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ABSTRACT

Shapley values (Shap) are a popular approach to explaining deci-
sions of black-box models by revealing the importance of individual
features. Shap explanations are easy to interpret, but as they do
not incorporate feature interactions, they are also incomplete and
potentially misleading. Interaction-aware methods such as 𝑛Shap
report the additive importance of all subsets up to 𝑛 features. These
explanations are complete, but in practice excessively large and dif-
ficult to interpret. In this paper, we combine the best of both worlds.
We partition the features into significantly interacting groups, and
use these to compose a succinct, interpretable explanation. To deter-
mine which partitioning out of super-exponentially many explains
a model best, we derive a criterion that weighs the complexity of an
explanation against its representativeness for the model’s behavior.
To be able to find the best partitioning, we show how to prune sub-
optimal solutions using a statistical test. This not only improves
runtime but also helps to avoid explaining spurious interactions.
Experiments show that iShap represents underlyingmodelingmore
accurately than Shap and 𝑛Shap, and a user study suggests that
iShap is perceived as more interpretable and trustworthy.
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1 INTRODUCTION

Decision processesmust be fair and transparent regardless of whether
it is driven by a human or an algorithm. Post-hoc explainability
methods offer a solution as they can generate explanations that are
independent of the underlying model 𝑓 , and are hence also applica-
ble to black-box machine learning models. One of the most popular
approaches is the use of Shapley values [25], which provides in-
tuitive explanations for a decision 𝑓 (𝑥) of an arbitrary model 𝑓
for an individual 𝑥 in terms of how much a specific input value
𝑥𝑖 contributes to the outcome 𝑓 (𝑥). Additive explanations over
single features are succinct and easily understandable, but, only
reliable when the underlying model is indeed additive. Whenever
there are interactions between features in the model this can lead
to misleading results [9].

Interaction index explanations [24, 39, 41] address this by re-
turning groups of features 𝑥𝑆 that have a non-additive effect on the
prediction 𝑓 (𝑥). 𝑛Shap [1] is a recent approach that decomposes a
prediction 𝑓 (𝑥) into a generalized additive model

∑
𝑆⊂[𝑑 ], |𝑆 | ≤𝑛 Φ

𝑛
𝑆
,

computing the additive contribution of all subsets of up to 𝑛 fea-
tures. Although these explanations are complete up to 𝑛th-order
interactions, the combinatorial explosion makes these arduous to
compute and even harder to interpret.

To illustrate, we consider the explanations of Shap and 𝑛Shap
for bike rental prediction. On the left of Fig. 1 we show that of Shap,
which reveals the contributions of the 10 individual features. While
easy to understand, it is also counterintuitive: winter and humidity
are listed as beneficial, while medium temperature is identified as a
negative factor for bike rentals. On the right, we show the 𝑛Shap
explanation for subsets of up to 𝑛 = 10 features. 751 subsets get a
non-zero score (see Supplement for all values). These are not just
many, but also hard to interpret. Temperature:0.39 is part of 188
such sets. It is scored negatively individually (-702), positively with
Season:4 (259), negatively with Month:10 (-152), but positively
with both (42). We see similar behavior for many features, making
it generally hard to say which interactions are truly important.

In the middle of Fig. 1, we show our proposed explanation, iShap.
It partitions the features into groups that significantly interact, and
gives an additive explanation over these. It reveals that two inter-
actions responsible for the high predicted demand: it is a dry and
relatively warm winter day (Season:4, Hum:0.49 and Temp:0.39)
and a Saturday with little wind (Weekday:6 and Windspeed:0.15).

In the following, we outline the theory and algorithm behind
iShap. We formalize an objective function for the ideal partition of
an additive explanation, where we seek to find those coalitions of
players, which together best approximate the full game as an addi-
tive function. The main hurdle is on the computational side due to
the combinatorial explosion of the number of partitions. To reduce
the search space, we propose a statistical test to prune insignificant

https://doi.org/10.1145/3690624.3709175
https://doi.org/10.1145/3690624.3709175
https://doi.org/10.5281/zenodo.14617305
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Figure 1: Comparison of Shap (left), our proposal iShap (middle) and 𝑛Shap (right) on the Bike Sharing dataset [5]. Shap

does not reveal interactions, 𝑛Shap returns non-zero scores for 751 out of 1024 feature sets (𝑛 = 𝑑). iShap provides a concise

explanation of 2 interactions for the high predicted demand: its is a dry and relatively warm winter day (Season:4, Hum:0.49
and Temp:0.39) and a Saturday with little wind (Weekday:6 and Windspeed:0.15).

interactions, searching for the optimal partitioning over the result-
ing connected components. Over the optimal partition we compute
an additive Shap explanation. We evaluate iShap on various bench-
marks against both additive and interaction based explanations,
including a user study to evaluate the subjective perception of our
explanations in terms of understandability and trustworthiness.

2 THEORY

We consider a machine learning model 𝑓 : X → R with a domain
X over 𝑑 univariate random variables 𝑋1 to 𝑋𝑑 . We denote a subset
of input variables by 𝑋𝑆 , where 𝑆 is the index set and denote the
set of all indices as [𝑑] = {1, ..., 𝑑}. We define an explanation as a
set of tuples {(𝑆𝑖 , 𝑒𝑖 )} where 𝑆𝑖 is an index set with an explanatory
value 𝑒𝑖 to the prediction 𝑓 (𝑥). For example, Shap explains using
singletons 𝑆𝑖 = {𝑖}, where 𝑒𝑖 are the Shapley values, and 𝑛Shap
does so over all subsets 𝑆𝑖 ⊂ [𝑑] of cardinality |𝑆𝑖 | ≤ 𝑛 features.

We view the local prediction 𝑓 (𝑥) as a coalition game, where a
coalition 𝑥𝑆 is a subset of players receiving a payoff 𝑣 (𝑆) defined
by a value function 𝑣 : 2𝑑 → R. W.l.o.g. we assume that the value
function is normalized, i.e. 𝑣 (∅) = 0, which can be achieved by
pre-processing 𝑓 so that 𝐸 [𝑓 (𝑋 )] = 0. In the context of machine
learning, two value functions are often used: the observational value
function 𝑣 (𝑆 ; 𝑓 , 𝑥) = E [𝑓 (𝑋 ) |𝑋𝑆 = 𝑥𝑆 ] [25], and the interventional
value function 𝑣 (𝑆 ; 𝑓 , 𝑥) = E [𝑓 (𝑋 ) |do(𝑋𝑆 = 𝑥𝑆 )] [16]. Our method
is based directly on 𝑣 and can be instantiated with either. In the
following, we therefore omit the specific instance of 𝑓 and 𝑥 and
refer to the value function simply as 𝑣 (𝑆).

2.1 Objective

Our goal is to construct an explanation {(𝑆𝑖 , 𝑒𝑖 )} for 𝑓 (𝑥) that is
succinct, non-redundant, and where the additive interpretation∑
𝑖 𝑒𝑖 approximates the behavior of 𝑓 best. For example, if 𝑓 is a

linear model, then the value function of a single feature 𝑖 is the
weight𝑤𝑖 times the deviation from the mean, i.e.

𝑣 (𝑖) = 𝑤𝑖 (𝑥𝑖 − E [𝑋𝑖 ]) ,

so that the value function of a coalition of features 𝑆 is the sum
of the individual value functions 𝑣 (𝑆) = ∑

𝑖∈𝑆 𝑣 (𝑖). For complex
models such as neural networks however, there generally exists no
exact analytic decomposition.

Instead, we focus on finding a partition Π of the features space
[𝑑] such that each feature 𝑗 is contained in only one set 𝑆𝑖 . Each
feature 𝑗 ∈ 𝑆𝑖 is hence associated with only one explanatory value
𝑒𝑖 . In particular, we want to find that partition Π that minimizes
(𝑓 (𝑥) −∑

𝑆∈Π 𝑣 (𝑆))2, i.e. the partition Π that approximates 𝑓 of 𝑥
best. The general idea is that if features 𝑥𝑖 and 𝑥 𝑗 strongly interact,
they will have a large joint effect on the result, and hence a local
surrogate model would make a large mistake if 𝑥𝑖 and 𝑥 𝑗 are not in
the same set 𝑆 .

It is easy to see that the objective is trivially minimized by
Π = {[𝑑]}, which would not give any insight into the inner work-
ings of the model. We therefore regularize the complexity of the
explanation by penalizing the number of interactions via an 𝐿0
norm. Each set 𝑆 ∈ Π represents

( |𝑆 |
2
)
possible pairwise interac-

tions, by which the 𝐿0 norm of a partition Π is R(Π) = ∑
𝑆∈Π

( |𝑆 |
2
)
.

