimizations. As an exam-
ple, we vary the number of servers in the queueing model found by
CueMin and report the predicted maximal waiting time of customers
on the left of Figure 5.7. As we expected, reducing the number of
servers results in an exponential growth of waiting time. If we assign
costs to the usage of servers and weight them against the risk of losing
customers due to high waiting times, we can run such an experiment
to find the optimal number of servers.

Next, we show the impact of different service orders on the waiting
time of regular and prioritized customers in the dataset on the right
of Figure 5.7. We see that the model with FCFS service order results
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Figure 5.8: [CueMin ably extrapolates] Mean predicted sojourn time v̄ (left)
and predicted departure rate µ (right) dependent on down- or
up-sampled arrival rate in the Callcenter dataset. We expect v̄ to
grow exponentially with system load, whereas µ should flatten
when the maximal capacity of the call center is reached.

in equal and relatively low waiting times for both types of customers.
LCFS order increases the maximal waiting time and does not make
sense in a call center. If the call center always served prioritized before
regular customers, regular customers would face a significant increase
of waiting time. This explains, why in the actual process prioritized
customers gain a rather small advantage in waiting time. Therefore,
FCFS is a reasonable model.

Finally, we evaluate how well the models discovered by CueMin,
K-PHF, RF and AW+RF extrapolate. We down- and up-sample the
number of arriving jobs in the test set to simulate decreased and in-
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creased system load. We show the mean predicted sojourn time v̄ and
the departure rate µ, i. e., the number of leaving jobs per second, in
Figure 5.8. RF and AW+RF do not capture the expected increase of
waiting time for a higher arrival rate: They predict a constant sojourn
time and a linearly increasing departure rate. We see that K-PHF does
slightly better: Its predicted sojourn time increases with growing ar-
rival rate. However, since it does not model the number of servers, it
misses that exceeding a certain load threshold leads to exponentially
increasing waiting and thus sojourn times [54]. In contrast to all other
methods, CueMin models the dependency between system load and
performance that we by human intuition would expect. It predicts the
expected explosion of waiting times and a limit on the departure rate,
if servers are constantly overloaded. This makes CueMin a valuable
tool for analyzing different scenarios in waiting line processes.

5.7 discussion

While CueMin discovered inherently interpretable models using gen-
eral building blocks from queueing theory with reasonable prediction
accuracy, we see interesting research directions for further improve-
ments. First, we expect domain-specific extensions to our modeling
language lead to an even better performance. For instance, we could
extend our modelling language to other service orders, such as earliest-
deadline-first [37], or by priority auctions [68], where customers bid
for priority. Discovery of impatience [32], i. e., customers leave before
served, would increase insights on service-oriented processes. Another
enhancement would consider varying availability of servers over time
due to vacation or machine breakdown [155].

Last but not least, we see the opportunity to apply our approach in
a network of process stations [137], where each station is modeled by a
queue. Regression-based remaining time prediction [113, 150] neglects
dependencies between jobs and also between different process stations,
and thus is not able to consider congestion in predicting sojourn times.
In contrast to that, we expect our queueing model to identify conges-
tion in these networks. We elaborate this idea in Chapter 7.
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5.8 conclusion

We studied discovering queueing models for interpretable waiting and
sojourn time prediction from data. We formalized the problem in terms
of the MDL principle, by which the best model gives the best lossless
compression of the data. Due to hardness of the resulting optimiza-
tion problem, we proposed the greedy CueMin algorithm to find good
models in practice. Through an extensive set of experiments and a case
study on call center data, we showed it ably discovers inherently inter-
pretable models of queueing processes.

Future work includes extensions to our modeling language, such as
additional service orders, customer impatience or varying availability
of servers over time, as well as extending CueMin to discover a net-
work of queueing models.
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6
D I S C O V E R I N G C O N S T R A I N T S F O R P L A N N I N G
A N D O P T I M I Z AT I O N

The final goal of any event log analysis is process optimization. While
constraint programming and AI planning are powerful tools to solve
assignment, optimization and scheduling problems, both methodolo-
gies require the rarely available combination of domain knowledge
and mathematical modeling expertise. In this chapter, we study how
learning constraints from data closes this gap.

6.1 introduction

Constraint programming, the holy grail of programming [13], sepa-
rates the concerns of modeling a problem and finding a solution. Since
modeling the problem requires the rarely available combination of
both domain knowledge and mathematical modeling expertise, learn-
ing constraints from data enables broader application of constraint
programming [99]. Handcrafted solutions are often recorded in real-
world assignment problems like scheduling and employee shift roster-
ing, and thus provide a promising knowledge base to mine constraints.
Existing approaches, however, do not satisfactorily solve this task. Ac-
tive learning [15, 20, 151] requires thousands of queries even for sim-
ple problems, which is intractable if a human expert must label these
queries. Passive learning approaches [76, 106, 116] need invalid exam-
ples, i. e., non-solutions, in their training set, which are usually not
collected and must be generated by domain experts at great expense.

State-of-the-art methods to learn constraints purely from valid so-
lutions either suffer from a limited constraint language, resulting in a
long list of hard-to-read constraints, and need a lot of data [117], or can-
not learn from real-world data because they are not noise-robust [75,

This chapter is based on [161]: Boris Wiegand, Dietrich Klakow, and Jilles Vreeken.
“What are the Rules? Discovering Constraints from Data.” In: Proceedings of the 38th
AAAI Conference on Artificial Intelligence (AAAI), Vancouver, Canada. 2024.
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77]. Furthermore, while learning conditions for actions in AI planning
is closely related to learning constraints for constraint programming,
none of the existing approaches is directly applicable to AI planning
problems. Interestingly, most of AI planning specific work [7, 10, 136]
considers constraint learning as only one of many problems to solve.
Not focusing on constraint learning prevents these methods from be-
ing effective on this task. Despite the connection, also none of these
methods is directly applicable to constraint programming problems.

To overcome all these limitations, we formalize the problem of learn-
ing constraints from exemplary solutions in terms of the Minimum
Description Length (MDL) principle, by which we select the model
with the best lossless compression of the data. As solving the prob-
lem exactly involves #P-hard model counting, we propose the greedy
UrPiLs algorithm for Unveiling Rules from PosItive LabelS. Through
extensive experiments on both constraint programming and AI plan-
ning benchmark data, we empirically show UrPiLs finds more accu-
rate and more succinct, i. e., interpretable constraints, is more robust
to noise, and has lower sample complexity than the state of the art. In
summary, our main contributions are as follows. We
(a) formalize the problem of learning constraints from exemplary

solutions in terms of the MDL principle,
(b) propose an efficient heuristic to discover constraints for both con-

straint programming and AI planning,
(c) provide an extensive empirical evaluation,
(d) make code and data publicly available.1

The structure of this chapter is as follows: Next, we introduce the
notation of our constraint model in Section 6.2. In Section 6.3, we for-
malize the problem of discovering constraints in terms of MDL. Af-
terward, we propose our heuristic discovery algorithm UrPiLs in Sec-
tion 6.4. In Section 6.5, we give an overview of related work, before we
empirically evaluate UrPiLs in Section 6.6. We discuss potential future
work in Section 6.7 and conclude this chapter in Section 6.8.

6.2 notation for boolean constraint programming

Before we formalize the problem, we introduce notation for boolean
constraint programming we use in this chapter. Assume we are given

1 https://eda.rg.cispa.io/prj/urpils

https://eda.rg.cispa.io/prj/urpils
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a list of object sets O1, . . . , Ok and their Cartesian product X =
±k

i=1 Oi.
As an example, consider the 8-Queens problem, where we want to
place eight queens on a 8� 8 chess board, such that no two queens at-
tack each other. We define an object set O1 = tQ1, . . . , Q8u for queens,
and an object set O2 = tS1, . . . , S64u for squares on the board. An assign-
ment is a boolean function fa : X Ñ t0, 1u, e.g., fa(Q1, S42) = 1 means
queen Q1 is on square S42. We call fa a valid assignment, if it satisfies a
set of constraints, i. e., a model M = tC1, . . . , Cmu, with Ci : X Ñ t0, 1u
and fa is valid iff @x P X @Ci P M : Ci(x) = 1. For a given model M,
we denote the set of valid assignments by FM.

