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Abstract

Constraint programming and AI planning are powerful tools
for solving assignment, optimization, and scheduling prob-
lems. They require, however, the rarely available combination
of domain knowledge and mathematical modeling expertise.
Learning constraints from exemplary solutions can close this
gap and alleviate the effort of modeling. Existing approaches
either require extensive user interaction, need exemplary in-
valid solutions that must be generated by experts at great ex-
pense, or show high noise-sensitivity.
We aim to find constraints from potentially noisy solutions,
without the need of user interaction. To this end, we for-
malize the problem in terms of the Minimum Description
Length (MDL) principle, by which we select the model with
the best lossless compression of the data. Solving the prob-
lem involves model counting, which is #P-hard to approx-
imate. We therefore propose the greedy URPILS algorithm
to find high-quality constraints in practice. Extensive exper-
iments on constraint programming and AI planning bench-
mark data show URPILS not only finds more accurate and
succinct constraints, but also is more robust to noise, and has
lower sample complexity than the state of the art.

Introduction
Constraint programming, the holy grail of programming
(Barták 1999), separates the concerns of modeling a problem
and finding a solution. As modeling the problem requires
the rarely available combination of both domain knowledge
and mathematical modeling expertise, learning constraints
from data enables broader application of constraint program-
ming (O’Sullivan 2010). Handcrafted solutions are often
recorded for real-world assignment problems like schedul-
ing and staff rostering, and thus provide a promising knowl-
edge base to mine constraints. Existing approaches do not
satisfactorily solve this task. Active learning (Bessiere et al.
2013; Tsouros and Stergiou 2020; Belaid et al. 2022) needs
thousands of queries even for simple problems, which is in-
tractable if a human expert must label these queries. Pas-
sive learning approaches (Pawlak and Krawiec 2017; Kumar
et al. 2020; Prestwich et al. 2021) need invalid examples,
i.e., non-solutions, in their training set. Those are usually
not collected and experts must create them at great expense.
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State-of-the-art methods to learn constraints purely from
valid solutions either suffer from a limited constraint lan-
guage, resulting in a long list of hard-to-read constraints,
and need a lot of data (Prestwich 2021), or cannot learn
from real-world data because they are not robust to noise
(Kumar et al. 2019; Kumar, Kolb, and Guns 2022). Further-
more, although learning conditions for actions in AI plan-
ning is closely related to learning constraints for constraint
programming, none of the existing approaches is directly ap-
plicable to AI planning problems. Most of AI planning spe-
cific work (Arora et al. 2018; Aineto, Celorrio, and Onaindia
2019; Segura-Muros, Pérez, and Fernández-Olivares 2021)
considers constraint learning as only one of many problems
to solve. Not focusing on constraint learning prevents these
methods from being effective on this task.

To overcome all these limitations, we formalize the prob-
lem of learning constraints from exemplary solutions in
terms of the Minimum Description Length (MDL) princi-
ple, by which we select the model with the best lossless
compression of the data. Since solving the problem exactly
involves #P-hard model counting, we propose the greedy
URPILS algorithm for Unveiling Rules from PosItive La-
belS. Through extensive experiments on both constraint pro-
gramming and AI planning benchmark data, we empiri-
cally show that URPILS discovers more accurate and suc-
cinct constraints with less constraint terms, is more robust to
noise, and has lower sample complexity than the state of the
art. In summary, our main contributions are as follows. We

(a) formalize the problem of learning constraints from ex-
emplary solutions in terms of the MDL principle,

(b) propose an efficient heuristic to discover constraints for
both constraint programming and AI planning,

(c) provide an extensive empirical evaluation,
(d) make code, data and additional details publicly available

in the supplementary materials.
In the next section, we introduce necessary notation and

basic concepts we use in the paper. Then, we formalize the
problem in terms of MDL. Next, we propose our greedy
URPILS algorithm and describe how to adapt URPILS
to AI planning problems. After giving an overview of re-
lated work, we provide an extensive empirical evaluation on
benchmark datasets. Finally, we discuss limitations, outline
potential future work and draw a conclusion.



Preliminaries
Before we formalize the problem, we introduce notation and
basic concepts we use in the paper.

Boolean Constraint Programming
Assume we are given a list of object sets O1, . . . , Ok and
their Cartesian product X =

∏k
i=1 Oi. As an example, con-

sider the 8-Queens problem, where we want to place eight
queens on a 8×8 chess board, such that no two queens attack
each other. We define an object set O1 = {Q1, . . . , Q8} for
queens, and an object set O2 = {S1, . . . , S64} for squares
on the board. An assignment is a boolean function fa : X →
{0, 1}, e.g., fa(Q1, S42) = 1 means queen Q1 is on square
S42. We call fa a valid assignment, if it satisfies a set of con-
straints, i.e., a model M = {C1, . . . , Cm}, with Ci : X →
{0, 1} and fa is valid iff ∀x ∈ X ∀Ci ∈ M : Ci(x) = 1.
For a given model M , we denote the set of valid assignments
by FM . We define constraints by a boolean algebra over the
assignment fa, a set of boolean relations between objects
FB = {f1, . . . , f|FB|} with fi :

∏
j∈{1,...,k}+ Oj → {0, 1},

and arithmetic expressions over a set of numeric relations
FR = {f1, . . . , f|FR|} with fi :

∏
j∈{1,...,k}+ Oj → R.

In the 8-Queens example, we assign rows and columns
to squares. Formally, we define FR = {fx, fy} with fx :
O2 → {1, . . . , 8} and fy : O2 → {1, . . . , 8}. The constraint
that no more than one queen may be placed in a row can then
be written as ∀(q1, q2, s1, s2) ∈ O1×O1×O2×O2 : (s1 ̸=
s2 ∧ fx(s1) = fx(s2)) → (fa(q1, s1) → ¬fa(q2, s2)). Our
goal is to find constraints like these from a dataset of exem-
plary valid assignments D = {f1

a , . . . , f
n
a }.

Minimum Description Length Principle
We use the Minimum Description Length (MDL) principle
(Rissanen 1978; Grünwald 2007) for model selection. MDL
identifies the best model as the one with the shortest loss-
less description of the given data. In MDL, we only com-
pute code lengths, but are not concerned with actual code
words. Formally, given a set of models M, the best model
is defined by argminM∈M L(M) + L(D | M), in which
L(M) is the length in bits of the description of M , and
L(D |M) is the length of the data encoded with the model.
This form of MDL is known as two-part or crude MDL.
Although one-part or refined MDL provides stronger the-
oretical guarantees, it is only computable in specific cases
(Grünwald 2007). Therefore, we use two-part MDL. Next,
we formalize our problem in terms of MDL.

MDL for Constraint Learning
From a set of exemplary assignments, we aim to discover
a succinct set of constraints fitting and explaining the ob-
served data and generalizing well to unseen data. To account
for potential noise in real-world data, we need a noise-robust
discovery approach. Thus, we formalize the problem of con-
straint discovery from exemplary solutions in terms of the
MDL principle. To this end, we define length of the data en-
coding L(D |M), length of the model encoding L(M), and
finally give a formal problem definition.

Data Encoding for Constraint Programming
To encode a dataset D, we encode all its assignments, i.e.,

L(D |M) =
∑

fa∈D

L(fa |M) .

An empty model without constraints has |FM | = 2|X| valid
assignments, and we need |X| bits to choose one. The more
constraints the model contains, the smaller the set of valid
assignments, and the cheaper it is to identify the actual one.
As real-world data is often noisy, there may not exist a valid
assignment matching the exemplary data exactly. To ensure
a lossless encoding, we have to encode the errors of the best
fitting assignment. We denote the number of errors by

error(M | fa) = min
f ′
a∈FM

∑

x∈X

1f ′
a(x)̸=fa(x)(x) .

