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Abstract

Identifying informative components in binary data is an es-
sential task in many application areas, including life sciences,
social sciences, and recommendation systems. Boolean matrix
factorization (BMF) is a family of methods that performs this
task by factorizing the data into dense factor matrices. In real-
world settings, the data is often distributed across stakeholders
and required to stay private, prohibiting the straightforward
application of BMF. To adapt BMF to this context, we ap-
proach the problem from a federated-learning perspective,
building on a state-of-the-art continuous binary matrix factor-
ization relaxation to BMF that enables efficient gradient-based
optimization. Our approach only needs to share the relaxed
component matrices, which are aggregated centrally using a
proximal operator that regularizes for binary outcomes. We
show the convergence of our federated proximal gradient de-
scent algorithm and provide differential privacy guarantees.
Our extensive empirical evaluation shows that our algorithm
outperforms, in quality and efficacy, federation schemes of
state-of-the-art BMF methods on a diverse set of real-world
and synthetic data.

1 Introduction

Discovering patterns and dependencies in distributed binary
data sources is a common problem in many applications, such
as cancer genomics (Liang, Zhu, and Lu 2020), recommender
systems (Ignatov et al. 2014), and neuroscience (Haddad et al.
2018). Data is often distributed horizontally (i.e., the rows of
the data matrix are split across hosts) and may not be pooled.
For example, biopsies are performed in different hospitals,
with each location measuing the expression of a common
set of genes. Although there exists an explicit interest in
analyzing this data jointly, privacy regulations mandate that
these measurements may not be shared, thereby limiting the
applicability of traditional centralized methods.

Federated learning (McMahan et al. 2017) enables learn-
ing from distributed datasets without disclosing sensitive
data. Existing methods for federated non-negative matrix fac-
torization (Li et al. 2021) are specific to real-valued data,
and similar to non-federated Non-negative Matrix Factoriza-
tion (NMF) (Paatero and Tapper 1994; Lee and Seung 1999,
2000), singular value decomposition (Golub and Loan 1996),
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and principal component analysis (Golub and Loan 1996),
do not achieve interpretable results for binary data (Miettinen
et al. 2008; Dalleiger and Vreeken 2022).

Boolean Matrix Factorization (BMF) alleviates this prob-
lem by approximating a centralized Boolean target matrix
A € {0, 1}™™ by the Boolean product

Ax[UoV];=\/ Usnv,
le[k]

of two low-rank Boolean factor matrices (Miettinen et al.
2008), U € {0, 1}k (feature matrix) and V € {0, 1},
(coefficient matrix).

Although there are myriad heuristics to approximate this
NP-hard problem, doing so for distributed data without
sharing private information remains an open problem. Even
though we could approach distributed binary data with stan-
dard federated learning techniques, e.g. aggregating locally-
obtained BMF results into a shared matrix, this requires an
aggregation into binary values, such as rounded average, ma-
Jjority vote, and logical or. Such techniques, however, lack
the precision required by binary data.

To visualize the extent of this problem, we show the impact
of straightforward aggregation in Fig. 1(a), which highlights
that even the best combination of a local factorization algo-
rithm and an aggregation scheme—here, ASSO (Miettinen
et al. 2008) using logical or—Ileads to bad reconstructions.

Recently, Dalleiger and Vreeken (2022) showed we can
continuously relax BMF into a regularized binary matrix fac-
torization problem using linear (rather than Boolean) algebra
and proximal gradients, yielding an efficient and scalable ap-
proach with state-of-the-art performance. Taking advantage
of this relaxation, we propose the FELB algorithm that locally
factorizes while centrally, yet privacy-consciously aggregates
coefficients using a proximal aggregation, thereby efficiently
yielding valid global binary matrices. On our toy example in
Fig. 1(b) it achieves a nearly perfect reconstruction.

We show that FELB converges to binary matrices, provide
differential privacy guarantees using, e.g., the Gaussian mech-
anism (Balle and Wang 2018), and we experimentally vali-
date that the utility remains high. Moreover, we demonstrate
that FELB outperforms baselines derived via straightforward
parallelization of state-of-the-art BMF methods on numerous
real-world and synthetic datasets.

In summary, our main contributions are as follows:
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Figure 1: Our method reconstructs data well. Representing 1s as black pixels, for (a) ASSO using logical or and (b) our novel
federated factorization called FELB, we show (top row) the client-data subjected to additive noise, (middle row) the localized
reconstructions, and (bottom row) the aggregation-based reconstructions. The left-most column shows the results centralized
combination of the data resp. reconstructions of the five clients (columns 2-6).

* We introduce a novel federated proximal-gradient-descent
for BMF (FELB).

* We improve over the state-of-the-art in BMF with our
adaptive regularization (FELBMY).

* Provide a formal foundation for federated inertial alter-
nating proximal-gradient optimization under non-convex
regularization.

* We experimentally show that our methods are both effi-
cient and accurate.

2 Related Work

To the best of our knowledge, there exists no federated BMF
algorithms. We therefore primarily discuss the relations to
BMF, and federated factorization, and federated learning.

We distinguish two classes of BMF methods: First, dis-
crete optimization-based methods that use Boolean algebra,
such as ASSO (Miettinen et al. 2008) using a set-cover-
like approach, GRECOND (Belohlavek and Vychodil 2010),
MEBF (Wan et al. 2020) using fast geometric segmentation,
or SOFA (Neumann and Miettinen 2020) based on stream-
ing clustering. Second, continuous optimization-based meth-
ods that use linear algebra for solving the binary matrix fac-
torization problem, introduced by Zhang et al. (2007), and
advanced by Araujo, Ribeiro, and Faloutsos (2016) based
on thresholding, and by Hess et. al (Hess, Morik, and Pi-
atkowski 2017; Hess and Morik 2017) using a proximal oper-
ator. Combining ideas from the two complementary regular-
ization strategies of Hess, Morik, and Piatkowski (2017) and
Zhang et al. (2007), Dalleiger and Vreeken (2022) recently
removed the need for post-processing via a proximal operator
for an elastic-net-based regularizer.

With regards to federated factorization in general, ‘paral-
lel’ algorithms for matrix factorization (Yu et al. 2014) as well
as binary matrix factorization (Khanna et al. 2013) seek com-
putational efficiency without addressing privacy concerns.
Towards matrix factorization for distributed privacy-sensitive
data, methods exist for federated matrix factorization (Du
et al. 2021) and federated non-negative matrix factoriza-
tion (Li et al. 2021). These methods, however, are not spe-
cialized to Boolean matrices. Here, we close the research gap

by addressing the need for a federated, privacy-preserving
binary (or Boolean) matrix factorization algorithm.

Recent advances in federated learning involve techniques
like FedProx (Li et al. 2020a) and SCAFFOLD (Karimireddy
et al. 2020). FedProx, an extension of FedAvg (McMahan
etal. 2017), introduces a proximity penalty term to stabilizing
the training process across different clients. SCAFFOLD en-
hances federated learning by correcting client drift using vari-
ance reduction techniques, thereby improving convergence
rates and model accuracy compared to traditional methods
like FedAvg, while ProxSkip (Mishchenko et al. 2022) uses
randomization to reduce the computational cost of proximal
operators which are significantly more expensive than our
operators. Despite these advances, most research focuses
on training deep neural networks using stochastic-gradient-
based local optimization schemes. These approaches often
yield to a slow convergence to suboptimal non-Boolean solu-
tions, if they are deployed to similar non-convex alternating
optimization contexts.