We define constraints by a boolean algebra over the assignment fa,
a set of boolean relations between objects FB = t f1, . . . , f|FB|u with
fi :

±
jPt1,...,ku+ Oj Ñ t0, 1u, and arithmetic expressions over a set of

numeric relations FR = t f1, . . . , f|FR|u with fi :
±

jPt1,...,ku+ Oj Ñ R. In
the 8-Queens example, we assign rows and columns to squares. For-
mally, we define FR = t fx, fyu with fx : O2 Ñ t1, . . . , 8u and fy : O2 Ñ

t1, . . . , 8u. The constraint that no more than one queen is allowed to
be placed in a row can then be written as @(q1, q2, s1, s2) P O1 �O1 �

O2 �O2 : (s1 � s2 ^ fx(s1) = fx(s2)) Ñ ( fa(q, s1) Ñ  fa(q, s2)). Our
goal is to find constraints like these from a dataset of exemplary valid
assignments D = t f 1

a , . . . , f n
a u.

6.3 mdl for constraint learning

From a set of exemplary assignments, we aim to discover a succinct
set of constraints fitting and explaining the observed data and general-
izing well to unseen data. To account for potential noise in real-world
data, we need a noise-robust discovery approach. Thus, we formalize
the problem of constraint discovery from exemplary solutions in terms
of the MDL principle. To this end, we define length of the data encod-
ing L(D | M), length of the model encoding L(M), and finally give a
formal problem definition.

6.3.1 Data Encoding for Constraint Programming

To encode a dataset D, we encode all its assignments, i. e.,

L(D | M) =
¸
faPD

L( fa | M) .



104 discovering constraints for planning and optimization

6

An empty model without constraints has |FM| = 2|X| valid assign-
ments, and we need |X| bits to choose one. The more constraints
the model contains, the smaller the set of valid assignments, and the
cheaper it is to identify the actual one. As real-world data is often noisy,
there may not exist a valid assignment matching the exemplary data
exactly. To ensure a lossless encoding, we have to encode the errors of
the best fitting assignment. We denote the number of errors by

error(M | fa) = min
f 1aPFM

¸
xPX

1 f 1a(x)� fa(x)(x) .

To encode the errors, we first specify their number by the MDL-
optimal encoding for integers LN. Then, we encode the incorrect as-
signment values by a data-to-model code [87], i. e., an index to choose
error(M | fa) out of |X| values. In summary, we have

L( fa | M) = log |FM|+ LN (1 + error(M | fa))

+ log
(

|X|
error(M | fa)

)
.

This gives us a lossless encoding of the data.

6.3.2 Model Encoding

Next, we compute the length of the model encoding by

L(M) = LN(|M|+ 1) +
¸

CPM

L(C) ,

i. e., we encode the number of constraints, which can be zero, and en-
code each constraint. Since complex real-world problems require a rich
constraint language, we first define a grammar for our constraint lan-
guage, which we then use to define the encoded length of a constraint.
We formally define the grammar by

C Ñ xCVy “|” xCFy : xCTy

CV Ñ ϵ | @x P X | @x, y P X

CF Ñ ϵ | xvy = xvy | xvy � xvy | x fBy(xvy) | xnfy |

 xCFy | xCFy ^ xCFy | xCFy _ xCFy

v Ñ xxiy | yxiy i Ñ 1 | . . . | k fB Ñ one of FB
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nf Ñ xney   xney | xney ¤ xney | xney = xney

ne Ñ xz P Ry | x fRy(xvy) | xneyxdyxney |

“|”xney“|” | txneyu | rxneys

fR Ñ one of FR d Ñ + | � | � | /

CT Ñ fa(x) | fa(y) | fa(Xxjy) |  xCTy | xCTy ^ xCTy |

xCTy _ xCTy | xcounty

j Ñ 1 | . . . | |X|

count Ñ xney ¤
¸
xvy

fa(x) ¤ xney ,

where we conceptually split a constraint C into three parts, i. e.,
C = (CV , CF, CT). In CV , we can define variables of object tuples in X. In
CF, we filter the possible values of these variables: we can test for equal-
ity and inequality of variables, we can query values of boolean and
numerical relations, and we can compose complex filters with boolean
operators. A numeric filter nf compares the values of two numeric ex-
pressions ne, which are any real number, any numeric relation, or a
composite of arithmetic operations.

The target of any constraint is to define the set of valid assignments.
In CT, we restrict the valid values of an assignment fa by a boolean
expression over fa. In its simplest form, CT requires fa to be true for
a variable defined by CV and CF. We can also require fa to be true
for one specific object tuple Xj with j P t1, . . . , |X|u. We compose more
complex constraints using boolean operators. In many real-world prob-
lems, we can distribute some kind of budget. For instance, if we assign
shifts to employees during rostering, employees require a minimal and
maximal workload. We model such count constraints by a lower and
upper bound on a sum over the assignment values of fa.

When computing the encoded length of a constraint, we want to
avoid any undue bias and therefore assume that whenever we have
multiple modeling choices, all options are equally likely. Formally, we
use our defined constraint grammar to recursively compute L(C) by

L(A) = log |A|+
¸

xαyPA

L(α) ,

where A is a nonterminal in the grammar, and we first encode which
of the |A| branches we produce, before we encode all remaining nonter-
minals. In the special case of xz P Ry, we compute the encoded length
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by the MDL encoding for real numbers LR(z). Altogether, this gives
us a lossless encoding of the model.

6.3.3 Formal Problem Definition

Using our MDL score, we now formally state our problem.

Minimal Constraint Model Problem Given a dataset D of assignments
f 1
a , . . . , f n

a , find the constraint model M minimizing the total encoded cost
L(D, M) = L(D | M) + L(M).

Solving this problem optimally is intractable in practice. Potentially,
we have up to 2|X| valid assignments, i. e., we face an exponentially
growing search space for constraints. Moreover, our MDL score does
not exhibit properties such as monotonicity or submodularity that we
can exploit to efficiently find an optimal solution. We prove this state-
ment in Section 6.3.4 by counterexamples.

Additionally, even computing L(D | M) is hard by itself. Finding
a valid assignment f 1a for M that is nearest to a given assignment fa

corresponds to finding a valid assignment having maximal Manhattan
distance to fa with negated values, which in general is NP-hard [30].

Computing the number of valid assignments |FM| is equivalent to
counting the solutions of a boolean formula, which is #P-complete,
i. e., at least as hard as NP-complete [152]. Researchers have proposed
algorithms like Ganak [140], SharpSat-TD [72] or ApproxMC [142] to
tackle the problem. Dependent on the complexity of the formula, these
approaches take several seconds, minutes or even hours [43], which
is too slow for evaluating many constraint candidates during search.
Hence, we resort to heuristics.

6.3.4 L(D, M) is neither monotone nor submodular

Here, we show by counterexamples that our MDL score does not ex-
hibit monotonicity or submodularity, which we could exploit to ef-
ficiently solve the minimal constraint model problem. To this end,
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we define a dataset with O1 = to1
1, . . . , o1

10u, O2 = to2
1, . . . , o2

10u and
D = t fa |

°
xPX fa(x) = 1u. We further define the constraints

C1 = 1 ¤
¸

fa(�) ¤ 1

C2 = 0 ¤
¸

fa(�) ¤ 1

C3 = 1 ¤
¸

fa(�) ¤ 2 .

The encoding of these constraints differs in the lower and upper bound
only. We compute the encoded length of each constraint as defined in
Section 6.3.2. In our example, we have

L(C1) = log 3 + log 8 + log 7 + LN(2) + 2 + LN(2)

L(C2) = log 3 + log 8 + log 7 + LN(1) + 2 + LN(2)

L(C3) = log 3 + log 8 + log 7 + LN(2) + 2 + LN(3) .

Next, we show that L(D, M) is not a monotone function. A function
f is called monotone if

@T � S : f (T) ¤ f (S) .

We compute

L(D,H) = LN(1) + 100 � (100 + LN(1)) � 10153

L(D, tC1u) = LN(2) + L(C1) + 100 � (log 100 + LN(1)) � 833

L(D, tC1, C2u) = LN(3) + L(C1) + L(C2)

+ 100 � (log 100 + LN(1)) � 847 ,

where we first encode the number of constraints, then each constraint,
and for each of the 100 examples in the dataset, we compute the num-
ber of bits to select a valid assignment, and LN(1) encodes the number
of errors is zero. By this, we see L(D, M) is not monotone.

Next, we show that L(D, M) is not submodular. A function f is
called submodular if

@X � Ω : @x1, x2 P ΩzX :

f (xY tx1u) + f (xY tx2u) ¥ f (XY tx1, x2u) + f (X) .

We compute

L(D, tC1, C3u) + L(D, tC2, C3u) � 1698

L(D, tC1, C2, C3u) + L(D, tC3u) � 2265 ,
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and

L(D, tC1, C2u) + L(D, tC1, C3u) � 1697.1

L(D, tC1, C2, C3u) + L(D, tC1u) � 1696.6 ,

by which we see that L(D, M) is not submodular.