To encode the errors, we first specify their number by the
MDL-optimal encoding for integers z ≥ 1 (Rissanen 1983)
defined as LN(z) = log c0 + log z + log log z + . . ., and
we sum only the positive terms, and c0 is set to 2.865064 to
satisfy the Kraft inequality for a lossless encoding. Then,
we encode the incorrect assignment values by a data-to-
model code (Li and Vitányi 1993), i.e., an index to choose
error(M | fa) out of |X| values. In summary, we have

L(fa |M) = log |FM |+ LN (1 + error(M | fa))

+ log

( |X|
error(M | fa)

)
.

This gives us a lossless encoding of the data.

Model Encoding
Next, we compute the length of the model encoding by

L(M) = LN(|M |+ 1) +
∑

C∈M

L(C) ,

i.e., we encode the number of constraints, which can be zero,
and encode each constraint. We first define a grammar of our
constraint language for complex real-world problems by

C → ⟨CV ⟩ “|” ⟨CF ⟩ : ⟨CT ⟩
CV → ϵ | ∀x ∈ X | ∀x, y ∈ X

CF → ϵ | ⟨v⟩ = ⟨v⟩ | ⟨v⟩ ≠ ⟨v⟩ | ⟨fB⟩(⟨v⟩) | ⟨NF⟩ |
¬⟨CF ⟩ | ⟨CF ⟩ ∧ ⟨CF ⟩ | ⟨CF ⟩ ∨ ⟨CF ⟩

v → x⟨i⟩ | y⟨i⟩ i→ 1 | . . . | k fB → one of FB

NF → ⟨NE⟩ < ⟨NE⟩ | ⟨NE⟩ ≤ ⟨NE⟩ | ⟨NE⟩ = ⟨NE⟩
NE → ⟨z ∈ R⟩ | ⟨fR⟩(⟨v⟩) | ⟨NE⟩⟨⊙⟩⟨NE⟩ |

“|”⟨NE⟩“|” | ⌊⟨NE⟩⌋ | ⌈⟨NE⟩⌉
fR → one of FR ⊙ → + | − | · | /
CT → fa(x) | fa(y) | fa(X⟨j⟩) | ¬⟨CT ⟩ | ⟨CT ⟩ ∧ ⟨CT ⟩ |

⟨CT ⟩ ∨ ⟨CT ⟩ | ⟨COUNT⟩
j → 1 | . . . | |X|
COUNT → ⟨NE⟩ ≤

∑

⟨v⟩
fa(x) ≤ ⟨NE⟩ .



We conceptually split a constraint C into three parts, i.e.,
C = (CV , CF , CT ). In CV , we can define variables of
object tuples in X . In CF , we filter the possible values of
these variables: we can test for equality and inequality of
variables, we can query values of boolean and numerical re-
lations, and we can compose complex filters with boolean
operators. A numeric filter NF compares the values of two
numeric expressions NE, which are any real number, any nu-
meric relation, or a composite of arithmetic operations.

The target of any constraint is to define the set of valid
assignments. In CT , we restrict the valid values of an as-
signment fa by a boolean expression over fa. In its simplest
form, CT requires fa to be true for a variable defined by
CV and CF . We can also require fa to be true for one spe-
cific parameter combination Xj with j ∈ {1, . . . , |X|}. We
can compose more complex constraints using boolean oper-
ators. In many real-world problems, we can distribute some
kind of budget. For instance, if we assign shifts to employees
during rostering, employees require a minimal and maximal
workload. We model such COUNT constraints by a lower and
upper bound on a sum over the assignment values of fa.

When computing the encoded length of a constraint, we
want to avoid any undue bias and therefore assume that
whenever we have multiple modeling choices, all options
are equally likely. Formally, we use our defined constraint
grammar to recursively compute L(C) by

L(A) = log |A|+
∑

⟨α⟩∈A

L(α) ,

where A is a nonterminal in the grammar, and we first en-
code which of the |A| branches we produce, before we
encode all remaining nonterminals. In the special case of
⟨z ∈ R⟩, we compute the encoded length by LR(z) (Marx
and Vreeken 2019), where we represent z up to a user-
specified precision p by the smallest integer shift s such that
z · 10s ≥ 10p. We then encode shift, shifted digit and sign,
i.e., LN(s) + LN(⌈z · 10s⌉) + 1. Altogether, this gives us a
lossless encoding of the model.

Formal Problem Definition
Using our MDL score, we now formally state our problem.

Minimal Constraint Model Problem Given a set D of as-
signments f1

a , . . . , f
n
a , find the constraint model M minimiz-

ing the total encoded cost L(D,M) = L(D |M) + L(M).

Solving this problem optimally is intractable in practice.
Potentially, we have up to 2|X| valid assignments, i.e., we
face an exponentially growing search space for constraints.
Moreover, our MDL score does not exhibit properties such
as monotonicity or submodularity that we can exploit to ef-
ficiently find an optimal solution. We give a counterexam-
ple for both properties in the supplementary materials. Ad-
ditionally, even computing L(D |M) is hard by itself. Find-
ing a valid assignment f ′

a for M that is nearest to a given as-
signment fa corresponds to finding a valid assignment hav-
ing maximal Manhattan distance to fa with negated values,
which in general is NP-hard (Crescenzi and Rossi 2002).

Computing the number of valid assignments |FM | is
equivalent to counting the solutions of a boolean formula,
which is #P-complete, i.e., at least as hard as NP-complete
(Valiant 1979). Researchers have proposed algorithms like
GANAK (Sharma et al. 2019), SHARPSAT-TD (Korhonen
and Järvisalo 2021) or APPROXMC (Soos and Meel 2019)
to tackle the problem. Dependent on the complexity of the
formula, these approaches take seconds, minutes or even
hours (Fichte, Hecher, and Hamiti 2021), which is too slow
for evaluating many constraint candidates during search.

The URPILS Algorithm
Since solving the minimal constraint model problem opti-
mally is intractable, we resort to greedy solutions.

Estimating the Number of Valid Assignments
To compute L(fa | M), we must count the number of valid
assignments |FM | for a given model M . We use an approx-
imation, which is fast to compute and still enables useful
comparison of constraint candidates. We estimate the num-
ber of valid assignments based on a standard algorithm for
exact counting (Zhou, Yin, and Zhou 2010). First, we trans-
form our constraint model M into a boolean function of con-
junctive normal form (CNF), where each possible parameter
combination of fa corresponds to a boolean variable. Next,
we compute the constraint graph G of the formula, which is
an undirected graph with variables as nodes, and two vari-
ables are connected if they occur together in a clause. We
count the number of valid assignments separately for dis-
connected, i.e., independent, components and get the total
count by multiplying the result of each component.

If the graph is small enough and contains less than five
variables, it is feasible to count the number of valid as-
signments exactly by enumeration. Otherwise, we use a
polynomial-time approximation. If clauses in the CNF con-
tain at most two variables, the number of valid assign-
ments corresponds to the number of independent sets in G
(Dahllöf, Jonsson, and Wahlström 2005), where an indepen-
dent set is any set of non-adjacent nodes. We compute a
lower bound by (Sah et al. 2019)

|FM | ≥
∏

v∈V

(deg v + 2)1/(deg v+1),

with V being the set of nodes in G and deg v denotes the
degree of node v. The number of variables per clause only
depends on the target part CT of a constraint. If CT has
the form fa(·) or ¬fa(·), we have one variable per clause,
whereas implications like fa(x)→ fa(y) result in two vari-
ables per clause. In these cases, our lower bound leads to
valid results. As we will show later in the experiments, these
unary and binary relationships between variables are suffi-
cient to describe most of the constraints in many problems.