We define the optimal partition Π∗ with regard to value function 𝑣

of an algorithmic decision 𝑓 (𝑥) as the partition Π minimizing

Π∗ = argmin
Π

©«𝑓 (𝑥) −
∑︁
𝑆𝑖 ∈Π

𝑣 (𝑆𝑖 )
ª®¬
2

+ 𝜆 ·
∑︁
𝑆𝑖 ∈Π

(
|𝑆𝑖 |
2

)
. (1)

We next describe how to find Π∗, and then how we can construct
an explanation {(𝑆𝑖 , 𝑒𝑖 )} from it.

2.2 Partitioning

Objective (1) poses a challenging optimization problem. Finding the
best partition is a constrained variant of the subset-sum problem
and hence NP-hard. The number of partitions for a set of 𝑑 features
is given by Bell number 𝐵𝑑 , which grows super-exponentially with
𝑑 , and hence exhaustive search is not an option. Approximate solu-
tions can be computed in pseudo-polynomial time [30], but require
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the value function to be computed for all elements of the power set,
of which there are exponentially many.

We observe that when a pair of variables 𝑥𝑖 and 𝑥 𝑗 do not have a
significant non-additive effect on the prediction 𝑓 (𝑥) in the context
of any set of other variables, our regularizer will ensure they will
not be grouped together in the optimal partitioning. This allows
us to drastically prune the search space, while still picking up non-
linear higher-order effects (e.g. XOR).

Definition 1. (Eq. (6) Lundberg et al. [24]) Given a value function
𝑣 , the interaction I between 𝑥𝑖 and 𝑥 𝑗 in the context of 𝑥𝑆 is

I(𝑖, 𝑗, 𝑆) = 𝑣 (𝑆 ∪ 𝑖) + 𝑣 (𝑆 ∪ 𝑗) − 𝑣 (𝑆 ∪ {𝑖, 𝑗}) − 𝑣 (𝑆) .

This definition of interaction measures the effect of setting 𝑋𝑖 =
𝑥𝑖 and 𝑋 𝑗 = 𝑥 𝑗 individually, in contrast to the combined effect,
whilst accounting for a covariate set 𝑥𝑆 . We now show, that if for
any covariate set 𝑆 , there is no interaction between 𝑥𝑖 and 𝑥 𝑗 , then
𝑖 and 𝑗 are not be grouped in the optimal partition with regard to
Objective (1). To this end, we begin by showing that the additivity
of effects for a pair 𝑥𝑖 and 𝑥 𝑗 is a sufficient criterion to rule out their
pairing, and then show in which cases we can use the absence of
interaction as an indicator for additivity.

Theorem 1. Let 𝑣 be additive for the variables 𝑥𝑖 and 𝑥 𝑗 , so that
for all covariates 𝑆 ⊆ [𝑑] \ {𝑖, 𝑗} there exists a partition 𝐴 ∪ 𝐵 = 𝑆

with
𝑣 (𝐴 ∪ 𝑖) + 𝑣 (𝐵 ∪ 𝑗) = 𝑣 (𝑆 ∪ {𝑖, 𝑗}) .

Then, 𝑥𝑖 and 𝑥 𝑗 do not occur together in the optimal partition Π∗ in
regards to Objective (1), i.e.

∀𝑆𝑘 ∈ Π∗ : 𝑖 ∉ 𝑆𝑘 ∨ 𝑗 ∉ 𝑆𝑘 .

Proof. Assume the optimal partition Π∗ contains a set 𝑆 where
𝑖, 𝑗 ∈ 𝑆 . Then, the value function 𝑣 (𝑆) is decomposable into 𝑣 (𝑆) =
𝑣 (𝐴∪ 𝑖) +𝑣 (𝐵∪ 𝑗). Thus, we may construct a partition Π′ with𝐴∪ 𝑖
and 𝐵 ∪ 𝑗 , where the reconstruction error 𝑓 (𝑥) −∑

𝑆𝑖 ∈Π′ 𝑣 (𝑆𝑖 ) re-
mains the same and its regularization penalty shrinks, i.e. 𝑅(Π∗) >
𝑅(Π′). It follows that the overall objective of the partition Π′ is
lower than Π∗, contradicting its optimality. □

Theorem 1 confirms the intuition that if 𝑣 is additive for two
variables 𝑥𝑖 and 𝑥 𝑗 , then they do not occur as part of the same set
in the optimal partition. The main challenge lies in the exponential
quantity of contexts 𝑆 to consider, where the effect of 𝑥𝑖 and 𝑥 𝑗 may
differ. We show how we can reduce this effort to only a single test
per pair 𝑥𝑖 and 𝑥 𝑗 , which under a mild assumption allows to detect
an absence of interaction, and hence rule out these being grouped
in the optimal solution. The resulting explanations are tractable in
real time and contain only significant interactions.

Assumption 1. If 𝑣 is additive for a partition 𝐴, 𝐵 of 𝑆 , i.e. 𝑣 (𝑆) =
𝑣 (𝐴) + 𝑣 (𝐵), then it is also additive for all subsets 𝐴′ ⊆ 𝐴, 𝐵′ ⊆ 𝐵, so
that

∀𝐴′ ⊆ 𝐴, 𝐵′ ⊆ 𝐵 : 𝑣 (𝐴′) + 𝑣 (𝐵′) = 𝑣 (𝐴′ ∪ 𝐵′) .

Assumption 1 requires that the additivity of two sets of features
𝐴 and 𝐵 is preserved for all of their subsets. For example, if we find
that 𝑣 ({𝑥1, 𝑥2, 𝑥3}) = 𝑣 ({𝑥1, 𝑥2}) + 𝑣 ({𝑥3}), then we also assume
that 𝑣 ({𝑥1, 𝑥3}) = 𝑣 ({𝑥1}) + 𝑣 ({𝑥3}). This holds for many popular
value functions, including the interventional value function by

Janzing et al. [16] and the original observational value function
used by Lundberg and Lee [25] in conjunction with an underlying
additive function 𝑓 , but does not generally hold for Asymmetric
Shapley Values [7] (see Appx. B).

We now show how to determine when a pair of variables 𝑥𝑖 and
𝑥 𝑗 is additive using the context dependent interaction I(𝑖, 𝑗, 𝑆), and
in particular the lack thereof.

Lemma 1. Under Assumption 1, if the total interaction of a pair of
variables 𝑖 and 𝑗 is not zero, i.e.∑︁

𝑆⊆[𝑑 ]\{𝑖, 𝑗 }
I(𝑖, 𝑗, 𝑆) ≠ 0 ,

then 𝑣 is not additive for 𝑖 and 𝑗 .

Proof. If there is interaction between 𝑖 and 𝑗 , we show that
there exists a covariate set 𝑆 for which 𝑣 is not additive for 𝑖 and 𝑗 .
First, we note that ∑︁

𝑆⊆[𝑑 ]\{𝑖, 𝑗 }
I(𝑖, 𝑗, 𝑆) ≠ 0

=⇒ ∃𝑆 ⊆ [𝑑] \ {𝑖, 𝑗} : I(𝑖, 𝑗, 𝑆) ≠ 0 ,

i.e. there exists a covariate set 𝑆 for which the interaction is not
zero. For this set 𝑆 , it holds that

𝑣 (𝑆 ∪ 𝑖) + 𝑣 (𝑆 ∪ 𝑗) ≠ 𝑣 (𝑆 ∪ {𝑖, 𝑗}) + 𝑣 (𝑆) . (2)

If 𝑣 indeed was additive for 𝑖 and 𝑗 , then for 𝑆 there exists a partition
𝐴 ∪ 𝐵 = 𝑆 so that

𝑣 (𝑆 ∪ 𝑖, 𝑗) = 𝑣 (𝐴 ∪ 𝑖) + 𝑣 (𝐵 ∪ 𝑗) .

By Assumption 1, we know that this decomposition also holds for
𝑆 , 𝑆 ∪ 𝑖 and 𝑆 ∪ 𝑗 , so that we can rewrite Equation (3) as

𝑣 (𝐴 ∪ 𝑖) + 𝑣 (𝐵) + 𝑣 (𝐴) + 𝑣 (𝐵 ∪ 𝑗)
≠ 𝑣 (𝐴 ∪ 𝑖) + 𝑣 (𝐵 ∪ 𝑗) + 𝑣 (𝐴) + 𝑣 (𝐵) .

This statement is a contradiction, and thus shows the claim that 𝑣
is not additive for 𝑖 and 𝑗 . □

With Lemma 1, we show that we can reject the additivity of
a pair of variables 𝑖 and 𝑗 if their pairwise Banzhaf interaction is
non-zero [10]. As per Theorem 1, any pair of variables 𝑖 and 𝑗 that
is additive is not grouped together in the optimal partition. Thus, to
obtain the optimal partition Π∗, we need to consider all interacting
pairs of variables 𝑖 and 𝑗 . Furthermore, let 𝑖 and 𝑗 be non-additive,
and let 𝑗 and 𝑘 be non-additive too, then we can show that 𝑖 and
𝑘 are also non-additive, i.e. potentially grouped together in the
optimal partition.