6.4 the urpils algorithm

Since solving the minimal constraint model problem optimally is in-
tractable, we resort to greedy solutions.

6.4.1 Estimating the Number of Valid Assignments

To compute the encoded length of an assignment, L( fa | M), we must
count the number of valid assignments |FM| for a given model M.
We use an approximation, which is fast to compute and still enables
useful comparison of constraint candidates. We estimate the number
of valid assignments based on a standard algorithm for exact count-
ing [166]. First, we transform our constraint model M into a boolean
function of conjunctive normal form (CNF), where each possible pa-
rameter combination of fa corresponds to a boolean variable. Next, we
compute the constraint graph G of the formula, which is an undirected
graph with variables as nodes, and two variables are connected if they
occur together in a clause. We count the number of valid assignments
separately for disconnected, i.e., independent, components and get the
total count by multiplying the result of each component.

If the graph is small enough and contains less than five variables, it
is feasible to count the number of valid assignments exactly by enumer-
ation. Otherwise, we use a polynomial-time approximation. If clauses
in the CNF contain at most two variables, the number of valid assign-
ments corresponds to the number of independent sets in G [31], where
an independent set is any set of non-adjacent nodes. We compute a
lower bound for |FM| by [130]

|FM| ¥
¹
vPV

(deg v + 2)1/(deg v+1),

with V being the set of nodes in G, and deg v denotes the degree of
node v. The number of variables per clause only depends on the target
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part CT of a constraint. If CT has the form fa(�) or  fa(�), we have
one variable per clause, whereas implications like fa(x)Ñ fa(y) result
in two variables per clause. In these cases, our lower bound leads to
valid results. As we will show later in the experiments, these unary
and binary relationships between variables are sufficient to describe
most of the constraints in many problems.

count constraints, however, in general lead to clauses with more
than two variables. For instance, let x1, . . . , x6 be boolean variables and
consider the constraint

°6
i=1 xi = 3. Then, the CNF of this constraint

is
±4

i=1
±5

j=i
±6

k=j(xi + xj + xk), i.e., we have three variables per clause.
Therefore, we need to compute |FM| differently for count constraints.
For a single equality constraint

°n
i=1 xi = a, we have (n

a) satisfying
assignments. We generalize this to inequality constraints a ¤

°n
i=1 xi ¤

b which have
°b

i=a (
n
i ) satisfying assignments.

Since we do not know how the intersection of the valid assignments
for multiple count constraints looks like, because enumerating them
is intractable, we can only make assumptions. We assume all count
constraints equally contribute to the final count, and thus divide the
mean of the individual counts by the number of constraints, i.e.,

|FM| =

S°
CPM

��FtCu
��

|M|2

W
.

By this, we can quickly estimate the number of valid assignments.

6.4.2 Estimating the Best Fitting Valid Assignment

To compute L( fa | M), we also need to compute error(M | fa), i.e., the
minimal number of values we need to change in a valid assignment
of M to get fa. Since we must repeat this computation many times
during our search for constraints, we want this to be as fast as possi-
ble. As in counting the number of valid assignments, enumerating all
assignments to find error(M | fa) is intractable.

In contrast to error(M | fa), the number of unsatisfied clauses in the
CNF formula of the model is cheap to compute. The more clauses are
unsatisfied, the more variables we expect must be flipped to satisfy the
formula, and hence the higher is error(M | fa). We estimate the number
of variables we must flip to satisfy the formula by using the coupon
collector’s problem [114][42, p. 225]: If we assume that for each of the
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Algorithm 13: UrPiLs
input : dataset D
output : set of constraints M

1 M ÐH;
2 M Ð Filter(M, D, GenerateSimpleCandidates(D));
3 M Ð Filter(M, D, GenerateComplexCandidates(M, D));
4 M Ð Filter(M, D, GenerateCountCandidates(D));
5 return M;

m unsatisfied clauses, we draw one of |V| variables with replacement
to flip, the expected number of flipped variables is

error(M | fa) =

R
|V| � |V| � (1�

1
|V|

)m
V

.

The value of error(M | fa) is 0 if no clause is unsatisfied, increases with
m and does not exceed the number of variables |V|. By this, we can
compute L(D, M) for model selection.

6.4.3 Discovering a Good Constraint Model

We now want to minimize L(D, M) for a given dataset D, i.e., we want
to discover a good constraint model in feasible time. Since computing
L(D | M) is harder for models with count constraints, we search for
these at the end. Many satisfiability and optimization problems con-
tain a set of relatively simple constraints, even if they also contain a
set of very complex constraints. Simple constraints typically involve
none or only one feature relation in the filtering part CF. Therefore,
we propose our method UrPiLs, in which we split the search for con-
straints into three stages.

We give the pseudocode of UrPiLs as Algorithm 13. Starting with
an empty model, we first search for the low-hanging fruit and generate
simple constraint candidates. In constraint programming, we are often
interested in modeling the pairwise relationship between variables. For
example, we require in Sudoku that two cells in the same row do not
have the same value. Hence, we generate a set of simple candidates
with all constraints of the form @x, y P X | CF : fa. In CF, we compare
the values of at most one boolean and numerical relation, e.g. f (x1)  
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Algorithm 14: GenerateSimpleCandidates
input : dataset D with boolean FB and numerical functions FR

output : set of candidates Q
1 C1

F Ð tx � yu Y
�k

i=1txi = yi ^@j�ixj � yju;
2 C2

F Ð tϵu;
3 foreach f P FB do
4 foreach i P t1, . . . , ku do
5 if dom f = Oi then
6 C2

F Ð C2
F Y t f (xi), f (xi)u;

7 foreach j P t1, . . . , ku do
8 if dom f = Oj then
9 C2

F Ð C2
F Y t f (xi)^ f (yi)u;

10 foreach f P FR do
11 foreach i, j P t1, . . . , ku do
12 if dom f = Oi = Oj then
13 foreach d P t ,¤,=,¡,¥u do
14 C2

F Ð C2
F Y t f (xi)d f (yi)u;

15 CT Ð t fa(x)Ñ fa(y), fa(x)Ñ  fa(y)u;
16 Q ÐH;
17 foreach C1

F, C2
F, CT P C1

F � C2
F � CT do

18 add
(
@x, y P X | C1

F ^ C2
F : CT

)
to Q;

19 return Q;

f (y1) with f P FR. To restrict the pairwise assignment values of x and
y, we generate implications of the type fa(x) Ñ fa(y) and fa(x) Ñ
 fa(y) for CT.

For further reference, we give the pseudocode of GenerateSimple-
Candidates as Algorithm 14. The main part of the algorithm deals
with generating candidates for CF. Every constraint requires that the
variables x and y in CV = @x, y P X differ at all indices or at precisely
one index (ln. 1). The candidates for the second part of CF include an
empty constraint (ln. 2). We further compare values of boolean rela-
tions with domains compatible to the input variables (ln. 3–9), and we
do the same for numerical relations (ln. 10–14). For the target part, we
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Algorithm 15: Filter
input : current model M, dataset D, set of candidates Q
output : extended model M

1 sort Q by L(D, �);
2 foreach C1 P Q do
3 foreach C P M do
4 if C1

V = CV ^ C1
T = CT then

5 C1
F Ð C1

F _ CF;
6 M1 Ð MztCu;
7 break;

8 M1 Ð M1 Y tC1u;
9 if L(D, M1)   L(D, M) then
10 M Ð M1;

11 return M;

create implications of assignment values (ln. 15). We generate simple
constraint candidates from the cross product of the candidates for the
individual constraint parts (ln. 17–18).

We filter the generated candidates using our Filter subroutine, for
which we give the pseudocode as Algorithm 15. We test the most
promising candidates first through sorting candidates by their indi-
vidual gain. To minimize model complexity, we try to merge each can-
didate C1 with an existing constraint C P M. We can merge constraints
if they share the same variable and target part. For example, we merge

@x, y P X | g(x1)   g(y1) : fa(x)Ñ  fa(y)

and @x, y P X | h(x2) = h(y2) : fa(x)Ñ  fa(y)

into @x, y P X | g(x1)   g(y1)_ h(x2) = h(y2) : fa(x)Ñ  fa(y) .