3 Federated Proximal Binary Matrix
Factorization

Having contextualized our problem, we now formally intro-
duce our federated Boolean matrix factorization scenario,
show how we separate our problem into manageable subprob-
lems; describe how to efficiently and solve subproblems in
terms of binary matrix factorization relaxation, while preserv-
ing privacy; and formally show that we compute a Boolean
matrix factorization upon convergence.

The most pronounced difference between traditional and
federated Boolean matrix factorization lies in data accessibil-
ity. Rather than having all data A € {0, 1}"*™ accessible at
one location, the data A is given as (horizontally) partitioned
matrices Ay, ..., A over C € N clients such that

A:[A1,~-,AC]T ,

where A; € {0, 1} and n = }}; n;. We aim to discover a

single shared matrix V € {0, 1}**™ containing shared feature
components that are beneficial for all clients. Due to privacy



restrictions, we are however neither permitted to transmit
matrices A; ‘offsite’ (including to any other device), nor are
we allowed to be able to draw conclusions about where com-
ponents belong to. We want to factorize the data A; = U; o V
in terms of local matrix U; € {0, 1} €*k (associating data to
components), and one shared global matrix Ve {0, 1}kxm
(associating features into components). Without the knowl-
edge of U;, we cannot estimate specific attributes of individ-
ual users (assuming sufficiently large client datasets). We can,
however, estimate sets of commonly co-occurring attributes
across all clients, e.g. common combinations of genetic mark-
ers that are indicative of a disease. R

Locally computing U; for given A; and V is a regular
Boolean matrix factorization. However, computing the shared
V without access to A; and U; is not straightforward. To en-
able the computing of a shared factor while still preserving
privacy, we split the problem into subproblems ®;, introduc-
ing a local but shareable coefficient matrix V; € {0, 1}<*™.
In a nutshell, we estimate a factorization for ®;, Acombine
local matrices V; € {0, 1}" XM into a shared matrix V, update
@;, and repeat. In a nutshell, we seek to optimize

argmin ) ®;(U;,V;, V) 1)
u,v,v

specifying and solving the subproblems next.

Local Subproblems and Clients

A single subproblem at client i € N, seeks to optimize A; ~
(Ui o Vilap = Veeri) UictVicp» of two low-rank Boolean
factor matrices (Miettinen et al. 2008), U; € {0, 1}%*K (fea-
ture matrix) and V; € {0, 1}X*™ (coefficient matrix). As this
problem is NP-complete (Miettinen et al. 2008), solving it ex-
actly is challenging for each client, even for relatively small
matrices.

A major factor contributing to this hardness is the require-
ment that variables are Boolean. To address this challenge,
we essentially relax the Boolean constraint by replacing it
with additional penalty terms R and P detailed below. That
is, we continuously relax the problem into a binary matrix
factorization problem

®; (Ui, V)IIA: = UiVillg + R(U:) + R(V;)) + P(Vi) , (2)

for relaxed U; € [0, 1]k and V; € [0, 1]¥* using regular
linear algebra. First, To yield the desired Boolean outcomes
without constrains, we introduce a binary-inducing regular-
izer R : R"*™ — R, enabling efficient gradient-based op-
timizations. A regularizer that encourages binary solutions
combines two elastic-nets (rooted at 0 and 1, resp.) into the
almost W-shaped ELB-regularizer

Rea(X) = )" min {r(x), r(x - 1)} (3)
xeX
where r(x) = «||x||; + /‘/2||x||§ (Dalleiger and Vreeken 2022).
Second, for faster convergence towards a shared solution,
we introduce a proximity penalty P : R”*™ — R, which
encourages local V; to remain close to the global model using
the distance P(V;) = y||V; — VH% between them.

Even though now unconstrained, this problem is still chal-
lenging due to being non-convex. We solve this joint objec-
tive by first splitting it in two subproblems, solving them
alternating

U™ =argmin||A; - UV! ']+ R(U) and
U

VI =argmin ||A; - U'V|IZ+ R(V) + P(V) .
%

Because each individual objective remains a challenge due to
the non-convexity, we require an optimization algorithm that
is capable of solving such non-convex problems. To this end,
we employ the inertial proximal alternating linear minimiza-
tion (iIPALM) technique (Pock and Sabach 2016), which will
guarantee convergence (Attouch, Bolte, and Svaiter 2013;
Bolte, Sabach, and Teboulle 2014) as detailed in Sec. 16.

Proximal Alternating Linear Minimization At the core
of iPALM, each regularized objective for U; and V; are
solved using a proximal gradient approach, which sepa-
rates loss from regularizer. That is, after taking a gradi-
ent step concerning our linear least-squares loss f, e.g.,
fU) « ||A; - UVl.t_1||12:, we then take a scaled proximal
step regarding regularizer to project the gradient towards a
feasible Boolean solution and towards a proximity to V for
Vi. A proximal operator is the projection

proxy (X) = arg;nin V|l X = Y%+ R(X) 4)

of the result of the gradient step x — xnV, f(x) for the loss
f, into the proximity of a regularized solution R(X). With
regards to our regularizer R and P, these proximal prob-
lems lend themselves for deriving first-order optimal and
efficiently-computable closed-form solutions: The Boolean
proximal operator for R is element-wise computable

proxf;(X) = 1+1r]/l sign(X — 6) max{|X — 6)| —n«,0} , (5)
for element-wise indicator § = 1[X;; < '/2];; (Dalleiger
and Vreeken 2022), as shown in Apx. A. The V—proximity
proximal operator for P is simply a weighted average

prox;(X) = [1+ny] "' (X +m/V) . ©)
Together, they yield the alternating update rules
Ul{+1 :proxsb. (Ult - T];JIV;JI ”Al - Ultvlt“%)

Vl.“rl :proxf:(ﬁ proxg,v' (VI - ni,ini I|A; = Uit”Vl-’HlQ;) . (D
To apply these rules, we require step sizes, utilizing linear
nature of the loss, we propose two alternatives: first we use
the gradient Lipschitz constant L for = !/i, yielding the
update rule for FELB. Second we employ Lee and Seung
(2000)’s multiplicative update rule (MU) for NMF with step
size matrices ntUi = U; o U;V;V;" and nﬁ,l_ =V,oU'UV;
using the Hadamard division @, containing individual step
sizes for all elements in U; and V;, yielding FELBMV.



Global Objective and Server

Now having established our per client subproblems, we now
combine the local subobjectives into one global objective

o(U,V,V) =3, ®;(U;, Vi, V) which is
DA = UVillE + R(U) + R(V) + R(V) + P(Vi) , (8)
i

focusing on shared coefficients components V. To estimate
the shared matrix V independent of all data matrices A; and
local basis matrices U;, we have to combine V; matrices. In
federated learning, this is often done by aggregating all V; as
the average V. However, doing so here does not necessarily
yield valid results: naive averaging results in aggregates that
are far from being binary, thus hindering or even preventing
convergence. Addressing this aggregation problem, we aim
to result in a Boolean matrix, for which we iteratively project
the aggregate towards a valid Boolean values

V — argmin Y 14V = ViR + R(V) ©)
v i
for which we employ a proximal aggregation yielding the
update-step V « prox§ Ll 2. V; . To theoretically guarantee
differential privacy, clients may further distort the matrices
V; before transmission, as described next.

Guaranteeing Differential Privacy

The proposed aggregation approach only shares coefficient
matrices, so that no direct relationships between observations
are shared. An attacker or a curious server can, however,
attempt to infer private data from coefficients V;. Aiming
to prevent this, we guarantee differential privacy using an
additive noise mechanisms, where, in a nutshell, each client
adds noise before it transmits V; to the server. We consider the
Bernoulli, Gaussian, and Laplacian mechanisms, which only
differ in the noise distribution. Using a Gaussian mechanism,
we achieve (e, §)-differential privacy as follows.

