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ABSTRACT

This thesis explores how to extract actionable insights from event se-
quences. Event sequences are fundamental across a wide range of do-
mains, from diagnosing chains of failures to analyzing workflow traces
in production systems. Instead of assuming that all events stem from a
single underlying process, we allow for the possibility of multiple, po-
tentially concurrent mechanisms — resulting in interleaved and com-
plex structures. We aim to identify and represent these structures using
sequential patterns that capture the temporal dependencies between
events.

We develop methods that yield succinct and easy-to-understand sum-
maries of event sequences. We start by proposing a method to discover
predictive patterns that not only predict that a target event is imminent
but also when it will occur. For example, which sequence of events
predicts an upcoming failure. Next, we explore how to discover pat-
terns characterized by consistent time delays between events; unlike
existing methods that penalize gaps uniformly, our approach focuses
on identifying and modelling these delays. Beyond co-occurrence, we
explore conditional structures in the form of rules. Furthermore, we
study summarization of event sequences in terms of patterns that in-
clude generalized events — events that can match multiple observed
events. To demonstrate the practical relevance of this line of work, we
tackle a domain-specific challenge, modeling network flows and gen-
erating synthetic data from the learned model. Lastly, we investigate
causal relationships between events by introducing a novel causal dis-
covery method that infers a complete causal graph over all event types.

We empirically evaluate all methods and show that they uncover
meaningful insights from real-world data. We conclude this thesis by
reflecting on the limitations of our approaches and the broader chal-
lenges in evaluating pattern discovery methods.






ZUSAMMENFASSUNG

Diese Dissertation erforscht, wie man aussagekriftige Erkenntnisse
aus Event Sequenzen extrahieren kann. Event Sequenzen sind in vielen
Bereichen von grundlegender Bedeutung, vom Aufdecken von Fehler-
ketten bis hin zur Analyse von Arbeitsabldufen. Anstatt davon auszu-
gehen, dass alle Ereignisse von einem einzigen Prozess erzeugt wer-
den, lassen wir die Moglichkeit mehrerer, potenziell parallelen, Pro-
zessen zu. Dies kann zu verschachtelten und komplizierten Struktu-
ren fithren. Unser Ziel ist es diese Strukturen zu identifizieren und
mithilfe von sequenziellen Mustern abzubilden. In dieser Dissertation
entwickeln wir Methoden, welche Event Sequenzen leicht verstand-
lich und kurz zusammenfassen. Zunichst schlagen wir eine Metho-
de zur Entdeckung pradiktiver Muster vor, die nicht nur vorhersa-
gen, dass ein Zielereignis bevorsteht, sondern auch, wann es eintre-
ten wird. Zum Beispiel, welche Abfolge von Ereignissen einen be-
vorstehenden Ausfall vorhersagt. Als Nachstes untersuchen wir wie
sich Muster mit gleichméifligen Zeitverzogerungen zwischen Ereignis-
sen entdecken lassen. Im Gegensatz zu bestehenden Methoden, die
Liicken gleichméfiig bestrafen, konzentriert sich unser Ansatz auf die
Identifizierung und Modellierung dieser Verzogerungen. Wir untersu-
chen nicht nur Muster in Event Sequenzen, sondern auch Regeln, um
bedingte Strukturen zu finden. Dariiber hinaus untersuchen wir wie
Event Sequenzen anhand von abstrahiertem Muster zusammengefasst
werden konnen. Abstrahierte Muster beschreiben ein allgemeines Ver-
halten, das mit unterschiedlichen Ereignissen auftritt. Um die prakti-
sche Relevanz dieser Arbeit zu demonstrieren, befassen wir uns mit ei-
nem doménenspezifischen Problem: der Modellierung von aufgezeich-
neten Netzwerkverbindung und der Generierung synthetischer Daten
aus dem erlernten Modell. SchliefSlich untersuchen wir die kausalen
Beziehungen zwischen Events, wir schlagen eine Methode vor, welche
einen kausalen Graphen tiber alle Eventtypen lernt.

Wir evaluieren alle Methoden empirisch und zeigen, dass sie aussa-
gekriftige Erkenntnisse in realen Daten finden. Zum Abschluss dieser
Arbeit, diskutieren wir die Grenzen unserer Ansétze.
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INTRODUCTION

Understanding complex event sequences is critical in many domains,
from analyzing user behaviors in online services to monitoring com-
plex networked systems. To illustrate the key focus of this dissertation,
let us explore a few such scenarios in which the right analysis tool can
provide key insights.

We begin with a familiar example, an online store. Suppose we run
an online store that users interact with via a website or an app. To
better understand how people use our services, we collect data on
how they navigate the site — what products they look at, whether
they view details like technical specs, and events such as adding or
removing items from the cart, completing a purchase, or abandoning it.
Visitors arrive through links on different sides, not always landing on
the homepage. Once there, they pursue different goals, some browse
available options, others head straight to ordering what they already
know they want. Because of this, we can not assume there is a single,
general process that explains how users behave.

To really understand how users engage with the site, we need to
identify the key behavior patterns. Ideally, we want a compact sum-
mary that captures the essential usage structures, we do not want a list
of the most frequent patterns with minor variations. A good summary
highlights the most informative and actionable trends, without over-
whelming decision-makers with unnecessary detail that could bury
important insights under a flood of redundant information.

Once we have a interpretable summarization of how the website
is actually used, we can use that knowledge to reduce friction and
(hopefully) improve retention. It also helps us avoid unintentionally
disrupting core usage patterns when we make changes — or, if we do
choose to break them, guide users through the new experience in a
deliberate way.

User behavior is only one motivating example, structured event se-
quences also arise in technical and industrial contexts — such as large-
scale communication networks or automated production plants — op-
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erations are recorded as a sequence of events. Among these, some
events indicate normal progress, while others signal potential issues,
anomalies, or outright failures. While summarization can be helpful,
ideally we would like anticipate such events, or preempt them.

For example, let us consider a setting where we are monitoring a
complex networked system, e.g. in a production facility, and are inter-
ested in figuring out under what conditions we see specific kind of
failures. Due to interleaved processes and interactions, one failure can
trigger another, possibly delayed. As systems grow more complex, so
do the dependencies between different failure types. A minor fault in
one part, for instance, might cascade into a chain of related failures or
alarms. Understanding these chains of events is critical for identifying
root causes, mitigating risks, and preventing system-wide disruptions.
As an operator of such a network or production plant, one would like
to identify delays, faults, and other events that impact operations be-
fore they occur. Additionally, we would like to know what caused an
undesired event, or at the very least learn patterns that predict such
events. Ideally, we would like to intervene in the system to avoid prob-
lematic events in future operations. For this, we need to understand
the causal connections between events.

Finally, let us consider a specific domain next — network traffic. Net-
work traffic, recorded as individual connection flows over time, often
exhibits sequential structures, for example a DNS request, followed
by a HTTP request. These sequences hold information about user be-
havior, and system performance. Understanding and modelling these
can help in detecting anomalies, e.g. potential security vulnerabilities.
Network traffic is usually recorded at a central point, capturing the
flows of many clients in parallel. This results in highly interleaved
structures, making it difficult to understand the dependencies between
flows. Even a single client, for example a server running multiple ser-
vices, generates interleaved structures.

What each of these problems share — whether analyzing network
flows, cascading alarms and failures, or user behavior — is the fun-
damental need to understand sequential event data. In each case, the
order in which events occur and their temporal relationships provide
critical insights into the underlying processes. How to obtain under-
standable models to gain actionable insight in an easily interpretable
manner into event sequences is the topic of this dissertation.
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Sequential patterns are an apt construct to capture dependencies
and represent them in a human-understandable way. In general, the
goal of pattern mining is to discover interesting substructures, the pat-
terns, in a data set. Sequential patterns, in it’s most basic form is a
list of events. A key limitation of pattern mining, in general, is that
the pattern language has to match the mechanism of the data we wish
to capture. We generally do not know the generating mechanism we
wish to capture. As such, discovering patterns over a more expressive
pattern language has the potential to reveal new insights. With this,
we can formulate the first research goal of this thesis,

Research Goal 1 (Summarizing Sequential Event Sequences) Given an
event sequence database, discover models that summarize the data so that it
provides meaningful, interpretable insight.

While understanding sequential event data is crucial, it only provides
a foundation for analysis and often falls short when it comes to en-
abling actionable responses. Knowing how events relate temporally is
insufficient to make predictions or intervene in a system. Ideally, we
seek insights that not only explain the underlying structures but also
allow us to act; this is the second research goal we work towards in
this thesis,

Research Goal 2 (Discovering Actionable Summaries) Given an event
sequence database, find a summarization that enable action from the gained
insight.

Next, we discuss the individual contributions of this thesis and how
they relate to the posed goals.

CONTRIBUTIONS

In this section, we will fist outline the contributions made in the differ-
ent chapters and then discuss how they contribute to Research Goal 1
and Research Goal 2.

CONTRIBUTION 1  Suppose we are given a sequence of discrete events,
Sy, for example from a manufacturing plant, and an equally long bi-
nary sequence, Sy, that indicates time points of interest, e.g., failures
or delays. In Chapter |2 we consider the problem of discovering a set
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of patterns from data sequence S, that reliably predict the indicated
time-points in Sy. As a model, we consider a set of tuples, each consist-
ing of a pattern and a delay distribution. The occurrence of a pattern
indicates that an event of interest is coming up, and the delay dis-
tribution indicates when we can expect the event to occur. To avoid
making assumptions about how the delays are distributed, we use a
non-parametric delay distribution. To allow for noise, we also model
the probability that an interesting event does not occur after we ob-
serve a pattern. To avoid overly many patterns and complicated delay
distributions, we use the Minimum Description Length (MDL) prin-
ciple as model selection criteria. As testing all patterns, let alone all
possible delay distributions is infeasible, we propose the OMEN algo-
rithm based on an optimistic estimator to overcome local minima in
the pattern search.

CONTRIBUTION 2  In Chapter[3} we focus on modeling and discover-
ing patterns with consistent and large gaps. Existing approaches either
penalize or limit gaps and thereby introduce a strong bias against pat-
terns with long-range dependencies. We address this shortcoming by
explicitly modeling the delays between events and thereby rewarding
consistent gaps, no matter the length. We again base our approach on
the MDL principle and introduce the HorPer algorithms to efficiently
discover patterns with long-range dependencies.

CONTRIBUTION 3  Sequential patterns can only express co-occurrence
between symbols, for example that X and Y frequently happen after
one another, but do not capture conditional dependencies, such as if X
happens there is a increased probability we will soon see Y too. Discov-
ering conditional relations reveals under which conditions events or
sequences of events are likely to occur. In Chapter |4, we study how to
capture conditional relationships in terms of rules of the form X — Y.
To discover good rule sets, we propose the SEQRET algorithm.

CONTRIBUTION 4 All existing methods for sequential pattern min-
ing can only discover patterns defined as subsequences of the observed
data, such as "dog barks" and "cat meows", but cannot discover general-
ized patterns of the kind "[pet] [makes sound]". This is the problem we
address in Chapter 5| Loosely speaking, a generalized patterns is a pat-
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terns that may include surface level events (e.g. a) as well generalized
events (e.g. &) that can match a set of observed events (« = {b,c}). As
a model, we consider a set of generalized events and a set of patterns.
We propose the FLock algorithm that jointly discovers these general-
ized events and succinctly summarizes the data in terms of generalized
patterns over these.

CONTRIBUTION 5 In Chapter [ we change tack and rather than
solving a general problem in sequential pattern mining, we focus on
an application. In particular, we show how to use pattern mining to
summarize network flows and generate new synthetic network flows
from such a summarization. To this end, we propose a pattern lan-
guage specific to network flow traces and formalize the problem in
terms of MDL. To find a good summarization of the network flows,
we introduce the FlowChronicle algorithm. To generate realistic syn-
thetic data we sample from the learned model. Since our model is fully
interpretable, in contrast to the more common deep learning based ap-
proaches, undesired patterns could even be removed from the model
to avoid including them in the synthetic generated data. We exten-
sively evaluate and compare the generated data to state-of-the-art syn-
thetic data generators and show that we not only preserve the inter
flow correlation of the data, but also the structure between flows.

CONTRIBUTION 6 All previous contributions focus on discovering
correlations, and while these provide insight (Chapters|[3} 4} [5) and are
actionable (Chapters [2] and [4), they do not give guarantees that they
model actual causal processes. For our final contribution, we study
the causal relation between event types in event sequences. Our goal
is to learn a directed causal graph over all event types. Understanding
the causal relations is critical to intervene in a system, for example,
to prevent failures from occurring in the future. While predictive and
co-occurring events might be causally connected, they could also just
be correlated due to a shared confounder. In Chapter [7, we study un-
der which conditions we can learn the causal relationships between
events. We propose CASCADE to discover a causal graph from a given
timestamped event sequence.

These contributions address Research Goal 1 and Research Goal 2 in
different ways. We make progress towards Research Goal 1 primarily
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l4} and [7

Every chapter of this thesis is based on one or more manuscripts, all
but one published at highly selective peer-reviewed venues. We list
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all publications and their corresponding chapters in Table I am
the first author of all publications associated with Chapters and
I contributed to all aspects of these papers, that is: main idea, the-
ory, implementation, experimentation, and write up. Chapters [ and
are based on publications with shared first authorship. For Chapter
6] both authors contributed to the main ideas and the writing of the
manuscript. In addition, I contributed the pattern mining part, Adrien
Schoen, contributed the evaluation and the comparison to the state
of the art. For Chapter [7, both authors contributed to the main idea,
theory and writing of the manuscript. In addition, I contributed the im-
plementation and the evaluation, Sascha Xu contributed the main idea
of the algorithm. Finally, Chapter [4 is based on a paper where I am
the second author. I contributed to the main ideas, theory, algorithm
design, experiment design, and the writing of the manuscript, and in
addition provided supervision and guidance to the first authors.

In addition to the papers included in this dissertation, I contributed
to shared work with Sascha Xu and Jilles Vreeken [193] in which we ex-
plored how to succinctly capture interactions between input variables
to explain decisions made by black-box models. We omit this work
from this thesis to permit a clear focus on event sequences.






MINING SEQUENTIAL PATTERNS WITH RELIABLE
PREDICTION DELAYS

In this chapter, we present our first contribution. We propose a method
that, given one binary target sequence and one data sequence over an
alphabet, discovers patterns in the data sequence that predict when
upcoming events in the target sequence will occur. We formally de-
fine this problem in terms of the Minimum Description Length princi-
ple, by which we identify the best patterns as those that describe the
occurrences of target time points most succinctly. Through extensive
empirical evaluation we show that our method works well in practice.

2.1 INTRODUCTION

Suppose we are given a discrete valued time series S, of observed
events, and an equally long binary sequence S, that indicates at which
points in time something of interest happened that we would like to
predict—earthquakes, for example. We consider the problem of min-
ing a small set of interpretable and actionable patterns from S, that
reliably predict those interesting events. With reliable and actionable we
mean those patterns that not only highly accurately predict that an in-
teresting event will follow, but which additionally can tell with high
precision how long it will be until that event will happen. That is, we
are after patterns that have a compact distribution of delays between
pattern occurrences and predicted events. As real processes are rarely
trivial, it is unlikely that a single patterns will suffice to explain all
interesting events, and hence we consider the problem of discovering
a small and non-redundant set of patterns that together reliably predict
the interesting events.