Count constraints, however, in general lead to clauses
with more than two variables. For instance, let x1, . . . , x6 be
boolean variables and consider the constraint

∑6
i=1 xi = 3.

Then, the CNF of this constraint is
∏4

i=1

∏5
j=i

∏6
k=j(xi +

xj + xk), i.e., we have three variables per clause. Thus, we
need to compute |FM | differently for count constraints. For



a single equality constraint
∑n

i=1 xi = a, we have
(
n
a

)
sat-

isfying assignments. We generalize this for inequality con-
straints a ≤∑n

i=1 xi ≤ b by
∑b

i=a

(
n
i

)
.

Since we do not know what the intersection of the valid
assignments for multiple count constraints looks like, be-
cause enumerating them is intractable, we can only make
assumptions. We assume all count constraints equally con-
tribute to the final count, and thus divide the mean of the
individual counts by the number of constraints, i.e.,

|FM | =
⌈∑

C∈M

∣∣F{C}
∣∣

|M |2

⌉
.

By this, we can estimate the number of valid assignments.

Estimating the Best Fitting Valid Assignment
To compute L(fa |M), we also need to compute error(M |
fa), i.e., the minimal number of values we need to change in
a valid assignment of M to get fa. Since we must repeat this
computation many times during our search for constraints,
we want this to be as fast as possible. As in counting the
number of valid assignments, enumerating all assignments
to find error(M | fa) is intractable.

In contrast to error(M | fa), the number of unsatis-
fied clauses in the CNF formula of the model is cheap to
compute. The more clauses are unsatisfied, the more vari-
ables we expect must be flipped to satisfy the formula, and
hence the higher is error(M | fa). We estimate the num-
ber of variables we must flip to satisfy the formula by using
the coupon collector’s problem (Pólya 1930)(Feller 1968, p.
225): If we assume that for each of the m unsatisfied clauses,
we draw one of |V | variables with replacement to flip, the
expected number of flipped variables is

error(M | fa) =
⌈
|V | − |V | · (1− 1

|V | )
m

⌉
.

The value of error(M | fa) is 0 if no clause is unsatisfied,
increases with m and does not exceed the number of vari-
ables |V |. By this, we can compute L(D,M).

Discovering a Good Constraint Model
We now want to minimize L(D,M) for a given dataset D,
i.e., we want to discover a good constraint model in feasi-
ble time. Since computing L(D | M) is harder for mod-
els with COUNT constraints, we search for these at the end.
Many satisfiability and optimization problems contain a set
of relatively simple constraints, even if they also contain a
set of very complex constraints. Simple constraints typically
involve none or only one feature relation in the filtering part
CF . Therefore, we propose our method URPILS, in which
we split the search for constraints into three stages.

We give the pseudocode of URPILS in Algorithm 1.
Starting with an empty model, we first search for the low-
hanging fruit and generate simple constraint candidates. In
constraint programming, we are often interested in model-
ing the pairwise relationship between variables. For exam-
ple, we require in Sudoku that two cells in the same row
do not have the same value. Hence, we generate a set of

Algorithm 1: URPILS

input : dataset D
output: set of constraints M

1 M ← ∅;
2 M ← FILTER(M,D, SIMPLECANDS(D));
3 M ← FILTER(M,D, COMPLEXCANDS(M,D));
4 M ← FILTER(M,D, COUNTCANDS(D));
5 return M ;

Algorithm 2: FILTER

input : current model M , dataset D, set of
candidates Q

output: extended model M
1 sort Q by L(D, ·);
2 foreach C ′ ∈ Q do
3 foreach C ∈M do
4 if C ′

V = CV ∧ C ′
T = CT then

5 C ′
F ← C ′

F ∨ CF ;
6 M ′ ←M\{C};
7 break;

8 M ′ ←M ′ ∪ {C ′};
9 if L(D,M ′) < L(D,M) then

10 M ←M ′;

11 return M ;

simple candidates with all constraints of the form ∀x, y ∈
X | CF : fa. In CF , we compare the values of at most one
boolean and numerical relation, e.g. f(x1) < f(y1) with
f ∈ FR. To restrict the pairwise assignment values of x and
y, we generate implications of the type fa(x) → fa(y) and
fa(x) → ¬fa(y) for CT . For further reference, we provide
pseudocode for SIMPLECANDS in the supplementary.

We filter the generated candidates in the FILTER subrou-
tine for which we give the pseudocode in Algorithm 2. We
test the most promising candidates first through prioritizing
candidates by their individual gain. To minimize model com-
plexity, we try to merge each candidate C ′ with an existing
constraint C ∈ M . We can merge constraints if they share
the same variable and target part. For example, we merge
∀x, y ∈ X | g(x1) < g(y1) : fa(x) → ¬fa(y) and
∀x, y ∈ X | h(x2) = h(y2) : fa(x)→ ¬fa(y) into ∀x, y ∈
X | g(x1) < g(y1) ∨ h(x2) = h(y2) : fa(x) → ¬fa(y). If
a candidate improves our score, we add it to the model.

A model with simple constraints gives us a good baseline
from which we search for constraints with a more complex
filtering part. Instead of an intractable search over all pos-
sible filtering expressions, we map the problem to a simpler
binary classification problem. We test for each pair x, y ∈ X
whether the single implication fa(x)→ fa(y) improves the
fit on the data, i.e., it leads to a lower L(D | M). We later
repeat the search for fa(x) → ¬fa(y). By this, we get a set
of positive and a set of negative implications as targets of
a binary classification. We generate features by a recursive
enumeration of all possible CF using our defined constraint



grammar. To avoid infinite recursion and combinatorial ex-
plosion, we do not generate CF with conjunctions or dis-
junctions, and we limit the number of numerical operators.
Finally, we look for a set of features best explaining the divi-
sion into positive and negative implications, which gives us
a good candidate for CF . For reference, we provide details
and pseudocode for COMPLEXCANDS in the supplementary.

In the last stage of URPILS, we search for count con-
straints. To this end, we create candidates for different input
partitions of fa similar to the existing COUNTOR algorithm
(Kumar et al. 2019). Formally, we create constraints of the
form ∀x ∈ X | CF : a ≤∑

fa(x) ≤ b, where we generate
candidates for a, b ∈ N by observations in D. We generate
an empty CF , and we generate all possible CF = f(xi) with
f ∈ FB and i ∈ {1, . . . , k}. Again, we use FILTER to select
which candidates we add to our final model. This gives us a
set of constraints from exemplary assignments.

URPILS for AI Planning
Next we show how to adapt URPILS for AI planning prob-
lems, in which actions change the state of an environment
until a predefined goal state is reached. We reuse notation
and define a state by boolean and numerical relations be-
tween objects from different object sets. We write f j

i to refer
to relation fi at state j. W.l.o.g we consider a single action a.
We denote the assignment at state j by f j

a , and f j
a(x) = 1 if

a is executed with objects x at state j and f j
a(x) = 0 else. As

before, we aim to find constraints M for valid assignments
and thus preconditions to execute a.