Lemma 2. Let 𝑣 be non-additive for 𝑖 and 𝑗 , and let 𝑣 be non-additive
for 𝑗 and 𝑘 . Then, 𝑣 is also not additive for the variables 𝑖 and 𝑘 .

Proof. Let 𝑣 be non-additive for 𝑖 and 𝑗 , and let 𝑣 be non-additive
for 𝑗 and 𝑘 , i.e. there exists a set 𝑆1 where

∀𝐴1, 𝐵1 : 𝑣 (𝐴1 ∪ 𝑖) + 𝑣 (𝐵1 ∪ 𝑗) ≠ 𝑣 (𝑆1 ∪ {𝑖, 𝑗})

and the set 𝑆2 for 𝑗 and 𝑘 respectively. Now assume that 𝑣 is additive
for 𝑖 and 𝑘 , then it must hold for all covariate sets 𝑆3 that

∀𝑆3 ⊆ [𝑑] \ {𝑖, 𝑘} : ∃𝐴, 𝐵 : 𝑣 (𝐴 ∪ 𝑖) + 𝑣 (𝐵 ∪ 𝑘) = 𝑣 (𝑆3 ∪ {𝑖, 𝑘}) .
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Sex:male Hypertension:yes Race:black

Age:55.00Diabetes:yes

Hyperlipidemia:no

Coronary artery disease:no

Vascular disease:no

Endstage renal disease:no

Chronic kidney disease:no

Dementia:no

Chronic heart failure:no Hepatitis:no Component 1 Component 2 Component 3 Component 4 Singletons

Figure 2: Interaction graph for a COVID-19 survival prediction. Green edges indicate a positive, red edges a negative interaction

effect. In this example, the detrimental effect of diabetes and hypertension on survival is alleviated by the relatively young age

(55) of the patient. iShap uses the connected components of the graph to guide the search for the optimal partition/explanation.

However, consider the set 𝑆3 = (𝑆1 ∪ 𝑆2 ∪ { 𝑗}) \ {𝑖, 𝑘}. If 𝑣 is
additive with regard to 𝑖 and 𝑘 , there exists a partition 𝐴3, 𝐵3 so
that

𝑣 (𝐴3 ∪ 𝑖) + 𝑣 (𝐵3 ∪ 𝑘) = 𝑣 (𝑆3 ∪ {𝑖, 𝑘}) .
Now, we distinguish between two cases: Let 𝑗 ∈ 𝐵3, then we can
construct a new sub-partition 𝐴1 = 𝑆1 ∩ 𝐴3 and 𝐵1 = 𝑆1 ∩ 𝐵3. 𝐴1
and 𝐵1 are subsets of 𝐴3 ∪ 𝑖 and 𝐵3 ∪ 𝑘 , so that by Assumption 1
additivity is preserved for 𝐴1 and 𝐵1. Therefore, it holds that

𝑣 (𝐴1 ∪ 𝑖) + 𝑣 ((𝐵1 \ 𝑗) ∪ 𝑗) = 𝑣 (𝑆1 ∪ {𝑖, 𝑗}) ,
since 𝐴1 ∪ 𝐵1 = 𝑆1 as 𝑆1 ⊆ 𝑆3 ∪ 𝑘 . This contradicts the fact 𝑣 is
non-additive for 𝑖 and 𝑗 , and hence shows that 𝑣 also is not additive
for 𝑖 and 𝑘 . If 𝑗 ∈ 𝐴3, we similarly construct a partition𝐴2 = 𝑆2∩𝐴3
and 𝐵2 = 𝑆2 ∩ 𝐵3, and from which too follows that 𝑣 is not additive
for 𝑖 and 𝑘 . □

Lemma 2 allows us to reject the additivity of a pair of variables
𝑖 and 𝑗 if they are connected by a chain of interactions. That is, it
helps us to reduce the search space to partitions where its elements
are connected components with regard to interactions. In practice,
we run the risk of falsely eliminating pairs of variables for which
the sum of non-additive interaction effects is zero. Our evaluation
shows this happens only very rarely in practice.

2.3 Explanation

Once the optimal partition Π∗ is obtained, we use the discovered
interacting sets 𝑆𝑖 ∈ Π∗ as building blocks to explain the algorithmic
decision 𝑓 (𝑥). We set the contribution 𝑒𝑖 of each feature set 𝑆𝑖 to the
Shapley values of a new game 𝑣 ′, in which each set 𝑆𝑖 corresponds
to a player. This new game 𝑣 ′ allows to only include either all or
no features of a feature set 𝑆𝑖 , and takes the values of the original
value function 𝑣 . As a result, we return an additive explanation
{(𝑆𝑖 , 𝑒𝑖 )}𝑆𝑖 ∈Π∗ , where

∑
𝑖 𝑒𝑖 = 𝑓 (𝑥), based on the optimal partition

of an algorithmic decision 𝑓 (𝑥). Finally, we quantify the amount of
interaction in 𝑆𝑖 using Definition 1 and extend it onto sets as the
difference between their joint contribution and the contribution of
grouped features individually, 𝑣 (𝑆𝑖 ) −

∑
𝑗∈𝑆𝑖 𝑣 ( 𝑗).

3 ALGORITHM

The number of partitions of a set of 𝑑 variables is the Bell number,
𝐵𝑑 . The amount grows super-exponentially with the number of
variables 𝑑 , making it vital to restrict the search space. To this end,

we introduce the iShap algorithm for Interaction-aware Shapley
Value Explanations. It enables us to find the optimal partition Π∗

that minimizes the regularized reconstruction error of Objective 1.

3.1 Search Space Pruning

Based on Theorem 1, we prune suboptimal partitions by identifying
all groups of features with significant interactions, and then remove
all partitions that do not contain these groups. In particular, as per
Lemma 1 we test for all pairs of variables 𝑖 and 𝑗 , if there is any
interaction, i.e. of higher and lower order, through∑︁

𝑆⊆[𝑑 ]\{𝑖, 𝑗 }
I(𝑖, 𝑗, 𝑆) ≠ 0 .

To exactly compute this quantity, exponentially many value func-
tions 𝑣 (𝑆) are required. Instead, we adopt a Monte Carlo approach
by sampling uniformly at random coalitions 𝑆 from [𝑑] \ {𝑖, 𝑗} and
computing the expectation of the interaction effect 𝐸𝑆 [I(𝑖, 𝑗, 𝑆)].
This Kernel-SHAP like approach allows us to approximate the in-
teraction effect with fewer samples and use a statistical test with
significance level to reject the null hypothesis of no interaction.

For a pair 𝑥𝑖 and 𝑥 𝑗 , we formulate the null-hypothesis as

𝐻0 : E 𝑆 [I(𝑖, 𝑗, 𝑆)] = 0, where 𝑆 ∼ Uniform (P ([𝑑] \ {𝑖, 𝑗})) .

To this end, we rely on a standard 𝑡-test, which allows us to find
statistically significant interaction effects given a significance level
𝛼 . We construct an undirected graph with a node for each feature,
and draw an edge wherever 𝐻0 is rejected.

Fig. 2 shows an example of an interaction graph for COVID-19
survival prediction. Pairs with significant non-additive effect (i.e.
null hypothesis rejected) are connected by an edge. For example,
the positive interaction between Age and Diabetes indicates that
the generally negative effect of diabetes on surviving COVID-19 is
less pronounced for non-elderly people. (Note these only explain
the interactions in the model, not necessarily those in the data.)

The so-obtained interaction graph is the base of the graph parti-
tioning algorithm to optimize Objective (1). By Theorem 2, we know
that any pair of nodes which is connected by a path in the interac-
tion graph is not additive. Therefore, the optimal partition consists
at most of connected components of the interaction graph, and their
subsets. In this much reduced search space are contained only those
partitions the sets show statistically significant interactions of any
order, determined through our interaction test E 𝑆 [I(𝑖, 𝑗, 𝑆)] ≠ 0
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that considers all possible contexts 𝑆 . We provide the pseudocode
of FindInteractions in Appx. C.

3.2 Partitioning Algorithm

Given the interaction graph we can derive all valid candidate parti-
tions. A partition is valid if for each component 𝑆 and all pairwise
features 𝑥𝑖 , 𝑥 𝑗 ∈ 𝑆 there exist a path between 𝑥𝑖 and 𝑥 𝑗 in the in-
teraction graph. Importantly, this does not mean the features have
to interact directly, so that iShap can naturally detect higher order
interactions, e.g. a three way XOR.

We propose two variants of iShap-Exact and iShap-Greedy
aimed at small and large datasets, respectively. In iShap-Exact
we test all valid partitions, and select the one which minimizes
our objective. We evaluate all eligible partitions Π by sampling the
value function 𝑣 (𝑆) for each subset of features 𝑆 ∈ Π, computing
the reconstruction loss 𝐿(Π) = (𝑓 (𝑥) − ∑

𝑆∈Π 𝑣 (𝑆))2 and adding
the regularization penalty R(Π). To avoid recomputing the value
function for the same subset many times, we additionally buffer the
value function 𝑣 (𝑆) for re-use. By searching over all valid partitions,
we can guarantee to find the optimal partition Π∗ that minimizes
the objective function, with the downside that iShap-Exact still
comes to its limit for many variables.