This chapter is based on [34]: Joscha Ciippers and Jilles Vreeken. “Just Wait for it...
Mining Sequential Patterns with Reliable Prediction Delays.” In: 2020 IEEE Interna-
tional Conference on Data Mining. 2020, pp. 82-91. and [31]: Joscha Ciippers, Janis
Kalofolias, and Jilles Vreeken. “Omen: discovering sequential patterns with reliable
prediction delays.” In: Knowledge and Information Systems, 64. 2022, pp. 1013—1045.
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Event prediction is well-studied in time series analysis. Most work
considers continuous-valued data, and focuses on tasks such as de-
tecting abrupt distributional changes [80] and identifying events that
precede such changes [156]. As we aim to discover patterns that ex-
plain the interesting time points, our work is closer to that of sequence
classification [205] and similar to the task of learning patterns to re-
construct a labels of a sequence [197]. Existing solutions, however, fo-
cus purely on discovering all patterns that sufficiently accurately pre-
dict that an interesting event will follow some time after their occur-
rence [206], rather than our goal of discovering a small set of patterns
for which we can reliably say how long it will take before that event
occurs. As such, our work is related to information flow [159] and
Granger causality [69], in the sense that patterns are only interesting
if their occurrences provide significantly more information about S,
than the history of S, does by itself.

We formalize the problem of finding a set of patterns predictive for
Sy, in terms of the Minimum Description Length (MDL) principle [152],
by which we identify the best patterns in Sy as those that describe S,
most succinctly. We model the data such that for every occurrence of
a pattern in S, we encode the delay until the predicted associated in-
teresting event: the more peaked this distribution, the cheaper it will
be to encode the delays, and hence, we particularly favor patterns that
accurately predict both the occurrence of and time until an interesting
event. Discovering the optimal explanation of S, given a set of patterns,
i.e. the alignment between the pattern occurrences and the interesting
events, as well as discovering the optimal set of patterns, are both
hard problems that do not permit straightforward optimization. We
therefore split the problem in two, and propose effective algorithms
for each. To find a good explanation of S, given a single pattern we
propose both a general purpose solution, as well as one that is par-
ticularly suited for long range predictions. To discover good pattern
sets, we present OMEN, a greedy heuristic that iteratively optimizes
the alignment of pattern occurrences to interesting events, and uses
this alignment to discover the best refinements of the patterns. We
show a visualization of the OMEN algorithm in Figure and will
explain the details in Section We additionally introduce FOMEN,
a faster alternative that is robust against high time delays. Neither
imposes restrictions on the delay distribution, both allow for overlap
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Figure 2.1: Visualization of the OMEN algorithm: As input we are given a
event sequence Sy and a target sequence S, and as output we
obtain a set of patterns that together best explain S, given S;. The
pattern search works by alternating between candidate generation
and evaluation. We use the MDL principle to keep the pattern set
small and non-redundant.

between predictions, and only have one hyper parameter that allows
the user to specify to what extend gaps in patterns are allowed.

We empirically evaluate OMEN on both synthetic and real-world
data. We show that our score reliably determines the predictiveness of
patterns, and compares favorably to state-of-the-art information flow
scores [17,[159]. We show that OMEN highly accurately reconstructs the
ground truth, both in terms of discovering predictive patterns, as well
as their delay distributions, outperforming four supervised and unsu-
pervised sequential pattern miners [57, |170, 183, |205]. On real-world
data we confirm that OMEN discovers meaningful and actionable pat-
terns that give insight in the data generating process.

2.2 PRELIMINARIES

We start by introducing the notation and preliminaries we will use
throughout this work.

11
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2.2.1 Notation

Given an alphabet () of events e € () we study finite sequences Sy €
)" of these events, where |Sy| = n is the length of the sequence. We
denote S,[i] to refer to the i’ event in S,, and S,[i : j] to denote the
subsequence S.[i], ..., Sx[j]. We write ||Sy||, for the number of times we
see event a € () in S,.

Our data consist of two sequences S, € (0", and S, € {0,1}", both of
length n. The former encodes an sequence of observed events and the
latter indicates the occurrence of something ‘interesting” at every point
i for which S, [i] = 1.

We consider sequential patterns p € Q)" of length m = |p| < n.
We say that a pattern p occurs in a window w = S;[i : j| when all
events of p occur in w in the order specified by p. We call such a
window minimal iff there does not exist any subwindow w’ < w in
which p occurs. By considering minimal windows we avoid double
counting of occurrences [169]. We say a pattern p matches sequence Sy
at the jth event, S,[j], iff there exits a minimal window Sy[j —a : j] of
maximum window length a < m x ¢¢ + g,—where gr and g, are user
defined parameters that allow to control the number of gaps we permit,
respectively in terms relative to the pattern length, and absolute in
number of gap events.

Given a pattern p and an event sequence S, we can trivially con-
struct a binary sequence S! € {0,1}" in which Sz[j] = 1 if pattern p
matches S.[j], and 0 otherwise. A predictive pattern p is a sequential
pattern p with an associated discrete delay distribution that specifies
the probability density ¢,(J) that something interesting will happen &
time steps after an occurrence of the pattern.

All logarithms are base 2, and we use the convention that 0log 0 = 0.

2.2.2  Minimum Description Length

The Minimum Description Length (MDL) principle [71] is a computable
and statistically well-founded model selection criterion based on Kol-
mogorov Complexity [103]. For a given model class M, it identifies
the best model M € M as the one that minimizes the number of bits
needed to describe both model and data, L(M) + L(D | M) where
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Figure 2.2: [Toy Example] On the left, we show encoding example where
pattern ab covers three out of five interesting events. Occurrence
vector S! encodes the four matches of ab in S,. Alignment A,
maps these occurrences to interesting events in S,. On the right,
we show the resulting time delay distribution ¢y,

L(M) is the length of model M in bits and L(D | M) the length of data
D given M.

This is known as two-part, or crude MDL—in contrast to one-part,
or refined MDL [71], which although preferred from a theoretical per-
spective, is not computable for arbitrary models. We use two-part MDL
because we are particularly interested in the model: those patterns that,
given Sy allow us to describe S, most succinctly. Note that our goal
here is to select the best model for the data at hand, and not to actu-
ally compress the data; we are hence not concerned with materialized
codes, and only care about ideal code lengths.

To use MDL we have to define a model class M, and encodings for
data and model. We do so in the next section.

2.3 THEORY

In this section, we introduce the problem at hand. We start with a
informal definition of the problem, after which we define a model class,
show how to encode a model and data given a model, and formally
state the problem at hand.

2.3.1  The Problem, Informally

We are interested in discovering that set of predictive sequential pat-
terns p that most reliably predict the interesting events in S, given

13
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observed events S;. Our models consist of tuples (p,¢$,) of sequen-
tial patterns p and their associated delay distributions ¢, i.e. M =
{(pll ¢P1)I (PZ; 4)172)/ s (sz ¢Pk)}'

Given S, and a pattern p, we have a binary sequence S. that marks
those time points at which p matches S,. Every occurrence of a pattern
predicts (in principle) that an interesting event is about to happenin S,,.
We call the mapping of occurrences of a pattern p to interesting events
in S, its alignment A,. We allow for additive and destructive noise in
Sy and Sy, which is to say, we do not require that every occurrence
of a true pattern p to be followed by an interesting event in S,, and
neither require that all interesting events in S, are predictable by true
patterns. To permit the former, we allow predictions to be ‘skipped’.
Formally, an alignment is hence a function a, that maps each occur-
rence of pattern p to either an interesting event in S, or to an ‘skip’
token.

A delay distribution ¢, provides the probabilities of an interesting
event occurring J time steps after an occurrence of pattern p. The
higher the probability of é, the fewer bits we will need to encode that
particular value. Overall, the fewer predictions we have to ‘skip” and
the more peaked the delay distribution is, the more cost effective we
can describe A, in bits per interesting event, and hence the more suc-
cinctly we will be able to describe S,

Example 1. To illustrate, we consider a running example. We show in Fig.
an event sequence Sy of length 18, over an alphabet () = a, ..., f. There are
four occurrences of pattern ab, which together define occurrence sequence SY.
The best possible alignment of these occurrences to interesting events in Sy is
given as Agp, which maps the first, second, and fourth occurrence to actual
interesting events, resp. with delays of +1, +2 and +1 time steps, and as
there is no interesting event corresponding to the third occurrences, it maps
that one to a ‘skip’. We show the corresponding delay distribution on the right
of the figure, in which we see that in 50% of the cases an interesting event
happens one time step after the occurrence of the pattern, in 25% two time
steps later, as well as that it has a 25% probability of falsely predicting the
occurrence of an interesting event (‘skip’).

Whereas in the toy example our model exist of only one pattern,
M = {(ab, ¢qp)}, in general we allow S, to be complex, in the sense
that multiple patterns may have generated S,, and are hence needed
to reliably predict all interesting events. In other words, we allow a
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single pattern p € M to predict only some of the interesting events in
Sy. We denote by S} the binary sequence of intelicisting events in S,

that are predicted by pattern p. Loosely speaking S} = A, (S%).
Ideally, together the patterns in M predict each and every interesting

eventin S, i.e. the combination of all predictions 5; =V pem 55 equals
S,. Some interesting events, may however not have patterns that can
explain their occurrence. To be able to fairly compare between models
we need to ensure losslessness, and will therefore additionally need
to transmit a residual sequence Sg that encoding all interesting events
that are not predicted by any pattern. Formally, we define S R @S the
bit-wise XOR between the predicted S and the true Sy, Sk = S @ Sy.

2.3.2  MDL for Predictive Sequential Patterns

Based on the above intuition we now proceed to define our score. We
will first discuss how to encode sequence Sy given a model M and
observed events S,, and then detail how to encode such a model M.

Encoding the Data given a Model

Given event sequence S, and a pattern p € M, it is straightforward
to construct the corresponding pattern occurrence sequences sP. To
determine g;p from S¢, we need alignment A, which gives us the
delays and skips between pattern occurrences and predicted events.

To encode an alignment A,, we have to transmit each delay 4 cor-
responding to every pattern occurrence of p in Sy. We do so using
optimal prefix codes over the time delay distribution ¢, [28], which is
to say, the lower the probability ¢,(d) of a delay 4, the more bits we
need. The length of an alignment A, for pattern p is defined as

14

L(Ap | ¢p) = Zlog‘l’p H)

i=0

Once we know alignment A, we can reconstruct g;p, and if we do so
for all patterns p € M, we therewith have S,

15



16

MINING SEQUENTIAL PATTERNS WITH RELIABLE PREDICTION DELAYS

To be able to reconstruct S, from g; without loss, we additionally
need to encode the residual sequence Sg. We have

Sxl —1I$
L(5w) = Envlisull) +1og () 1)
ISk [l
where we first encode the number of 1s in Sg using Ly, the MDL-
optimal encoding for integers [153]. It is defined as

Ln(z) = log* z +logco

where log* z is defined as logz + loglogz + ... , only including the
positive terms in the sum. To obtain a valid encoding, i.e. to satisfy the
Kraft inequality, we set cyp = 2.865064 [153].

As now we know the number of 1s in Sg, we can optimally encode
the actual sequence Sy via an index over a canonically ordered set of
all sequences of length n with ||Sg||1 ones. Since we already know the
location of predicted interesting events, we know these will be 0 in
the residual and we can hence ignore ||§y\ |1 possible locations. As the
binomial coefficient greatly increases with every additional interesting
event in Sg we favor residuals that cover fewer interesting events.

Example 1. (continued) Consider again Figure[2.2] Although data S, is 18
events long, pattern ab predicts three interesting events, by which there are
15 out of 18 possible time steps at which the 2 unexplained events can occur.
As such, we have L(Sg) = Ln(2) +log (5).

Putting these two parts together, we have

L(Sy | M,Sx)=| >, L(Ay|¢p) | +L(Sk)
(p,(b,;)eM

for the number of bits to encode S, given a model M and observed
events S,.

Encoding a Model

Next, we formalize how we encode a model M € M in bits. At a high
level we have

LM) = Ln(MD+ >, L(p) +L(9p),
(pgp)eM
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where we first encode the number of patterns in the model, and then
the patterns and their associated delay distributions.

Patterns are essentially just a sequence of k events from (). We use
L to encode their length, and to avoid any bias towards events e € (),
we encode the actual events in p using an index over (). Thus the cost
of one pattern is

L(p) = Ln(|pl) + Ipllog|Q] .

To encode a time delay distribution, it suffices to encode which time
deltas have a probability greater zero, and then encoding how likely
each of these deltas are. We write A, = {J | ¢,(6) > 0} for the set of
d values with non-zero probability, and 6* = max(A,) for the highest
value of delta with non-zero probability. Formally, we then have

. . 5* 41 SPlh—1
L(¢p|sx):LN((5)+log(5)+10g< . )+10g<H kH_ll )

where we first encode interval of possible deltas, [0, 5*], simply by en-
coding the value of §* using L. As we aim for actionable patterns, we
are not interested in ‘instantaneous’ predictions. This allows us to re-
purpose 6 = 0 to mean ‘skip’, so avoiding unnecessary padding of the
possible values that can be sent. Next we encode the number of §s with
non-zero probability mass, k = |As|, for which we need log ¢* bits. We
then encode those values 6 € A through a strong number composition.
The intuition is that the more deltas are left unused, i.e. (,bp(é) =0, the
higher this cost. Finally, we have to specify the probability mass per 6,
which reduces to encoding an index over a number composition, i.e.
an index over every possible way to distribute the ||S.||; occurrences
(balls) over k non-empty bins. Overall, the flatter the distribution, the
more deltas we have to consider, the higher the cost will be, and hence
we prefer peaked distributions.

Example 1. (continued) To illustrate this, we continue with our running ex-
ample. Consider again Fig. The delay distribution has a non-zero entries
for ‘skip’, and values of delta of 1, 2. This means we first encode the maxi-
mum delta, 6* = 2, and then how many deltas out of the range [0,2] have
a probability greater zero. We then identify which, in this case three values,
out of this range have non-zero probability. As there are only three possible
values, this is trivial; the cost is o bits. Finally, we have to distribute the total

17
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probability mass of the four pattern occurrences of pattern ab over our three
chosen delta, requiring 1.58 bits.

This concludes the description of how we encode a model M in bits.

2.3.3 The Problem, Formally

With the above we can now formally state the problem.

The Minimal Event Prediction Problem Given event sequence Sy over
alphabet ) and binary sequence S, indicating time points of interest, find that
set of predictive sequential patterns and associated time delay distributions

M = {(p1, ¢p.), (P2, Pp,), -, (Pr, Pp, )} and that alignment A of pattern
occurrences to interesting events in S,, such that the total encoded length

L(Sy, M |Sy) = L(M) + L(S, | M, Sy)
is minimal.