As valid assignments satisfy
∑

x∈X fa(x) = 1, the empty
model has |X| instead of 2|X| valid assignments. To encode
errors efficiently, we specify for each assignment in the data
if it is valid for M . If we knew the number of valid and in-
valid assignments beforehand, we could compute the lengths
of optimal prefix-codes. To avoid any arbitrary choices, we
use prequential codes (Grünwald 2007), which are asymp-
totically optimal without requiring initial knowledge of the
code distribution. If an assignment is valid, we encode it via
an index over all valid assignments, otherwise we use an in-
dex over all other assignments. Formally, we have

LAI(D |M) =

|D|∑

i=1

− log

(
usgi f

i
a ∈ FM + ϵ

usgi 0 + usgi 1 + 2ϵ

)

+

{
log |FM | , if f i

a ∈ FM

log(|X| − |FM |), otherwise,

where usgi x is how often code x has been used up to the i-th
assignment, and ϵ with standard choice 0.5 is for smoothing.
This gives us an efficient encoding for AI planning data.

We also incorporate that fa(x) = 1 for exactly one x into
our search candidate generation. A single one in fa means
we neither need constraints on pairwise relationships of fa
nor count constraints. Instead, we search for constraints
telling us when we are not allowed to execute an action.
This means we create candidates ∀x ∈ X | CF : ¬fa(x),
where CF compares boolean and numerical relations. We
give pseudocode in the supplementary materials.

Related Work
Learning constraints for constraint programming is a widely
studied problem. Active learning approaches (Bessiere et al.
2013; Tsouros and Stergiou 2020; Belaid et al. 2022) de-
rive constraints by asking queries in the form of partial or
complete solutions and non-solutions. Even for simple prob-
lems, these approaches may require thousands of queries,
which limits their applicability if a human must label these
queries. Therefore, researchers proposed to learn constraints
from a static set of both solutions and non-solutions (Pawlak
and Krawiec 2017; Kumar et al. 2020; Prestwich et al.
2021). While handcrafted solutions are usually recorded in
real-world applications like scheduling and rostering, non-
solutions representing forbidden behavior often are not col-
lected. Thus, data and label acquisition as a bottleneck still
can prevent application of such methods in practice.

Recent work finds constraints from solutions only. This
often results in methods working in narrow contexts, such
as integer linear programming (Meng and Chang 2021),
scheduling sequences (Picard-Cantin et al. 2016) or tab-
ular spreadsheets (Kolb et al. 2017). COUNTOR (Kumar
et al. 2019) infers count constraints. It, however, cannot
handle noise, can only create simple expressions, and does
not consider redundancy between constraints. COUNTCP
(Kumar, Kolb, and Guns 2022) extends COUNTOR by a
richer modeling language and reduced redundancy, but still
does not handle noise. MINEACQ (Prestwich 2021) selects
constraints by permutation testing. In contrast to COUN-
TOR and COUNTCP, MINEACQ does not find quantified
constraints, which can lead to a large result set. CABSC
(Coulombe and Quimper 2022) also selects constraints by
counting valid assignments, but needs user-provided knowl-
edge of constraints and does not handle noise.

In AI planning, many approaches try to infer domain
models from exemplary execution plans (Arora et al.
2018). Strictly assuming no noise, FAMA (Aineto, Celor-
rio, and Onaindia 2019) formalizes the problem as a plan-
ning problem itself. PLANMINER (Segura-Muros, Pérez,
and Fernández-Olivares 2021) translates the problem to a
rule-based classification task, and PLANMINER-N (Segura-
Muros, Fernández-Olivares, and Pérez 2021) improves
PLANMINER’s noise-handling. AI planning domain acqui-
sition methods tackle multiple tasks, treating the learning of
action constraints as an unfocused subproblem. In contrast
to all other methods above, URPILS discovers a succinct
set of constraints with low sample complexity, is robust to
noise, and can be applied to a broad domain of optimization,
satisfiability and planning problems.

Experiments
Now, we evaluate URPILS on constraint programming and
AI planning datasets. Since both domains have specialized
state-of-the-art methods that are not applicable to both prob-
lems, we split the experiments into two. We conducted all
our experiments on a PC with Windows 10, an Intel i7-6700
CPU and 32 GB of memory. To ensure reproducibility, we
make code and data publicly available in the extra materials.1

1https://eda.rg.cispa.io/prj/urpils
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Figure 1: [URPILS discovers high-quality constraints] Av-
erage F1 score on the test set for ten independent runs on
training sets with 1000 randomly drawn examples, for con-
straints discovered by URPILS, MINEACQ, COUNTOR and
COUNTCP. Error bars show standard deviation.

Experiments on Constraint Programming Datasets
We start by comparing URPILS with the state of the art from
related work. While COUNTOR and COUNTCP have no hy-
perparameters, we must generate candidate constraints for
MINEACQ and set parameters τ and ρ to control the accep-
tance threshold of its permutation test for candidate selec-
tion. To ensure MINEACQ can find all necessary constraints
to model the datasets without providing too much knowl-
edge about the ground-truth constraints, we generate all pair-
wise implications fa(x) → fa(y) and fa(x) → ¬fa(y).
By a manual hyperparameter search, we find τ = 10 and
ρ = 0.001 lead to the best results.

We experiment on datasets with different characteristics.
To test if the constraint learners find spurious results, we
create a synthetic dataset Random, where we uniformly and
randomly sample values for fa. We also uniformly and ran-
domly sample values for boolean and numerical relations in
the dataset, i.e., there is no dependency to fa, and the ground
truth is an empty model without any constraints.

Besides, we evaluate on datasets with non-empty ground-
truth constraints. 8-Queens contains examples for position-
ing eight queens on a chessboard such that no two queens
attack each other. Since modelers may include knowledge
about the problem into the modeled relations, we create two
versions of a 9×9 Sudoku dataset. In 9-Sudoku-easy, we
specify for each cell its row, column and block number. In
9-Sudoku-hard, we only specify row and column. For 8-
Teams-DRR, we generate data of eight teams in a double
round-robin competition, i.e., fa(x, y, z) = 1 if on match
day x team y plays against team z, each team plays twice
against each other on 14 match days, and we require symme-
try between first and second half of the matches. In Graph-
Color, we generate a random undirected graph with ten
nodes and twenty edges, and valid assignments are node col-
orings where two neighbors have different colors. For Multi-
pleKnapsack, we assign twenty items of different weight and
value to three knapsacks of limited size. Our last dataset,
Rostering, contains an instance of a nurse rostering prob-
lem2, where boolean relations differentiate shift types and

2http://www.schedulingbenchmarks.org/nrp/
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Figure 2: [URPILS is noise-robust with low sample com-
plexity] Mean test F1 score over ten independent runs on the
GraphColor problem, for URPILS, MINEACQ, COUNTOR,
and COUNTCP dependent on the proportion of noisy exam-
ples in the training set (left). Mean F1 score on the 5-Queens
test set with 10% noise on a varying number of training ex-
amples (right). Error bars show standard error.

numerical relations model the start times, end times and du-
rations of shifts. We provide details about all datasets and
their ground-truth constraints in the supplementary.

Quality of Discovered Constraints To see how well the
discovered constraints match the ground-truth, we generate
valid assignments for all datasets and split them into training
and test set. For the test set, we additionally generate exam-
ples violating the ground-truth constraints. First, we run all
methods on the training data. Then, we classify test exam-
ples positive if they satisfy all found constraints and negative
otherwise. We report the F1 score with 1000 training exam-
ples in Figure 1. We see that URPILS in contrast to its com-
petitors achieves almost perfect F1 score on all datasets. On
9-Sudoku-hard, URPILS does not find the block constraint
in all runs, but on average still performs best.