Hence, we introduce a greedy search variant iShap-Greedy,
which is suitable for large datasets and fast inference. We show the
pseudocode of iShap-Greedy in Algorithm 1. We start by comput-
ing the interaction graph 𝐺 (line 1), and initialize the partition Π

with the all singleton partition {𝑆𝑖 |𝑆𝑖 = {𝑖}}𝑑𝑖=1 (line 3). Next, we
start the search in a bottom-up approach where, iteratively, the
two sets 𝑆𝑖 and 𝑆 𝑗 that yield the highest gain in the objective are
merged (line 7 - 12). Here, only merges are considered which do
not violate the interaction graph, i.e. 𝑆𝑖 and 𝑆 𝑗 are connected by a
path (line 8). We continue this until no further merge improves the
score (line 13). Finally, the Shapley values are computed for each
set 𝑆𝑖 ∈ Π and the explanation of 𝑓 (𝑥) is returned (line 17 - 19).
Naturally, the greedy approach is not guaranteed to be optimal, but
as we will see in the evaluation, achieves near-optimal results in
practice. We explain iShap-Exact and give a complexity analysis
of both variants in Appx. C.

4 RELATEDWORK

We focus on post-hoc, model-agnostic explainability approaches
[34] that treat the model 𝑓 as a black-box and generate explanations
by perturbing the input and analyzing the output. Here, explana-
tions can be categorized into global explanations of 𝑓 and local
explanations of a particular decision 𝑓 (𝑥).

Friedman [6] introduced the partial dependence plot (PD), a
global explanation that visualizes the relationship between a vari-
able 𝑋𝑖 and the predicted output 𝑓 (𝑋 ). PD plots are well suited
for an injective relationship between 𝑋𝑖 and 𝑓 (𝑋 ), but not for
cases with interaction effects between more than two variables.
Functional ANOVA (analysis of variance) [14, 15] is another global
explanation approach which aims at discovering non-additive in-
teractions between input variables. Sivill and Flach [38] propose to
discover interacting feature sets for a given model, one step further
Herbinger et al. [12] aim to partition the feature space into sub-
spaces by minimizing feature interactions. Overall, global model

Algorithm 1: iShap-Greedy (𝑓 , 𝑥, 𝑋, 𝑛𝑆 , 𝑣, 𝛼, 𝜆)

Input: Data point 𝑥 , model 𝑓 , sample 𝑋 , number of samples
𝑛𝑆 , value function 𝑣 , significance level 𝛼 , regularizer
parameter 𝜆

1 𝐺 ← FindInteractions(𝑓 , 𝑥, 𝑋, 𝑛𝑆 , 𝛼)
2 d← number of nodes in 𝐺
3 Π ← {𝑆𝑖 |𝑆𝑖 = {𝑖}}𝑑𝑖=1
4 while True do
5 Best Candidate Score← 𝐿(Π) + 𝜆R(Π)
6 Π∗ ← Π

7 for 𝑆𝑖 , 𝑆 𝑗 ∈ Π do

8 if ∃𝑘 ∈ 𝑆𝑖 , 𝑙 ∈ 𝑆 𝑗 : (𝑘, 𝑙) ∈ 𝐺 then

9 Π′ ← Π ∪ {𝑆𝑖 ∪ 𝑆 𝑗 } \ {𝑆𝑖 , 𝑆 𝑗 }
10 if 𝐿(Π′) + 𝜆R(Π′) <Best Candidate Score then
11 Best Candidate Score← 𝐿(Π′) + 𝜆R(Π′)
12 Π∗ ← Π′

13 if Π ≠ Π∗ then
14 Π ← Π∗
15 else

16 break

17 Value function 𝑣 ′ (𝑆) of game with Π as players,
𝑣 ′ (𝑆) = 𝑣 (𝑆) if 𝑆 ∈ P(Π)

18 Compute Shapley values 𝜙𝑖 for 𝑖 = 1, . . . ,𝑚 using 𝑆𝑖 ∈ Π as
players using 𝑣 ′

19 return Explanation {(𝑆𝑖 , 𝜙𝑖 )}𝑆𝑖 ∈Π , Interaction Graph G

explanations can give a good overview over a model 𝑓 , but pro-
duce non-conclusive explanations when faced with complex, highly
interactive functions where it is hard to create a single summary.

Local explanations on the other hand aim to explain the deci-
sion of a model 𝑓 (𝑥) for a particular instance 𝑥 . Local Interpretable
Model Agnostic Explanations (Lime) [35], is perhaps the most influ-
ential post-hoc explainability method. Lime explains a prediction
𝑓 (𝑥) by constructing a local surrogate model 𝑓 ′ that is interpretable,
for example a Linear Regression or a Decision Tree. Lime is model
agnostic and generates simple, intuitive explanations, but has a
fuzzy data sampling process and no guarantees as it is based on
purely heuristics. As Lime fits a local model, the resulting explana-
tions can be misleading [36] or non informative for cases where 𝑥
is far from any decision boundary.

A different style of explanation are approaches which explain
a decision 𝑓 (𝑥) through combinations of features 𝑥𝑖 [2, 36]. In
essence both method find a sufficient set of variables such that the
prediction 𝑓 (𝑥) does not change. In contrast to our method they
can not provide explanations for regression models and they do
not explain which combinations of variables has which effect on
the prediction. Counterfactual explanations [20, 26, 32, 42, 43] are
another type of local explanations that bring together causality
and explainability. Algorithmic Recourse [17, 21] goes one step
further and wants to find the best set of changes to reverse a models
decision. These methods are most appropriate if the user seeks
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Figure 3: [Higher is better] Average F1 score of recovered interactions in GAMs, in terms of exactly recovered sets of interacting

features (3a) resp. pairwise interactions (3b). In Fig. 3c we show average performance up to 10 features. We observe that iShap

outperforms 𝑛Shap on all function classes and iShap-Greedy performs closely to iShap-Exact.

actionable insights, i.e. how to reverse a decision, and, in contrast,
do not explain a prediction.

One of the most widely used approaches for explainable AI are
Shapley values [25]. Shapley values where originally introduced
[37] in game theory to measure the contributions of individual
players. Recently different variants have been proposed like asym-
metric [7] and causal Shapley values [13]. Unlike our method they
provide per feature attributions and no further insight into which
features interact. Describing interaction is getting more attention
in recent years. Jung et al. [19] propose to quantify the effect of a
group of causes through do-interventions, but focus on estimating
those effects from non-experimental data. Jullum et al. [18] propose
to compute Shapley values on predefined feature sets, where they
suggest to either group semantically related features or correlated
features. Our approach discovers the feature sets automatically.

Most closely related is a recent class of so called interaction index
explanations. The work by Lundberg et al. [24] introduces SHAP
interaction values extending SHAP explanations to all pairwise in-
teractions. Sundararajan et al. [39], Harris et al. [11] and Tsai et al.
[41] both derive Shapley interaction indices for binary features that
cover the entire power set. Most recently, Bordt and von Luxburg [1]
introduced 𝑛Shap, which extends Shapley interaction values to fea-
ture sets up to degree 𝑛. Similar to our method, 𝑛Shap explains a de-
cision 𝑓 (𝑥) through a generalized additive model

∑
𝑆⊂[𝑑 ], |𝑆 | ≤𝑛 Φ

𝑛
𝑆
.

The main difference is that 𝑛Shap provides a value for all of the
power set of features, whereas our method chooses a succinct rep-
resentation selecting interacting components.

5 EXPERIMENTS

In this section we empirically evaluate iShap. We compare it to
Shap [25], Lime [35], and 𝑛Shap [1]. We implemented iShap in
Python, we used the original Python implementation of Shap, Lime,
and 𝑛Shap (𝑛 = 4). We allow each method up to 10 minutes per
explanation. We provide the code and data generators in the Supple-
mentary Material1. All experiments were conducted on a consumer-
grade laptop.