To solve this problem exactly we would have to consider a rather
large, triply exponentially sized search space. As we do not wish to a
priori limit the maximum length of any pattern beforehand, patterns
can be up |Sx| — 1 long, resulting in Zli*l‘fl |Q|" possible patterns. Per
pattern p, there exist (||Sy[|1 + 1)”55 I possible alignments. This leaves
the final part, in which we have to select a set of patterns-alignment

tuples. We can limit the number of tuples in our model to ||Sy||;. Com-
bined this gives us

|Szy:1 (ZpeP“SyUl + 1)||Sf|)

j=0 ]

possible solutions, where P is the set of all patterns. Although we are

not necessarily afraid of large search spaces, unfortunately this particu-

lar search space does not exhibit structure such as (weak) monotonicity,

convexity, or submodularity, that we could exploit to guide our search.
Hence, we resort to heuristics.

2.4 ALGORITHM

In this section we present the OMEN algorithm for heuristically solving
the Minimal Event Prediction Problem. Rather than solving it at once,
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we split the problem in two parts and propose effective solutions for
both. First, given a pattern we aim to find its delay distribution by
optimizing the alignment between pattern occurrences and interesting
events. Second, we consider the problem of discovering pattern sets.

We first introduce notation that will ease the exposition below. When-
ever clear from context, we will write L, (S, ) rather than L(S,, {(p, ¢p)} |
Sx) to denote the encoded length of S, under a model M that consists
of a single pattern p. Analogue, we write Ly(S,) to denote the length
of 5, using the empty, or null model My, which encodes all interesting
events through the residual Sg. Finally, we overload the notation of an
alignment A,, allowing ourselves to represent an alignment as a set of
tuples (i, j) where i is the location of the pattern match in Sy, and j the
location of the aligned interesting event (or ‘skip”) in Sy,.

2.4.1  Discovering Alignments and Delay Distributions

We start by discussing how to optimize an alignment A, for a given pat-
tern p. Solving L,(S,) exactly would require us to consider all possible
alignments, which is computationally unfeasible. We will therefore in-
stead minimize L,(S,) heuristically. The overall strategy is as follows.
Given an initial alignment A,, and a corresponding delay distribution
¢p, we iteratively optimize L,(S,) by taking all pattern occurrence with
the lowest ¢, (9) and either reassigning it to an interesting event such
that we obtain a higher ¢, (¢'), or if no such interesting event exists, we
map this pattern occurrence to ‘skip” instead. We repeat this process
for all 6 # ‘skip” and finally, return that alignment A; with the lowest
L,(Sy). We show a visualization of this process in Figure In the
worst case, we will have to consider all possible § € A, for each pat-
tern occurrence that we reassign, by which we have a time complexity
of O(|ISE |l 1A])-

To optimize our alignment we need a initial alignment that can be
optimized. We will introduce two such methods. We give a general
purpose approach below and discuss an approach particular adapt at
long range prediction in Section [2.4.4]

Our general purpose alignment initialization algorithm, ALIGNNEXT,
consists of three main steps, each updating the alignment. First, based
on the assumption that each pattern occurrence predicts the directly
following interesting event, we simply align every occurrence Sy[i] = p
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Figure 2.3: [Alignment optimization process] Given an initial time delay dis-
tribution, our goal is it to simplify the distribution to that version
that minimizes the number of bits needed to describe Sy, essen-
tially we trade of number of events explained against the number
of deltas in the distribution. To simplify the given distribution we
first drop all least frequent deltas from the distribution. Secondly
reassign the corresponding pattern occurrences to another event
in Sy or, if not possible, to ‘skip’. Third we update the delay distri-
bution to match the new assignment. We repeat these steps until
no deltas are left in our distribution, while keeping track of how
many bits each alignment does need to encode Sy,. Finally we re-
turn that alignment with min L (S,).
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of pattern p in S, to that interesting event in S, that is closest in time
but at least one time step into the future, ie. A, = {(i,j) | SL[i] =
1 A argmin;.;Sy[j] = 1}, and then determine the corresponding de-
lay distribution ¢, from this alignment. As by naively mapping occur-
rences to the earliest interesting event, multiple pattern occurrences
may map to the same interesting event, while leaving other interest-
ing events unexplained. We hence next re-align all such pattern occur-
rences to ‘skip’, except for the one with maximal ¢, (j — i), and re-infer
the delay distribution. Last, we now use the new distribution to align
every pattern occurrence mapped to ‘skip’ to that interesting event
Sy[j] = 1 that maximizes ¢, (j — i). If there is no interesting event with
non-zero probability under ¢,, we map it to ‘skip’. Reassigning a “skip’
requires us to consider all possible ¢ € ¢, in the worst case, resulting
in a complexity of O((||SY||1)?). We can now, given a pattern, find an
alignment between S and S,,.

As we will see in the experiments, this approach works well in prac-
tice. However, it is easy to see that it has a bias towards alignments
where interesting events are close in time to the pattern occurrences.
Differently put, if we would increase the mean of the delay distribu-
tion, this approach will give a more and more undefined delay distri-
bution. To obtain good initial alignments for such cases, we introduce
an alternative initialization algorithm in Section [2.4.4}

With the above, we know how to find an alignment A, for a given
pattern p, and can hence compute our score. Next, we discuss how to
find good patterns.

2.4.2 Discovering a Good Set of Patterns

There exist exponentially many patterns, and exponentially more sets
of patterns. Evaluating these exhaustively is not feasible, and as there
is also no structure that we can exploit, exact search for the best set of
patterns is not an option. Instead, we propose a heuristic to find a good
set of patterns. In particular, we take a greedy bottom-up approach,
where we iteratively add and refine patterns in the model. Because
of the complexity of Sy and sparsity of S, it will often be the case
however that only (large parts of) a true pattern p will lead to a gain in
compression, while all small fragments of p do not improve over the
null model. That is, we cannot directly use the score defined above to
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identify whether a pattern is “promising’, and as only in trivial cases
singleton events in S, will help to compress S, we cannot start by
adding ‘good’ singletons and then refine them.

Rather than resorting to exhaustively scoring every possible pattern
p under some arbitrary constraints, we define an optimistic estimator
L,(Sy) by which we bound the length L,/ (S,) of the theoretically best
possible extension p’ of p. The key idea is that by extending p to p/, the
number of occurrences will monotonically decrease. We hence aim to
estimate the score of the theoretically best possible extension (refine-
ment) p’ of p that exactly obtains the subset of occurrences of p that
align best with S,. Interestingly, this is equivalent to only aligning the
‘best” occurrences of p to interesting events in S, and treating the re-
maining pattern matches as if they do not exist—i.e. play-pretending
that the (unknown) p’ simply does not match those occurrences of p.
We can straightforwardly achieve this by mapping the non-matching
occurrences of p to ‘skip’, and treating the encoding cost for such
skipped pattern occurrences as zero. Hence, L,(S,) gives the length of
S, where we set ¢, (skip) = 1 for the encoding of A and ¢, (skip) = 0
for the encoding of P, as if only the pattern occurrences aligned to
interesting events exist.

Exactly optimizing the subset of occurrences of p, i.e., finding those
that together compress S, best, is infeasible as it requires us to find the
best alignment for every possible subset of occurrences. We therefore
instead start by inferring an initial alignment using either the algo-
rithm described above or the one in Sec. optimize that alignment
as described in Section but setting the cost of ‘skip” to zero, and
so obtain L,(S,). With L,(S,) we know, if a gain is found, whether
there exists a subset of occurrences of p that would improve our model
and the next task is hence to find whether there indeed exists an ex-
tension p’ of p that does improve our score.

With the optimistic estimator in place, we can now introduce the
OMEN algorithm for mining sets of predictive patterns. We give the
pseudo code as Algorithm |1, OMEN starts with an empty model where
all interesting events are unexplained by patterns, i.e. encoded via
residual S (line 1). The main idea is to iteratively add patterns to the
model M that predict interesting events in Sg, by which we focus the
search on those interesting events that are currently not yet predicted.
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Algorithm 1: OMEN
input :event sequence S, and binary sequence S,
output: model M

1 M~ @ ; S R < Sy

2C—0;, Ce—g;, Py

3 while C is not empty do

4 foreach p € C do

5 if Ep(SR> < Lo(SR) then

6 C—Cu{ptee+p|Veec O}
7 if Lp(SR) < Lo(SR) then

8 L add p to P

9 | foreach p e P ordered by L,(Sr) do

10 if Lp(SR) < LO(SR) then

11 P, ¢y < REFINE(p)

12 add (p/, 4)17’) to M

13 g; «— compute from M

14 SR «— @@Sy

15 C—C;, C—g S—yg

16 return M

Starting from the singletons as candidate set C, we take a breadth-
first search approach where we extend all candidates that are promis-
ing with regard to our optimistic estimate (1. 4-6) and identify those
that help to better compress S, (1. 7-8). As extensions of promising pat-
terns we consider all patterns p’ where we add any single symbol from
alphabet () at either the end or beginning of p (1. 6). Next, we iteratively
consider adding those candidates p € S that passed the compression-
check into the model (1. 9-14). We do so in order of how much they
help to compress (1. 9) and to avoid redundancy only consider those
that indeed improve the score (I. 10)—for example, if abcd is the true
pattern and ab € S and cd € S then both (probably) explain the same
interesting events. Once we added one, the other does not offer any ad-
ditional information. When adding a pattern to our model we search
for the best possible refinement, that is we greedly extend our pattern
to that version that gives us the highest gain in bits saved, we refer the
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reader to Appendix where we provide a more detailed explana-
tion. After adding a pattern we recompute the residual (1. 13-14). We
repeat these steps until we have no further candidates (1. 3), and then
return the final model M. In Figure [2.1lwe show a visualization of this
algorithm.

In the worst case OMEN considers every possible sequential pattern
over ), which means a complexity of O(|Q!5:I=1).

2.4.3 Faster OMEN

As we will see in the experiments, OMEN works very well in practice.
At the same time, it is a bit naive: it considers as candidates extended
patterns es and se, without taking into account whether these exten-
sions e predicts any of the same interesting events as p. As this in-
formation is readily available, an alternate and more targeted search
strategy presents itself. We call this, much faster, procedure FOMEN.
We give the pseudo code of FOMEN as Algorithm [2| We first describe
the algorithm in general, and then detail the special case of singletons.

The main idea is to greedily combine those patterns in our candidate
set that have the largest intersection of predicted events (l. [§). When
combining two such patterns, 2 and b, we choose that ordering ab or
ba that results in the most pattern matches in S, (1. @ If the optimistic
estimator indicates that the new pattern is potentially compressing, we
mark the events in Sy for each used pattern occurrence as used* (1. ,
for reasons that will become apparent when we study the singletons.
We add all pairs between patterns already in our candidate set and the
newly created pattern to our candidate set (l.[19). Unless the new pat-
tern predicts previously unexplained events, i.e. those in the residual,
then we greedily refine it to its best version (1. and add the refined
version to our model, compute a new partial prediction and update
our residual accordingly (L [15] to [17). We repeat this process until no
candidates are left. To prune candidates that are very unlikely to lead
to improvement, we permit the user to set a threshold on the mini-
mum overlap in predicted events. Per default we set this threshold to
0.01 x [|Sy||1-

The refinement of an already compressing pattern works similar to
the mining approach. We simply keep combing those patterns with the

1 We say a event is used if it is part of pattern that is aligned to an interesting event.
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Algorithm 2: FOMEN

N

[SM]

9

10
11

12

13
14
15
16
17
18
19

input :event sequence S, and binary sequence S,
output: model M

M @ ; S R < Sy

C—{{ab} |abeQ, a+#b}

do

{a,b} < argmaxy, pec HSA; A SAzHl // Ignore used events for
singleton pairs.
C — C\{a, b}
p < arg maXpe(qppay |1S% |1
if ip(SR) < L()(SR) then
foreach p € {a, b} where |p| =1 do
| C—Cul{{pr}IreUc
Ap — from L,(Sgr)
foreach (i,j) € A, where j # ‘skip’ do
L mark those events belonging to i as used
if Lp(SR) < LO(SR) then
p*, ¢px < FREFINE(p)
M—Mu (p*,¢p*)
Sy« Cf)mpute from M
SR < 5,@ S5y
else

] | C—Cu{{pr}IveUc

20 while |C| >0
21 return M
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highest intersection of predicted interesting events, up until the opti-
mistic estimator indicates no better extension exists. We then return
the refined pattern with lowest L,(Sg). We give the pseudo code in
Appendix Algorithm

We now consider the special case of candidates (a,b) where a and
b are singletons. If we were to treat such candidates the same as we
do above, and for example find that ba is the most promising instantia-
tion of (a,b), we would remove (a,b) and add any combination (ba, p)
where p is a pattern in C to the candidate set. For non-singleton pat-
terns this is fine, as long as we can re-build them from scratch if needs
be, which is even desirable from a run-time perspective. However, to
be able to re-build patterns we do need to ensure that the singletons,
the most elementary building blocks, are always present as candidates.
To make sure they are, we hence should not simply remove single-
ton pairs (a,b) after exploring (and possibly accepting into the model)
their refinement. At the same time, we should not just put (4, b) back
just like that, as the just-extended pattern will already explain some
or even many of the interesting events. If we do not account for this
we would hence be too optimistic in our estimate L,(-) of the potential
gain of any new pattern that is based on the re-added (a,b). To this
end, we mark those events that the just-extended candidate pattern
uses, and update the intersection counts of the singleton pair with un-
used interesting events. If the optimistic estimate of (a,b), L, (Sr),
indicates a gain, we add (a,b) back into the candidate set, and other-
wise discard it.

2.4.4 Alignment with Overlapping Predictions

As the final technical contribution, we propose a fast alignment strat-
egy that is particularly suited for cases where there are long delay
between patterns and interesting events, and hence a high chance of
overlap of occurrence-prediction intervals. As an example of why such
an algorithm is necessary in addition to the general purpose one de-
scribed above, consider Fig.|2.4} It is easy to see that the vanilla strategy,
where we initially map a pattern occurrence to the earliest interesting
event, would fail to discover a sensible (let alone, the ground truth)
initial alignment; because the third, fourth, and fifth occurrence would
all be mapped to an interesting event at the next time step, they would
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Figure 2.4: Toy example for time-overlapping predictions. S. shows the pat-
tern occurrences of pattern p. The arrows show the ground truth
alignment to the interesting events in S,.. The second (and third)
pattern match occur before the interesting event predicted by the
first pattern. To find good alignments in settings like this, we give
a specialized alignment approach in Section m

amass as much probability density as the true delay of 6 time steps,
and so create a local minimum out of which the optimization cannot
escape.

We therefore present an alternative alignment algorithm, ALIGNFAR,
which is unaffected by such overlapping predictions. At a glance, it
first computes the mean of our delay distribution and then assigns to
each pattern the interesting event that is closest to this mean. More
specifically, we seek this delay u for which each pattern occurrence
delayed by u lies as close as possible to an interesting event occur-
rence following the pattern occurrence. We propose an algorithm that
computes this optimal delay within O(||S |1|Sy[11og |S|1) time.