If a candidate improves our score, we add it to the model.
A model with simple constraints gives us a good baseline from

which we search for constraints with a more complex filtering part.
We give the pseudocode for GenerateComplexCandidates as Algo-
rithm 16. We first initialize the filtering part, C1

F, and the target part,
CT, as in GenerateSimpleCandidates (ln. 1–2). For the second filter-
ing part, we then create a set of basic filter elements B by producing
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Algorithm 16: GenerateComplexCandidates
input : model with simple constraints M, dataset D, grammar

production depth d
output : set of candidates Q

1 C1
F Ð tx � yu Y

�k
i=1txi = yi ^@j�ixj � yju;

2 CT Ð t fa(x)Ñ fa(y), fa(x)Ñ  fa(y)u;

3 B Ð
"

u | uX t^,_u = H^ xCFy
d
ñ u

*
;

4 Q ÐH;
5 foreach C1

F, CT P C1
F � CT do

6 C2
F Ð arg minC2

F�B L(C2
F | C1

F, CT, D, M);

7 add
(
@x, y P X | C1

F ^ C2
F : CT

)
to Q;

8 return Q;

all possible expressions from our grammar for CF up to a user-defined
depth d (ln. 3). In our experiments, we set d = 3. Later in the search, we
combine basic filter elements to more complex expressions, and hence
only create basic elements without (^) or (_). Instead of an intractable
search over all possible filtering expressions, we map the problem to
a simpler binary classification problem. We test for each pair x, y P X
whether CT(x, y) improves the fit on the data, i.e., it leads to a lower
L(D | M). Finally, we look for a conjunction of elements from B best
explaining the division into positive and negative pairs (x, y), which
gives us a good candidate for CF.

To find this conjunction C2
F, we define a two-part MDL score to eval-

uate candidates. Formally, we find the C2
F, which minimizes

L(C2
F | C1

F, CT, D, M) = LN(
��C2

F
��) + log

(
|B|��C2

F

��)
+ LN(1 + error(C2

F | C1
F, CT, D, M))

+ log
( ��tx, y | C1

F(x, y)u
��

error(C2
F | C1

F, CT, D, M)

)
,

where we compute the length of the model encoding by the number
of elements in the conjunction and an index to select the elements of
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C2
F from B. Then, we encode the number and identity of pairs x, y P X,

for which C2
F(x, y) makes a classification error. We formally define

error(C2
F | C1

F, CT, D, M) =¸
x,yPX

C1
F(x, y)

���1∆L(D|MYtCTu) 0(x, y)� C2
F(x, y)

��� ,
with ∆L (D | MY tCTu) being the gain in the encoded length of the
data, after adding CT to the model. This gives us candidates with com-
plex filtering expressions.

In the last stage of UrPiLs, we search for count constraints. To this
end, we create candidates for different input partitions of fa similar to
the existing CountOR algorithm [77]. Formally, we create constraints
of the form @x P X | CF : a ¤

°
fa(x) ¤ b, where we generate can-

didates for a, b P N by observations in D. We generate an empty CF,
and we generate all possible CF = f (xi) with f P FB and i P t1, . . . , ku.
Again, we use Filter to select which candidates we add to our final
model. This gives us a set of constraints from exemplary assignments.

6.4.4 UrPiLs for AI Planning

Next, we adapt UrPiLs for AI planning problems, where actions mod-
ify the state of an environment until we reach a predefined goal state.
We reuse notation and define a state by boolean and numerical rela-
tions between objects from different object sets. We write f j

i to denote
relation fi at state j. W.l.o.g we consider a single action a. We denote the
assignment at state j by f j

a, and f j
a(x) = 1 if a is executed with objects

x at state j and f j
a(x) = 0 else. As before, we aim to find constraints M

for valid assignments and thus preconditions to execute a.
As all valid assignments satisfy

°
xPX fa(x) = 1, the empty model

has |X| instead of 2|X| valid assignments. To encode errors efficiently,
we specify for each assignment in the data if it is valid for M or not.
Since we do not know the number of valid and invalid assignments
beforehand, we use prequential codes (see Section 2.3). If an assign-
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Algorithm 17: GeneratePlanningCandidates
input : dataset D
output : set of candidates Q

1 Q ÐH;
2 foreach u P

�k
i=1t1, . . . , kui do

3 foreach f P FB do
4 if dom f =

±
iPu Oi then

5 add (@x P X | f (x[u]) :  fa(x)) to Q;
6 add (@x P X |  f (x[u]) :  fa(x)) to Q;

7 foreach i, j P t1, . . . , ku do
8 foreach f P FR do
9 if i � j^Oi = Oj = dom f then
10 foreach d P t ,¤,=,¡,¥u do
11 CF Ð f (xi)d f (xj);
12 add (@x P X | CF :  fa(x)) to Q;

13 return Q;

ment is valid, we encode it via an index over all valid assignments,
otherwise via an index over all other assignments. Formally, we have

LAI(D | M) =
|D|̧

i=1

� log
(

usgi f i
a P FM + ϵ

usgi 0 + usgi 1 + 2ϵ

)

+

$&%log |FM| , if f i
a P FM

log(|X| � |FM|), otherwise,

where usgi x is how often code x has been used up to the i-th assign-
ment, and ϵ with standard choice 0.5 is for smoothing. This gives us
an efficient encoding for AI planning data.

Since
°

xPX fa(x) = 1 for all valid assignments, we neither need con-
straints on pairwise relationships of fa nor count constraints. Instead,
we search for constraints telling us when we are not allowed to exe-
cute an action. This means we create candidates @x P X | CF :  fa(x),
where CF compares boolean and numerical relations. We give the pseu-
docode of GeneratePlanningCandidates as Algorithm 17. We start
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by generating candidates with boolean relations (ln. 2-6). To generate
syntactically valid constraints, we ensure that the parameters of the
relation are a subset of the parameters of the assignment function fa.
We generate comparisons of numerical relation using different com-
parison operators and also ensure that the candidates are syntactically
valid constraints (ln. 7-12).

By this we can apply UrPiLs to AI planning data.

6.5 related work

Learning constraints for constraint programming is a widely studied
research problem. Active learning approaches [15, 20, 151] derive con-
straints by asking queries in the form of partial or complete solutions
and non-solutions. Even for simple problems, these approaches, how-
ever, may require thousands of queries, which limits their applicabil-
ity if a human expert must label these queries. Therefore, researchers
proposed to learn constraints from a static set of both solutions and
non-solutions [76, 106, 116]. While handcrafted solutions are usually
recorded in real-world applications like scheduling and staff rostering,
non-solutions representing forbidden behavior often are not collected.
Hence, data and label acquisition as a bottleneck still can prevent ap-
plication of such methods.

Recent work finds constraints from solutions only. This often results
in methods being specialized in narrow contexts, such as integer linear
programming [96], scheduling sequences [112] or tabular spreadsheets
[71]. CountOR [77] infers count constraints. It, however, cannot han-
dle noise, can only create simple expressions, and does not consider
redundancy between constraints. CountCP [75] extends CountOR by
a richer modeling language and reduced redundancy, but still does not
handle noise. MineAcq [117] selects constraints by permutation test-
ing. In contrast to CountOR and CountCP, MineAcq does not find
quantified constraints, which can lead to a large result set. CABSC
[28] also selects constraints by counting valid assignments, but needs
user-provided knowledge of constraints and does not handle noise.

In AI planning, many approaches try to infer domain models in-
cluding preconditions (i.e. constraints) for executing actions from ex-
emplary execution plans [10]. Strictly assuming no noise, FAMA [7]
formalizes the problem as a planning problem itself. PlanMiner [136]
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Figure 6.1: [UrPiLs finds high-quality constraints] Average F1 score (higher
is better) on the test set for ten independent runs on 1000 ran-
domly drawn training examples, for constraints discovered by
UrPiLs, MineAcq, CountOR and CountCP. Error bars show
standard deviation.

translates the problem to rule-based classification, and PlanMiner-
N [135] improves PlanMiner’s noise-handling. AI planning domain
acquisition methods tackle multiple tasks, treating the learning of ac-
tion constraints as an unfocused subproblem. In contrast to all other
methods above, UrPiLs discovers a succinct set of constraints with low
sample complexity, is robust to noise, and can be applied to a broad
domain of optimization, satisfiability and planning problems.

6.6 experiments

Now, we evaluate UrPiLs on constraint programming and AI planning
datasets. Since both domains have specialized state-of-the-art methods
that are not applicable to both problems, we split the experiments into
two. We conduct all our experiments on a PC with Windows 10, an
Intel i7-6700 CPU and 32 GB of memory. To ensure reproducibility, we
make code and data publicly available in the extra materials.