5.1 Discovering Interactions

First, we examine whether iShap recovers truly interacting sets
of variables. To this end we generate generalized additive models

1https://github.com/Schascha1/iSHAP

𝑓 (GAMs) for which we determine the ground truth sets of inter-
acting features 𝑆𝑖 . We sample 𝑑 feature variables 𝑋 𝑗 , either from a
normal distribution: 𝑃 (𝑋 𝑗 ) = 𝑁 (𝜇, 𝜎2), 𝜇 ∈ [0, 3], 𝜎 ∈ [0.5, 1.5] or a
uniform distribution: 𝑋 𝑗 ∈ U(0, 3). We construct the ground truth
partition Π by sampling sets 𝑆𝑖 of arbitrary size from a Poisson
distribution. Next, we define 𝑓 as 𝑓 (𝑥 ;Π) = ∑

𝑆𝑖 ∈Π 𝑓𝑖 (𝑋𝑆𝑖 ) , with a
non-additive inner function 𝑓𝑖 , where we consider

(1) 𝑓𝑖
(
𝑋𝑆𝑖

)
=

∏
𝑗∈𝑆𝑖 𝑎𝑖, 𝑗 · 𝑋 𝑗 , 𝑎𝑖, 𝑗 ∈ ±[0.5, 1.5]

(2) 𝑓𝑖
(
𝑋𝑆𝑖

)
= sin

(∑
𝑗∈𝑆𝑖 𝑎𝑖, 𝑗 · 𝑋 𝑗

)
, 𝑎𝑖, 𝑗 ∈ ±[0.5, 1.5] .

We generate data with all combinations of inner function and
feature distribution, that is multiplicative inner function (1) and
normal distribution (𝑋 ∼ N ), sine inner function (2) and (𝑋 ∼ N ),
etc. For more details we refer to Appx. D.

We compute the iShap and the 𝑛Shap explanations for a random
data point 𝑥 . For 𝑛Shap we construct a Π̂ by iteratively taking the
strongest interacting set without overlap to already chosen sets,
until all features are covered.Wemeasure howwell the explanations
Π̂ compare to the ground truth Π by the F1 score between the sets
using as precision (Pr .) and recall (Re.)

Re.(Π, Π̂) = 1
|Π |

∑︁
𝑆𝑖 ∈Π̂

1(𝑆𝑖 ∈ Π) , Pr .(Π, Π̂) =
1
|Π̂ |

∑︁
𝑆𝑖 ∈Π

1(𝑆𝑖 ∈ Π̂) .

In addition, we compute the F1-score on pairs 𝑗, 𝑘 ∈ 𝑆𝑖 and 𝑗 ′, 𝑘′ ∈
𝑆𝑖 to assess how accurately pairwise interactions are recovered.

We show the performance of iShap-Greedy, iShap-Exact and
𝑛Shap in Fig. 3, in (3a) and (3b) we report the average over all four
settings, in (3c) we show average 𝐹1 score for each function class
up to 10 variables, 𝑛Shap times out for settings with more than 10
variables. We see that iShap outperforms 𝑛Shap both in terms of re-
trieving interacting sets (Fig. 3a) and pairwise interactions (Fig. 3b),
and that this advantage persists across all tested combinations of
feature distributions 𝑃 (𝑋 ) and classes of inner functions (Fig. 3c).
More interestingly, we see that iShap-Greedy performs almost as
well as iShap-Exact, showing the effectiveness of our interaction
test in restricting the search space.

5.2 Surrogate Model Accuracy

Next, we evaluate howwell the iShap, Shap, 𝑛Shap and Lime expla-
nations can serve as surrogate models. Given a model 𝑓 , Poursabzi-
Sangdeh et al. [31] proposed to present a user with an explanation
for a data point 𝑥 , and ask them to use this to predict the output

https://github.com/Schascha1/iSHAP
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Figure 4: 𝑅2 for surrogate models of iShap, 𝑛Shap, Shap and Lime across different model classes (a) and datasets (b). iShap

provides the most accurate surrogate model across all classes and datasets, whilst scaling to more dimensions than 𝑛Shap (c).

of the model on new, unseen data. We adopt this approach and
test each method using seven datasets2 with increasingly complex,
non-additive models 𝑓 : linear models, SVMs, random forests (RF),
multi-layer perceptrons (MLP) and k-nearest neighbors (KNN).

We start by selecting two data points, denoted as 𝑥 (1) and 𝑥 (2) .
We then create a new data point, 𝑥 ′, by randomly selecting features
from either 𝑥 (1) or 𝑥 (2) with equal probability. For each feature 𝑥 ′

𝑖
,

or sets of features in case of iShap and 𝑛Shap, we take its resp. addi-
tive contribution, and sum them up to obtain the implied prediction
𝑓 (𝑥 ′). We then calculate the mean squared error between this im-
plied prediction 𝑓 (𝑥 ′) and the true prediction 𝑓 (𝑥 ′) and report the
overall 𝑅2 in Fig. 4.

In Figure 4b we show 𝑅2 of different model, averaged over all
datasets. For linear models 𝑓 the additivity assumption holds fully,
which is reflected in the near perfect accuracy of all methods. When
using SVMs and random forests, the overall accuracy of all methods
is decreased. Here, iShap emerges as the most accurate surrogate
model with an𝑅2 over 0.9. Lime struggles tomodel the local decision
surface of an MLP as a linear model, and 𝑛Shap struggles with k-
nearest neighbors. Shap does not take into account any interactions.

From the performance across different datasets, shown in Fig. 4b,
we see that iShap outperforms all other methods. On datasets with
more features and interactions between these, such as the Credit
dataset, we find that iShap achieves a 𝑅2 score of 0.9, while Shap,
𝑛Shap and Lime obtain 𝑅2 scores of 0.6-0.7. On the Life Expectancy,
Student and Breast Cancer datasets where Shap and Lime struggle
and 𝑛Shap times out, iShap provides by far the best surrogate
models. This increase in performance comes with an increased
computational effort for iShap.Still, in contrast to 𝑛Shap’s limit of
16 features, iShap-Exact can explain up to 32 variables within an
hour, and iShap-Greedy scales up to hundreds of features (Fig. 4c).

5.3 Case Study: Covid-19

Next, we conduct a qualitative comparison between the Shapley
value based explanations provided by iShap, Shap and 𝑛Shap. For
this, we consider a Covid-19 dataset containing survival data of
1,540 hospitalized patients [22]. We train a random forest classifier
to predict the likelihood of survival, based on diverse biomark-
ers such as age and pre-existing conditions. For each patient we
provide the respective iShap, Shap and 𝑛Shap explanation in the
Supplementary Material. We show in Table 1 the Shap (left), 𝑛Shap

2California [27], Diabetes [29], Insurance [23], Life [33], Student [3] and Credit [4]

(middle) and iShap (right) explanations for a patient which was
hospitalized, and for which the model correctly predicted survival.

We discuss the explanations in turn. The features that Shap
identifies as key to survival seem to be reasonable at first glance,
but upon closer inspection are at least partly counterintuitive.
Hypertension:1 is marked as a positive factor and Diabetes:1 as
having only a slight negative effect, despite both are known risk
factors for Covid-19 [28].

To obtain further insight, we move on to the 𝑛Shap explanation
shown in the middle. We show the top 13 out of 2 516 interaction
coefficients, the actual values of whichwe provide in Supplementary
Material. Like Shap, 𝑛Shap also identifies Age as a positive factor,
but additionally shows that it is included in many higher-order
sets. The amount of redundancy and inconclusive values makes a
clear interpretation of them hard, for example (Age, Hypertension,
Diabetes, Race) is given a contribution of -9% to survival chances,
while (Age, Hypertension) alone improve odds by 7.8% supposedly.

Thus, we inspect the iShap explanation shown on the right. It
partitions the feature set into six parts, and clearly identifies there
are two main interacting sets to consider. Firstly the combination
of Age:55 in conjunction with Hypertension:1 and Diabetes:1
is marked with a strong positive effect and is explained as follows:
While diabetes and hypertension are negative marginal factors
for survival across the entire data set, their effect is significantly
reduced for a patient of only 55 years old compared to the on-
average much older patients in the dataset. The high Shap value of
the feature Age:55 reflects this as it is the sum of the marginal and
the interaction effects. Second, we see that Hyperlipidemia:0 and
Coronary Artery Disease:0 are positively interacting factors
for survival. Coronary artery disease is known to be a risk
factor for Covid-19 patients [40], and thus its absence is positive.
Hyperlipidemia is strongly associated with CAD [8], and its absence
validates the CAD:0 feature, thus interacting positively with it.

Overall, we see that all three explanations describe the same phe-
nomena, but do so in different levels of detail. The Shap explanation
is arguably the most compact, but also the least detailed as it cannot
explain the interactions that are important to understand the un-
derlying mechanisms. The 𝑛Shap explanation is arguably the most
detailed, but, also the hardest to interpret, as it lists all interaction
coefficients. The iShap explanation offers the best of both worlds:
it is as interpretable as Shap, and includes the main interactions as
found by 𝑛Shap, so to succinctly explain the models decision and
making the user aware of the most important interactions.
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(a) Shap values

Feature Effect (%)
age:55 28.1
race:black 0.9
sex:male -0.1
hypertension:1 7.1
hyperlipidemia:0 -0.2
diabetes:1 -3.6
CAD:0 7.3
chf:0 0.0
CeVD:0 0.0

(b) Top-k 𝑛Shap values (2516 total)

Feature Set Effect (%)
age 15.1
age, hypertension,
race, diabetes

-9.0

age, hypertension 7.8
age, race,
hypertension

7.5

age, race, diabetes 6.5
age, diabetes 4.8
diabetes -4.7
CAD 4.7

Feature Set Effect (%)
hypertension,
diabetes

4.5

sex -4.3
age, race,
diabetes, CAD

4.2

age,race -4.1
age, CAD,
hyperlipidemia

3.6

.