For convenience we define the set of occurrence indices for the pat-
terns, I, = {i | SP[i] = 1}, and the set of occurrences for the interesting
events, Is, = {i | Sy[i] = 1}. Given a pattern occurrence i, € I, we
can now express its candidate interesting event occurrences as the set
I;’; = {iyliy € Is, niy > ip}; this set consists of all event occurrences
that follow the pattern occurrence. Intuitively, we seek to find the delay
p that minimizes the total distance between every pattern i,—delayed

by u, and the event occurrence within I{ " that lies nearest to ip. As a

distance between these two occurrence mdlces we adopt the quadratic
one, after which we can formally express our problem as:

p* = argmin 2 mln( iy +u—iy)?. (2.1)

peR ipely lYGIS
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Figure 2.5: Toy example showing three pattern matches with all possible
alignments (left) and the resulting midpoints (right) that define
the intervals with local optimum to be tested in the ALIGNFAR
alignment algorithm. The global optimum lies between 3 and 4 as
it has the smallest distance to all candidate pattern matches.

To demonstrate the intuition of this we consider the toy setting of
Figure in which the pattern matches I, = {3,6,8} and the in-
teresting events Is, = {4,5,11,12}. Out of the latter, the candidate
interesting event occurrences for the each pattern match are the sets
Igy ={4,5,11,12}, Igy = {11,12}, and Igy = {11,12}, respectively.

We can optimize Equation [2.1/ by the following procedure. We first
create the union of all event candidate offsets I 5 = Ui,,e I, I;’; , sorted in
ascending order.

Lemma 1. Let Ig be the sorted (multi-set) union of all possible interesting
event candidates and denote U the midpoints between each 2 consecutive
elements of IS Then, the candidate within ISu that lies closest to a pattern
occurrence changes only when y crosses a mzdpomt in U. This change affects
exactly those pattern occurrences that contributes an elements in Is, adjacent
to the crossed midpoint in U.

Using Lemma (1| we can partition the real line in exactly ]I;y | +1
segments®, within which the configuration of closest events remains
constant, and therefore also the objective value of Eq. (2.1). For each
segment we can compute this value, as well as its optimiser, by care-
fully keeping track of the updates induced to the optimiser and opti-
mal of the preceding segment, and in fact in constant time. By using

2 Equal elements in the set are gracefully treated, but they still contribute to the com-

plexity of the algorithm.



2.5 RELATED WORK

appropriate data structures and a mutatis mutandis MergeSort algo-
rithm we can perform the search for the next midpoint in O(log | St |1)
time. Overall, this gives our algorithm a computational complexity of
O(|15 | 1og |S]1)-

Returning to the example of Figure the delay offsets i, — iy in
Eq. for each pattern match lie in the sequences (1,2,8,9), (5,6),
and (3,4), respectively, as shown in Figure [2.5| (right). Importantly, the
union of all midpoints between every two consecutive elements in each
of the above sequences gives the set Ig’y = {1.5,3.5,5,5.5,8.5}. Due to
Lemma 1} for each interval between consecutive midpoints the best
offset i, — iy for each pattern remains constant, and yields one single
minimiser of y for the specific interval (which need not necessarily lie
within the interval itself). Thus, the global optimizer can be retrieved
as the minimum over all these per-interval minimisers, which here is
p*=min{3, 2,4, 7 62} =1

Once we have computed our optimizer p* of Eq. we can simply
select for each pattern occurrence i, the interesting event closest to

ip + p from it’s candidate set I;’; . If the candidate set is empty we align
that pattern occurrence to a ‘skip’. This gives us an alignment for all
pattern occurrences without a bias towards closer interesting events.

2.5 RELATED WORK

Our work is related both to prediction and information flow in time
series, as well as to pattern mining.

At its core, the OMEN score aims to measure how the occurrences of
a pattern p in S, help to reliably predict the occurrences of interesting
events in S,. As such, it is strongly related to Granger causality [69].
Granger causality is based on the idea that if the past of a time series
A does help to predict S,, given the past of S, it “Granger-causes” S,,.
Linear [69] and nonlinear [23] scores have been proposed, whereas oth-
ers studied the effects of events on time series [156|]. Transfer Entropy
(TenT) [159] and CuTk [17], are both information-theoretic instantia-
tions of Granger causality for discrete data, where the one measures
information flow in terms of entropy, and the other in terms of MDL.
In the experiments we will compare our score to both.

Prediction and forecasting in time series [27, 100, 155, 188, |189, |204}
200] is a classic research topic to which OMEN is related. A prototypical
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example is failure prediction, where the goal is to predict upcoming
failures with sufficient time to act on the prediction. Existing work fo-
cuses on the case where Sy is continuous valued and the goal is to
discover time points where the distribution of S, changes [80, 186].
Another popular task is the prediction of upcoming events based on
social media activities and text [62, [148]. Related to prediction is the
task studied by Yeh et al. [197] they considered the problem of re-
constructing a boolean annotation sequence given a real valued time
series.

Mining sequential patterns from event sequences has a rich history.
Traditional sequential pattern miners focus on finding all frequent pat-
terns [4, 99, 112]. We can differentiate between two settings, based on
the notion of support of a pattern. The first, where we have a database
of sequences and support is defined by the number of instances con-
taining a pattern [183], and the second where we have one or multi-
ple sequences where support is defined as the number of occurrences
within a sequence, measured using either a sliding window [112] or
counting the number of minimal windows [99]. Both settings suffer
from exponentially many patterns, making interpretation hard to im-
possible. Closed episodes [182| [196] partially solve this, but are highly
sensitive to noise. More recently, research focus shifted to mining pat-
terns with a frequency that is significant with respect to some null
hypothesis [86, |108| 144, [172]. While this alleviates, it does not solve
the pattern explosion.

Pattern set mining solves the pattern explosion by asking for a small
and non-redundant set of patterns that generalizes the data well, as in-
stead of asking for all patterns that satisfy some individual criterion.
There exist different approaches to how to score a pattern set. Ism [57]
takes a probabilistic Bayesian approach. Sqs [170] is an example of a
method that employs the Minimum Description Length principle to
identify the best set of serial episodes, which are sequential patterns
that allow for gaps. SQuisH [11] builds upon S@s and additionally al-
lows interleaved and nested patterns. Bertens et al. [10] propose a pat-
tern set miner for multivariate event sequences. All use greedy search
algorithms, iteratively adding patterns to a model until convergence.
Although all related to OMEN in the sense that they also discover small
sets of patterns, these methods are all strictly unsupervised. In the ex-
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periments we will compare to appropriately modified versions of both
Sqs [170] and Ism [57].

Identifying patterns that predict the occurrence of events can be ap-
proached as a supervised sequence classification problem, where given
a labeled sequence database the goal is to find those sequential pat-
terns that allow a classification [8, 48, 205]. Sc1s [205], a recently pro-
posed rule-based sequence classifier, is trained by mining rules above a
set interesting threshold, where interestingness is the product of cohe-
sion (average proximity of items that make up that rule) and frequency.
A unseen sequence is classified by taking the top-k best fitting rules.
We consider a different setting, where instead of a sequence database,
we only have two sequences S, and S, where S, can be interpreted as
our labels. We include a comparison to Scis in the experiments.

2.6  EXPERIMENTS

In this section, we will empirically evaluate on synthetic and real-
world data. To determine how well our score and methods can tell
predictive from non-predictive patterns, we compare to TENT [159]
and Cutk [17], and to determine how well they discover predictive
patterns from data we compare to SQs [170], BIDE+ [183], IsM [57], and
Scrs [205].

We implemented OMEN in C++, and provide the source code for
research purposes, along with all datasets, experiment specifications,
and generators? All experiments were executed single-threaded on ma-
chines with two Intel Xeon CPU E5-2643 processors and 256 GB of
memory, running Linux. We report wall-clock running times.

2.6.1 Synthetic Data

To assess performance against known ground truth we consider syn-
thetic data, which we generate as follows. We first generate event se-
quence Sy of length n = 300000 by uniformly at random drawing n
events from an alphabet () of length 50, i.e. Sy € ()", and initialize
S, = {0}". We add structure by planting 20 predictive and 10 non-
predictive patterns. Every pattern is generated independently, where

3 https://eda.rg.cispa.io/prj/omen/
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Figure 2.6: [Higher is Better] OMEN reliably determines predictiveness of pat-
terns, both for (a) destructive and (b) additive noise, meaning that
in Sy we flip 1s to os, resp. os to 1s. Stand-alone, neither CUTE
nor TENT differentiate at all between predictive and non-predictive

patterns. When applied on the S; discovered by OMEN and ALIGN-
NEexT, they do achieve reasonable performance (CUTE+OMEN, resp.
TENT+OMEN, dashed lines). OMEN beats all methods by a large
margin.

we first draw its length I from [3, 6], its events p = {ey,..., ¢/} from
(), and its frequency f from [5,50], again all uniformly at random. We
plant patterns into Sy by sampling u.a.r. f insertion positions i € [0, 1],
where we simply overwrite the existing values in Sy, i.e. Sx[i : i +1] = p.
To ensure the ground truth holds, we do not overwrite previously
planted patterns. For the predictive patterns p we additionally gen-
erate interesting events in Sy by, per insertion position i, sampling a
delay ¢ v.a.r. from [8,12] and setting S,[i 4 [ + 6] = 1. Finally, we add
noise to the data by flipping values in S,. We consider both destruc-
tive noise, where we flip 1s to 0, as well as additive noise, where we
flip Os to 1. Unless specified otherwise, all results on synthetic data are
averaged over 10 independently generated datasets.

2.6.2  Evaluating the Score

We first evaluate how well OMEN can tell predictive from non-predictive
patterns. For OMEN, we consider a pattern to be predictive if it helps
to compress S,. We compare OMEN to TENT [159] and CuTk [17], two
state of the art methods based on Granger causality that measure how
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much information S provides towards S,. For both we say S! pre-
dicts Sy if they conclude that S! Granger-causes Sy. We optimize the
lag-parameter of TENT over [1,15] per experiment.

We generate data with varying amounts and type of noise as de-
scribed above, and for every planted pattern in every dataset test
whether the score considers it predictive or not. We report average
weighted accuracy, defined as

1< tn n tp )
2\tn+fp tp+fn

where tp = true positives, fp = false positives, tn = true negatives,
fn = false negatives. We report the results for increasing additive and
destructive noise in Figure We see that OMEN is able to identify
predictive patterns with high accuracies even for large amounts of
noise, whereas TENT and CuTk applied on S! and S, reduce to a coin
flip as they expect all (most) interesting events to be explained by St.
When we apply TeNT and CUTE not on the raw data S, but rather

on that SE that OMEN discovers as the best explanation of S, given p
(Cute+OMEN and TENT+OMEN), we see that their accuracies increase
up to 90%, yet remain much worse than those of OMEN.

2.6.3 Evaluating the Discovered Patterns

Next, we evaluate how well OMEN discovers predictive patterns from
synthetic data.

EVALUATION METRIC We first explain how we evaluate a discov-
ered pattern set, as metric to evaluate success, we compute recall and
precision,

tp

|{recived patterns}|

tp
|{planted patterns}|

recall = , precision =

and the harmonic mean between the two, the F1 score,

Fl— 2 x precision * recall

precision + recall

We compute the scores over a pair-wise mapping between planted
and discovered patterns. We map each reported pattern to at most
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one planted pattern and to each planted pattern at most one reported
pattern. We allow a mapping between two patterns if the found pat-
tern is a subsequence of the planted one or vice versa. We choose that
mapping that results in the maximum number of pairs. This also al-
lows us to rewards partial discoveries. As the number of true positives,
i.e. correctly received pattern, we consider the number of pairs in the
mapping, consequently the false positives are |{recived patterns}| —
true positives. Next, we explain how we compute this mapping.

To find the maximum number of pairs we reformulate the problem
as a flow network optimization problem. We connect each planed pat-
tern to our source and each found pattern to the sink. We connect a
planted to a found pattern if the found is a subsequence of the planted
one or vice versa. The capacity of all links is set to one. We then com-
pute the maximum flow of the created flow network which maximizes
the number of planted, found pairs. This setup ensures that we match
at most one found pattern to a planted pattern and vice versa. We max-
imize the flow using the Edmonds-Karp Algorithm [47]. In Figure
we give a toy example of such a flow network.

While there might exist multiple equivalent pairing solutions, this
is not a problem for us, as we are not interested in the actual pairing.
In the Example shown in Figure [2.7) we find pattern ab with just the
pattern we do not know if it is a partial pattern of the planted pattern
abcd or abe or both and hence count it as one correctly found pattern,
which means we did not find, according to our evaluation metric, ei-
ther pattern abcd or abe.

SeTUuP  We compare OMEN to BIDE+ [183]], Scis [205], Sos [170], and
Ism [57]. Scis discovers predictive patterns (rules) given a labeled se-
quence database as input. As positive samples we consider the window
of w events in S, that lead up to each interesting event in S,. As neg-
ative samples we then split the remaining data into non-overlapping
windows of length w, which avoids skew (in positive and negative
samples) as well as bias (non-intersecting with positive samples). We
ensure Scis can discover all planted patterns by setting w = 20. From
all reported rules we consider those who predict the positive class.
BIDE+, SQs, and IsM are all unsupervised by nature, but, we can use
them to discover predictive patterns as follows. First, we split S, at
the location of the interesting events in S,—so creating a database of
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Figure 2.7: Toy example of how we match discovered to planted patterns. A
discovered pattern ab will be matched to either abcd or abe, but
not both; maximizing the flow gives us the number of recovered
patterns.

||:| Owmen|  FOMEN [ Sos []Scis |

ﬂ*. AL

1_

[y

7

§

0.6 1 0.6 1
i i
2 .
0.4 04
0.2 1 021
od ¢ s & .. oo O_i;“a".‘,,#
—~ ‘10‘20‘30‘40‘50‘60‘70‘80‘90‘ ~ ‘10‘20‘30‘40‘50‘60‘70‘80‘90‘
destructive noise in % additive noise in %
(a) F1 scores under destructive noise (b) F1 scores under additive noise

Figure 2.8: [Higher is better] F1 score results for OMEN, FOMEN, SQs, and
Scrs, on synthetic data with “frequently” occurring patterns and
(a) destructive resp. (b) additive noise in Sy. Scis fails to report
any meaningful patterns. SQs, with our score to filter out non-
predictive patterns, recovers a large fraction of the ground truth
patterns. FOMEN outperform both by a large margin, except for
high levels of additive noise. OMEN is the best method overall.
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sequences leading up to the next interesting event. We then run the re-
spective method on the created sequence database—and subsequently
use the OMEN alignment and score to identify, out of all reported pat-
terns, those who are predictive. As in Section we consider a pat-
tern to be predictive if it does compress S,. BIDE+ tends to discover far
too many patterns, i.e. millions more than planted, and hence we only
consider the top-200 of its results. Sgs and Ism discover reasonable
number of results, and those we consider all.

We first consider a setting which favors unsupervised pattern min-
ing methods like Sqs, Ism and Bipe+ by planting predictive patterns
that are frequent in S,, sampling the number of pattern occurrences
from [25 : 500]. As we find that Ism reports only singletons, and BIDE+
does not return any predictive patterns, we omit them from further
analysis. For the remaining methods we report the F1 scores in Figure
We see that OMEN and FOMEN both outperform Scis and Sgs by
a wide margin. Quantitatively, SQs is a good second, but Scis returns
very many patterns that do not match the planted ones, and hence
obtains very low precision and recall scores. FOMEN, and especially
OMEN, have close to perfect F1 scores for nearly all noise levels.