Definition 3.1 (Dwork, Roth et al. (2014)). Fore,é > 0, a
randomized algorithm A : X — Y is (e, §)-differentially
private (DP) if

P(AX)€S) <eP(AX)eS)+6

holds for each subset S ¢ Y and for all pairs of neighboring
inputs X, X’ .

Applying Gaussian noise with 0 mean and o variance
to the local coefficients V; before sending ensures (€, 5)-
DP (Balle and Wang 2018) for o0 = Ae~!4/21og(5/(46)) ,
where A = supy x/ [ A(X) — A(X")|| is the sensitivity of A.
To ensure bounded sensitivity, we clip all V; with clipping
threshold 8 > 1 (Noble, Bellet, and Dieuleveut 2022). Simi-
larly, adding O-mean Ae~!-variance Laplacian noise achieves
(€,0)-DP (Dwork et al. 2006).

Convergence Analysis

Having ensured differential privacy, we summarize our algo-
rithm. We call the combination of this proximal aggregation
with local proximal-gradient optimization steps the FELB al-
gorithm, detailed in Alg. 1: Local factors U;, V; are initialized

Algorithm 1: Federated Binary Matrix Factorization
with FELB
c

Input: distributed target matrices A I ..., A€,
component-count k
Output: local feature matrices Uy, .
coefficient matrix V
1 initialize U;, V; for i € [C] uniformly at random
2 Locally at client i in iteration t do
3 U« proxyy, (Ui = nu, Vo, [|Ai = UVil[)

..,Uc, global

R

4 Vi e proxy, (Vi =1y, Vv, | Ai = UiVill7)
s Ve proxh, (W)

6 if t mod b = 0 then

7 if is differentially private then

8 V[@V[@N,NabNN(O,O')
9 transmit V; to the server

10 receive V from the server

11 let V; « v

12 At server do

13 receive Vi, ..., V¢

14 aggregate Ve proxl,;’ (% p V,-)
15 transmit V to each client

16 return U, v

uniformly at random (line 1), and at each client in round ¢
(line 2), we update the local factor matrices (lines 4 and 5).
Every b rounds, we transmit the local matrices V; to the server
(line 7). At this point, each client may choose to preserve
differential privacy. The server, receives all local coefficients
Vi (line 11), averages the matrices, and applies the proximal-
operator (line 12). The aggregate is then transmitted to all
clients (line 13). Upon receiving the aggregate (lines 8 and
9), each client continues with the next optimization round.
Next, to formally ascertain that Alg. 1 solves our problem,
we show that the algorithm converges with Thm. 3.2, and
achieves Boolean coefficients in the limit with Thm. 3.3.

Theorem 3.2 (Convergence). For the sequence generated by
Alg. 1{z" = ({U!}i.{V}}i, V') }sen, the objective function
@(z') converges to a stable solution ®(z') — @ if t — oo.

Proof. (Sketch, full proof in Apx. B). We show the objec-
tive’s convergence to a stable solution ®* by initially estab-
lishing the convergence of each client, where we observe a
sufficient reduction in local objectives, as well as a bounded
dissimilarity to V. Leveraging this, we establish global con-
vergence by showing that the global loss gradient is bounded
by a diminishing term, showing that ®(z") approaching a
constant ® as 7 tends to infinity. O

Theorem 3.3 (Boolean Convergence). If A’ is a mono-
tonically increasing sequence with '~1 < A, limA! —
oo, and A — A1 < oo, then VIT,...,VCT and VT
from the sequence generated by Alg. 1 convergences as
lim7 e dist(VT, {0,1}) — 0 to a Boolean matrix.
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Figure 2: FELB and FELBMY are robust against noise. We show the loss, recall, similarity, and elapsed runtime (s/C) for synthetic

data with varying levels of destructive XOR noise.

Proof. (Sketch, full proof in Apx. B). Since gradients are
bounded and diminish, we only need to show that the proxi-
mal operator returns Boolean solutions in the limit. As our
gradients are Lipschitz continuous, bounded, and ensured to
converge to a stable solution, our scaled proximal operator
projects values onto Boolean results, for a monotonically
increasing regularizer rate A’ that approaches infinity in the
limit, guaranteeing a stable Boolean convergence regardless
of communication rounds. O

Turning traditional BMF into FedBMF

Given that there exist no federated matrix factorization algo-
rithms tailored to binary data, we compare our approaches
to local BMF methods, whose outcomes are then partially
transmitted to a central location and collectively aggregated,
following established ad-hoc federation strategies (Kamp
2019). In particular, we adapt the localized algorithms, cover-
ing the state of the art in the method families (1) cover-based
Boolean matrix factorizations (ASSO, Miettinen et al. (2008);
GRECOND, Belohlavek and Vychodil (2010); MEBF, Wan
et al. (2020)) and (2) relaxation-based binary matrix factor-
izations (ZHANG, Zhang et al. (2007); and ELBMF, Dalleiger
and Vreeken (2022)), to factorize distributed matrices—
factorizing locally and aggregating the coefficient matrices
centrally, replacing the local coefficients. Leveraging the
following aggregations, we summarize the BMF federation
scheme in Apx. C Alg. 2. To ensure binary results, we employ
three aggregation strategies that maintain valid matrices

[C7! Zeeiey V€] (10)
Majority Vote [Zce[c] ij > C/Z] 3y
ij

VL vE (12)

Rounded Average

Logical Or

‘We now describe our diverse set of experimental setups. First,
we ascertain that FELB works reliably on synthetic data. Sec-
ond, we empirically assess the differential-privacy properties
of FELB. And third, we verify that FELB performs well on
diverse real-world datasets drawn from four different scien-
tific areas. To quantify the results, we report the root mean
squared deviation (RMSD) and the F; score between data
and reconstruction, as well as the runtime in seconds.

4 Experiments

We implement FELB in the Julia language and run exper-
iments on 32 CPU Cores of an AMD EPYC 7702 or one
NVIDIA A40 GPU, reporting wall-clock time in seconds.
We provide the source code, datasets, synthetic dataset gen-
erator, and additional information regarding reproducibility
in Apx. E. In all experiments, we limit each algorithm run to
12h in total. We quantify the performance of federated ASSO,
GRECOND, ELBMF, MEBF, FELB, and FELBMY in terms of
loss, recall, similarity, and runtime, reporting results for ma-
Jjority voting in the following, as it has superior performance
to rounded averaging and logical, as shown in Apx. F.

Experiments on Synthetic Data

In these experiments, we answer the following questions:

Q1 How robust are the algorithms wrt. noise?

Q2 How scalable are they with increasing client counts?

Q3 How well do they perform under differential privacy?
To answer these, we need a controlled test environment. We
construct this by sampling random binomial-noise matrices,
into which we insert randomly generated, densely populated
‘tiles’ containing approximately 90% with 1s. To highlight
trends, rather than random fluctuations, we report the mean
and confidence intervals of 10 randomized trials.

Robustness regarding Noise To study the impact of noise
on the quality of reconstructions, we generated synthetic ma-
trices with varying degrees of destructive XOR noise, ranging
from 0% (no noise, consisting solely of high-density tiles) to
a maximum of 50% (completely random noise). Employing
a fixed number of 10 clients, we applied federated ASSO,
GRECOND, MEBF, ELBMF, and ZHANG, alongside FELB
and FELBMV to each dataset.