.

.
.
.
.

(c) iShap values

Feature Set Individual Effect+
Interaction Effect(%)

diabetes:1, age:55,
hypertension:1 10.2 + 18.6

hyperlipidemia:0,
CAD:0 4.5 + 1.9

sex -3.5 + 0
race 4.0 + 0
copd 0.2 + 0
chf 0.0 + 0

Table 1: Explanations for predicted Covid-19 survival. In (a) we show feature-wise Shap values, in (b) 𝑛Shap values for all

feature subsets, and in (c) iShap values, attributed to partitioned features.

5.4 User Study

Lastly, we evaluate the perception of human users on the expla-
nations provided by iShap, Shap and 𝑛Shap. We conducted a user
study with 24 participants, who were shown explanations for a
Covid-19 patient as in Table 1. Their task mirrored the simulation
experiment from Section 5.2, where given two explanations the
tasks is to infer the models output for a mixed data point 𝑥 ′. We
provide the survey handed out to participants in the Supplementary
Material. Afterwards, we asked all participants to rank all methods
in terms of interpretability, trustworthiness and reasonability of
the explanation and give general feedback.
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Figure 5: User study.

In terms of accuracy, on
average predictions for Shap
were off by 8%, for nShap by
6% and for iShap by 5%. As
only one instance per method
was evaluated, we refrain from
drawing any conclusions. We
show the results of the post-
study survey in Fig. 5. In terms
of interpretability, 12 partici-
pants preferred Shap, whilst
11 preferred iShap and only 1
preferred 𝑛Shap, which a general preference for less detailed, more
succinct explanations. On the aspect of trustworthiness, the ma-
jority of votes were cast for iShap, with feedback citing iShap’s
reporting of interactions in an interpretable manner as the deciding
factor. This sentiment is also reflected in the perceived reasonability
of the explanations, where 16 participants preferred iShap, com-
pared to 8 preferences of 𝑛Shap. Interestingly so, Shap was not
chosen once due to the lack of interactions.

Lastly, when askedwhichmethod should be presented to a doctor,
the overall highest vote went to iShap with 18 votes. Overall, the
response by the participants suggests that our idea and execution
of succinct, interaction-aware explanations resonates well with
many users and provides a valuable approach to post-hoc decision
explanation in addition to existing methods.

6 LIMITATIONS

The main trade-off of the succinctness of iShap explanations is their
restriction to a single interaction set per feature in the partition Π.
This limitation was raised multiple times in the feedback of the user
study we conducted, where participants were concerned that the
explanation might miss important interactions. This was offset by
the succinctness and therewith interpretability of the explanation,
which stood in contrast to the more complex explanations by𝑛Shap.

Assumption 1 holds for truly additive sets of features of a func-
tion 𝑓 , but does not extend to those sets which are non-additive.
This means that iShap’s power to rule out interactions is reduced
for highly interactive functions 𝑓 . However, whilst a function 𝑓

fitted through a ensemble of models or a deep learning model is
rarely completely additive for a combination of features, we observe
that the actual interaction is not statistically significant and thus
allows the test to nevertheless prune it.

Lastly, the impact of sample size to estimate individual value
functions 𝑣 (𝑆) is another potential limitation for all Shapley value
based methods, including Shap, 𝑛Shap, and iShap. It is not clear
yet, what sample size is appropriate to estimate the value function
𝑣 (𝑆) accurately. Furthermore, exact computation requires exponen-
tially many value function 𝑣 (𝑆), which is infeasible for large 𝑑 . Our
sampling based approach empirically performs well, but further
investigations into the importance of sample size on the quality of
explanations, for all methods, are necessary.

7 CONCLUSION

In this paper, we proposed a model agnostic, post-hoc explanation
method. In contrast to existing explanations, we directly integrate
significant interactions between sets of features 𝑥𝑆𝑖 into a succinct,
additive explanation. We showed how to use a statistical test to
guaranteed find the underlying optimal partitioning of features
and avoid fitting spurious interactions. Our algorithm iShap is
an effective and fast procedure that takes the theoretical results
into practice. On synthetic data we have shown that iShap returns
accurate, ground truth interactions, and on real world data, we find
that iShap is a more accurate surrogate than the state-of-the-art.
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For future work, we plan to extend iShap to allow multiple inter-
actions per variable. Furthermore, we want to extend the definition
of interaction to be able to differentiate between any distribution
of interaction effects.
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A PROOFS

A.1 Proof of Theorem 1

Proof. Assume the optimal partition Π∗ contains a set 𝑆 where 𝑖, 𝑗 ∈ 𝑆 . Then, the value function 𝑣 (𝑆) is decomposable into

𝑣 (𝑆) = 𝑣 (𝐴 ∪ 𝑖) + 𝑣 (𝐵 ∪ 𝑗) .
Thus, we may construct a partition Π′ with 𝐴 ∪ 𝑖 and 𝐵 ∪ 𝑗 . Let E [𝑓 (𝑋 )] = 0 (achievable by pre-processing), then the reconstruction error of
Π′ is

𝑓 (𝑥) −
∑︁

𝑇 ′∈Π′
𝑣 (𝑇 ′) =

(
𝑓 (𝑥) −

∑︁
𝑇 ∈Π∗

𝑣 (𝑇 )
)
− 𝑣 (𝑆) + 𝑣 (𝐴 ∪ 𝑖) + 𝑣 (𝐵 ∪ 𝑗) .

As per the assumption, 𝑣 (𝑆) = 𝑣 (𝐴 ∪ 𝑖) + 𝑣 (𝐵 ∪ 𝑗), so the reconstruction error of Π′ is equal to the reconstruction error of Π∗. For the
regularization penalty of the new partition elements 𝐴′ = 𝐴 ∪ 𝑖 and 𝐵′ = 𝐵 ∪ 𝑗 in Π′ it holds that

|𝐴′ | ( |𝐴′ | − 1)/2 + |𝐵′ | ( |𝐵′ | − 1)/2 < ( |𝐴′ | + |𝐵′ |) ( |𝐴′ | + |𝐵′ | − 1)/2 ,
which shows that it is smaller than the regularization penalty of Π∗ for 𝑆∪𝑖, 𝑗 . Thus, the overall objective of Π′ is lower than Π∗, contradicting
its optimality. □

A.2 Proof of Lemma 1

Proof. If there is interaction between 𝑖 and 𝑗 , we show that there exists a covariate set 𝑆 for which 𝑣 is not additive for 𝑖 and 𝑗 . First, we
note that ∑︁

𝑆⊆[𝑑 ]\{𝑖, 𝑗 }
I(𝑖, 𝑗, 𝑆) ≠ 0

=⇒ ∃𝑆 ⊆ [𝑑] \ {𝑖, 𝑗} : I(𝑖, 𝑗, 𝑆) ≠ 0 ,

i.e. there exists a covariate set 𝑆 for which the interaction is not zero. For this set 𝑆 , it holds that

𝑣 (𝑆 ∪ 𝑖) + 𝑣 (𝑆 ∪ 𝑗) ≠ 𝑣 (𝑆 ∪ 𝑖, 𝑗) + 𝑣 (𝑆) . (3)

If 𝑣 indeed was additive for 𝑖 and 𝑗 , then for 𝑆 there exists a partition 𝐴 ∪ 𝐵 = 𝑆 so that

𝑣 (𝑆 ∪ 𝑖, 𝑗) = 𝑣 (𝐴 ∪ 𝑖) + 𝑣 (𝐵 ∪ 𝑗) .
By Assumption 1, we know that this decomposition also holds for 𝑆 , 𝑆 ∪ 𝑖 and 𝑆 ∪ 𝑗 , so that we can rewrite Equation (3) as

𝑣 (𝐴 ∪ 𝑖) + 𝑣 (𝐵) + 𝑣 (𝐴) + 𝑣 (𝐵 ∪ 𝑗)
≠ 𝑣 (𝐴 ∪ 𝑖) + 𝑣 (𝐵 ∪ 𝑗) + 𝑣 (𝐴) + 𝑣 (𝐵) .