For the next analysis, we hence consider a more challenging setting
where we sample the frequency of the planted predictive patterns in-
stead from the range [5 : 50]. We report the F1 scores on the left-hand

side of Figures and and provide the precision and recall
plots in Appendix

We see that in this more sparse setting, SQs and Scrs do no longer
discover any predictive patterns; OMEN and FOMEN, on the other hand,
still discover most up to all. We additionally see that OMEN is espe-
cially robust against additive noise, while for destructive resp. com-
bined noise it performs well up to 60% noise. FOMEN performs slightly
worse, but obtains these results in only a fraction of the time that OMEN
takes, on average over these experiments it needs only 8 instead of 81
seconds.

2.6.4 Evaluating the Discovered Models

In addition to measuring performance in recall and precision, we eval-
uate how close the models that we discover get to the ground truth.
We start with a sanity check, considering data where S, is indepen-
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Figure 2.9: F1 score results (a, higher is better), and number of bits needed to

encode Sy given different models (b, lower is better) on data with
destructive noise. As models we consider the empty null model,
the ground truth model, and the models discovered by OMEN and
FOMEN respectively. OMEN and FOMEN report most of the planted
patterns up to 60% of noise. S@s and Scrs do not report any pre-
dictive patterns. We observe that the reported models match the
ground truth closely.
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Figure 2.10: F1 score results ((a), higher is better) and number of bits needed

to encode S, given the null model, the ground truth model and
discovered model by OMEN and FOMEN respectively ((b), lower
is better) on data with “unfrequent” patterns and additive noise.
OMEN is especially robust against additive noise. We observe that
the reported models match the ground truth near exactly, espe-
cially OMEN.

37



38

MINING SEQUENTIAL PATTERNS WITH RELIABLE PREDICTION DELAYS

||:| OmMEN [ | FOMEN [ Sos [ Scrs 103
19. 8 1
0.8 1 . u 6
0.6 { =28
n = 4
04 < —— Ground Truth
. I 5] —— OMEN
0.2 1 FOMEN
. —— Null Model
0- = = = o
0 10 20 30 40 50 60 70 8o 90 0 10 20 30 40 50 60 70 80 90
combined noise in % combined noise in %
(a) F1 scores under additive and de-  (b) Encoded size under additive and
structive noise. destructive noise.

Figure 2.11: F1 score results ((a), higher is better) and number of bits needed
to encode S, given the null model, the ground truth model and
discovered model by OMEN and FOMEN respectively ((b), lower is
better) on data with “unfrequent” patterns, destructive and addi-
tive noise. OMEN and FOMEN report most of the planted patterns
up to 50% of noise. SQs and Scis do not report any predictive
patterns. We observe that the reported models match the ground
truth closely.

dent from Sy. We do so by generating data without noise and then de-
stroying any dependence between Sy and S, by randomly permuting
Sy. When we run either OMEN or FOMEN on this data, both correctly
report no patterns.

Using the same data generating scheme as above, we now compare
the number of bits that OMEN resp. FOMEN require to describe the data,
to the encoded length using either the ground truth model, and the
null model where S is described without any patterns. We describe
in Section how the number of bits needed to encode S, and M,
under the respective models, is computed. We report the average over
all experiment per noise level. We give the results on the right hand
side of Figures and In addition, we give the worst-case
performance per noise level in Appendix

Overall, we see that both OMEN and FOMEN return high quality mod-
els, and are both highly robust against noise. We see that the results of
OMEN in particular are always very close to the ground truth, and far
from the null model—except for when the null model is the most suc-
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Figure 2.12: [Lower is better] For data with Gaussian-distributed time delays
of mean 50, OMEN and FOMEN recover high quality models up to
a standard deviation of 2o0.

cinct description of the data, after which it correctly returns the null
model as the best (simplest) description of the data.

In some cases we discover a shorter description then the ground
truth, which can be explained by the fact that due to noise, the ground
truth pattern set and alignment does not necessarily have to be the
shortest description of the data at hand. If we consider, for example,
the case of destructive noise where, with increasing noise, pattern will
predict fewer and fewer interesting events. At some point it requires
less bits to describe these events using the residual than using patterns.
This also explains the drop in F1 that we observed above for when
there is destructive noise; above 80%, the data simply does no longer
exhibit any significant structure.

Last, we consider the robustness of OMEN and FOMEN against pat-
terns with noisy delay distributions. To this end we generate synthetic
data as above, but, to keep the results interpretable, we now plant only
a single pattern of length 6 that predicts 2 000 events. As time delay dis-
tribution we consider a Normal distribution with mean 50, and vary
the standard deviation from 2 to 60 in steps of 2. We record the number
of bits L(Sy, M | Sy) needed by resp. the null model, the ground truth
model, and the model discovered by our methods. We give the aver-
age results per standard deviation, out of 10 experiments, as Fig.
We see that both OMEN and FOMEN are robust to patterns with wide
delay distributions, discovering models that compress better than the
null—and hence, discovering the true pattern—consistently up to a
delay distribution with a standard deviation of 24. From a standard
deviation of 44 onward the null model beats the planted model.
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Figure 2.13: F1 score results on synthetic data where predictive patterns in-
clude gaps (higher is better). OMEN (a) and FOMEN (b) without
allowing for gaps (i.e. by setting a maximum minimum-window
length factor ¢ = 1) does unsurprisingly poorly on data with
gaps (i.e. data generated with a window factor k > 1). OMEN per-
forms surprisingly well until we plant patterns with significantly
larger windows than we allow it to model. FOMEN is much faster,
allowing us to consider mine at a much larger gap factor (g = 5)
but overall performs worse than OMEN as it is more susceptible
to randomly generated (not planted) pattern occurrences.

2.6.5 Evaluating on Data with Gaps

Until now, we have only looked at synthetic data with strict subse-
quences as patterns. Next, we evaluate on synthetic data where the
planted patterns do have gaps. We keep the data generating process
the same except we plant a pattern by sampling u.a.r. f insertion points
i € [0,n] and for each sampled i we select a window Sy[i : i + k] where
| is the length of the pattern to be planted and k is a factor, specifying
how large the window is. To plant the pattern we sample / insertions
points from the window and plant the pattern accordingly. For predic-
tive patterns we set S, [max sample + 6] = 1

To evaluate how well our methods recover patterns with gaps, we
consider a setting where we increase k in the experiment generation
from 1 (no gaps) to 5 (window 5 times longer than the actual pattern).
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We present the results in Figure Our base setup is to either not
allow any gaps (¢ = 1) and allowing for a minimal window lengths
of up to twice the length of the discovered pattern (¢ = 2). By its
efficiency, we also consider FOMEN with windows of up to 5 times the
pattern length#

We observe that if we do not allow for gaps, yet plant patterns with
increasing window length, performance quickly converges to o. When
we do allow for gaps up to factor of twice the pattern length, we see
that OMEN recovers (close to) all patterns, and does so up to a planted
window length of k = 3, after which performance deteriorates. FOMEN
shows the same performance for ¢ = 1, and somewhat worse results
for ¢ = 2. As it is much more efficient than OMEN, we can also run
it with a much higher gap factor of 5, which coincides with a much
larger search space. We see that for this large gap factor the results
are reasonable at best—by allowing for such large windows, it gets
confused by random "patterns’ that are only due to chance.

2.6.6 Evaluating on Data with Large Time Delays

In our final experiment in synthetic data, we evaluate how well our
methods deals with overlapping predictions, as shown in Figure
In particular, we aim to compare our two alignment approaches. To
this extend we generate data where we slowly increase the expected
overlap. We start with our usual experimental setup of 20 predictive
and 10 frequent patterns, except that we now set the median of our
planted delay distribution to 350, and slowly increase the number of
pattern occurrences. We start by sampling from the range [10,50] and
shift it up to [100,500]. This slowly increases the number of pattern
and therefore the likelihood that pattern predictions will overlap. We
report the result in Figure [2.14}

For low overlap we observe that ALIGNFAR does significantly worse
than ALIGNNEXT, which is explained by the small number of pattern

occurrences; given the small pattern occurrences relative to the se-

quence length it is very likely that there exists a better alignment for

pattern generated by chance. The bias of ALIGNNEXT towards interest-

ing events that happen closer to the pattern occurrences here helps it

4 Technically we allow for window of length ¢ x I +1 where g is the gap factor and I
the pattern length, except for no gaps case (g = 1).
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Figure 2.14: [Higher is better] F1 scores for synthetic data with increasing
overlap. We observe that OMEN with ALIGNNEXT does well for
lower frequencies, but performance decreases when frequency
(and therewith the overlap) increase. With ALIGNFAR, OMEN is
unaffected by the increasingly overlapping predictions.

to discover the correct patterns. Once we increase the overlap, however,
we see that ALIGNFAR based methods quickly start to perform on par
with ALIGNNEXT, and for an expected frequency of 120 and up it over-
takes it. We further see that for particularly high expected frequencies,
FOMEN with ALIGNFAR consistently performs best.

2.6.7 Evaluating on Real Data

Last, we evaluate our methods on real world data. We consider three
datasets, electrocardiograms (ECG) of a exercise stress test, a daily
activities log (Lifelog) and water levels combined with precipitation
records (Saar). We give the basic statistics in Table Since FOMEN
and ALIGNFAR essential reported the same patterns, analog perfor-
mance relative to OMEN as for the synthetic data, we present the results
reported by OMEN with the ALIGNNEXT, we compare to SQs and Scis.
As Sqs allows for gaps, and real world patterns might show these, we
interpret its results as minimal windows for which we again use the
OMEN score and alignment to determine which ones are predictive.
On the ECG dataset the goal is to find patterns that predict the occur-
rence of a heartbeat. Our dataset is based on the first record (id 300.1)
of the MIT-BIH ST Change Database> We subsampled the record, re-

5 https://physionet.org/content/stdb/1.0.0/
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Scis Sos OMEN
Dataset |Sx| 1 [|Syllx S| S| IS| L% t
ECG 107395 test 2558 41318 1 2 646 19
Saar-Rise 4018 17 278 419 0 7 713 0.08
Saar-Fall 4018 17 278 442 0 3 97.3 0.08
Lifelog 5970 40 153 695 0.07 0.7 93.7 1.0

Table 2.1: Results on real data. We give data sequence length, alphabet size,
number of interesting events in S;, and the number of reported
patterns for Sos + OMEN and Scis. For OMEN we additional re-
port compression rate relative to the null model in percent, %L and
runtime in seconds. For Lifelog we report the average over 41 inde-
pendent runs, with different target events.

placing each 5 subsequent values with their average, transformed the
result into a relative sequence by replacing each value with the differ-
ence to the previous value. Finally, using SAX [105] we discretize the
sequence to 3 symbols. The heartbeats are annotated in the data. As
we do not permit instantaneous predictions, we shift the annotation
slightly forward such that they are strictly before the heartbeat.

When we run it on this data, SQs discovers 12 patterns out of which
only one is predictive: it corresponds to the previous heartbeat. Scis
requires a window length, which we set to the approximate length
of one cardiac cycle, excluding the heartbeat (w = 40), for which it
then returns 41318 patterns. OMEN needs 1.9 seconds to discover two
predictive patterns that together compress S, to only 65% of the num-
ber of bits needed by the null model. The first pattern corresponds to
the previous heartbeat, the discovered time delay distribution exhibits
structure of a bimodal normal distribution. We visualize this pattern in
Figure Closer inspection of the data shows that the data is indeed
composed of two different modes, high and low intensity exercises.

Next we consider Lifelog, which is based on the life of Sacha Chua
who logs and publishes all her daily activities® We considered the
data over 2017, removing any activities with have the same start and
stop timestamp. As this dataset provides many events that are poten-
tially interesting, we consider every e € () as target, and have 40 target

6 http://quantifiedawesome.com/records
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sequences with S,[i] = 1 iff S;[i] = e. In addition, we consider a S,
where we marked all business related activities as interesting.

Over all these targets, Scis discovers on average 695 patterns, many
of which are redundant and not all make intuitive sense. While Sqs
only discovers 3 predictive patterns, these do make sense: Cook, Din-
ner—Clean the Kitchen and Subway, Social—Subway. OMEN takes be-
tween 0.005 and 5.9 seconds per dataset, and overall discovers 32 pat-

terns. Many of these, such as Sleep— Childcare, Cook— Dinner, Dinner— Clean

the Kitchen, predict the next action, i.e. a time delay distribution with
a peak at 1. A more interesting pattern is Subway— Subway which has
its peak at 6 = 2, and for which a natural interpretation is that Sacha
takes the subway, logs on average one activity, and then takes the sub-
way back.

Finally, we consider the Saar dataset [17], where the goal is to use
daily precipitation records? to explain the rise (Saar-Rise) or fall (Saar-
Fall) of the Saar river® by 1ocm or more over one day. We considered
the timespan from 2007 to 2018. We discretize the values to 17 symbols
using [log; ,5 1 + x| where we accumulate all values > 15 into one
symbol.

With Scis (w = 10) we discover more than 400 patterns from ei-
ther dataset. Most make little to no sense, such as that two successive
days without rain predict a rise in water level. SQs does not discover
any descriptive nor predictive patterns. For both datasets OMEN termi-
nates within 0.08 seconds, and only reports singleton patterns. It finds,
for example, that the more it rains, the more likely it is for the Saar
to have risen by 1ocm or more, either by the next day, or even two
days later. For Saar-Fall we find an interesting pattern that expresses
that approximately three days after heavy rain the water levels quickly
drop—which indeed is likely as the water levels first rose due to rain.

2.7 DISCUSSION

The experiments showed that both OMEN and FOMEN work well in
practice. We saw that the OMEN score is very good at telling predic-
tive from spurious patterns, and that the mining algorithms are able

7 https://www.dwd.de/DE/leistungen/klimadatendeutschland /
klarchivtagmonat.html (Ensheim weather station)
8 Measured at Sankt Arnual by the German Federal Institute of Hydrology (BfG)
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Figure 2.15: Window of ECG record with pattern ccc overlayed (left) and the
reported time delay distribution (right).

to reconstructs the ground truth without picking up spurious or re-
dundant patterns. In experiments on synthetic data we observed that
it is highly robust against noise, can handle patterns with large gaps
and high time delays, whereas the state of the art fails to report mean-
ingful patterns. On real world data we showed that it discovers easily
interpretable patterns that reliably explain our target events. The re-
sults of the ECG experiment demonstrate that OMEN finds interesting
patterns and time delay distribution that represent the real world data
well. In summary, on all considered settings it discovers small, easily
interpretable and non-redundant sets of reliable patterns that together
predict the interesting events well.

We do observe that when we planting particularly long patterns
with high occurrences, OMEN tends to report partial rather than com-
plete patterns. That is, if we plant pattern abcdef OMEN is likely to
report abcd whenever that is already sufficient to accurately predict all
interesting events that abcdef matches. It is easy to see why this is the
case, as our score is only concerned with describing S, as succinctly as
possible, and hence does not provide any incentive to extend patterns
further than strictly necessary. As in certain cases it is important to re-
trieve the entire predictive pattern, we plan to extend OMEN to report
longer patterns when possible. One possible approach, to this end, is
to additional encode Sy along with S, creating an incentive for longer
patterns.