We present RMSD, F; score (re signal and noise data), F
score (re signal), and runtime in Fig. 2: We see that recon-
struction quality declines with increasing noise, yet FELB and
FELBMY achieve the best reconstructions across the board
even at high noise levels. We see that RMSD and F; follow
a similar trend across all methods, yet our methods consis-
tently outperform the rest. However, if we regard only the
interesting data signal with Ff, we see that FELB and FELBMY

1 https://doi.org/10.5281/zenodo.14501661
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Figure 3: FELB and FELBMV perform well across various client counts, showing RMSD and runtime (s/C). For data scarcity, we
fix the data size and an increase number of clients. For data abundance we grow data while increasing the number of clients.

are the only algorithms that result in good reconstructions of
the ground-truth signal, even under high noise. This shows
the ability of FELB and FELBMV to discern pure noise from
meaningful signal. While the runtime of ASSO, GRECOND,
MEBF, ZHANG, and ELBMEF is slightly faster in Fig. 2 (right),
FELBMY’s and FELB’s runtime reduces with increasing noise.

Scalability regarding Clients Next, we analyze the scal-
ability of federated ASSO, GRECOND, ELBMF, MEBF, and
ZHANG under majority voting, as well as of FELB and
FELBMY, for varying numbers of clients, considering two
contrasting scenarios of scarce and abundant data. In both
cases, we generate and uniformly distribute synthetic data to
a number of clients, depicting results in Fig. 3.

To create data scarcity, we fix the dataset size to 2'® and
increase the number of clients from 22 to 2°, thus iteratively
reducing the sample count per client. In Fig. 3 (left), we ob-
serve that our methods scale well to low-sample scenarios
and deliver the best performance. The MU update rule out-
performs the competitors. The runtime of post-hoc federated
methods ASSO, GRECOND, MEBF, ZHANG, and ELBMF is
lower since they only perform a single optimization epoch.
These methods slightly outperform FELB and FELBMY only
in tiny data scenarios where the estimator-variance is high,
while the FELBMY significantly outperforms all methods and
is notably faster than FELB.

To evaluate under data abundance, we scale the number
of samples by increasing the number of clients from 22 to
2°, maintaining a constant sample count of 500 per client. In
Fig. 3 (right), we observe that our methods scale well with
an increased number of clients. With more data, FELB using
Lipschitz steps slightly outperforms the MU steps in RMSD,
and both methods exhibit comparable runtime trends. The
runtime of post-hoc federated methods ASSO, GRECOND,
MEBF, ZHANG, and ELBMF remains lower, as they compute
only one local optimization epoch.

Performance under Privacy To empirically ascertain the
effect of differential-privacy on the loss, we add noise to the
transmitted factor matrices according to various noise mech-
anisms. Specifically, we study the effect of additive clipped
or regular Laplacian and Gaussian, as well as xor Bernoulli
noise mechanisms, as depicted in Fig. 4 and Apx. F, for vary-

ing 0 < € < 2 and fixed 6 = 0.05. Because ASSO, MEBF,
GRECOND, ZHANG, and ELBMF return Booelean matrices,
we subject these only to xor noise, rather than additive noise,
to retain Boolean matrices. The results in Fig. 4 show that
both FELB and FELBMY exhibit similar performance across
various noise models, while FELBMY is most robust. The plots
display three phases: In the low-e domain, there is almost no
performance deterioration, followed by a steep, hockey-stick-
like descent which eventually stabilizes in the high-e range.
We note an increasing ‘sharpness’ of the hockey-stick-phase
under clipping, showing less smooth reactions to privacy
adjustments for both mechanisms.

Experiments on Real-World Data

Having established the efficiency and precision of our method
on synthetic data, we proceed to assess its effectiveness on
real-world datasets. For this, we curated a diverse set of 8 real-
world datasets spanning four distinct domains. To explore
recommendation systems, we include Goodreads (Kotkov
et al. 2022) for books and Movielens (Harper and Konstan
2015) and Netflix (Netflix, Inc. 2009) for movies, where user
ratings > 3.5 are binarized to 1. In life sciences, we use
TCGA (Institute 2005) for cancer genomics, HPA (Bakken
et al. 2021; Sjostedt, Zhong, and et. al 2020) for single-cell
proteomics, and Genomics (Oleksyk, Gongalo, and et. al
2015) for mutation data. TCGA marks gene expressions in
the top 95% quantile as 1, while HPA designates observed
RNA in cells as 1. For social science, we analyze poverty
(Pov) and income (Inc) using the ACS (U.S. Census Bureau
2023) dataset, binarizing with one-hot encoding utilizing
Folktables (Ding et al. 2021). In natural language process-
ing, we study higher-order word co-occurrences in ArXiv
¢s.LG abstracts (Collaboration 2023). Each paper abstract
is a row with columns marked 1 if the corresponding word
is in the vocabulary, containing lemmatized, stop-word-free
words with a minimum frequency of 1 %c0 . We summa-
rize dataset extents, density, and chosen component counts
in Apx. E, Tbl. 2. Since the number of clients (e.g., Hos-
pitals) is expected to be small, we limit the federation to a
reasonable C = 50 clients, on which we compare federated
methods ASSO, GRECOND, MEBF, ELBMF, and ZHANG, as
well as FELB, and FELBMY across all real-world datasets,
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Figure 4: FELB and FELBMY achieve accurate yet differentially private reconstructions. For synthetic data, we subject algorithms
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to different noise mechanisms: Bernoulli, Laplacian, and Gaussian noise.

Table 1: FELB and FELBMY consistently perform well. We illustrate the F; of ASSO, GRECOND, MEBF, ELBMF, and ZHANG
under voting aggregation, as well as federated FELB, and FEL

BMU

on 8 real-world data across 50 clients. We highlight the best

scoring algorithm with bold, the second best with underline, and timeouts by a dash —.

Dataset Asso¥Y  MEBFY GREcCONDY ZHANGY ELBMFY FELBMY FELB
ACS Inc 0.388 0.108 0.690 0.000 0.000 0.585 0.328
ACS Pov 0.692 — 0.797 0.000 0.217 0.638 0.517
cs.LG - 0.000 0.068 0.000 0.000 0.057 0.006
Goodreads - 0.000 0.017 - 0.000 0.125 0.059
HPA Brain — 0.642 — 0.000 0.000 0.007 0.000
Movielens - 0.017 - - 0.000 0.193 0.163
Netflix - 0.010 - - 0.000 0.197 0.144
TCGA 0.039 0.055 0.007 0.000 0.000 0.414 0.402
Avg. Rank 4.750 3.75 3.375 5.125 4.500 1.625 2.750

synchronizing after every b = 10 local optimization rounds.

In Tbl. 1, we present the F; between the reconstruction
and the data matrix, where — indicate missing data due to
time limits. Our results show that FELB and FELBMV exhibit
best-in-class performance, consistently ranking as the best
or second-best algorithms. This performance gap is evident
across all datasets except for the HPA dataset, where MEBF,
a method designed with similar data types in mind, outper-
forms the others, and the ACS Pov dataset, where GRECOND
leads. Notably, since clients of ELBMF and ZHANG diverge
significantly, they often aggregate into a no-consensus 0-only
global model matrix, thus showing low accuracy. Although
they perform only a single optimization round per client,
we see that ASSO, GRECOND, and MEBF do not finish on
medium to large datasets. Additionally, we show the RMSD
in Apx. F, where FELB and FELBMV are on top, and compare
client-server communication frequencies in Apx. F, demon-
strating the strength of FELB and resp. FELBMY.

5 Discussion and Conclusion

We introduced the federated proximal-gradient-based FELB
for BMF tasks, showed its convergence to a binary outcome
in theory, and demonstrated its efficacy in experimental prac-
tice. We provided a variant called FELBMY, whose practical
performance outcompetes FELB on many real-world datasets,

especially under rare synchronizations. Although FELB and
FELBMY perform consistently well, both are first-of-their-
kind federated BMF algorithms. As such, they leave ample
room for further research.