Noise Robustness To evaluate noise-robustness, we inject
noise into the training data by adding invalid assignments.
We report test F1 score on GraphColor dependent on noise
proportion in Figure 2 (left). We see URPILS recovers the
ground-truth for up to 60% noise and is on par for higher
noise levels. The F1 score of COUNTOR and COUNTCP
drops for significantly less noise to 2

3 , i.e., a model that ac-
cepts all test examples with recall 1 and precision 0.5.

We also test noise-robustness on the queens problem.
MINEACQ shows much better F1 score with same training
set size for lower dimensional problems. Furthermore, run-
time of all methods is lower for smaller problems. To enable
many runs, we evaluate on 5-Queens, reducing the problem
to five queens on a 5×5 chessboard. We report F1 score on
the test set with 10% noise on the training set dependent
on the number of training examples in Figure 2 (right). We
see COUNTCP and especially COUNTOR pick up noise and
discover bad generalizing constraints. MINEACQ performs
better, but needs 800 examples to achieve 100% F1 score.
URPILS is not only robust to noise. It also achieves 100%
F1 score with ten training examples.
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Figure 3: [AI Planning Results] Average F1 score with stan-
dard error on the test sets of AI planning datasets for ten
independent runs for URPILS, FAMA, and PLANMINER.
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Figure 4: [URPILS is noise-robust on AI planning data] Av-
erage test F1 score over ten independent runs for URPILS,
FAMA and PLANMINER under varying noise proportion on
the training data (left). Discovered model size under increas-
ing noise (right). Error bars show standard error.

Model Size Across all datasets URPILS finds a compact
set of constraints with a total of only 33 to 90 literals of
our constraint grammar. COUNTOR and COUNTCP show
similar results, but tend to need more constraint terms for
equal F1 score. Since MINEACQ does not look for quanti-
fied expressions, it produces sets with 1280 literals for 4x4-
Sudoku and 106 literals for 8-Teams-DRR. For reference,
we show exemplary discovered constraints for MINEACQ,
COUNTOR and COUNTCP as well as complete results for
model complexity in the supplementary materials.

Experiments on AI Planning Datasets
Finally, we evaluate URPILS on AI planning benchmark
datasets (Aineto, Celorrio, and Onaindia 2019) and com-
pare to the state-of-the-art methods FAMA and PLAN-
MINER from related work. Unfortunately, the authors of
PLANMINER-N have not published code for their method
and did not respond to our emails. As before, we generate a
test set for each dataset with valid and invalid executions of
an action in the corresponding planning domain. We report
the classification F1 score for each method in Figure 3. We
see that URPILS beats the state of the art by a wide margin.

In our last experiment, we evaluate noise-robustness on
the Hanoi dataset. We report F1 score and the number of
relations in the discovered constraints for varying noise pro-

portion in Figure 4. If the data contains noise, FAMA does
not find any constraints. PLANMINER seems to pick up
noise and finds constraints with a poor F1 score on the test
set. In contrast to that, URPILS is very robust to sensible
amounts of noise. If the noise level increases, URPILS finds
fewer constraints, i.e., it does not find spurious constraints.

Discussion
In our experiments, we empirically show URPILS not only
finds more accurate constraints, but also finds more succinct
constraints, is more robust to noise, and has lower sample
complexity than the state of the art. Nonetheless, URPILS
has its limitations, and we see interesting research directions
to overcome them. First, despite using a rich modeling lan-
guage, we cannot model everything. As we see in Figure 1,
URPILS does not achieve a 100% F1 score on MultipleK-
napsack, because, with our current constraint language, we
cannot model that the sum of the item weights in a knap-
sack must not exceed its capacity. We need a new type of
constraint to model bounds on the sum of numerical relation
values. However, we see computing the number of valid as-
signments for such models is even harder than for count con-
straints, and thus is a challenging problem. Ideally, we would
extend our constraint language to the global constraint cata-
log (Beldiceanu, Carlsson, and Rampon 2012), which lists a
large set of reusable constraints for constraint programming.

Second, the size of a satisfiability problem massively im-
pacts the runtime and sample complexity of URPILS. While
URPILS finds all constraints in the majority of runs from
40 examples of 4-Sudoku-hard, it only finds all constraints
one out of ten times from 1000 examples of 9-Sudoku-hard.
However, the rules of 4×4 and 9×9 Sudoku are basically the
same, and many problems have constraints that are indepen-
dent of the problem size. We, therefore, think it is promis-
ing to study how to reduce the size of a given problem as a
preprocessing step. Other ways to improve performance on
high dimensional problems may include expert knowledge
to restrict the large search space of constraints, e.g. by sym-
metries in the assignments or active learning.

Conclusion
To close the gap between domain experts and mathematical
modeling experts in constraint programming and AI plan-
ning, we studied the problem of discovering constraints from
exemplary solutions. We formalized the problem in terms
of the Minimum Description Length (MDL) principle, by
which we select the model with the best lossless compres-
sion of the data. Since solving the problem involves #P-
hard model counting, we proposed the greedy URPILS al-
gorithm to find high-quality constraints in practice. Through
extensive experiments on both constraint programming and
AI planning benchmark datasets, we empirically showed
URPILS not only discovers more accurate constraints, but
also finds more succinct constraints, is more robust to noise,
and has lower sample complexity than the state of the art. To
apply URPILS on more complex problems, potential future
work involves extending its modeling language and improv-
ing its efficiency on high dimensional problems.
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Segura-Muros, J. Á.; Fernández-Olivares, J.; and Pérez, R.
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Appendix
Here, we include supplementary material which could not
be part of our main paper.

MDL for Constraint Learning
Here, we prove by counterexamples that our MDL score is
neither monotone nor submodular. To this end, we define
a dataset with O1 = {o11, . . . , o110}, O2 = {o21, . . . , o210}
and D = {fa |

∑
x∈X fa(x) = 1}. We further define con-

straints we use in the counterexamples by

C1 = 1 ≤
∑

fa(·) ≤ 1

C2 = 0 ≤
∑

fa(·) ≤ 1

C3 = 1 ≤
∑

fa(·) ≤ 2.

The encoding of these constraints differs in the lower and
upper bound only. We compute the encoded length of each
constraint as defined by L(A) in the Model Encoding Sub-
section. In our example, we have

L(C1) = log 3 + log 8 + log 7 + LN(2) + 2 + LN(2)

L(C2) = log 3 + log 8 + log 7 + LN(1) + 2 + LN(2)

L(C3) = log 3 + log 8 + log 7 + LN(2) + 2 + LN(3).

Next, we test if L(D,M) is monotone.

Monotonicity A function f is monotone if ∀T ⊆ S :
f(T ) ≤ f(S). We compute

L(D, ∅) = LN(1) + 100 · (100 + LN(1)) ≈ 10153

L(D, {C1}) = LN(2) + L(C1) + 100 · (log 100 + LN(1))

≈ 833

L(D, {C1, C2}) = LN(3) + L(C1) + L(C2)

+ 100 · (log 100 + LN(1))

≈ 847,

where we first encode the number of constraints, then the
content of the constraints, and for each of the 100 examples
in the dataset, we compute the number of bits to select a
valid assignment, and LN(1) encodes the number of errors
is 0. By this, we see that L(D,M) is not monotone.