Although OMEN is effective at discovering meaningful patterns, it
currently considers a relatively simple pattern language. At the ex-
pense of additional computation, it is straightforward to extend our
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score and search to sequences with complex multivariate patterns [10].
In a similar line of thought, we currently model time delay distribu-
tions non-parametrically. While this comes with the advantage of not
being restricted to any specific distribution, it does increase the sample
complexity of our method—we may miss certain patterns or fail to pre-
dict certain events, simply because we have too little data to model the
delay distribution well. It hence makes sense to contemplate an exten-
sion of OMEN where we model the delay distributions parametrically,
e.g. using domain knowledge to choose it as a Gaussian or Poisson dis-
tribution, as this will permit discovering more subtle patterns. In the
next chapter we explore modeling delays between events of patterns,
where we model the delay distributions parametrically.

We consider mining predictive rather than causal patterns. We do
note, however, the close kinship between the two, in the sense that
the discovered pattern could cause our interesting event. We share at
least one common assumption: a cause needs to precede the effect in
time [69} [138]. In Chapter [7] we explore the causal relationships be-
tween events in event sequences.

2.8 CONCLUSION

We considered the problem of discovering small sets of sequential pat-
terns that not only predict that something interesting will happen, but
for which it is additionally easy to tell how long it will be until the
predicted event. We formulated the problem in information-theoretic
terms using the Minimum Description Length principle. As the result-
ing problem does not lend itself to efficient exact optimization, we
propose the OMEN and FOMEN to heuristically discover good pattern
sets. Both rely on a method to infer a initial alignment between pat-
tern occurrences and interesting events. For which we propose two al-
gorithms one general purpose one and an alternative approach which
is particular adapt at long range predictions. Extensive evaluation on
synthetic and real world data showed that OMEN and FOMEN compares
favorably to the state of the art. In particular, our score performs very
well in telling predictive from associative patterns, even under large
quantities of noise. OMEN efficiently discovers high quality sets of pre-
dictive patterns give clear insight into the data generating process.



DISCOVERING SEQUENTIAL PATTERNS WITH
PREDICTABLE INTER-EVENT DELAYS

In the previous chapter, we explored how to discover predictive pat-
terns for target events, focusing on whether and when an event will
occur. To this end we explicitly modeled the delay between predictive
patterns and the target events.

In this chapter we consider a setting without a target sequence, and
instead of discovering patterns that predict when target events will oc-
cur, we consider the task of discovering patterns with predictable inter-
event delays. Specifically, we will discuss how to summarize event se-
quences using serial episodes. Unlike existing approaches, our method
explicitly models the delay between events, prioritizing patterns with
consistent delays; this allows us to identify patterns with long delays,
as long as the delays are consistent.

3.1 INTRODUCTION

Most existing methods, summarize event sequences, in terms of se-
rial episodes and allow for gaps [170] and interleaving [11] of pat-
tern occurrences. By penalizing every gap equally regardless of where
in a pattern it occurs, these methods have a strong bias against long
inter-event delays, whereas methods that do not penalize gaps [57] are
prone to discover spurious dependencies. What both of these classes
lack is a pattern to be able to specify when the next symbol is to be
expected.

To illustrate, let us consider a toy example of a single event sequence
of all national holidays of a given country over the span of multiple
years. As is usual, some holidays are ‘fixed” as they always occur on
the same date every year, and others depend on the lunar cycle and

This chapter is based on [32]: Joscha Ciippers, Paul Krieger, and Jilles Vreeken. “Dis-
covering Sequential Patterns with Predictable Inter-event Delays.” In: Proceedings of
the AAAI Conference on Artificial Intelligence. 2024, pp. 8346-8353.
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hence ‘move” around. Existing methods have no trouble finding hol-
idays that occur right after each another, e.g. 1% Christmas Day right
before 2™ Christmas Day, struggle with long delays, such as Whit Mon-
day happening 49 days after Easter Monday, and outright fail when the
relationship is ‘far” and ‘loose” such as Easter occurring between 82 to
114 days after New Year’s. In this chapter, we present a method that can
find and describe all these types of dependencies and delays.

To do so, we propose to explicitly model the distributions of inter-
event delays in pattern occurrences. That is, as patterns we do not just
consider serial episodes, but also discrete distributions that model the
number of time-steps between subsequent events of a pattern. This
allows us to discover patterns like New Year 32214, Faster Monday 2,
Whit Monday, which specify there is a uniformly distributed delay of
82 to 114 days between New Year’s and Easter Monday, and a fixed delay
of 49 days until Whit Monday.

We define the problem of mining a succinct and non-redundant set
of sequential patterns in terms of the Minimal Description Length Prin-
ciple (MDL) [71], by which we are after that model that compresses the
data best. Simply put, unlike existing methods we do not plainly pre-
fer patterns with ‘compact’ occurrences but rather those for which the
inter-event delays are reliably predictable, no matter if these delays
are short or long. This way we can automatically determine which
discrete-valued distribution best characterizes the inter-event delays.
In practice, we consider Uniform, Gaussian, Geometric, or Poisson dis-
tributions, but this set can be trivially extended.

The resulting problem does not lend itself for exact search, which is
why we propose the effective HOPPER algorithm to efficiently discover
good pattern sets in practice. Starting from just the singletons, Horrer
considers combinations of current patterns as candidates, uses an op-
timistic estimate to prune out unpromising candidates, explores both
short and far dependencies, assigns the best-fitting delay distributions,
and greedily chooses the candidate that improves the score most.

Through extensive evaluation, we show that HorrPER works well in
practice. On synthetic data we demonstrate that unlike the state-of-
the-art, we recover the ground truth well both in terms of patterns
and delay distributions even in challenging settings where patterns
include delays of hundreds of time steps. On real-world data, we show
that HopPER discovers easily interpretable patterns with meaningful
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delay distributions. We make all code, synthetic data, and real-world
datasets available in the supplementary material

3.2 PRELIMINARIES

In this section, we discuss preliminaries and introduce the notation we
use throughout the chapter.

3.2.1  Notation

As data D we consider a set of |D| event sequences S € D each drawn
from a finite alphabet Q) of discrete events e € ), i.e. S € QIS|. We write
S[i] to refer to the i" event in S, and ||D|| to denote the total number
of events in D.

As patterns we consider serial episodes. A serial episode p is also a
sequence drawn over Q, i.e. p € QIPl. We write pli] for the i event in
p. We will model the inter-event delays between a subsequent pair of
events pli] and p[i + 1] using discrete delay distribution ¢,;(- | ©,;).
Whenever clear from context we simply write cpp,i(-).

Finally, a window w® is an ordered set of indices into S. Two win-
dows a° and b® are in conflict iff they contain the same index, formally
iff [a° N b5| > 0. A window w® is said to match a pattern p if they iden-

tify the same events in the same order, i.e. when V,cjy S [w®[i]] = pli]

and Vi€[1,|p|,1]¢p,i(w5 [i +1] —w’[i]) > 0, if p matches we write wf,.
Whenever § is clear from context, we simply write w).

All logarithms are base 2 and we define 0log(0) = 0.

3.3 MDL FOR PATTERNS WITH PREDICTABLE DELAYS

In this section we formally define the problem using the Minimum
Description Length principle. We first give the intuition by explaining
how to decode a sequence from a given encoding and then formally
define the encoding.
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Figure 3.1: Toy example showing two possible encodings of the same data.
Cover 1 uses only singletons, Cover 2 additionally uses two pat-
terns, @ and @ A cover consist of the pattern stream Cj, encod-
ing the patterns, and the delay stream C; encoding the inter-event
delays. The first gap of pattern @ is modeled with a geometric
distribution, and the second with a normal distribution. The one
gap of @ is modeled by a uniform distribution.

3.3.1 Decoding the Database

We start by explaining how to decode a database from a given cover.
A cover C is a description of the data in terms of the patterns p in
model M. Formally, a cover is defined as a tuple (C,, C4), where pat-
tern stream C, describes which pattern (windows) are used in what
order, and delay stream C; consists of the inter-event delays within
those windows. Next we explain how to decode a cover C to recon-
struct the encoded data.

In Figure[3.1/we show a toy example. We show a sequence S, a model
M, and two covers of S using M.

We first consider Cover 1. We start by reading the first code from the
pattern stream C,. This is an (a) which we look up in M and find it

1 leda.rg.cispa.io/prj/hopper
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encodes event ‘a’. We write this to S[0]. We iterate reading and writing
until S is decoded.

Next, we consider Cover 2. We again read the first code from Cp,
which is now a (P). We look up that this stands for pattern p. We write
its first symbol, 4, to S[0]. To know where in S we should write ‘D" we
read a code from the delay stream C;. We read a 2, which means we
write ‘b to S[0 + 2]. We continue until we have decoded this instance
of pattern p, and then read the next symbol from C,. This is a (9). We
start decoding it from the first empty position in S. We iterate until S
is fully decoded.

3.3.2 Calculating the Encoding Cost

Now we know how to decode a sequence, we formally define how to
compute the encoded sizes of the data and model.

ENCODING THE DATA To describe the data without loss, we need
in addition to the pattern and delay streams, to know the number and
length of sequences in D. We hence have

L(DICT) = Ln(ID]) + 3 Ln(IS]) + L(Cp) + L(Ca) ,
SeD

where we encode the cardinalities using the MDL-optimal encoding
for integers [153].

To encode the pattern stream C, and the delay stream C;, we use
prefix codes, which are codes that are proportional in length to their
probability. For the pattern stream we have,

SN ool log 18 ()
L(Cy) = 35 —uss(p)log (zqu 't g(q)> ,

where usg is the empirical frequency of pattern code (7 | in the pattern
stream C,. We encode the delay stream C; similarly, encoding the inter-
event delays d; between events p[i] and p[i + 1] of every instance of a
pattern p using the corresponding delay distribution ¢,,;(d;). We hence
have

Ip|—=1usg(p)

HE= 2, 2 2y ~loBtuld

peM i=1 j=
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ENCODING THE MODEL As models we consider sets of patterns M
that always include all singletons. We refer to the model that only
consists of the singletons as the null model.

For the encoded length of a model we have

L(M) = In(I02) +log (';g:' ‘1) FIn(PI+1)

+Ln(usg(P)) + log ( Pl ) Z L(p

peP

where we first encode the size of the alphabet () and the supports
supp(e|D) of each singleton event. The latter we do using a so-called
data-to-model code — an index over an enumeration of all possible
ways to distribute ||D|| events over alphabet () [176]. Next, we encode
the number |P| of non-singleton patterns p € M and their combined
usage by Ly, and then their individual usages by a data-to-model code.
Finally, we encode the non-singleton patterns.

To do so we need to specify how many, and which events a pattern
consists of, as well as identify and parameterize its delay distributions.
To reward similarities in delay behavior, we allow a distribution to
be used for multiple inter-event gaps. As a default, we equip every
pattern with one Geometric delay distribution. Formally, the encoded
length of a non-singleton pattern p € M is

L(p) = Ln(lp]) +1og(|p| — 1) + log <’pk— 1>

~Tos (M) + S e
eep @ep

where we encode the number of events of p, then its number of delay

distributions, k, and finally where in the pattern these are used. We en-

code the events of the pattern using prefix codes based on the supports

of events e in D.

To encode a delay distribution ¢(- | ®) it suffices to encode ®. For
the non-default delay distributions we first encode its type out of the
set ¥ = {Geometric, Poisson, Uniform, Normal} of discrete probability
functions under consideration, for which we need —log|¥| bits. We
then encode the parameter values 6 € ®. We use Ln(6) if 6 € N, and
Lr(6) if 8 € R. We have L (0) = Ly (d) + L ([0 - 10%]) 4 1 as the num-
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ber of bits needed to encode a real number up to user-set precision p
[114]. It does so by shifting 6 by d digits, such that 6 - 109 > 107.

3.3.3 The Problem, Formally

With the above, we can now formally state the problem.

The Predictable Sequential Delay Problem Given a sequence database
D over an alphabet Q), find the smallest pattern set P and cover C such that
the total encoded size, L(M,D) = L(M) + L(D|M) is minimal.

Considering the complexity of this problem, even when we ignore de-
lay distributions there already exist super-exponential many possible
patterns, exponentially many patterns sets over those, as well as, given
a pattern set there exist exponentially many covers [11]. Worst of all the
search space does not exhibit any structure such as (weak-) monotonic-
ity or submodularity that we can exploit. We hence resort to heuristics.

3.4 THE HOPPER ALGORITHM

Now we have formally defined the problem and know how to score
a model we need a way to mine good models. We break the problem
into two parts, finding a good cover given a model, and finding a good
model, and discuss these in turn.

3.4.1 Finding Good Covers

Given a model, we are after that description of the data that minimizes
L(D | M). To compute L(D | M), we need a cover C. A cover consists
of a set of windows, and hence we first need to find a set of good
windows.

FINDING GOOD WINDOWS Mining all possible windows for a pat-
tern p can result in an exponential blow-up. To ensure tractability, we
limit ourselves to the 100 windows per starting event with the most
likely delays. To avoid wasting time on windows we will never use be-
cause they will be too costly, we restrict our search to those for which
the delays fall within the 99.7% confidence-interval of the respective
probability distribution. For a normal distribution, that corresponds to
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three standard deviations from the mean. In practice, it is extremely
unlikely that we would like to include any of the not considered win-
dows in cover C, hence these restrictions have a negligible to no effect
on the results.

SELECTING A GOOD COVER Armed with a set of candidate win-
dows, we next explain how to select a set C of these that together form
a good cover. Ideally, we would like to select that cover C that min-
imizes L(D | M). Finding the optimal cover, however would require
testing exponentially many combinations, which would, in turn, result
in unfeasible runtime; we hence do it greedily. For a greedy approach
we need a way to select the next window for addition. Generally speak-
ing, we prefer long patterns with likely delays. Based on this intuition,
we assign each window w) a score s(w)). At each step we select the
window w), with the highest s(w}). If a window conflicts with a previ-
ously selected window, we skip it and proceed. We add windows until
all events of D are covered. To ensure there always exist a valid cover
we always include all singleton windows.

As we prefer long patterns with likely deltas, our window score
trades of pattern length (|p|c) against the cost of the individual delays.
Formally, we have

lpl—1

s(wp) = |ple — Y} —logdpr(wpylk + 1] —w,[k])
k=1

where c is the average code cost of a singleton event under the null
model, that is

2.ecq —supp(e|D) log(supp(e|D) /|| D)

Cc =
D]

3.4.2  Mining Good Models

Now that we know how to find a good cover given a set of patterns,
we explain how to discover a high-quality pattern set. Since there are
super-exponentially many possible solutions, we again take a greedy
approach. The general idea is that we use a pattern-growth strategy
in which we iteratively combine existing patterns into new longer pat-
terns. Before we explain our method in detail, we explain how we build
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a pattern candidate given two existing patterns and how to estimate
the gain of such a candidate.

ESTIMATING CANDIDATE GAINS Computing the total encoded length
L(M@p', D) for when we add a new pattern p’ to M is costly as this
requires covering the data, which in turn requires finding good win-
dows of p’. To avoid doing so for all candidates, we propose to instead
use an optimistic estimator to discard those candidates for which we
estimate no gain. Specifically, we want to estimate how many bits we
will gain if we were to add pattern p’ to the model.