This statement is a contradiction, and thus proves that 𝑣 is not additive for 𝑖 and 𝑗 . □

A.3 Proof of Lemma 2

Proof. Assume that 𝑣 is additive for 𝑖 and 𝑘 , i.e. ∀𝑆3 ⊆ [𝑑] \ {𝑖, 𝑘} : ∃𝐴, 𝐵 : 𝑣 (𝐴 ∪ 𝑖) + 𝑣 (𝐵 ∪ 𝑘) = 𝑣 (𝑆3 ∪ 𝑖, 𝑘).
Now consider a set 𝑆1 for which 𝑣 is not additive in regards to 𝑖 and 𝑗 , i.e. ∀𝐴1, 𝐵1 : 𝑣 (𝐴1 ∪ 𝑖) + 𝑣 (𝐵1 ∪ 𝑗) ≠ 𝑣 (𝑆1 ∪ 𝑖, 𝑗) and the set 𝑆2 for 𝑗

and 𝑘 respectively. We construct a set 𝑆3 = (𝑆1 ∪ 𝑆2 ∪ { 𝑗}) \ {𝑖, 𝑘}, for which 𝑣 now has to be additive with regard to 𝑖 and 𝑘 , i.e. there exists
a partition 𝐴3, 𝐵3 so that 𝑣 (𝐴3 ∪ 𝑖) + 𝑣 (𝐵3 ∪ 𝑘) = 𝑣 (𝑆3 ∪ 𝑖, 𝑘).

There are two cases to consider, either 𝑗 ∈ 𝐴3 or 𝑗 ∈ 𝐵3. Let 𝑗 ∈ 𝐵3, then we can construct a new sub-partition 𝐴1 = 𝑆1 ∩ 𝐴3 and
𝐵1 = 𝑆1 ∩ (𝐵3 ∪ 𝑘). 𝐴1 and 𝐵1 are subsets of 𝐴3 ∪ 𝑖 and 𝐵3 ∪ 𝑘 , so that by Assumption 1 additivity is preserved for 𝐴1 and 𝐵1. Therefore, it
holds that 𝑣 (𝐴1 ∪ 𝑖) + 𝑣 ((𝐵1 \ 𝑗) ∪ 𝑗) = 𝑣 (𝑆1 ∪ 𝑖, 𝑗), since 𝐴1 ∪ 𝐵1 = 𝑆1 as 𝑆1 ⊆ 𝑆3 ∪ 𝑘 . This contradicts the assumption that 𝑣 is non-additive
for 𝑖 and 𝑗 .

Similarly, we can show that 𝑗 ∈ 𝐴3 violates the assumption that 𝑣 is non-additive for 𝑗 and 𝑘 , and conclude that 𝑣 must in fact be
non-additive for 𝑖 and 𝑘 . In the interaction graph, this allows us to reject the additivity of a pair of variables 𝑖 and 𝑗 if they are connected by
a path, and justifies the use of connected components over cliques as search space. □

B ADDITIVITY OF VALUE FUNCTIONS

We consider two value functions: the observational value function

𝑣 (𝑆 ; 𝑓 , 𝑥) = E [𝑓 (𝑋 ) |𝑋𝑆 = 𝑥𝑆 ]
by [25], where it is assumed that all variables are independent of each other, i.e. ∀𝑖 ≠ 𝑗 : 𝑋𝑖 ⊥⊥ 𝑋 𝑗 , and the interventional value function

𝑣 (𝑆 ; 𝑓 , 𝑥) = E
[
𝑓 (𝑋 ′) |do(𝑋 ′𝑆 = 𝑥𝑆 )

]
by [16], where we consider as features variables the model inputs 𝑋 ′

𝑖
that are purely determined by the real world counterpart 𝑋𝑖 . Hence,

intervening on the model input as do(𝑋 ′
𝑆
= 𝑥𝑆 ) only has an effect on the input 𝑋 ′

𝑆
.
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Let 𝑓 now be additive for two sets𝐴 and 𝐵, so that 𝑓 (𝑥) = 𝑔(𝑥𝐴) +ℎ(𝑥𝐵), then the value function 𝑣 (𝐴; 𝑓 , 𝑥) + 𝑣 (𝐵; 𝑓 , 𝑥) is transformed into

E [𝑓 (𝑋 ) |𝑋𝐴 = 𝑥𝐴] + E [𝑓 (𝑋 ) |𝑋𝐵 = 𝑥𝐵]
=E [𝑔(𝑋 ) |𝑋𝐴 = 𝑥𝐴] + E [ℎ(𝑋 ) |𝑋𝐴 = 𝑥𝐴] + E [𝑔(𝑋 ) |𝑋𝐵 = 𝑥𝐵] + E [ℎ(𝑋 ) |𝑋𝐵 = 𝑥𝐵] .

We can drop the conditioning of 𝑋𝐴 = 𝑥𝐴 where there is only ℎ and vice versa for 𝑋𝐵 = 𝑥𝐵 and 𝑔. This is possible both with the independence
assumption in the observational Shapley values by [25], and the causal model as postulated by [16]. This leaves us with

E [𝑔(𝑋 ) |𝑋𝐴 = 𝑥𝐴] + E [ℎ(𝑋 )] + E [𝑔(𝑋 )] + E [ℎ(𝑋 ) |𝑋𝐵 = 𝑥𝐵]
= E [𝑔(𝑋 ) |𝑋𝐴 = 𝑥𝐴] + E [ℎ(𝑋 ) |𝑋𝐵 = 𝑥𝐵] + 𝜇 .

By convention, we preprocess 𝑓 (𝑋 ) so that 𝜇 = E [𝑓 (𝑋 )] = 0, and 𝜇 hence can be dropped. Now, we similarly decompose 𝑣 (𝑆 ; 𝑓 , 𝑥) as

E [𝑓 (𝑋 ) |𝑋𝑆 = 𝑥𝑆 ] = E [𝑔(𝑋 ) + ℎ(𝑋 ) |𝑋𝑆 = 𝑥𝑆 ] = E [𝑔(𝑋 ) |𝑋𝑆 = 𝑥𝑆 ] + E [ℎ(𝑋 ) |𝑋𝑆 = 𝑥𝑆 ] .

Now we again drop 𝑋𝐵 from 𝑔 and 𝑋𝐴 from ℎ and are left with

E [𝑔(𝑋 ) |𝑋𝐴 = 𝑥𝐴] + E [ℎ(𝑋 ) |𝑋𝐵 = 𝑥𝐵] ,

which shows the additivity for any set 𝐴 and 𝐵 for which 𝑓 is decomposable.

C ALGORITHM

iShap consists of two main subroutines: find_interactions and find_partition. The first subroutine is the same for both the greedy and the
optimal algorithm. iShap-Greedy uses a greedy, bottom-up approach to find the best partition, while iShap-Exact uses a exhaustive search
over all valid partitions from the interaction graph.

find_interactions. As input, find_interactions receives a data point 𝑥 , a model 𝑓 and a sample 𝑋 of 𝑃 (𝑋 ). It returns all pairwise interactions
between features that are statistically significant, encoded as a graph𝐺 . We initialize the interaction graph𝐺 with 𝑑 nodes, where each node
represents a single feature. We then sample 𝑛𝑠 new data points 𝑥 ( 𝑗 )

′
from the empiric data distribution, either marginally, conditionally or

interventional as required by the value function 𝑣 . For each data point 𝑥 ( 𝑗 )
′
, we sample a random intervention 𝑧 ∈ {0, 1}𝑑 with 𝑝 = 0.5. We

then intervene on the 𝑖-th feature on the 𝑗-th data point 𝑥 ( 𝑗 )
′
, i.e. 𝑥 ( 𝑗 )

′

𝑖
= 𝑥𝑖 , if 𝑧

( 𝑗 )
𝑖

= 1.
Now, for each pair of features 𝑖, 𝑗 , we test the hypothesis

𝐻0 :
∑︁

𝑆⊆[𝑑 ]\{𝑖, 𝑗 }
𝑣 (𝑆 ∪ 𝑖) − 𝑣 (𝑆) + 𝑣 (𝑆 ∪ 𝑗) − 𝑣 (𝑆) =

∑︁
𝑆⊆[𝑑 ]\{𝑖, 𝑗 }

𝑣 (𝑆 ∪ 𝑖, 𝑗) − 𝑣 (𝑆)

by taking dividing up the sample {𝑓 (𝑥 ( 𝑗 ) ′ )} into four subsets according to the intervention 𝑧 ( 𝑗 ) :

• 𝑣 (𝑆 ∪ {𝑖, 𝑗}) ← {𝑓 (𝑥 ( 𝑗 ) ′ ) |𝑖, 𝑗 ∈ 𝑧 ( 𝑗 ) }
• 𝑣 (𝑆 ∪ {𝑖}) ← {𝑓 (𝑥 ( 𝑗 ) ′ ) |𝑖 ∈ 𝑧 ( 𝑗 ) , 𝑗 ∉ 𝑧 ( 𝑗 ) }
• 𝑣 (𝑆 ∪ { 𝑗}) ← {𝑓 (𝑥 ( 𝑗 ) ′ ) | 𝑗 ∈ 𝑧 ( 𝑗 ) , 𝑖 ∉ 𝑧 ( 𝑗 ) }
• 𝑣 (𝑆) ← {𝑓 (𝑥 ( 𝑗 ) ′ ) |𝑖, 𝑗 ∉ 𝑧 ( 𝑗 ) }

Now, we can test the hypothesis using a two-sided t-test with significance level 𝛼 with unequal variances, also known as Welch’s t-test. If
the hypothesis is rejected, we add an edge between the nodes 𝑖 and 𝑗 to the graph𝐺 . By splitting up the sample into four subsets, we can test
the hypothesis for each pair of features 𝑖, 𝑗 on the same sample, which is more efficient than testing each pair on a separate sample as it
reduces the number of required samples and thus evaluations of 𝑓 by the amount of pairwise interactions, i.e. 𝑂 (𝑑2).