Limitations Our research focuses on learning from private
Boolean data generated by similar sources at a few research
centers, thus we concentrate on suitable experiments and
abstain from distant but related problems, such as learning
with millions of heterogeneous clients. Further, we experi-
mentally demonstrate the practical limitations of our methods
extensively, extending this discussion in Apx. G.

Future Work includes extending FELB to allow for hetero-
geneous clients and data distributions, adapting our methods
to learn from varied data distributions and characteristics. Ad-
ditionally, we plan to explore large-scale federations, drawing
inspiration from frameworks like Scaffold (Karimireddy et al.
2020) and FedProx (Li et al. 2020b) for efficient client sam-
pling, variance controlling, and formal limits to client dropout
resilience. Furthermore, we intend to investigate personalized
federated learning techniques to improve the reconstructions
in case of varied data sources. Finally, we plan to move be-
yond Boolean data and seek explore the potential of allowing
partial sharing of a subset of the client components V; to allow
for multi-source multi-modal federated learning to improve
model performance and generality.
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Supplementary Material

In this Appendix, we provide supplementary information

* regarding the convergece in Apx. B,

* regarding the federation of baseline BMF methods in

Apx. C,

* regarding dataset used in our experiments Apx. D,

* regarding reproducibility of our experiments in Apx. E,

* regarding limitations in Apx. G.
Furthermore, we provide additional experimental results re-
garding

* post-hoc aggregations in Apx. F,

 empirical convergence in Apx. F,

e client drift in Apx. F

« differential privacy in Apx. F, and

* additional real-world performance evaluations in Apx. F.

A Binary Elastic-Net Proximal Operator
For the ambiguity-free minimum

A A<B

in{A, B} =
min{A. B} {B A>B’

we define the binary elastic-net as

R(X) = m<in{r(X),r(X—1)} where r(X) = /‘/2||X||%+%||x||1 .

To obtain a proximal operator we need the minimizer of
1
argmin R(X) + —|| X - Y||Z .
X n

Rather than scaling the proximity, we equivalently (inversely)
scale the regularization, yielding

proxk (X) = arg;(nin R(X)+ /X =Y} .

While our iPALM-based approach relies on a single step
size n per gradient matrix (i.e., ny or ny), our MUR-based
approach uses one step size per cell of the gradient matrix,
thereby adaptively adjusting the optimization rate. To cover
both cases, we Hadamard multiply both terms R(X)+!/»|| X —
Y||2 , by 17, which corresponds to an adaptive scaling of our
parameters
/lij = /177,'/ and 2ij = %N -

Noticing that this equation is piecewise-symmetric and
convex, we separately solve each case in turn. For R(X) <
R(X — 1), we obtain the regular elastic-net operator (Parikh
and Boyd 2014)

prox®(X) = [1 + 4] 7! [sign(X) max (|X] © «,0)]

Being element-wise solvable, we notice that this case is taken
whenever X;; < !/2. Similarly for R(X) > R(X - 1), we
obtain

prox®(X) = [1+ ]! [sign(X — 1) max (|]X — 1] ©«,0)] .
We combine both into the proximal operator

prox®(X) = [1 + ]! [sign(X — 6x) max (|X — 6x)| © «, 0)];
where 0x = (2sign(X e ') o 1.

J

Now considering the case when (R(X) = R(X — 1)). Al-
though we ruled-out this ambiguity in practice, in theory,
we would otherwise need to consider the convex hull of the
differentials in both cases, as (informally)

3 prox®=(X) = conv{d prox® <"*(X), 8 prox® >'">(X)}

which we do in our general convergence analysis. However,
by preventing ambiguity, we will simply project towards the
more prevalent value of 0 in P in case of a rare tie in practice.

B Convergence

Here, we establish the convergence properties of Algorithm
1. We begin by showing in Theorem B.1 that the objective
function of the algorithm converges to a stable solution in
the limit. To this end, we leverage the local convergence of
each client, as proven with Lem. B.3 (Apx. B), to demon-
strate a sufficient reduction in the global objective function
values. By combining these results, we establish the global
convergence of the objective function. Building upon this,
we moreover prove in Theorem B.2 that the algorithm con-
verges to Boolean matrices. We establish conditions under
which the sequences of matrices converge to binary solutions,
demonstrating that both the gradient and proximal operator
converge to binary solutions, thereby ensuring the stability
of Boolean solutions at both the global and local levels. The
outline of our proof is as follows.

1. We show the convergence of Alg. 1 in Thm. B.1.
2. We show that Alg. 1 converges to Boolean matrices with
Thm. B.2.

3. We show the convergence of each client in Alg. 1 to a
stable solution with Lem. B.3.

Theorem B.1 (Convergence of Alg. 1 (restated)). For the
sequence generated by Alg. 1 {z' = ({U!}i, {V}}i, V') }rew
the objective function ®(z') converges to a stable solution
O(z') - D ift — oo.

Proof. To show that the objective convergence to a stable
solution ®(z’) — ®* when t — oo, we first show that each
client convergence in Lem. B.3, where we observe a sufficient
reduction in @; (') < @;(z!*!) — pyl|zi*! — 2'|| for some
constant p;. Using this property we can show the global
convergence as follows.

q)(zt+l) — Z (Di(zr—l)
i
< ) ®i(2) - pill Vi (2D
<) - ) pill =217

<®E)-p ) Nl -2
i

Moreover, from Lem. B.3 we deduce that ||z*! - z!||2 — 0 if
t — oo. Therefore, the global loss converges, (D(z’“) — @
to some constant ® O



So far, we only know that our algorithm generates a conver-
gent sequence. It remains to show that the sequence converges
to a Boolean solution, which follows in Thm. B.2.

Theorem B.2 (Boolean Convergence of Alg. 1 (restated)). If
A! is a monotonically increasing sequence with A'~1 < A7,
imA* — oo, and A' — A1 < oo, then VIT,--- VI and

VT from the sequence generated by Alg. 1 convergences as
lim7 o0 dist(VT, {0, 1}) — 0 to a Boolean matrix.

Proof. In each update round, the client i performs the prox-
imal alternating linear minimization steps laid out in Eq. 7,
yielding an updated V! (resp. U}). Focusing on V; (indepen-
dent of client-server communication), we first show that the
gradient of V; goes to zero. As shown by Thm. B.1 and
Lem. B.3, our sequence of alternating linear optimization
steps followed by scaled proximal steps convergence. Note
that our gradients are bounded and are Lipschitz continuous.
Because we scale our proximal operators with respect the
Lipschitz moduli of the respective gradients, notably prevent
the proximal operator and gradient steps from alternatingly
between 0 and 1, thus creating a convergent sequence to a
stable solution. We need to verify that the proximal operator
projects to binary solutions, i.e., lim /. prox(x) € {0, 1}
for A’ — co. We do this with a case distinction: For x < 0.5,
we obtain lim(x — « sign(x))(1+1/)~! = 0 , and analogously
for x > 0.5, we obtain lim(x — k sign(x — 1) +A") (1+ ")~ ! =
1 , thus having ensured a binary proximity, for ¥ — oo
with A7 < A™*! and 2"*! — A' < o, any bounded x, and
finite k € R,. Therefore, independent of communication
rounds, the gradient converges to 0 and the proximal operator
converges to a binary solution. It remains to show that for
t — oo, a binary solution stays stable, meaning that a global
binary solution implies local convergence. By assuming that
a client in round ¢ receives a binary aggregate V from the
server, we obtain ||nVy||A; — Uf‘IViHmuxH < efore < !h.
By abbreviating the gradient-step result
V' =V = Vv A - U ViR

we see that V,, < '/ if [V/7'], = 0,and V},, > ' if
[V!~'] 4 = 1, which implies that prox y (V') is binary and
V! = V!~!. Moreover, repeating these steps for V*, we obtain
boolean aggregates upon convergence. ]