Submodularity A function f is submodular if ∀X ⊆ Ω :
∀x1, x2 ∈ Ω \ X : f(x ∪ {x1}) + f(x ∪ {x2}) ≥ f(X ∪
{x1, x2}) + f(X). We compute

L(D, {C1, C3}) + L(D, {C2, C3}) ≈ 1698

L(D, {C1, C2, C3}) + L(D, {C3}) ≈ 2265,

and

L(D, {C1, C2}) + L(D, {C1, C3}) ≈ 1697.1

L(D, {C1, C2, C3}) + L(D, {C1}) ≈ 1696.6,

by which we see that L(D,M) is not submodular.

The URPILS Algorithm
In this section, we show the pseudocodes for candidate gen-
eration in our URPILS algorithm.

Algorithm 3: SIMPLECANDS

input : dataset D
output: set of candidates Q

1 C1F ← {x ̸= y} ∪⋃k
i=1{xi = yi ∧ ∀j ̸=ixj ̸= yj};

2 C2F ← {ϵ};
3 foreach f ∈ FB do
4 foreach i ∈ {1, . . . , k} do
5 if dom f = Oi then
6 C2F ← C2F ∪ {f(xi),¬f(xi)};
7 foreach j ∈ {1, . . . , k} do
8 if dom f = Oj then
9 C2F ← C2F ∪ {f(xi) ∧ f(yi)};

10 foreach f ∈ FR do
11 foreach i, j ∈ {1, . . . , k} do
12 if dom f = Oi = Oj then
13 foreach ⊙ ∈ {<,≤,=, >,≥} do
14 C2F ← C2F ∪ {f(xi)⊙ f(yi)};

15 CT ← {fa(x)→ fa(y), fa(x)→ ¬fa(y)};
16 Q← ∅;
17 foreach C1

F , C
2
F , CT ∈ C1F × C2F × CT do

18 add
(
∀x, y ∈ X | C1

F ∧ C2
F : CT

)
to Q;

19 return Q;

Generating Simple Constraint Candidates We sepa-
rately create candidates for the filtering part and the target
part of our constraints. To simplify generation of the filter-
ing part, we split it into two parts. In the first part, we test
equality and inequality between variables, and in the second
part, we filter by boolean and numerical relations.

We give the pseudocode of SIMPLECANDS in Algo-
rithm 3. We first initialize the candidates for the first part
of CF (line 1), requiring that x and y differ at all indices or
at precisely one index. The candidates for the second part of
CF include an empty constraint (l. 2). We further compare
values of boolean relations with domains compatible to the
input variables (l. 3–9), and we do the same for numerical re-
lations (l. 10–14). For the target part, we create implications
of assignment values (l. 15). We generate simple constraint
candidates from the cross product of the candidates for the
individual constraint parts (l. 17–18).

Generating Complex Constraint Candidates To gener-
ate complex constraint candidates, we reuse concepts from
how we create simple constraints. We give the pseudocode
for COMPLEXCANDS as Algorithm 4. We first initialize the
filtering part, C1

F , and the target part, CT , as in SIMPLE-
CANDS (l. 1–2). For the second filtering part, we then cre-
ate a set of basic filter elements Ω by producing all possible
expressions from our grammar for CF up to a user-defined
depth d. In our experiments, we set d = 3. In the remain-
der of the search, we combine basic filter elements to more
complex expressions, and hence require these elements to
not contain ∧ or ∨.



Algorithm 4: COMPLEXCANDS

input : model with simple constraints M , dataset D,
grammar production depth d

output: set of candidates Q
1 C1F ← {x ̸= y} ∪⋃k

i=1{xi = yi ∧ ∀j ̸=ixj ̸= yj};
2 CT ← {fa(x)→ fa(y), fa(x)→ ¬fa(y)};
3 Q← ∅;
4 foreach C1

F , CT ∈ C1F × CT do
5 Ω←

{
u | u ∩ {∧,∨} = ∅ ∧ ⟨CF ⟩ d⇒ u

}
;

6 C2
F ← argminC2

F⊂Ω LI(C
2
F | C1

F , CT , D,M);
7 add

(
∀x, y ∈ X | C1

F ∧ C2
F : CT

)
to Q;

8 return Q;

Our goal is to find a conjunction of basic filter elements
from Ω, that best explains which pairs x, y ∈ X lead to an
improvement of the encoded length of the data when a given
CT is added to the model. To find this conjunction C2

F , we
define an MDL score to evaluate candidates. Formally, we
find the C2

F minimizing

LI(C
2
F | C1

F , CT , D,M) = LN(
∣∣C2

F

∣∣) + log

( |Ω|
|C2

F |

)

+ LN(1 + error I(C
2
F | C1

F , CT , D,M))

+ log

( ∣∣{x, y | C1
F (x, y)}

∣∣
error I(C2

F | C1
F , CT , D,M)

)
,

where we compute the length of the model encoding by the
number of elements in the conjunction and an index to select
the elements from I . Then, we encode the number of pairs
x, y ∈ X , for which C2

F (x, y) makes a classification error in
predicting gain of CT . We formally define

error I(C
2
F | C1

F , CT , D,M) =
∑

x,y∈X

C1
F (x, y)

∣∣1∆L(D|M∪{CT })<0(x, y)− C2
F (x, y)

∣∣ ,

with ∆L (D |M ∪ {CT }) being the gain in the encoded
length, after adding CT to the model. This gives us candi-
dates with complex filtering expressions.

Generating Constraint Candidates for AI Planning We
search for constraints telling us when we are not allowed to
execute an action. This means we create candidates ∀x ∈
X | CF : ¬fa(x), where CF compares boolean and nu-
merical relations. We give the pseudocode of PLANNING-
CANDS in Algorithm 5. We start by generating candidates
with boolean relations. To generate syntactically valid con-
straints, we ensure that the parameters of the relation are a
subset of the parameters of the assignment function fa. We
generate comparisons of numerical relation using different
comparison operators and also ensure that the candidates are
syntactically valid constraints.

Example on 4-Sudoku-hard To further simplify under-
standing what URPILS is doing in all its steps, we show
the generated candidates at each step and the corresponding

Algorithm 5: PLANNINGCANDS

input : dataset D
output: set of candidates Q

1 Q← ∅;
2 foreach u ∈ ⋃k

i=1{1, . . . , k}i do
3 foreach f ∈ FB do
4 if dom f =

∏
i∈u Oi then

5 add (∀x ∈ X | f(x[u]) : ¬fa(x)) to Q;
6 add (∀x ∈ X | ¬f(x[u]) : ¬fa(x)) to Q;

7 foreach i, j ∈ {1, . . . , k} do
8 foreach f ∈ FR do
9 if i ̸= j ∧Oi = Oj = dom f then

10 foreach ⊙ ∈ {<,≤,=, >,≥} do
11 CF ← f(xi)⊙ f(xj);
12 add (∀x ∈ X | CF : ¬fa(x)) to Q;

13 return Q;

MDL scores for an exemplary run on 40 exemplary solutions
of a 4×4 Sudoku. The search starts with an empty model
without any constraints, which has L(D,M) ≈ 2562.