6.6.1 Experiments on Constraint Programming Datasets

We start by comparing UrPiLs with the state of the art from related
work. While CountOR and CountCP have no hyperparameters, we
must generate candidate constraints for MineAcq and set parameters
τ and ρ to control the acceptance threshold of its permutation test for
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candidate selection. To ensure MineAcq can find all necessary con-
straints to model the datasets without providing too much knowledge
about the ground-truth constraints, we generate all pairwise implica-
tions fa(x)Ñ fa(y) and fa(x)Ñ  fa(y). By a manual hyperparameter
search, we find τ = 10 and ρ = 0.001 lead to the best results.

datasets We experiment on datasets with different characteristics.
To test if the constraint learners find spurious results, we create a syn-
thetic dataset Random, where we uniformly and randomly sample val-
ues for fa. We also uniformly and randomly sample values for boolean
and numerical relations in the dataset, i. e., there is no dependency to
fa, and the ground truth is an empty model without any constraints.
Besides, we evaluate on datasets with non-empty ground-truth con-
straints. 8-Queens contains examples for positioning eight queens on a
chessboard such that no two queens attack each other. Since modelers
may include knowledge about the problem into the modeled relations,
we create two versions of a 9�9 Sudoku dataset. In 9-Sudoku-easy, we
specify for each cell its row, column and block number. In 9-Sudoku-
hard, we only specify row and column.

For 8-Teams-DRR, we generate data of eight teams in a double round-
robin competition, i. e., fa(x, y, z) = 1 if on match day x team y plays
against team z, each team plays twice against each other on 14 match
days, and we require symmetry between first and second half of the
matches. In GraphColor, we generate a random undirected graph with
ten nodes and twenty edges, and valid assignments are node colorings
where neighbors have different colors. For MultipleKnapsack, we assign
twenty items of different weight and value to three knapsacks of lim-
ited size. Our last dataset, Rostering, is an instance of a nurse rostering
problem2, where boolean relations refer to shift types and numerical
relations model the start times, end times and durations of shifts.

quality of discovered constraints To see how well the dis-
covered constraints match the ground-truth, we generate valid assign-
ments for all datasets and split them into training and test set. For the
test set, we additionally generate examples violating the ground-truth
constraints. First, we run all methods on the training data. Then, we
classify test examples positive if they satisfy all found constraints and

2 http://www.schedulingbenchmarks.org/nrp/

http://www.schedulingbenchmarks.org/nrp/
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Figure 6.2: [UrPiLs is noise-robust with low sample complexity] Average
F1 score on the GraphColor test set for ten independent runs,
for constraints discovered by UrPiLs, MineAcq and CountOR,
CountCP dependent on the proportion of noisy, i. e., invalid,
assignments in the training set (left, higher is better). Average
F1 score on the 5-Queens test set with 10% noise on a varying
number of training examples (right, higher is better). Error bars
show standard error.

negative otherwise. We report the F1 score with 1000 training exam-
ples in Figure 6.1. We see that UrPiLs in contrast to its competitors
achieves almost perfect F1 score on all datasets. On 9-Sudoku-hard,
UrPiLs does not find the block constraint in all runs, but on average
still performs best. On MultipleKnapsack, none of the methods recov-
ers the ground-truth constraints.

noise robustness To evaluate noise-robustness, we inject noise
into the training data by adding invalid assignments. We report test
F1 score on GraphColor dependent on the noise proportion in Fig-
ure 6.2 (left). We see UrPiLs recovers the ground-truth for up to 60%
noise and is on par for higher noise levels. The F1 score of CountOR
and CountCP drops for significantly less noise to 2

3 , i.e., a model that
accepts all test examples with recall 1 and precision 0.5.

We also test noise-robustness on the queens problem. MineAcq has
much higher F1 score with same training set size for lower dimensional
problems. Furthermore, runtime of all methods is lower for smaller
problems. To enable many runs, we evaluate on 5-Queens, reducing
the problem to five queens on a 5�5 chessboard. We report F1 score on
the test set with 10% noise on the training set dependent on the num-
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UrPiLs MineAcq CountOR CountCP

Dataset ||M|| t [s] ||M|| t [s] ||M|| t [s] ||M|| t [s]

Random 0 87 0 1 136 1 51 473

8-Queens 52 1543 105 8 46 2 90 12350

4-Sudoku-easy 40 8 1280 1 87 1 58 192

4-Sudoku-hard 45 9 1280 1 66 1 48 195

9-Sudoku-easy 40 8107 50674 13 87 3 58 24931

9-Sudoku-hard 40 3735 50774 12 66 2 48 25217

8-Teams-DRR 90 950 106 19 72 1 44 38425

GraphColor 33 14 30162 2 18 1 28 471

Rostering 78 5930 106 46 81 14 83 87459

Table 6.1: [Model size and runtime on constraint programming datasets]
Number of constraint terms ||M|| and average discovery runtime t
in seconds over ten independent runs for UrPiLs, MineAcq, Coun-
tOR and CountCP on different constraint programming datasets.

ber of training examples in Figure 6.2 (right). We see CountCP and
especially CountOR pick up noise and discover bad generalizing con-
straints. MineAcq performs better, but needs 800 examples to achieve
100% F1 score. UrPiLs is not only robust to noise. It also achieves 100%
F1 score with ten training examples.

model size To evaluate model size, we count the total number of
constraint literals ||M|| as defined by our constraint grammar in the
models discovered by UrPiLs, MineAcq, CountOR and CountCP.
We report results in Table 6.1. Across all datasets UrPiLs finds a com-
pact set of constraints with a total of only 33 to 90 literals. CountOR
and CountCP show similar results, but tend to need more constraint
terms for equal F1 score. Since MineAcq does not look for quanti-
fied expressions, it produces constraint sets with 1280 literals for 4x4-
Sudoku and 106 literals on the 8-Teams-DRR dataset.

runtime We report wall-clock running times for single-threaded
execution of UrPiLs, MineAcq, CountOR, and CountCP on all datasets
in Table 6.1. We see that UrPiLs is not the fastest but still shows rea-
sonable runtime on all datasets. In particular, it is significantly faster



6.6 experiments 121

6

0 200 400 600 800 1,000

0

100

200

300

400

500

Size of trainset

M
ea

n
ru

nt
im

e
[s
]

UrPiLs MineAcq CountOR CountCP

101 102 103

10�1

100

101

102

103

Size of assignment domain |X|

M
ea

n
ru

nt
im

e
[s
]

Figure 6.3: [Runtime on Random dataset] Mean runtime in seconds for
UrPiLs, MineAcq, CountOR and CountCP on the Random
dataset for |X| = 100 and varying number of training examples
(left), and mean runtime in seconds for all methods on the Ran-
dom dataset for 1000 examples and varying |X| (right). CountCP
did not finish within 12 hours for |X| = 103.

than CountCP. CountOR and MineAcq are magnitudes faster than
UrPiLs, but CountOR cannot deal with noise in the data and MineAcq
produces models with significantly more constraint terms and needs
more examples to discover constraints.

To evaluate runtime scaling behavior of all methods, we use the Ran-
dom dataset and vary the number of training examples and the size
of the assignment function domain |X| as a proxy for problem size in
Figure 6.3. We see that UrPiLs shows a linear runtime behavior in the
number of training examples, while the other methods work on a com-
pressed representation of a dataset and thus remain relatively constant
in their runtime. Furthermore, we see that the size of the assignment
function domain has a high impact on the runtime of all methods.
Since |X| =

±k
i=1 |Oi|, adding a few objects to the problem can lead

to a significant growth in runtime. Furthermore, the size of the space
of possible assignments increases significantly, which makes it harder
to discover the right constraints, and we need more examples for con-
straint discovery. We observe all these effects when comparing 4�4
and 9�9 Sudoku in Table 6.1. Therefore, future work should examine
how to reduce the size of a given problem.
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Figure 6.4: [AI Planning Results] Average F1 score with standard error on
the test sets of AI planning datasets for ten independent runs for
UrPiLs, FAMA, and PlanMiner.

6.6.2 Experiments on AI Planning Datasets

Finally, we evaluate UrPiLs on AI planning benchmark datasets [7]
and compare to the state-of-the-art methods FAMA and PlanMiner
from related work. Unfortunately, the authors of PlanMiner-N have
not published code for their method and did not respond to our emails.
As before, we generate a test set for each dataset with valid and invalid
executions of an action in the corresponding planning domain. We
report the classification F1 score for each method in Figure 6.4. We see
that UrPiLs beats the state of the art by a wide margin.