Converging Clients

In this part, we demonstrate the convergence of each client
in Algorithm 1. Specifically, we show that the decrease be-
tween client iterations is sufficiently large, while ensuring
convergence to stable solutions. To achieve this, we employ
the following lemmas. We establish that the sequence gen-
erated by each client converges both in terms of objective
function value and to a critical point of the objective func-
tion in Lemma B.3. We further provide that the difference
of the sequence under finite length conditions is bounded.
Subsequently, Lemma B.4 ensures that gradients of the ob-
jective function are limited, thereby remain within a certain
proximity to the current point. In Lemma B.5, we establish
a sufficient decrease property, ensuring that the objective

function decreases at each iteration by a certain amount. By
combining these lemmas, we demonstrate the convergence of
each client in the algorithm, enabling the global convergence
proof in Thm. B.1. In summary, our sub goals are as follows:

1. We aim to demonstrate the convergence of each client.

2. We establish that the decrease between client iterations is
sufficiently large.

3. To achieve this, we initially bound all subdifferentials for
each client-block, as outlined in Lem. B.4.

4. Subsequently, we utilize this information to bound the
gain.

Lemma B.3 (Convergence of client i in Alg. 1). Let {z} =
(UL, V')i}ken be the sequence generated by a client i in
Alg. 1, then

1. the client objective {®;(z})}x converges to ®;, and
2. the sequence {z}} i converges to a critical point of ®;(z}),

fort — oo, assuming that ®; is continuous on dom ®;. Fur-
thermore, if a subsequence z! starts from the shared coeffi-

cients V, i.e., Vl.1 =V, then the difference ||V! — \7|| F between
V! and V is bounded by a finite constant p fort — T.

Before we proof Lem. B.3, we sketch the proof concept
as follows. A problem with block-coordinate methods or
Gauss-Seidel approaches lies in showing global convergence
for these non-convex problems. Attouch, Bolte, and Svaiter
(2013) demonstrate the convergence of a sequence generated
by a generic algorithm to a critical point of a given proper,
lower semicontinuous function ¥ (in our case ®;) over a Eu-
clidean space RY and establish that the algorithm converges
to a critical point of W. To achieve this, we must ensure
that the convergence conditions, which are necessary for the
convergence of various descent algorithms, are satisfied. If
satisfied, they ensure that the set of points of the sequence
is nonempty, compact, and connected, with the set being a
subset of the critical points of V.

Sufficient Decrease Property This property ensures that
with each iteration, the objective value decreases sufficiently.
Here the aim is to find a positive constant p; such that the
difference between successive function values decreases suf-
ficiently with each iteration, i.e.,

pr|[7 =2 < W) - W), ve=0,1,...

Subgradient Lower Bound This property ensures that the
algorithm does not move too far from the current iterate. As-
suming the generated sequence is bounded, we seek another
positive constant p, such that the norm of the difference be-
tween consecutive iterates is bounded by a multiple of the
norm of the subgradient of ¥ at the current iterate, i.e.,

||w’+1|| <p ||z”1 -7 vVi=0,1,...

|, w'eaw(d),

Because we need a certain stability for our Boolean con-
vergence argument, we have to show that we converge to
a critical point. Second, they show global convergence to a
critical point using the KL property.



Kurdyka-Ft.ojasiewicz Property To establish global con-
vergence to a critical point, they introduce an additional as-
sumption on the class of functions ¥ being minimized, known
as the Kurdyka-t.ojasiewicz (KL) property. Intuitively, if this
property is satisfied, it prevents the objective to become too
flat around a local minimizer, so that the convergence rate
would be too low. It does so by creating a locally-convex
or linear ‘surrogate’ or ‘gauge’ function g that measures the
distance between z and z*

g(W(z) - ¥(z")) = dist(0,0¥P)
or more specifically
g(¥(z) —¥(2") = [|0¥l

where, roughly speaking, z € Neighborhood, (z*) (Nesterov
2004). Attouch, Bolte, and Svaiter (2013) have shown that ev-
ery bounded sequence generated by the proximal regularized
Gauss-Seidel scheme converges to a critical point, assuming
that the objective function satisfies the KL property (Attouch,
Bolte, and Svaiter 2013). We satisfy this assumption, as our
objective is comprised of semi-algebraic functions. Now,
leveraging the descent property of the algorithm and a uni-
formization of the KL property, they show that the generated
sequence is a Cauchy sequence (Attouch, Bolte, and Svaiter

2013), ie.,
Jim > [l =<'~ 0.
“=

Proof. (Attouch, Bolte, and Svaiter (2013)). Because ®;
comprises lower semi-continuous functions on dom ®;, and
that all partial gradients are globally Lipschitz, all assump-
tions for the proof are met (Attouch, Bolte, and Svaiter 2013).
Together with (i) sufficient decrease property (Lem. B.5), (ii)
lower-bounded subgradients (Lem. B.4), (iii) the Uniformed
KL property of (via Lem. B.6), the convergence lemma fol-
lows from the global convergence property in Attouch, Bolte,
and Svaiter (2013)’s proof. m|

We now formally proof the three properties, i.e., lower-
bounded subgradients, sufficient decrease property, and the
uniformed KL property.

Lemma B.4 (Lower-bounded Subgradients). There is a p,
such that the gradients

dist(0, d®; (1)) < pllzt*! = 2t ||F .

Proof. To show that the lemma holds, it suffices that we
bound each subgradient in the set d®; (zx+1) separately. Fo-
cusing on the V;-block, we want to show

W™ IE < p2 IV = VI
for all w*! € 9®;(V!*!) restricted to the V/*!-block (analo-
gously repeating the below for Ul.”l). Because the subdiffer-

. . I, .0 . .
ential of the maximum-term max{r(x), r(x)} is the union of
the subdifferentials of its active parts, and our regularizer is
piecewise convex, we obtain three gradients per block:

1 1
0D, (U;, Vi) = Vv,»5||Ai—UiW||§+Vvi§||w—‘/l? F+OR(V;)

Vv.r(Vi) R(V;) < R(Vi = 1)
IR(V)) = {conv(Vy, (Vi) Vv (V) R(V;) = R(V; = 1) -

Vv (V) R(V;) > R(V; = 1)
Next, we bound the norm of the first subdifferential

19y ®; +6R(YV) + (v = V)le

<IVy @i + SRl + 21V = Ve

P Y
SEHV - Vig+ §||V - Vie
1
<max{p,7}7[IV - Vg .

Repeating for the other cases, the total bound p is the max-
imum per block and per subdifferential bounds. Based on
Lem. B.5, under the assumption that ®; is continuous on its
domain, and provided that there exists a convergent subse-
quence (i.e., condition (a)), the continuity condition required
in (Attouch, Bolte, and Svaiter 2013) holds, i.e., there exists
a subsequence {zﬁ }xen and a point z7 such that

>z and @;(zh) > Di(z) ast > 0.
]

Lemma B.5 (Sufficient Decrease Property). For the se-
quence of points {z' }i generated by the block-coordinate
method in Alg. 1, then

(1) < @;(2) - pullZit - 21

Proof. The loss function for the V;-block in our local block-
coordinate descent is

1A; = UV 2+ IV = VIR + ROV
Likewise for the U;-block
4 = U VIR + ROUEY)

After taking a gradient step, Alg. 1 proceeds with a Boolean
projection regarding R (for U and V blocks) and a proximity
projection to % (only for V).