In the SIMPLECANDS phase, URPILS creates 46 candi-
dates, i.e., all constraints with at most one relation. Adding
43 of these candidates would lead to an increased MDL
score. Therefore, only 3 candidates remain. We select the
candidate with the highest compression gain: Adding

∀c, v1, v2 ∈ Cell× Value× Value | v1 ̸= v2 :

fa(c, v1)→ ¬fa(c, v2)

to the model decreases the MDL score to L(D,M) ≈ 1570.
Next, URPILS adds the remaining two simple candidates to
the model in order of their individual MDL gain. Adding

∀c1, c2, v ∈ Cell× Cell× Value |
c1 ̸= c2 ∧ fy(c1) = fy(c2) :

fa(c1, v)→ ¬fa(c2, v)

to the model decreases the MDL score to L(D,M) ≈ 1213.
The last remaining candidate constraint is

∀c1, c2, v ∈ Cell× Cell× Value |
c1 ̸= c2 ∧ fx(c1) = fx(c2) :

fa(c1, v)→ ¬fa(c2, v),

which we can merge with the previous constraint to

∀c1, c2, v ∈ Cell× Cell× Value |
c1 ̸= c2 ∧ (fy(c1) = fy(c2) ∨ fx(c1) = fx(c2)) :

fa(c1, v)→ ¬fa(c2, v),

which decreases the total encoded cost to L(D,M) ≈ 1015.
In the COMPLEXCANDS phase, URPILS creates 37 con-

straint candidates. Most of them increase the MDL score
if we add them to the model. Therefore, we reject most of



them. Replacing the last constraint in the model by

∀c1, c2, v ∈ Cell× Cell× Value |
c1 ̸= c2 ∧ (fy(c1) = fy(c2) ∨ fx(c1) = fx(c2)⌊
fx(c1)

2

⌋
=

⌊
fx(c2)

2

⌋
∧
⌊
fy(c1)

2

⌋
=

⌊
fy(c2)

2

⌋
) :

fa(c1, v)→ ¬fa(c2, v)

decreases the MDL score to L(D,M) ≈ 1011.
In the COUNTCANDS phase, URPILS creates two count

constraint candidates. Adding

1 ≤ ∀c ∈ Cell :
∑

v∈Value

fa(c, v) ≤ 1

decreases the MDL score to L(D,M) ≈ 881, and adding

4 ≤ ∀v ∈ Value :
∑

c∈Cell

fa(c, v) ≤ 4

decreases the MDL score to L(D,M) ≈ 846. As no more
candidate constraints are left, we terminate the search and
return the model. For more details about the rejected gener-
ated constraints, we refer to our source code, which provides
a more detailed software execution log.

Experiments on Constraint Programming Datasets

We now provide further information about our experiments
on constraint programming datasets, which we could not in-
clude in the main paper.

Dataset Characteristics We experiment on datasets with
different characteristics as we show in Table 1. Most of our
datasets consist of two object sets except for 8-Teams-DRR,
where we have three object sets. Since every combination of
objects x ∈ X is one parameter of an assignment, we have
2|X| possible assignments per dataset. We see that the set
of valid assignments for the ground-truth model is usually
much smaller. For example, without any constraints, there
are 2512 ways to position eight queens on a 8×8 chess-
board, from which 8! · 92 ≈ 222 are valid assignments of
the ground-truth model (Bell and Stevens 2009). Learning
the constraints to describe these 222 from a total of possible
2512 assignments appears to be a hard problem.

Ground-Truth Constraints We now show for each
dataset in Table 1, how me modeled the dataset and give the
ground-truth constraints. Random is a uniformly randomly
generated dataset without ground-truth constraints. For 8-
Queens, we define one object set O1 = {Q1, . . . , Q8} con-
taining the queens, and one object set O2 = {S1, . . . , S64}
containing all squares. For each square, we specify a row
fx : O2 : {1, . . . , 8} and a column fy : O2 : {1, . . . , 8}. We
assign queens to squares, i.e., fa(q, s) = 1 means queen q is

Dataset |X| |FB| |FR| 2|X| |FM |

Random 10× 10 4 4 2100 2100

8-Queens 8× 64 0 2 2512 ∼222

4-Sudoku-easy 16× 4 0 3 264 288
4-Sudoku-hard 16× 4 0 2 264 288
9-Sudoku-easy 81× 9 0 3 2729 ∼273

9-Sudoku-hard 81× 9 0 2 2729 ∼273

8-Teams-DRR 14× 8× 8 0 1 2896 ∼219

GraphColor 10× 10 1 0 2100 ∼222

Rostering 8× 168 3 3 21344 ∼231

Table 1: [Constraint programming datasets] For all datasets,
we show the number of objects per dimension |X| of fa,
number of boolean |FB| and numerical |FR| relations, to-
tal number of possible assignments 2|X|, and the number of
valid assignments |FM | for the ground-truth model.

on square s. We define the ground-truth constraints by

∀q ∈ O1 :
∑

s∈O2

fa(q, s) = 1

∀s ∈ O2 :
∑

q∈O1

fa(q, s) ≤ 1

∀q1, q2, s1, s2 ∈ O2
1 ×O2

2 | q1 ̸= q2 ∧ s1 ̸= s2

∧ (fx(s1) = fx(s2) ∨ fy(s1) = fy(s2)

∨ |fx(s1)− fx(s2)| = |fy(s1)− fy(s2)|)
: fa(q1, s1)→ fa(q2, s2),

where the first constraint ensures that a queen is assigned
to exactly one square, the second constraint ensures that at
most one queen is assigned to the same square, and the third
constraints ensures queens do not attack each other.

In 4-Sudoku-easy, we define one object set Cell =
{S1, . . . , S16} containing all cells, and one object set
Value = {V1, V2, V3, V4} for the values. We assign values
to cells, i.e., fa(c, v) = 1 means that cell c has value v. For
each cell, we specify row fx, column fy and block fb. We
define the ground-truth constraints by

∀c ∈ Cell :
∑

v∈Value

fa(c, v) = 1

∀v ∈ Value :
∑

c1,c2∈Cell|fx(c1)=fx(c2)

fa(c, v) = 1

∀v ∈ Value :
∑

c1,c2∈Cell|fy(c1)=fy(c2)

fa(c, v) = 1

∀v ∈ Value :
∑

c1,c2∈Cell|fb(c1)=fb(c2)

fa(c, v) = 1,

i.e., we ensure each cell gets assigned one value, and we
require uniqueness of values in each row, cell and block.
In 4-Sudoku-hard, we do not have the block information
and must replace the last ground-truth constraint. Instead of
comparing fb, we define

⌊
fx(c1)

2

⌋
=

⌊
fx(c2)

2

⌋
∧
⌊
fy(c1)

2

⌋
=

⌊
fy(c2)

2

⌋



which is equivalent to fb(c1) = fb(c2). We accordingly de-
fine object sets and ground-truth constraints for 9-Sudoku-
easy and 9-Sudoku-hard.

For 8-Teams-DRR, we define an object set O1 =
{M1, . . . ,M14} with match days, and an object set O2 =
{T1, . . . , T8} for teams. Each match day is assigned a unique
number fm : O1 → {1, . . . , 14}. We assign teams and
match days, i.e., fa(m, t1, t2) = 1 means on match day m,
team t1 plays against t2. We define the ground truth by

∀m, t ∈ O1 ×O2 : ¬fa(m, t, t)

∀t1, t2 ∈ O2 | t1 ̸= t2 :
∑

m∈O1

fa(m, t1, t2) = 1

∀m1,m2, t1, t2 ∈ O2
1 ×O2

2 |
|fm(m1)− fm(m2)| = 7 :

∑

m∈O1

fa(m, t1, t2) = 1,

where the first constraint ensures no team plays against it-
self, the second constraint ensures each team plays against
each other twice, and the third constraint ensures symmetry
of home and away team between first and second half of the
match days.