In our last experiment, we evaluate noise-robustness on the Hanoi
dataset. We report F1 score and the number of relations in the dis-
covered constraints for varying noise proportion in Figure 6.5. If the
data contains noise, FAMA does not find any constraints. PlanMiner
seems to pick up noise and finds constraints with a poor F1 score
on the test set. In contrast to that, UrPiLs is very robust to sensible
amounts of noise. If noise level increases, UrPiLs finds fewer con-
straints, i. e., it does not find spurious constraints.

6.7 discussion

In our experiments, we empirically show UrPiLs not only finds more
accurate constraints, but also finds more succinct constraints, is more
robust to noise, and has lower sample complexity than the start of the
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Figure 6.5: [UrPiLs is noise-robust on AI planning data] Average F1 score on
the Hanoi test set over ten independent runs for constraints dis-
covered by UrPiLs, FAMA and PlanMiner under varying noise
proportion on the training data (left, higher is better), and discov-
ered model size ||M|| under increasing noise (right). Error bars
show standard error.

art. Nonetheless, UrPiLs has its limitations, and we see interesting re-
search directions to overcome them. First, although we use a rich mod-
eling language, we cannot model everything. As we see in Figure 6.1,
UrPiLs does not achieve a 100% F1 score on MultipleKnapsack, be-
cause, with our current constraint language, we cannot model that the
sum of the item weights in a knapsack must not exceed its capacity. In
general, we need a new type of constraint to model lower and upper
bounds on the sum of numerical relation values. We see computing
the number of valid assignments for such models is even harder than
for count constraints, and thus is a challenging problem. Ideally, we
would extend our constraint language to the global constraint catalog
by Beldiceanu, Carlsson, and Rampon [16], which lists a large set of
reusable constraints for constraint programming problems.

Second, the size of a satisfiability problem massively impacts the
runtime and sample complexity of UrPiLs. While UrPiLs finds all con-
straints in the majority of runs from 40 examples of 4-Sudoku-hard, it
only finds all constraints one out of ten times from 1000 examples of 9-
Sudoku-hard. However, the rules of 4�4 and 9�9 Sudoku are basically
the same, and many problems have constraints that are independent of
the problem size. We, therefore, think it is promising to study how to
reduce the size of a given problem as a preprocessing step. Other ways
to improve performance on high dimensional problems may include
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expert knowledge to restrict the large search space of constraints, e.g.
by symmetries in the assignments or active learning.

Finally, we see an interesting connection between ConSequence in
Chapter 4 and UrPiLs. While ConSequence discovers positive rules
that predict events for a given attribute vector, UrPiLs can find negative
constraints for executing events.

6.8 conclusion

To close the gap between domain experts and mathematical modeling
experts in constraint programming and AI planning, we studied the
problem of discovering constraints from exemplary solutions. We for-
malized the problem in terms of the Minimum Description Length
(MDL) principle, by which we select the model with the best loss-
less compression of the data. Since solving the problem involves #P-
hard model counting, we proposed the greedy UrPiLs algorithm to
find high-quality constraints in practice. Through extensive experi-
ments on both constraint programming and AI planning benchmark
datasets, we empirically showed UrPiLs not only discovers more accu-
rate constraints, but also finds more succinct and hence interpretable
constraints, is more robust to noise, and has lower sample complexity
than the state of the art. To apply UrPiLs on more complex problems,
potential future work involves extending its modeling language and
improving its efficiency on high dimensional problems.
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7
F R O M P R O S E Q O T O U R P I L S : P U T T I N G I T A L L
T O G E T H E R

In this chapter, we demonstrate how the different solutions proposed
in the previous chapters can be used together to gain insight into a
business process. Furthermore, we discuss remaining challenges and
open research questions for future work.

7.1 introduction

Owners of both service-oriented and manufacturing processes design,
analyze and improve their processes using discrete-event simulation
[57]. Creating process models not only involves a lot of manual ef-
fort, it also requires the rarely available combination of mathemat-
ical modeling and process domain knowledge, and often results in
over-simplified models not fitting the actual process behavior well [1].
Therefore, analyzing event logs promises to alleviate the effort in build-
ing simulation models and to improve their accuracy [2].

In this chapter, we create and evaluate a simulation model of an
exemplary real-world process through applying the methods we pre-
viously introduced in this dissertation. As our exemplary event log,
we use the Rolling Mill event log, which we already used in Chapter 2,
Chapter 4 and Chapter 5. The events in this dataset refer to production
steps of a steel producing company, and each event sequence belongs
to one produced plate. The attributes in this dataset refer to product
categories and product dimensions.

More specifically, we create a discrete-event simulation, where we
model the rolling mill by a network of queueing models. First we need
to identify the process layout, i. e., the nodes in the queueing network.
To this end, we use Prosimple from Chapter 2 to get an easily under-
standable visual representation of the process layout. As we need to
predict paths of individual plates through the queueing network, we
discover routing rules of plates with ConSequence from Chapter 4.
Next, we learn queueing models for the different nodes in the net-
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work using CueMin from Chapter 5, by which we have an executable
process model for predicting throughput and bottlenecks. Finally, we
discuss potential optimization problems for which UrPiLs from Chap-
ter 6 could be used to learn constraints, as well as remaining challenges
and open research questions for future work.

7.2 creating the simulation model

In this section, we give an overview of our steps to create a simulation
model for the underlying process of the Rolling Mill event log.

7.2.1 Modeling the Process Layout

Before we can learn the behavior of different production stations in
the rolling mill, we first need to model the layout of the rolling mill.
Normally, we would need a lot of domain knowledge to identify the
most important parts of the process and how they connect to each
other. Purely relying on interviews of domain experts would not only
cost a lot of time, it also involves the risk of an over-simplified model
focusing on the expected instead of the actual process behavior.

Using Prosimple, we discover the process layout from the given
Rolling Mill event log, and obtain a graph of event patterns capturing
the actual process behavior yet simple enough to be easily understood.
We show the pattern graph in Figure 7.1. To facilitate understanding
the result, we highlight different parts of the process using different
colors. Furthermore, we provide a descriptive label for each part in
Figure 7.2. At the beginning of the process, the plates are rolled at
rolling-stands to meet their customer defined thickness. This happens
at high temperatures and forces, otherwise, thickness reduction would
not be possible. Therefore, we call this part of the rolling mill hot zone.
Next, production in this rolling mill splits into two separate lines for
thicker and thinner plates.

Large scissors cut thin plates into their final size. Depending on the
customer’s order, multiple special production steps ensure that the
plates meet the desired product properties. As in most manufacturing
processes, quality control releases delivery, before the plates can be
loaded to transport. This gives us the layout for our simulation model.
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Figure 7.1: [Rolling Mill Pattern Graph] Model discovered by Prosimple
(with r = 1.5) on the Rolling Mill dataset. We highlight essential
parts of the production process with colors. To further facilitate
understanding, we label pattern nodes in Figure 7.2.
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Figure 7.2: [Simulation model layout] Relabeled pattern graph from Fig-
ure 7.2. We highlight different parts of the process with colors,
and give a descriptive label for each node in the graph.
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7.2.2 Predicting Production Steps

Description alone is great, but what we often actually need is an exe-
cutable simulation model to study different production scenarios. As
we want to use the simulation model for analyzing different possible
scenarios with unseen plates, we need to predict the paths of these
plates through the rolling mill. Therefore, we learn rules to predict
event sequences using ConSequence. We directly map the events in
the event sequences to nodes in the pattern graph. For more details of
the discovered rules, we refer to our case study in Section 4.6.6.

7.2.3 Learning Queueing Models

To complete our simulation model, we need to model the behavior
of the individual production stations in the rolling mill. Since we are
interested in predicting sojourn and waiting times, we model each pro-
cess station by a waiting queue. As before, we normally would need
a lot of domain knowledge to model the actual behavior, and inter-
viewing domain experts involves the risk of an over-simplified model.
Instead, we learn queueing models using CueMin.

To this end, we must choose the right level of abstraction. In the
extreme case, we learn a separate queueing model for each event e P Ω
of the event alphabet. The arrival time of each plate at one event refers
to the completion timestamp of the previous event, and the departure
time refers to the completion timestamp of the current event. We refer
to this model as one queue per event (QpE).