We proceed with the V;-block, while the proof for the U;-
block is analogous. First, the Boolean proximal projection
operator proxg (V?) yields a minimizer of the optimization
problem

1
VK« argmin!A||V! - Y||Z+ R(Y) .
Y
I
By definition, V¥ lies in a p;-bounded proximity to
V!. Second, the proximity proximal projection operator
1
prox”_ (V¥) is the minimizer of
yvoo !

s Uk V2 L T v2
Vi «—argmin'p|Vi =Yz + vV -Y; .
Y

ii I
By definition, V¥ lies in the p;;-bounded proximity to V¥.
Repeating for the U;-blocks and using a transitivity argument,



by using that our gradients have finite Lipschitz moduli, we
conclude that both projections lie in a p-bounded region
around z!.

Using the following relationships,

(21 < @;(2h) + pllZi*! = 2R,
@; (2 - pllZt*! = ZHIE < @;(4*") , and
(2 < @;(2h).

we now bound the loss reduction in terms of the norm of
differences in the following.

(21" < Di(2h)
®; (M) = pll! = I < @i(2)
®; () = pllzt = 2R < @27 +pllzh — 7R
®; () = pll*! = 2 IE < @i(2) +pllzh = 2 HIE
®; (") - ®;(2}) < plizh — 27 Mg+ ol - 2L
®; (") - ®;(2}) < pllzf™ - 2flIE
O

Lemma B.6 (Uniformized Kurdyka-Lojasiewicz (KL)). ®;
is a KL function.

Proof. ®; function is composed of p-norms (p € {1,2}), and
indicator functions, and therefore satisfy the Kt.-property (At-
touch, Bolte, and Svaiter 2013). O

C Competitors

For a given aggregation function (such as rounded averag-
ing (10), majority voting (11), or logical or (12)), we sum-
marize the federation strategy of centralized BMF algorithms
in Alg. 2.

Algorithm 2: Aggregated BMF

Input: C clients with local matrices Ay, ..., Ac,
local BMF algorithm (A, aggregation function
aggregate

Output: local feature matrices Uy, . .., Uc, global

coefficient matrix V
1 Locally at client i do
2 U, Vi — A(A))
3 Centrally at server do

4 receive Vi, ..., V¢

5 Ve aggregate(Vy,..., V)
6 transmit V to all clients

7 Locally at client i do

8 receive V from the server

9 assign V; « %

Obtaining Boolean Matrices from ZHANG’s
Factorization

The relaxation-based binary matrix factorization of ZHANG
(Zhang et al. 2007) does not necessarily yield Boolean factors

Table 2: Real-world datasets from 4 diverse domains. We
show extents, density, and the selected number of components
for 10 real-world datasets.

Dataset Rows Cols Density Components
ACS Inc 1630167 998 0.010 20
ACS Pov 3271346 836 0.024 20
cs.LG 145981 14570 0.005 50
Goodreads 350332 9374 0.001 50
HPA Brains 76533 20082 0.239 100
Movielens 162541 62423 0.002 20
Netflix 480189 17770 0.007 20
TCGA 10459 20530 0.019 33

upon convergence. Furthermore, this method yields matrices
that do not lend themselves to rounding, such that in practice,
rounding does not yield desirable results unless the rounding
threshold is carefully chosen. To choose well-factorizing
rounding thresholds, we take inspiration from PRIMP (Hess,
Morik, and Piatkowski 2017), searching those thresholds that
minimize the reconstruction loss,

Z A€ = [U; = alij o [V = Blijll »

ce[C]

from the equi-distant grid between 1 x 107! and 1 containing
100 points in each direction.

D Datasets

To explore the realm of recommendation systems, we have
included Goodreads (Kotkov et al. 2022) for book recom-
mendations, as well as Movielens (Harper and Konstan 2015)
and Netflix (Netflix, Inc. 2009) for movie recommendations.
To focus on positive ratings, we binarized user ratings, setting
ratings > 3.5 to 1.

In the field of life sciences, we consider cancer genomics
through TCGA (Institute 2005) and single-cell proteomics
using HPA (Bakken et al. 2021; Sjostedt, Zhong, and et. al
2020). Specifically, TCGA records 1s for gene expressions
in the upper 95% quantile and HPA records by 1 if RNA has
been observed in single cells.

For social science inquiries, we investigate poverty (P) and
income (7) analysis using the Census (U.S. Census Bureau
2023) dataset. To binarize, we employ one-hot encoding
based on the features recommended by Folktables (Ding et al.
2021).

In the domain of natural language processing, we focus
on higher-order word co-occurrences using ArXiv abstracts
from the cs.LG category (Collaboration 2023). Each paper
corresponds to a row whose columns are 1 if the correspond-
ing word in our vocabulary has been used in its abstract. The
vocabulary consists of words with a minimum frequency of 1
%00 in ArXiv ¢s.LG abstracts (cs.LG R) and their lemmatized,
stop-word-free counterparts (cs.LG).

We summarize extents, density, and chosen component
counts for each real-world dataset in Appendix E, Table 2.



E Reproducibility

Supplementing the information provided in Sec. 4, here, we
provide hyperparameter choices for FELB and FELBMY. We
use the iPALM optimization approach for FELB and FELBMY.
Because both algorithms exhibited relatively stable perfor-
mance fluctuations when it came to tuning, we used the same
set of hyperparameters for each experiment and each dataset,
thus omitting the commonly necessary hyperparameter tun-
ing step. In all experiments withFELB and FELBMY, we used
the regularizer coefficients 4 = 0.1 and « = 0.001, a regu-
larization rate A, = A - 1.05’, an iPALM inertial parameter
B = 0.001, a maximum number of iterations of 100, and a
number of local rounds per iteration of 1, 10, or 50, as indi-
cated by the experiments. For ELBMF, we choose k = 0.01,
A1=0.01,1; =1-1.02", and 8 = 0.01. We provide ZHANG
and ELBMF with a larger iteration limit of 1 000, multiplying
FELB’s local rounds by its iteration count. For ASSO, we set
gain, loss, and threshold parameters to 1.0. For MEBF, we
use a threshold of 0.5 and a cover limit of 0.95.

F Additional Experiments

Complementing the discussion in Sec. 4, here, we show ad-
ditional results for ASSO, GRECOND, MEBF, ELBMF, and
ZHANG, as well as FELB and FELBMY, for all experiments.
We focus on the quantification not present in the main body
of this paper. Here, we aim to answer the following additional
questions.

Q4 How does client drift impact real-world performance?

Q5 How different the post-hoc aggregations for BMF are?

Q6 How stably does our methods converge?

Q7 How robust do we handle client drift?

Q8 How achievable is differential privacy in different circum-

stances?

Real-world Experiments

In addition to results presented in Table 1, we provide the
RMSD in Table 3, where we see that the FELBMY and FELB
are the two best performing methods, followed by GRECOND.

Real-world Drift Experiments

Next, because the performance depends on the communica-
tion frequency, we evaluate our method in 3 different sce-
narios: Rare (max 50 client epochs), Occasional (max 10
epochs), and Frequent synchronizations (every round). To
visualize relative performance differences, we compute the
relative RMSD

RMSD(FELB)

RMSD(FELBMY) ’

depicted in Fig. 5 for all real-world datasets in different
synchronization regimes. Because ASSO, GRECOND, MEBF,
ZHANG, and ELBMF are not directly federated, they are inde-
pendent of the change in communication frequency and there-
fore omitted. In Fig. 5, we see that our algorithm maintain a
high prediction performance regardless of the communication
overhead. We observe that FELB and FELBMY perform sim-
ilarly well under occasional and frequent communications.
We observe a shrinking performance gap between FELB and

FELBMY when increasing the communication frequency, al-
most reaching the same performance. This indicates that
FELB’s larger gradient-step-sizes are responsible for a higher
client drift, which is mitigated by a high communication fre-
quency. Regardless of being under occasional and frequent
communication regime, FELB and FELBMY are the highest
performing algorithms.