C.1 Complexity

The complexity of the greedy search is cubic. For a fully connected graph we have to evaluate 𝑑 (𝑑 − 1)/2 merges, where we can take at most
𝑑 steps before arriving at the complete set [𝑑]. In each step, we have to estimate the value function 𝑣 with 𝑛 samples, whose complexity we
denote by 𝑂 (𝑣 (𝑛,𝑑)). Hence, its complexity is 𝑂 (𝑑3)𝑂 (𝑣 (𝑛,𝑑)).

find_partition. The find_partition subroutine takes in addition the graph 𝐺 from find_interactions and uses the same data point 𝑥 , the
model 𝑓 and the sample 𝑋 of 𝑃 (𝑋 ). find_partition returns the best scored partition Π in regards to Objective 1.

For the greedy approach, we initialize Π with 𝑑 singleton sets, i.e. Π = {𝑆𝑖 |𝑆𝑖 = {𝑖}}𝑑𝑖=1. We merge all eligible pairs of sets 𝑆𝑖 , 𝑆 𝑗 ∈ Π into a
new set 𝑆𝑖 ∪ 𝑆 𝑗 and score the new partition Π′. Eligibility is given if the graph 𝐺 contains an edge between an element of 𝑆𝑖 and an element
of 𝑆 𝑗 . Each step, we merge the pair of sets that yields the best score and terminate once no more improvement is possible.

The exhaustive approach is a brute-force search over all possible partitions Π. We restrict the search space by only considering partitions
Π, were all elements 𝑆𝑖 ∈ Π are connected in the graph 𝐺 . Then, we score each partition Π and return the best scored partition.
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Explanation. Once we have found the best scored partition Π, we can explain the prediction 𝑓 (𝑥) by computing the Shapley values for a
new game 𝑣 ′ which has as its players the elements of Π instead of the features {1, . . . , 𝑑}. The value function 𝑣 ′ is defined only for those sets
𝑆 which are elements of the power set of Π. On that set, the value function 𝑣 ′ is defined as 𝑣 ′ (𝑆) = 𝑣 (𝑆) as the underlying model 𝑓 is the
same.

On this new game, we can compute the Shapley values 𝜙𝑖 for each element 𝑆𝑖 ∈ Π. The Shapley value 𝜙𝑖 is the average marginal
contribution of the element 𝑆𝑖 to the value of the game 𝑣 ′. iShap returns the Shapley values 𝜙𝑖 as the explanation for the prediction 𝑓 (𝑥), in
addition to the interaction graph 𝐺 and the partition Π.

D EXPERIMENTS

D.1 Interaction Experiments

We first verify whether iShap accurately recovers the correct sets of variables for a generalized additive model. To this end, we generate
a random function 𝑓 over 𝑑 ∈ {4, 6, 8, 10, 15, 20, 30, 50, 75, 100} variables. To obtain a function with additive components, we partition the
variables into sets 𝑆𝑖 , where we iteratively sample the size of each set from a Poisson distribution with 𝜆 = 1.5, over which we define function
𝑓 (𝑋 ) = ∑

𝑆𝑖 ∈Π 𝑓𝑖 (𝑋𝑆𝑖 ), whereas inner functions 𝑓𝑖 we consider
• 𝑓𝑖

(
𝑋𝑆𝑖

)
=

∏
𝑗∈𝑆𝑖 𝑎𝑖, 𝑗 · 𝑋 𝑗 , 𝑎𝑖, 𝑗 ∈ ±[0.5, 1.5]

• 𝑓𝑖
(
𝑋𝑆𝑖

)
= sin

(∑
𝑗∈𝑆𝑖 𝑎𝑖, 𝑗 · 𝑋 𝑗

)
, 𝑎𝑖, 𝑗 ∈ ±[0.5, 1.5]

We sample all the underlying𝑑 variables either from a normal distribution: 𝑃 (𝑋 𝑗 ) = 𝑁 (𝜇, 𝜎2), 𝜇 ∈ [0, 3], 𝜎 ∈ [0.5, 1.5] or a uniform distribution:
𝑋 𝑗 ∈ U(0, 3). In total, for we test the accuracy of 100 explanations for each combination of 𝑑 , inner function and sampling distribution. Each
time, we sample a random function 𝑓 and dataset 𝑋 of 10 000 points. We use the observational value function 𝑣 (𝑆) = 𝐸 [𝑓 (𝑋 ) |𝑋𝑆 = 𝑥𝑆 ],
where we sample 𝑋𝑖 individually as they are independently generated. For a random 𝑥 ∈ 𝑋 , we generate the partition 𝑃 with iShap, using as
significance level 𝛼 = 0.01 and as regularization coefficient 𝜆 = 5e−3.

D.2 Accuracy Experiments

We consider five regression and two classification dataset:California [27], Diabetes [29], Insurance [23], Life [33], Student [3] with increasingly
complex, non-additive models 𝑓 : linear models, support vector machines (SVM), random forests (RF), multi-layer perceptrons (MLP) and k-
nearest neighbors (KNN). This experiment is for each dataset repeated 100 times and goes as follows: we pick two instances 𝑥 (1) and 𝑥 (2) from
a dataset.We use these to construct a we construct a new data point out of, randomly selected, 𝑥 (1) and 𝑥 (2) , e.g. 𝑥 ′ = 𝑥

(2)
1 , 𝑥

(1)
2 , 𝑥

(2)
3 , 𝑥

(2)
4 , 𝑥

(1)
5 ,

by randomly selecting features from 𝑥 (1) and 𝑥 (2) , where 𝑥 (1) = 𝑥
(1)
1 , . . . , 𝑥

(1)
5 and 𝑥 (2) = 𝑥

(2)
1 , . . . , 𝑥

(2)
5 . To construct a surrogate prediction

of SHAP, we compute the Shapley values for 𝑥 (1) and 𝑥 (2) and then compute the surrogate prediction by taking the sum over the respective
feature importance values. For the example above, that is:

𝜙
(2)
1 + 𝜙 (1)2 + 𝜙 (2)3 + 𝜙 (1)4 + 𝜙 (1)5

By design, this scheme is not applicable for all random instances with partitions Π (𝑘 ) and Π (𝑙 ) , in which case simply resample until we have
an admissible input. We compute the implied prediction for the new data point 𝑥 ′ in the following way for each method:

• iShap: 𝑓 (𝑥 ′) = ∑
𝑆𝑖 ∈Π1,𝑆𝑖⊂𝐼1 𝑒

(1)
𝑖
+∑

𝑆 𝑗 ∈Π2,𝑆 𝑗 ⊆𝐼2 𝑒
(2)
𝑗

• Shap: 𝑓 (𝑥 ′) = ∑
𝑖∈𝐼1 𝜙

(1)
𝑖
+∑

𝑗∈𝐼2 𝜙
(2)
𝑗

• 𝑛Shap: 𝑓 (𝑥 ′) = ∑
𝑆⊆𝐼1 Φ

(1)
𝑆
+∑

𝑆⊆𝐼2 Φ
(2)
𝑆

• Lime: For each datapoint we obtain a surrogate model 𝑓1 and 𝑓2. We take 𝑓1 (𝑥 ′) and 𝑓2 (𝑥 ′) and use whichever is closer to 𝑓 (𝑥 ′).

E USER STUDY

We conducted a user study with a total of 24 test subjects. Of these 24 participants, there were 5 female, 3 diverse and 16 male participants.
The majority of participants were university students (23) and had some degree of technical knowledge in machine learning (21).

The study was self-supervised with an estimated duration of 30 minutes. The participants were distributed a document via Google Forms
that included all instructions and tasks. The document is provided in the Supplementary Material3.

The participants had to consider a total of 3 cases with Shap, iShap and 𝑛Shap explanations respectively, disguised as separate XAI
models for a Covid-19 prediction task. For each method, we provided two explanations and asked the participants to infer the models
prediction for a third patient who is a mixture of the two patients in the explanations. We asked the participants to evaluate the explanations
in terms of informativeness, trustworthiness, understandability, and overall preference. The participants were also asked to provide feedback
on the explanations and the study itself. We provide the spreadsheet containing all answers and feedback in the Supplementary Material.

3https://github.com/Schascha1/iSHAP

https://github.com/Schascha1/iSHAP
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