In the second approach, we learn a queueing model for each node
in the pattern graph. The arrival time of each plate at one node refers
to the completion timestamp of the last event that happened before
the first event that is part of the pattern of the current node. We re-
fer to this model as one queue per pattern (QpP). Since QpE involves
more queues on a lower abstraction level, it should be able to capture
more complex behavior, which may result in higher simulation accu-
racy. QpP results in fourteen instead of 264 queues, and thus is easier
to understand. An open question for the experiments is whether QpE
really achieves higher accuracy, or whether the higher model complex-
ity leads to unexpected errors.
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Figure 7.3: [Cumulated number of loaded plates] Actual number of loaded
plates over time versus number of loaded plates predicted by the
Naïve mean sojourn time predictor and by the one queue per pat-
tern (QpP) simulation model (left), and the corresponding mean
absolute error of the one queue per pattern (QpP) and one queue
per event (QpE) simulation model using ConSequence for path
prediction versus using the actual path (right, lower is better).

7.3 experiments

Now, we evaluate our simulation model. We simulate arrival of all
plates in the dataset with their known arrival timestamp. Since the
queueing models as part of our simulation model contain stochastic
behavior, we conduct 100 independent runs.

7.3.1 Throughput Prediction

First, we evaluate predictions on production throughput. We average
the predicted number of loaded plates at each day across all simulation
runs. We compare the resulting cumulated number of loaded plates
with the actual data. As a simple prediction baseline, we compare to a
model that predicts the loading time of a plate by the sum of its arrival
time and the mean time until loading over all plates in the data.

We show the actual cumulated number of loaded plates as well as
the prediction by the QpP simulation model and the Naïve baseline on
the left of Figure 7.3. We see that QpP is closer to the actual line than
Naïve especially at the beginning of the observed time range. At the
middle part of the time range, both methods are almost on par with
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Figure 7.4: [Evaluating loading time predictions] Mean absolute error on the
predicted loading time for QpP and QpE using ConSequence for
path prediction versus using the actual path in comparison to
Naïve (left, lower is better), and actual loading time versus pre-
dicted loading time for QpP with ConSequence (right).

a slightly better fit by Naïve. Then, QpP gets closer again, before the
lines eventually converge.

We report the mean absolute error (MAE) on the number of loaded
plates for QpP and QpE on the right of Figure 7.3. Furthermore, we
show how the MAE changes when we use the actual event sequence in-
stead of the path predicted by ConSequence. QpP with ConSequence
has the lowest MAE, and is the only model that beats the Naïve base-
line. QpP fits the data better than QpE.

7.3.2 Loading Time Prediction

Next, we evaluate predictions of the loading time for individual jobs.
We show the mean absolute error on the loading time for QpP and
QpE in comparison to the Naïve mean sojourn time predictor on the
left of Figure 7.4. We see that both simulation models perform worse
than the baseline. As before, using the actual path instead of the path
predicted by ConSequence leads to a higher error.

To examine the reason why the simulation model QpP predicts well
on the average loading time as we saw in the previous section but
bad on the loading time of individual plates, we plot actual versus
predicted loading time on the right of Figure 7.4. Since the simulation
runs empty after no more new plates arrive at the start node, which
makes interpreting predictions hard, we only plot results for jobs with
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an actual loading time before the last plate arrives. This is why the
last actual loading time is around time step 30000. We see that the
simulation model overestimates loading time for a large set of plates.

7.4 discussion

Prosimple, ConSequence and CueMin enable quick creation of simu-
lation models for business processes, from which process analysts and
domain experts gain valuable insight of the event flow and queueing
behavior. Moreover, the resulting simulation model predicts through-
put well. Since all parts of the model consist of interpretable and un-
derstandable building blocks, domain experts can modify the model
using their process knowledge to increase accuracy. For instance, they
can incorporate business rules for production scheduling or mainte-
nance time windows.

As soon as the model gives a sufficiently accurate image of the
real process, production planners can analyze different scenarios to
avoid bottlenecks and to support investment decisions [53, 57]. Arti-
ficial data generated for scenario analysis should follow the rules of
real-world data. We see that Moody is able to support this task. In
addition, if routing rules depend on event data attributes, Moody can
be integrated into the simulation to predict change of those attributes.
Furthermore, we see two promising use cases for UrPiLs in process
simulation. First, we can replace ConSequence’s deterministic path
prediction by constraints that allow multiple paths. Second, we can
learn constraints for optimization tasks such as scheduling.

Although our short case study on the Rolling Mill dataset unveils
promising opportunities for understanding, predicting and optimiz-
ing business process using data, we see many interesting remaining
challenges and open research questions for future work. First, we see
by our experiments that the simulation model is good at predicting
behavior of the whole population but bad at predicting times for sin-
gle process instances. Similarly, using the actual event sequence in-
stead of the sequence predicted by ConSequence should not lead to
worse accuracy. While both results require further analysis to better
understand the actual reasons, we already see multiple directions to
improve the simulation model. Instead of learning queueing models
independently, future work should focus on a better integration be-
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tween queueing models in the network. To better predict individual
instances, we need to improve modeling of the service order. In addi-
tion, the current model is not able to explain waiting times, which are
not caused by system load.

Finally, we see that the difference between QpP and QpE raises the
question of the right level of abstraction. While we ran Prosimple and
CueMin independently of each other, we think integrating the waiting
queue perspective by CueMin into process discovery is promising. In
other words, a good process model such as a pattern graph should
lead to a good network of queueing models.

Traditionally being two separated research fields, we see the ongo-
ing trend of business process simulation and process mining growing
together. The majority of existing work focuses on extracting knowl-
edge from event data to support domain experts to develop simula-
tion models [2, 115] or digital twins [102]. Semi-automated modelling
approaches [4, 100] further alleviate the manual effort to create those
models. Future work faces the challenge to increase the level of au-
tomation in creating simulation models and digital twins. Last but
not least, there are many state-of-the-art algorithms that solve specific
parts of the problem, such as process discovery, control-flow predic-
tion, learning waiting queues, and remaining time prediction. Increas-
ing their availability and usage as well as integrating them into easily
applicable solutions is an interesting and promising challenge.

7.5 conclusion

In this chapter, we discussed the potential to combine the approaches
we proposed in the previous chapters by conducting a short case study
on the Rolling Mill dataset. We used Prosimple, ConSequence and
CueMin to create a simulation model of the rolling mill. Through two
initial experiments, we showed that the model gives promising results
in predicting overall production throughput, but is unable to predict
satisfyingly for individual plates. From these results, we derived mul-
tiple open research questions. Combining business process simulation
and process mining is an ongoing trend, and future work will increase
the level of automation in creating simulation models.

To make our methods available in their latest version, we publish our
code under the Github account of SHS Stahl-Holding-Saar, by which



134 from proseqo to urpils : putting it all together

7

the author of this thesis is employed, as ready-to-use Python libraries.1

We hope our methods will help both researchers and practitioners to
gain better insight into their business processes and event data.

1 https://github.com/shs-it/?q=prolothar

https://github.com/shs-it/?q=prolothar
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C O N C L U S I O N

Finally, we draw a conclusion from our contributions, discuss limita-
tions and give an outlook on future work and open challenges with
regard to the research problems we defined in Chapter 1.

8.1 summary of contributions

In this dissertation, we addressed how we can use event data to under-
stand, predict and optimize business processes. We formulated and
addressed a research problem for each of these three process analysis
steps. The first problem was

Problem 1 (Understanding Process Behavior) Given an event log, dis-
cover models summarizing the control-flow of events and how event data
changes throughout the process.

Since real-world processes exhibit complex behavior, where actual pro-
cess behavior has much larger variance than the behavior expected by
domain experts, understanding the control-flow of events is easier said
than done. We tackled this problem in Chapter 2. To distinguish be-
tween relevant and irrelevant behavior, we formalized the problem of
discovering a graphical model summarizing the control-flow of events
using the Minimum Description Length (MDL) principle, i. e., we se-
lected the model with the smallest lossless description of the data. As
finding the best model is a NP-hard problem, we proposed our greedy
algorithm Proseqo to discover good models in practice.

Proseqo starts with the directly-follows graph of an event log, i. e.,
an overfitting model, where each event is a node, and there is a di-
rected edge from one event a to another event b, if b directly follows
a at least once in the data. Then, Proseqo iteratively simplifies the
model by removing edges, nodes, and summarizing nodes into event
sequence patterns, until MDL tells us to stop. Whenever this results is
still too complex for domain experts to understand, we proposed the
Prosimple algorithm to remove further edges, until the model satisfies
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a user-defined graph density threshold. Experiments on both synthetic
and real-world data validated that our approaches are robust to noise
and work well in enabling a better understanding of the control-flow.

In Chapter 3, we tackled the event data perspective of the first re-
search problem. How data changes throughout a process is a surpris-
ingly understudied topic. To close this gap, we proposed the Moody al-
gorithm to discover interpretable if-then rules summarizing how event
data changes. Through extensive experiments on both synthetic and
real-world data, we empirically showed Moody finds succinct rules,
needs little data for accurate discovery, is robust to sensible amounts
of noise, and thus gives valuable insight into data modifications.