For the GraphColor dataset, we define an object set
for nodes O1 = {N1, . . . , N10} and for colors O1 =
{C1, . . . , C10}. We further define a boolean relation fn :
O2

1 → {0, 1} with fn(n1, n2) = 1 if there is an edge be-
tween nodes n1 and n2. We assign colors to nodes, i.e.,
fa(n, c) = 1 if node n has color c. Additionally, we define
the ground-truth constraints by

∀n ∈ O1 :
∑

c∈O2

fa(n, c) = 1

∀n1, n2, c ∈ O2
1 ×O2 | fn(n1, n2) :

fa(n1, c)→ ¬fa(n2, c),

i.e., every node is assigned one color and two neighbored
nodes must not have the same color.

For the Rostering dataset, we define an object set for em-
ployees O1 = {E1, . . . , E8} and an object set for shifts
O2 = {S1, . . . , S168}. One boolean relation fe marks
whether a shift is of type early shift, and another boolean
fl marks late shifts. We mark optional shifts by the boolean
relation fo. For every shift, we give the relative start time in
hours by the numerical relation fs, the relative finish time in
hours ff , and the duration in hours fd, where relative means
that the first shift starts at time 0. We assign employees to
shifts, i.e., fa(e, s) = 1 if employee works on shift s. Our
ground-truth model is

∀e ∈ O1 : 160 ≤
∑

s∈O2

fa(e, s)fd(s) ≤ 168

∀s ∈ O1 | fo(s) : 0 ≤
∑

e∈O1

fa(e, s) ≤ 1

∀s ∈ O1 | ¬fo(s) :
∑

e∈O1

fa(e, s) = 1

∀s1, s2 ∈ O1 | fs(s1) = fs(s2) : fa(e, s1)→ ¬fa(e, s2),
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Figure 5: [Runtime on Random dataset] We show mean run-
time in seconds for URPILS, MINEACQ, COUNTOR and
COUNTCP on the Random dataset for |X| = 100 and vary-
ing number of training examples (left). We show mean run-
time in seconds for all methods on the random dataset for
1000 examples and varying |X| (right). COUNTCP did not
finish within 12 hours for |X| = 103.

i.e., we define a minimal and maximal workload for employ-
ees, every optional shift can be assigned to one employee,
every mandatory shift must be assigned to one employee,
and an employee must not be assigned to parallel shifts.

Runtime We report wall-clock running times for single-
threaded execution of all methods on all datasets in Table 2.
We see that URPILS is not the fastest but still shows rea-
sonable runtime on all datasets. In particular, it is signif-
icantly faster than COUNTCP. COUNTOR and MINEACQ
are magnitudes faster than URPILS, but COUNTOR cannot
deal with noise in the data and MINEACQ produces mod-
els with significantly more constraint terms and needs more
examples to discover constraints.

To evaluate runtime scaling behavior of all methods, we
use the Random dataset and vary the number of training ex-
amples and the size of the assignment function domain |X|
as a proxy for problem size in Figure 5. We see that URPILS
shows a linear runtime behavior in the number of training
examples, while the other methods work on a compressed
representation of a dataset and thus remain relatively con-
stant in their runtime. Furthermore, we see that the size of
the assignment function domain has a high impact on the
runtime of all methods. Since |X| = ∏k

i=1 |Oi|, adding a
few objects to the problem can lead to a significant growth
in runtime. Furthermore, the size of the space of possible as-
signments increases significantly, which makes it harder to
discover the right constraints, and we need more examples
for constraint discovery. We observe all these effects when
comparing 4×4 and 9×9 Sudoku in Table 2. Therefore, fu-
ture work should examine how to reduce the size of a given
problem.

Discovered Constraints for 4-Sudoku-hard We show
the constraints found by URPILS, MINEACQ, COUN-
TOR and COUNTCP on the 4-Sudoku-hard dataset in Fig-
ure 6. We see URPILS produces a succinct constraint set,
which matches the ground truth and URPILS expresses the
block constraint by the available row and column relation.



URPILS MINEACQ COUNTOR COUNTCP

Dataset |X| |FB| |FR| ||M || t [s] ||M || t [s] ||M || t [s] ||M || t [s]

Random 10× 10 4 4 0 87 0 1 136 1 51 473
8-Queens 8× 64 0 2 52 1543 105 8 46 2 90 12350
4-Sudoku-easy 16× 4 0 3 40 8 1280 1 87 1 58 192
4-Sudoku-hard 16× 4 0 2 45 9 1280 1 66 1 48 195
9-Sudoku-easy 81× 9 0 3 40 8107 50674 13 87 3 58 24931
9-Sudoku-hard 81× 9 0 2 40 3735 50774 12 66 2 48 25217
8-Teams-DRR 14× 8× 8 0 1 90 950 106 19 72 1 44 38425
GraphColor 10× 10 1 0 33 14 30162 2 18 1 28 471
Rostering 8× 168 3 3 78 5930 106 46 81 14 83 87459

Table 2: [Model size and runtime on constraint programming datasets] We show for each dataset the cardinality |X| of the
assignment function fa and the number of boolean |FB| and numerical relations |FR|. For each of the datasets, we report
the number of constraint terms ||M || and the average discovery runtime over ten runs in seconds t for URPILS, MINEACQ,
COUNTOR and COUNTCP.

URPILS
∀c, v1, v2 ∈ Cell× Value× Value | v1 ̸= v2 : fa(c, v1)→ ¬fa(c, v2)
∀c1, c2, v ∈ Cell× Cell× Value | c1 ̸= c2 ∧ (fx(c1) = fx(c2) ∨ fy(c1) = fy(c2)

∨
⌊
fx(c1)

2

⌋
=

⌊
fx(c2)

2

⌋
∧
⌊
fy(c1)

2

⌋
=

⌊
fy(c2)

2

⌋
) : fa(c1, v)→ ¬fa(c2, v)

∀c ∈ Cell :
∑

v∈Value fa(c, v) = 1

MINEACQ

fa(c00, 1)→ ¬fa(c00, 2)
fa(c00, 1)→ ¬fa(c01, 1)

· · ·
fa(c33, 3)→ ¬fa(c33, 4)

COUNTOR
∀c ∈ Cell :

∑
v∈Value fa(c, v) = 1

∀v ∈ Value :
∑

c∈Cell fa(c, v) = 4

∀c ∈ Cell :
∑

v∈Value|fa(c,v) fx(c) ≤ 3

∀c ∈ Cell :
∑

v∈Value|fa(c,v) fy(c) ≤ 3

∀v ∈ Value :
∑

c∈Cell|fa(c,v) fx(c) = 6

∀v ∈ Value :
∑

c∈Cell|fa(c,v) fy(c) = 6

COUNTCP
∀c, v1, v2 ∈ Cell× Value× Value | v1 ̸= v2 : fa(c, v1)→ ¬fa(c, v2)∑

c,v∈Cell×Value fa(c, v) = 16

∀c ∈ Cell :
∑

v∈Value fa(c, v) = 1

∀v ∈ Value :
∑

c∈Cell fa(c, v) = 4

∀x ∈ dom fx :
∑

c,v∈Cell×Value|fx(c)=x fa(c, v) = 4

∀y ∈ dom fy :
∑

c,v∈Cell×Value|fy(c)=y fa(c, v) = 4

Figure 6: [Discovered Sudoku models] We show the constraints found by URPILS, MINEACQ, COUNTOR and COUNTCP on
the 4-Sudoku-hard dataset. We show variable definitions in orange, relation comparisons in blue and constraints on fa in black.



MINEACQ finds pairwise implications between assignment
values. This means, MINEACQ can rediscover the ground
truth, but needs many pairwise implications to describe the
data, which is hard to read for domain experts. COUNTOR
and COUNTCP do not find the block constraint.