To do so, we estimate the usage of p’. As we will explain below, ev-
ery candidate p’ is constructed by concatenating two existing patterns
p1, P2 € M. Assuming that p’ will be used maximally, we have an op-
timistic estimate of its usage as usg(p’) = min(usg(p1), usg(p2)), or, if
p1 = p2 as usg(p’') = usg(p1)/2. We estimate the change in model cost
by adding p’ by assuming all occurrences of the least frequent parent
pattern are now covered by p’. Combined the estimated gain is,

AL(M®p') = ~L(p') + L(arg minusg(p))
pe{prp2}

where L(p’) is the cost of p’ omitting the delay distribution between p;
and p,. We estimate AL(D | M@ p’) as

AL(D | M@yp') = slog(s) —s'log(s") + zlog(z)—
xlog(x) + x'log(x') — ylog(y) +y'log(y')

where s is the sum of all usages, s = 3}, ,, usg(p), and, for readability,
we shorten usg(p’) to z, usg(p1) to x, usg(p2) to y and write x’, y/, s’ for
the “updated” usages, thatis X’ =x—z, Y =y—zand s’ =s—z.

As we do not have any information about the delays between p; and
p2 we assume these are encoded for free. Putting the above together
gives us an optimistic estimate of the total encoded cost when adding
pattern p’ to M as

AL(D,M®p') = AL(M®p') + AL(D | M®7') .

Wherever clear from context, we simply write AL(p’).
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Algorithm 3: OPTIMIZEALIGNMENT

Input :chapters/Hopper/pattern candidate p’, alignment A
Output: estimated gain™, optimized alignment A*

1 gain™ «— —o

> while AL, (p') > gain™ do

3 | gain® — ALA(p')

4 | A¥ <A

5 drop all delays d with minimal frequency from A

6 return gain®, A*

ESTIMATING CANDIDATE OCCURRENCES When we want to eval-
uate a candidate pattern p’, constructed from patterns p; and p,, we
have to determine its occurrence windows. A simple and crude way
to determine candidate windows is by mapping every occurrence of
p1 to the nearest next occurence of p,. We call this procedure ALIGN-
NEexT. It is particularly good for finding a mapping with the shortest
possible delays, but will not do well when delays are relatively long.
For this, the ALIGNFAR algorithm [Chapter [2] Section provides
a better solution. In a nutshell, it efficiently discover that mapping A
that minimizes the variance in delays. By a much larger search space
it is naturally more susceptible to noise.

As a result, both strategies can give a good starting points, but nei-
ther will likely give an alignment that optimizes our MDL score. We
propose to greedily optimize these mappings using an optimistic esti-
mate. We first observe that given a mapping, we can trivially compute
the delays, on which we can then fit a distribution. We do so for all
distributions ¢ € ¥ and choose that 4);/(- | ©*) that minimizes the
cost of encoding the delays. Second, we observe that a mapping also
allows us to better estimate the usage of p’ as the number of mapped
occurrences of p; and p;. This gives a gain estimate under alignment
A as

ALA(p') = =L(p') + AL(D [ M@ ) + ) log ¢(d|©*).
deA

We now use this estimate to identify and remove those mappings with
the lowest delay probability (i.e. those with minimal frequency) until
AL4(p') no longer increases. We give the pseudocode as Algorithm



3.4 THE HOPPER ALGORITHM

Algorithm 4: Horrer
Input :Sequence database D, alphabet ()
Output: model M
1 CT « Q; Cand < CT x CT;
forall p, p> € Cand do ordered descending on
[p1lusg(pr) + |p2|usg(p2)
if AL(p1 @ p2) > 0 then
gain, p’ — ALIGNCANDIDATE(p1, p2)
if gain >0 A L(D,M) > L(D,M@®p’) then
p' — FiLLGars(p’, |p1)
M—Map
M «— PrRUNE(M)
Cand — Cand v {M x p’, (p1,p2)}

N

© o g o U ok~ W

10 M < PRUNEINSIGNTFICANT(M)
1z return M

MINING GOOD PATTERN SETS Next, we explain how we use the
gain estimation and cover strategy to mine good pattern sets P. We
give the pseudo-code for our method, HorrEer, as Algorithm |4} The
key idea is to use a bottom-up approach and iteratively combine pre-
viously found patterns into longer ones.

We iteratively consider the Cartesian product of patterns p;, po € M
as candidates. We evaluate these in order of potential gain. Events and
patterns that occur frequently have the largest potential to compress
the data, therefore we consider these combinations first. Specifically,
we evaluate combinations of p; and p; in order of how many events
they together currently cover (line [2).

Given a pattern candidate p’ = p; @ p», we use our optimistic esti-
mator to determine if we expect it to provide any gain in compression.
If not, we move on to the next candidate. If we do estimate a gain
based on usage of p; and p, alone, we proceed and optimize the align-
ment of occurrences of p; and p; to those of occurrences of p’. We
do so using ALIGNCANDIDATE, for which we give the pseudocode in
the appendix. In a nutshell, it returns the best optimized result out of
ALIGNNEXT and ALIGNFAR.
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If the alignment leads to an estimated gain, we compute our score
exactly (L. |5) and if the score improves we are safe to add p’ to our
model. We do so after we consider augmentations of p’ with events
that occur between p; and p, (FILLGAPs, line [p) such that we further
improve the score. Adding a new pattern to M can make previously
added patterns redundant, e.g. when all occurrences of p; are now cov-
ered by p’. We prune all patterns for which the score improves when
we remove them from M (PRUNE). Finally, we create new candidates
based on the just added pattern, and add (p1, p2) back to the candi-
date set, as we might want to build a different pattern from it in a later
iteration.

Before returning the final pattern set, we reconsider all patterns in
the model and only keep those that give us a significant gain [12} 71]
in compression. We provide further details on the pattern mining pro-
cedure in the appendix.

As we consider the most promising candidates first, the more can-
didates we evaluate to have no gain, the more unlikely it becomes we
will find a candidate that will provide any substantial gain. To avoid
evaluating all of those unnecessarily, we propose an early stopping cri-
terion by considering up to [QQ>/100, but at least 1000, unsuccessful
candidates in a row. As our score is bounded from below by 0, we
know that Hopper will eventually converge.

3.5 RELATED WORK

In Chapter [2| Section we already discussed the related work on
pattern mining on event sequence. Here we discuss how they handle
gaps. Ism [57] allow for gaps, but do not model them, that is neither
penalize nor prefer pattern with consistent gaps. Sas [170] and SQuisa
[11]], are not capable of finding patterns with long inter-event delays
and penalize each individual gap uniformly, regardless where in the
pattern it occurs.

Existing methods that enrich patterns with delays can be catego-
rized into two groups, methods that discover frequent patterns that
satisfy some user set delay constrains [29| 41, |63} 200], and methods
that discovers delay information from the data [126} 198]. The latter,
in contrast to our method, only consider the minimal delay between
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events, do not work on a single long sequence, and mine all frequent
patterns, and hence also suffer from the pattern explosion.

Existing pattern set miners that do model the inter-event delay solve
different problems. Galbrun et al. [58] propose to mine periodic pat-
terns, which are patterns that continuously appear throughout the
data with near-exact delays. It is therewith well-suited for the holi-
days example in the introduction, but less so for discovering patterns
that only appear more locally. OMEN [Chapter [2] does discover local
patterns and delay distributions, but does so in a supervised setup
between a pattern and a target attribute of interest. As such, each of
the above methods consider part of the problem we study here, but
none address it directly: we aim to discover a small set of sequential
patterns where the delays between subsequent events in a pattern are
modelled with a probability distribution.

3.6 EXPERIMENTS

In this section we empirically evaluate HorrEr on synthetic and real-
world data. We implement HorPERr in Python and provide the source
code along with the synthetic data and the real-world data in the sup-
plementary? We compare HOPPER to SKOPUSs [144] as a representative
statistically significant sequential pattern miner, SQs [170], SQuisH [11]]
and Ism [57] as representatives of the general class of pattern set min-
ers, and to PPM [58] as a representative of the periodic pattern miners.
For all, we use the implementation by the authors.

Horrer considers delays up to a user set max delay, for all exper-
iments we set it to 200. Skorus only works on a set of sequences,
when the dataset consists of one sequence, we split the sequence into
100 equally long sequences. We parametrize Skorus to report the top
10 patterns of at most length 10, which corresponds to the ground-
truth value in our synthetic experiments. PPM only accepts a single
sequence as input, to make it applicable on databases of multiple se-
quences, we concatenate these into one long sequence. All experiments
were executed single-threaded on an Intel Xeon Gold 6244 @ 3.6 GHz,
with 256GB of RAM (shared between multiple simultaneously running
processes). We give the full setup description in the appendix.

2 eda.rg.cispa.io/prj/hopper
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3.6.1  Synthetic Data

To evaluate how well HOPPER recovers patterns with known ground,
we consider synthetic data. To this end, we generate data as follows.
For each synthetic configuration we generate 20 independent datasets.
For each dataset we sample uniform at random one sequence of length
10000 over an alphabet of 500 events, we plant 10 unique patterns, uni-
formly, at random locations while avoiding collisions. The frequency
of planted patterns, length and delay distributions between events we
vary per experiment.

As evaluation we consider standard F1 score. To compute the num-
ber of true positives we follow the same flow network based approach
as in Chapter [2| Section where we set the flow capacity between
reported pattern p, and planted pattern pp based on the Levenshtein
edit distance, that is,

w(pr, Pp) = max(1— ZeU(Pr/PP)/|Pp|/O)

This way we reward partial discoveries, which is especially relevant
for methods that are designed to pick up events that occur close to
one another, but might miss the full pattern if it includes a long delay.

SANITY CHECK We start with a sanity check, where we run HorrEr
on 20 data sets without structure, generated uniformly at random. It
correctly does not report any patterns.

DELAY DISTRIBUTIONS Next, we test how well HOPPER can recover
patterns for varying numbers of delay distributions. We consider the
case of no delay distributions up to a pattern including a delay distri-
bution between every subsequent pair of events. We plant 10 unique
patterns of length 10 and in total 200 pattern occurrences, that is, on
expectation 20 instances per pattern. As delay distribution, we plant
Uniform distributions with a delay of between 10 to 20 time steps.

We present the results in the first panel of Fig. We observe that
HorPeR performs on par when there are no delay distributions and
outperforms the state of the art when we increase their number. We
find that SquisH performs on par with SQs in our experiments and to
avoid clutter from here onward postpone its results to the appendix.
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Figure 3.2: [Higher is better] F1 scores for recovering patterns from synthetic
data. From (a) to (d), we evaluate for varying numbers of inter-
event distributions, expected frequency of a pattern, mean inter-
event delay, resp. different standard deviations for normally dis-
tributed delays. We see that HorPER performs on par with Sos
when inter-event delays are few and simply structured, and out-
performs the competition with a large margin whenever their
structure is more complicated.

LOW FREQUENCY Next, we evaluate performance with low-frequency
patterns, we decrease the frequency of the total number of planted pat-
terns. We consider the same setting as above, where we set the num-
ber of distributions to four and decrease the total number of planted
patterns from 200 to 100, that is, on expectation, from 20 to 10 per
pattern. We show the results in Panel (b) of Fig. We observe that
HorrEer outperforms all other methods, ultimately reducing to the per-
formance of Sqs in the low-frequency domain.

LONG DELAYS Next, we investigate how robust HorreRr is to long
delays, to this end we plant 10 patterns at 200 locations. We plant
patterns of length 3, with Normal distributed inter-event delays, with
a standard deviation of one, and increase the mean stepwise from 1 to
180. We present the results in Panel (c) of Fig. We observe HOPPER
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is very robust against long delays: even with an expected delay of
180 between the individual events it achieves a very high F1 score. In
contrast, its competitors do not fare well; SQs and Skorus perform well
initially but then quickly deteriorate.

HIGH VARIANCE Finally, we evaluate HOPPER under increasing vari-
ance of inter-event delays. To this end we plant 400 occurrences of 10
patterns of length 3, with Normally distributed delays with mean 50
and varying the standard deviations. We show the results in Panel (d)
of Fig.

We observe that HOPPER gets near perfect results for lower variance
and high F1 score until a standard deviation of 7 at which point 95%
percent of the probability mass is distributed over a range of 28 times-
tamps. In general, we observe that the higher the frequency, the more
robust we are against higher variance. We can see that Skorus is con-
sistent under increasing variance. This is probably due to the fact that
Skorus does not care about the distance between events only about
the order in which they occur.

3.6.2 Real World Results

Next, we evaluate Hopper on real-world data. We use eight datasets
that together span a wide range of use-cases. We consider a dataset of
all national Holidays in a European country over a century, the playlist
a local Radio station recorded over a month, the Lifelog3 of all activities
of one person recorded in over seven years, the MIDI data of hun-
dred Bach Chorales [92], all commits to the Samba project for over ten
years [58], the Rolling Mill production log of steel manufacturing plant
[187], the discretized muscle activations of professional ice Skating rid-
ers [123], and finally, three text datasets from the Gutenberg project,
resp. Romeo and Juliet by Shakespeare, A Room with a View by E.M.
Forster, and The Great Gatsby by F. Scott Fitzgerald. We give the total
number of events per dataset in Table 3.1/ and further statistics in the
appendix.

We run HorPER, Sgs, Ism, PPM, and Skorus on all datasets. We
report the number of patterns (|P|), the average expected distance be-
tween the first and last event (IE(w,[|p|] — w;[0])) and for HOPPER, the

3 https:/ /quantifiedawesome.com/
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Horrer SQs PPM

Dataset |Q| [|[D|| |P| #0 E(w) |P| E(w)  |P| E(w)

Holidays 37k 11 1 7 393 3 19.2 14 51.6
Radio 16k 494 22 43 48 15 5.8 587 71.9
Lifelog 40k 77 37 68 129 58 3.9 1.6k 119.1
Samba 209k 118 40 101 110 221 2.7 1.4k 171
Chorales 7k 493 56 57 47 114 2.6 433 2.6

Rolling 54k 555 237489 7.4 470 5.0 3.6k 1819
Skating 26k 82 86 160 9.1 160 4.0 1.4k 555

Romeo 37k 4789 254 284 12.9 254 2.8 2.3k 3327
Room 87k goog 565 610 3.1 701 2.5 - -
Gatsby 64k 7463 439488 7.3 519 2.6 4.7k 641.9

Table 3.1: Results on real-world data. For HOPPER, Sgs, and PPM we report
the number of discovered patterns (|P|) and the average expected
distance between the first and last symbol of a pattern (EE(w)). For
HorrEr we additionally give total number of discovered inter-event
distributions (#®).

number of discovered delay distributions (#®). We postpone the re-
sults of 1sm and Skorus, along with the metrics runtime and average
events per pattern to the appendix. HOPPER terminates within seconds
to hours, depending on the dataset. We find that while Horrer and
Sqs discover similar numbers of patterns, those that HopPEr discovers
reveal much longer range dependencies and, in general, include more
events. PPM results in an order of magnitude more patterns, most of
which are singletons. Next we look at the results for Holidays and Radio
in more detail.