After providing novel approaches to better understand a process, we
focused on the second research problem, which we defined as

Problem 2 (Predicting Process Behavior) Given an event log, find models
to predict event sequences with their activities, event data and timestamps.

To tackle this problem, we learned a sparse event-flow graph over
the training sequences, and statistically robust rules that use trace at-
tributes to determine which paths to follow, by proposing the ConSe-
quence algorithm in Chapter 4. Since the event-flow graph and the
decision rules are easily human-readable, ConSequence in contrast
to deep neural networks enables truly interpretable event sequence
prediction. Through an extensive set of experiments including a case
study, we showed our approach produces compact, interpretable and
accurate models, is robust against noise and has low sample complex-
ity, which enables applicability on a wide range of real-world datasets.

To manage customer satisfaction and delivery reliability, predicting
time as well as detecting and preventing bottlenecks is particularly im-
portant in service-oriented and manufacturing processes. Event times-
tamps often result from waiting times in the process, which we can
explain by queueing models. We studied discovering queueing models
for interpretable time prediction from data, and proposed the CueMin
algorithm to tackle this problem in Chapter 5. As we left combining
multiple queueing models into a network of waiting queues as future
work when proposing CueMin, we approached a first solution by com-
bining Prosimple, ConSequence and CueMin in Chapter 7.

Since the final goal of any process analysis is process enhancement,
we defined the third research problem as
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Problem 3 (Optimizing Process Behavior) Given an event log, find mea-
surements to improve and optimize process behavior.

Reducing anomalies increases efficiency and makes process behavior
more predictable. Process models as the ones discovered by Proseqo
and Prosimple help domain experts to identify anomalies. Production
planners can use queueing models to prevent bottlenecks and opti-
mize throughput. Furthermore, queueing models support investment
decisions, such as hiring more employees or buying new machines to
increase service capacity. These contributions to process optimization
are rather indirect, i. e., they help to gain the necessary understand-
ing and help to create a simulation model of process behavior, which
we can use in optimization use cases. In a more direct approach, both
constraint programming and AI planning are powerful tools to solve
optimization problems such as scheduling. Formulating optimization
constraints, however, requires extensive domain knowledge and man-
ual modeling effort. Therefore, we proposed the UrPiLs algorithm to
discover constraints for constraint programming and AI planning from
exemplary solutions in Chapter 6.

In summary, we proposed multiple novel approaches to understand,
predict, and optimize process behavior using data. Through extensive
experiments, we empirically showed that our methods discover inter-
pretable yet accurate models, are robust against noise, and have low
sample complexity. Many companies face a disruptive digital transfor-
mation, where fast business decisions are necessary but wrong busi-
ness decisions, such as investing into new production machines, may
endanger the survival of the company. By using our methods, domain
experts and process owners can make data-driven process optimiza-
tions, and build digital twins to test any change to the process on an
accurate digital representation before modifying the real process.

8.2 limitations

Naturally, each method has its limitations, and we see a lot of inter-
esting research directions to address them. First, Proseqo, Prosim-
ple and ConSequence discover good models for processes without
concurrent activities. Many real-world processes, however, consist of
branches with parallel activities. For instance, in the Sepsis event log,
different laboratory tests are conducted concurrently instead of se-
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quentially. Detecting concurrent behavior either as a preprocessing
step or integrated into the model search of the three methods would
lead to better results on more real-world processes.

Since we use the MDL principle, our model selection is based on
a well-founded induction by compression theory, resulting in noise-
robust approaches and simple yet accurate models. However, MDL is
not a magic wand: The encoding we propose includes choices. Differ-
ent choices may lead to different, and possibly better, models. As a
more serious downside, discrete optimization is a bottleneck in all our
approaches. While our approaches scale favorably with the number
of training instances, discrete optimization impedes fast runtimes on
very complex datasets with thousands of different events or event at-
tributes. Runtimes of multiple hours or even days prevent application
with real-time requirements. Increasing complexity in the modeling
language for methods like Proseqo, CueMin or UrPiLs to tackle real-
world processes with more complex behavior, results in an even larger
search space. Thus, we see high potential in optimizing model search.
One option is to examine application of state-of-the-art discrete opti-
mization methods specialized on problems with expensive evaluation
functions [33]. As an alternative, we could make the search space dif-
ferentiable by using a neural autoencoder with binary activations [46].

While we evaluated on datasets from several domains such as dif-
ferent service-oriented and manufacturing processes, we yet do not
make use of domain knowledge to find better solutions faster. As all
our models consist of interpretable building blocks, one option to in-
clude such knowledge is by domain experts adapting the model or
restricting the model search space. This, however, requires a lot of
manual effort, and domain knowledge is not always easily available.
To this end, we expect similar processes to behave similar across dif-
ferent companies, such that exploiting ontologies promises to enhance
model search [39, 61, 70, 94]. Whenever ontologies are not available or
incomplete, natural language processing can be used to extract seman-
tic information from event logs [121].

As process mining is a huge, fast-emerging and multi-faceted re-
search field, we could not address all of its subtopics in this disser-
tation. Before we can analyze event data, we first have to collect it.
Data acquisition of event logs is a non-trivial task, which often requires
domain knowledge [133], and thus is an obstacle for process mining
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projects in practice. To further increase industrial adoption of process
mining, we consider simplifying collecting and accessing high-quality,
well-documented event data a key factor.

In all our contributions, we assumed a static event log. However,
real-world processes usually are not static. Therefore, it would be in-
teresting to extend our methods to continuous learning and concept
drift detection [21, 131] on event stream data [165].

We focused on events that belong to exactly one sequence and all
events are on the same abstraction level. Event data, however, appears
in many variants. In object-centric event logs [1, 3], each event refers to
the change of the state of one or multiple objects, where objects as in
object-oriented programming belong to different classes, and there are
relationships between objects. As an example, consider an order that
belongs to one customer and consists of multiple items, and multiple
items of different customers can be transported by the same truck. In
multi-level event logs [81], events belong to different abstraction levels,
such that one event embraces a set of lower-level events.

In summary, to make our approaches applicable to even more real-
world processes and use cases, potential future work comprises extend-
ing the modeling language to fit more complex behavior, optimizing
model search, using domain knowledge from ontologies, and support-
ing different types of event logs.

8.3 outlook

As process mining and event log analysis are evolving fast, we con-
clude this dissertation with an outlook based on current developments.
Since real-world process event data is rarely publicly available, con-
tains nondeterministic behavior, and often comes from very special
domains, evaluating tasks such as process model discovery, sequence
prediction, and anomaly detection in a reproducible and sound man-
ner is challenging. Rehse and Fettke [122] report significant evalua-
tion problems, such as unrepresentative datasets, no proper compari-
son to other methods, deficient metrics, and a lack of reproducibility.
The community addresses these issues by developing and studying
new quality metrics [60, 111, 157] as well as creating new and larger
benchmark datasets [79, 111]. Therefore, we expect that sound and re-
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producible benchmarking of analyzing and predicting event log data
becomes easier and more standardized.

Improved reproducible benchmarking enables intensified publish-
ing on AI and data mining conferences, such that researchers can profit
from advanced knowledge across communities. We already observe
that process mining quickly adopts recent developments and trends
from the AI community, such as graph neural networks [26, 141] or
large language models [18, 19, 44, 62]. Vice versa, process mining offers
challenging problems of great industrial interest, and thus we expect
AI and data mining researchers to put a stronger focus on pattern min-
ing for process event sequences, next event prediction, event sequence
anomaly detection, and other process mining related tasks.

The dynamics of a currently ongoing digital transformation [73]
force companies to adapt their business model and innovate faster
than ever before. Companies that do not transform rapidly enough risk
to fall behind and fail in competition [56]. Digital twins, i. e., accurate
digital representations of the real world, facilitate process design, mon-
itoring, simulation and optimization, and thus support succeeding in
the digital transformation [143]. However, creating and maintaining
digital twins for existing processes requires both a lot of manual effort
and domain knowledge. Since recent work highlights the potential of
process mining for digital twins [12, 78, 104], process mining may lead
to a wider adoption of digital twins in established service-oriented and
manufacturing processes.

As we showed in this dissertation, our methods discover accurate yet
easily understandable models from event logs, which domain experts
can use to alleviate the effort of creating digital twins. We hope that
further research will even more facilitate understanding, predicting
and optimizing business processes.
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