Post-hoc Aggregations

As there is no prior art specifically for aggregation federated
BMF clients, we seek experimentally answer which of the
equations Egs. (10)—(11) yield the lowest reconstruction loss.
To this end, we consider a growing number of synthetic
abundant data as described for Fig. 3. While we observe
in Fig. 6 and in Fig. 7 that rounded average and consensus
voting are performing similarly, both significantly outperform
logical or. For brevity, we therefore mostly report results for
consensus voting in Sec. 4.

Empirical Convergence

This study aims to investigate the empirical convergence
properties of the proposed methods. In this study, we examine
the empirical convergence properties of our methods. We
generate synthetic data according to the procedure outlined in
Sec. 4. We then measure the reconstruction loss as the number
of global iteration steps increases. Fig. 8 demonstrates that
our methods rapidly converge to a lower loss corresponding
to non-Boolean solutions. Following a swift initial decrease,
the loss only minimally increases as we approach a feasible
Boolean solution upon convergence.

Client Drift

We aim to understand the impact of infrequent synchroniza-
tions on the convergence results. To investigate this, we vary
the number of local iterations per client from 1 (frequent
synchronizations) to 50 (infrequent synchronizations), using
synthetic data. In Fig. 9, we observe that the loss is signifi-
cantly affected by the increasing number of iterations. We see
that the loss flattens-out after approximately 25 client local
optimization epochs before synchronization. While our meth-
ods achieve a reasonably high Fj-score with respect to the
ground-truth—even with infrequent synchronizations—our
competitors do not show similar results.

Differential Privacy

We aim to understand how differential privacy impacts recon-
struction quality. Previously, we studied the effect of clipped
noise mechanisms (Fig. 4). Here, we extend this experiment
to include non-clipped noise mechanisms, as shown in Fig-
ures 10 and 11. Specifically, we apply non-clipped Gaussian
and Laplacian noise to federated factorization algorithms
that operate on real-valued numbers, while limiting discrete
Boolean factorization algorithms to Bernoulli noise.

In Fig. 10, we observe that the F-score decrease signifi-
cantly only at high differential privacy coefficients. At mod-
erate levels, we achieve differentially private reconstructions
using both clipped and non-clipped Gaussian and Laplacian
noise mechanisms, as well as Bernoulli ‘XOR’ noise. In



Table 3: FELB and FELBMV consistently achieve top performances. We illustrate the RMSD of ASSO, GRECOND, MEBF, ELBMF,
and ZHANG under voting aggregation, as well as federated FELB, and FELBMY on 8 real-world data across 50 clients. We
highlight the best algorithm with bold, the second best with underline, and indicate missing data by a dash —.

Dataset AssoV  MEBFY  GREcONDY ZHANGY ELBMFY FELBMV FELB
ACS Inc 4.583 4.929 3.485 5.005 5.005 3.962 4.560
ACS Pov 5.822 - 4.785 7.734 7.190 7.576 7.588
cs.LG - 3.398 3.350 3.398 3.398 3.372 3.396
Goodreads - 1.669 1.668 - 1.669 1.641 1.660
HPA Brain - 19.537 - 24.434 24.434 24.409 24.433
Movielens - 1.956 - - 1.962 1.914 1.925
Netflix - 4.075 - - 4.084 3.982 4.009
TCGA 6.858 6.834 6.871 6.872 6.872 6.346 6.420
Rank 4.000 3.625 2.875 5.000 4.625 1.750 2.750
Rare Occasional Frequents
e | o - Y - i
Netflix | <] - -
) 't i
Movielens |- - i‘ - r —o— FELB/FELBMU
HPA Brain |- | [ h/i/v [ N —o— FELB/FELBMY
Goodreads |- B B !
cs. LG | | B 4 ! B :%\ —6— FELB/FELBMY
Lo )
ACS Pov |- i - S -
ACS Tnc | v\.\c 5 ™~ 5 ! ~
1 1 1 1 1 1 1 1 1
0.9 1.0 1.1 0.9 1.0 1.1 0.9 1.0 1.1
REL. RMSD REL. RMSD REL. RMSD

Figure 5: FELB and FELBMY perform similarly when we synchronize clients frequently, while FELBMV tends to improve over
FELB under low-communication regimes. We show the RMSD-fraction (F) of FELB and FELBMV as relative score on real-world

datasets with varying communication frequencies.

Fig. 11, we see that the reconstruction loss follows a similar
trend for both Gaussian and Laplacian noise mechanisms.
The Bernoulli mechanism, however, results in a much lower
reduction in RMSD than in the F;. Although all methods
exhibit a similar trend, FELB and FELBMV demonstrate ro-
bustness regarding differential privacy, consistently outper-
forming competitors in terms of RMSD and F; score.

G Limitations

Our research is motivated by learning from private Boolean
data generated by similar sources, situated at few research
centers. As such, we focus on suitable experiments in our
research, while we abstain from distant but related problems.
Firstly, our approach does not incorporate personalized
federated learning (PFL), which could potentially enhance in-
dividual client performance by tailoring the model to specific
client data. Additionally, our experimental study does not ad-
dress heterogeneous data distributions across clients, which
is a common scenario in real-world applications. Further-
more, our focus is on learning and knowledge discovery from
federations involving a limited number of clients, specifically
in the context of research centers. This is in contrast to sce-
narios involving millions of clients, such as those sometimes
encountered in different federated learning applications.

We experimentally demonstrate under which circum-
stances our method breaks, involving experiments with noise
levels 4, privacy levels 4, client counts 4, dataset sizes 4,
client-server communication intervals F, and dataset do-
mains D, thereby providing an extensive overview over prac-
tical strength and weaknesses.
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Figure 6: The Boolean matrix aggregation methods rounded average and consensus voting significantly outperform logical or.
We show the loss for post-hoc aggregated BMF methods, for growing client count with synthetic abundant data.
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Figure 7: The Boolean matrix aggregation methods rounded average and consensus voting significantly outperform logical or,
depicting results specifically for post-hoc aggregated BMF methods, for growing client count with synthetic abundant data.
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Figure 8: Our methods rapidly achieve a lower reconstruction loss for non-Boolean solutions and maintain minimal loss increase
while approaching a feasible Boolean solution. We illustrate the history of loss, F; score, and integrality gap over increasing
number of iterations.
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Figure 9: Our algorithm demonstrates robustness in achieving high convergence rates despite infrequent synchronizations. We
illustrate the history of loss, Fy score, F| score regarding ground-truth, and integrality gap over increasing number of local
per-client iterations before global synchronizations.
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Figure 10: Our algorithms largely maintains the prediction performance for moderately high differential privacy coefficients. We
depict the F;-score trend across various levels of differential privacy, for non-clipped Gaussian and Laplacian noise mechanisms,
as well as the Bernoulli “XOR’ noise mechanism.
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Figure 11: Our algorithms largely maintains the reconstruction quality for moderately high differential privacy coefficients. We
depict the reconstruction loss trend across various levels of differential privacy, for non-clipped Gaussian and Laplacian noise
mechanisms, as well as the Bernoulli ‘XOR’ noise mechanism.