On the Holidays dataset, HoPPER finds a single pattern, May 1% 153,
National Holiday 83, 1 Christmas Day 1, 2" Christmas Day ©, New Year
80112, Good Friday 3, Easter Monday *°, Whit Monday, where all de-
lay distributions are uniform. The pattern precisely describes all fixed
and all lunar-calendar dependent holidays within the year. In contrast,
the competing methods only find fractions of this pattern, such as 1
Christmas Day, 2™ Christmas Day. We show the results for all methods
in the appendix.
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The Radio dataset includes all the songs played, as well as the ad
slots and news segments, for a local radio station over the course of
a month. On this data Horrer discovers the pattern Jingle 2, Ads 2,

News 9, Jingle 43°), ]zngle where the o-gaps correspond to geometric
distributions with p = 1 and the last inter-event delay is a uniform
distribution. Other methods find comparable or parts of this patterns,
but none give the immediate insight that the first four events follow
directly after one another and the last Jingle plays between 3 to 5 events
after the previous.

More importantly, unlike other methods, HorrEr also picks up pat-

terns such as Solo Para 9°%2), As It Was N 4825, [ Believe P4, Anyone
for You that confirm our suspicion that radio stations often play the
same sequence of particularly popular songs interspersed with less-
well-known songs. No other method finds any comparable patterns.
Horrer discovers much longer patterns than its competitors. Whereas
most competitors find patterns of length 2, Sos patterns of at most 4
events, HOPPER discovers patterns of up to 7 events long. Together, this
illustrates that HorPER finds patterns that are not only more detailed
in terms of the delay structure, but also in which events they describe.

3.7 CONCLUSION

We consider the problem of summarizing sequential data with a small
set of patterns with inter-event delays. We formalized the problem in
terms of the Minimum Description Length principle and presented the
greedy HorrEer algorithm. On synthetic data we saw that our method
recovers the ground truth well and is robust against high delays and
variance. On real-world data we observed that HOPPER finds meaning-
ful patterns that go beyond what state of the art methods can capture.
While methods that only consider the order of events, can in theory
find patterns with long delays, they often do not do this in practice.

We introduce a more powerful pattern language that enables us to
discover new structure in data. This comes with the trade-off, of a
much larger search space and, in theory, makes us more susceptible to
noise, however the experiments have shown that this is not a problem
in practice. HOPPER achieves a high F1 score on all experiments in Fig.
despite these having 80% or more noise.



3.7 CONCLUSION

Currently, we model the delay between subsequent events in a pat-
tern. In practice, some events may depend on some event earlier in the
pattern. Next, we will study how to summarize event sequences using
conditional dependencies — in the form or rules.
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In the previous chapter we summarized event sequences in terms of
serial episodes. In this chapter we will study how to summarize event
sequences in terms of conditional dependencies. We do so by discov-
ering rules of the form X — Y where X and Y are sequential patterns,
expressing that Y is more likely to occur after we have observed X.
Rules like these are simple to understand and provide a clear descrip-
tion of the relation between the antecedent and the consequent.

4.1 INTRODUCTION

In many applications data naturally takes the form of events happen-
ing over time. Examples include industrial production logs, the finan-
cial market, device failures in a network, etc. Existing methods for
analyzing event sequences primarily focus on mining unconditional,
frequent sequential patterns [4} [111, 168]. Loosely speaking, these are
subsequences that appear more often in the data than we would expect.
Real world processes are often more complex than this, as they often
include conditional dependencies. The formation of tropical cyclones
(C) in the Bay of Bengal, for example, is often but not always followed
by heavy rainfall (R) on the coast. Knowing such a relationship is help-
ful both in predicting events and in understanding the underlying data
generating mechanisms.

In this chapter, we are interested in discovering rules of the form
X — Y from long event sequences, where X and Y are sequential
patterns. Existing methods for mining such rules either suffer from
the pattern explosion, i.e. are prone to returning orders of magnitude
more results than we can possibly analyze [22} 52|, or are strongly
limited in the expressivity, e.g. require the constituent events to occur
in a contiguous order [14].

This chapter is based on [162]: Aleena Siji, Joscha Ciippers, Osman Ali Mian, and Jilles
Vreeken. “Seqret: Mining Rule Sets from Event Sequences.” arXiv:2212.10252.
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We aim to discover succinct sets of rules that generalize the data
well. We explicitly allow for gaps between the head and the tail of
the rule, as well as in the occurrences of X and Y themselves. To en-
sure we obtain compact and non-redundant results, we formalize the
problem using the Minimum Description Length (MDL) principle [71].
Loosely speaking, we are after that set of sequential rules that together
compresses the data best.

However, the problem we so arrive at is computationally challeng-
ing. For starters, there exist exponentially many rules, exponentially
many rule sets, and then again exponentially many ways to describe
the data given a set of rules. Moreover, the search space does not ex-
hibit structure we can use to efficiently obtain the optimal result. To
mine good rule sets from data we therefore propose the greedy SEQRET
algorithm. We introduce two variants. SEQRET-CANDIDATES constructs
a good rule set from a set of candidate patterns by splitting them into
high-quality rules. SEQRET-MINE, on the other hand, only requires the
data and mines a good rule set from scratch. Starting from a model of
singleton rules, it iteratively extends them into more refined rules. To
avoid testing all possible extensions, we consider only those extensions
that occur significantly more often than expected.

Through extensive evaluation, we show that both variants of SEQRET
work well in practice. On synthetic data we show that they are robust
to noise and recover the ground truth well. On real-world data, we
show that SEQRET returns succinct sets of rules that give clear insight
into the data generating process. This in stark contrast to existing meth-
ods which either return many thousands of rules [52] or are restricted
to rules where events occur contiguously [14]. We make all code and
data available online!

4.2 PRELIMINARIES

In this section we introduce basic notation and give a short introduc-
tion to the MDL principle.

1 |https://eda.rg.cispa.io/prj/seqret/
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4.2 PRELIMINARIES

4.2.1  Notation

As data we consider a sequence database D of |D| event sequences. A
sequence S € D consists of |S| events drawn from a finite alphabet ) of
discrete events e € (). We denote the total number of events in the data
as || D||. We write S; for the ¢ sequence in D. To avoid clutter, we omit
the subscript whenever clear from context. We write S[i] to refer to the
i'" event in sequence S, and S[i, j] for the subsequence from the i’ up
to and including the j event of S. We denote an empty sequence by e.

A serial episode X is a sequence of |X| events drawn from (). A se-
quential rule r captures the conditional dependence between a serial
episode X and a serial episode Y. Intuitively, it expresses that when-
ever we see X in the data it is more likely that Y will follow soon. We
refer to X as the head or antecedent of r, denoted head(r), and to Y as
the fail or consequent of r, denoted tail(r). If X is an empty pattern,
X =€, wecall X — Y an empty head rule. We refer to empty head rules
where |Y| = 1 as a singleton rule.

A subsequence S[i, j] is a window of pattern X iff X is a subsequence
of S[i,j], and subsequently we say S[i, j| matches X and vice-versa we
say that X occurs in S[i,j]. A pattern window S[i, j| is minimal for X
iff no proper sub-window of S[i, j] matches X. A window of a rule r is
a tuple of two pattern windows S[i, j] and S[k,I] when S[i, j| matches
head(r), j < k, and S[k, ] matches tail(r). We denote a rule window by
Sli, j; k,1].

We say a window S[i, j] triggers rule r when it is a minimal window
of head(r). A rule window S[i, j; k, 1| supports a rule r if S[i, ] triggers
head(r) and S[k,1] matches tail(r). We call the number of events that
occur in a rule window between the rule head and the rule tail, k —
j — 1, the delay of the rule instance. We give an example in Fig. We
denote the number of windows over all sequences S € D that trigger a
rule r as the trigger count trigs(r). We define the support of a rule r as
the number of rule windows S[i, j;k, 1] in D where Sk, ] is a minimal
window of tail(r) and follows the head with minimum delay. Finally,
we define the confidence of a rule r as its support relative to its trigger
count, formally conf (r) = supp(r)/trigs(r).
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S|
head \j tail head U

Figure 4.1: Toy example of a rule ab — cd in an event sequence. Each occur-
rence of head ab triggers the rule. The first is followed by tail cd
and hence a ‘hit” whereas the second is not and hence a ‘miss’.
supp(ab — cd) = 1 and conf (ab — cd) = 0.5.
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Figure 4.2: Toy example showing an encoding of sequence S using rule set
R. The encoding consists of three code streams. C; encodes if a
triggered rule hits or misses. C; encodes the delay between the
trigger and the rule tail. C¢ encodes the gaps in the tails. Together,
they form a cover C of D given rule set R.

4.3 MDL FOR SEQUENTIAL RULES

We now formally define the problem we aim to solve. We consider sets
R of sequential rules as our model class R. By MDL, we are interested
in that set of rules R € R that best describes data D.

4.3.1  Decoding an Event Sequence

Before we formally define how we encode models and data, we give the
main intuition of our score by decoding an already encoded sequence.

We give an example in Fig.
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To decode a symbol, we consider the rules from R that are currently
triggered. For those, we read codes from the trigger stream C;. Initially,
the context is empty and hence only empty-head rules trigger. The first
trigger code is a miss for singleton rule € — a. The second trigger code
is a hit for rule € — b. As empty-head rules do not incur delays, we
can write b as the first symbol of the sequence.

This triggers rule b — cde. We hence read a code from the trigger
stream, and find that it is a hit. As this rule does not have an empty
head, there may be a delay between the head and its tail and we read
a code from the delay steam C; to determine if this is the case. It is a
start code, so we write the first symbol of the tail (c).

This creates a minimal window of bc and hence rule bc — f triggers.
We read from C; to find that it hits, and from C; to find that its tail is
delayed. To determine if we may write the next symbol from tail cde,
we read from the gap stream Cg. This is a fill code, meaning there is
no gap, and hence we write d.

This time, no new rule triggers. Tail cde is not yet completely de-
coded and f is delayed. For each delayed tail we read a code from Cy,
and for each incomplete tail we read a code from C,. Here, we read a
start code for tail f and a gap code for tail cde, we hence write f. Again,
no new rule is triggered. Now only tail cde is not yet fully decoded. We
read from C,; and as it is a fill code we write e as the last symbol of the
sequence.

To summarize, sequences are encoded from left to right, and rules
automatically trigger whenever we observe a minimal window of the
head. For each trigger, we encode whether the tail follows using a
hit or miss code. When a rule hits, we encode whether its tail follows
immediately or later, using a start resp. delay code. Finally, we encode
whether gaps occur in the rule tail using fill and gap codes. Empty-
head rules never incur a delay. To avoid unnecessary triggers, we only
encode those of empty-head rules if no other rule encodes the current
symbol (e.g. all active tails say ‘gap’).

4.3.2 Computing the Description Lengths

Now that we have the intuition, we can formally describe how to en-
code a model, respectively the data given a model.
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ENCODING A MODEL A model R € R is a set of rules. To reward
structure between rules, e.g. chains where the tail of one rule is the
head of another (e.g. 11 = € — AB, and r, = AB — CD), we first
encode the set P of all non-empty and non-singleton heads and all
non-singleton tails. Formally,

= {head(r) | Vr € R} u {tail(r) | Vre R}\(Que€) .
The encoded length L(P), is defined as

L(P) = Ln(IPl+1) + X, ILn(Ipl) + [pllog,(12) ,
peP

where we first encode the number of these patterns using Ly the MDL-
optimal encoding for integers [153]]. Since P can be empty and Ly is
only defined for numbers > 1 we offset it by one. Next, we encode
each pattern p € P where we use Ly to encode its length and then
choose each subsequent symbol e € p out of alphabet ().

Now that we have the set of all heads and tails, we have

L(R [ P) = Ln(IR[+1) +[R|(log, ([P + Q| +1) + log, (|P| + Q) ,

as the encoded length in bits of a set of rules. We first encode the
number of rules, and as R can be empty, we again offset by one. Next,
for each rule r € R, we choose its head from P u (), and then its tail
from P u Q).

Putting this together, the number of bits to describe a rule set R € R
without loss is,

L(R) = L(P)+L(R | P).

ENCODING DATA GIVEN A MODEL As we saw in the example, to
reconstruct the data we need the three code streams C;, C;, and Cj.
For an arbitrary database we additionally need to know how many se-
quences it includes, and how long these are. Formally, the description
length of data D given a model R hence is

L(D|R) = Ln(|DJ) + (Z L (|SI) ) + L(C) + L(Cq) + L(Cg) - (47)
SeD

To encode the code streams C;, Cy, Cq we use prequential codes [71].
Prequential codes work by assuming an initial usage of ¢ = 0.5 for
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all possible codes, and updating these counts with every transmitted
(resp. received) code. This way we not only ensure that we always
have a valid coding distribution, but also achieve asymptotic optimal-
ity without having to transmit the counts beforehand [71]]. Formally, we
have

7

Gl use-(C:1i1 1 C:
N &i(Gili] | Cj) +¢
L(G) = Elo 2 i+ unique(C;) - ¢

where usg;(C;[i] | C;) denotes the number of times C;[i] has been used
in C; up to the i" position, unique(C;j) denotes the number of unique
symbols in C;.

4.3.3 The Problem, Formally

We can now formalize the problem we aim to solve.

The Sequential Rule Set Mining Problem Given a sequence database D
over alphabet (), find the smallest rule set R € R and cover C such that the
total encoded size

L(R) +L(D | R)

is minimal.

The search space of this problem is enormous. To begin with, there
exist super-exponentially many covers of D given R. The optimal cover
depends on the code lengths, which in turn depend on the code usages.
Even if the optimal cover is given, the problem of finding the optimal
rule set is super-exponential: there exist exponentially many patterns
p in the size of the alphabet (), exponentially many rules r in the num-
ber of patterns, and exponentially many sets of rules. None of these
sub-problems exhibit substructure, e.g. monotonicity or submodular-
ity, that we can exploit to efficiently find the optimal solution. Hence,
we resort to heuristics.

4.4 THE SEQRET ALGORITHM

In this section we introduce our method, SEQRET, for discovering high-
quality sequential rule-sets from data. We break the problem down
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into two parts: optimizing the description of the data given a rule
set, and mining good rule sets. For the latter we propose SEQRET-
CANDIDATES for doing so given a set of candidate patterns, and SEQRET-
MiNE for mining rule sets directly from data.

4.4.1  Selecting a Good Cover

A lossless description of D using rules R correspond to a set of rule
windows such that each event e in D is covered by exactly one window.
We are after that cover that minimizes L(D | R). Finding the optimal
cover is infeasible, and hence we instead settle for a good cover and
show how to find one greedily.

The main idea is to define an order over the rule windows and greed-
ily select the next best window until the data is completely covered. To
minimize the encoded length, we prefer to cover as many events as pos-
sible with a single rule with few gaps. Therefore, we prefer using rules
with long tails, high confidence, and high support. Similarly, among
windows of otherwise equally good rules, we prefer those with lower
delays and fewer gaps in the rule tail. As a final tie breaker, we con-
sider the starting position of the rule tail. Combining this, we define
the WINDOW ORDER as descending on |tail(r)|, conf(r), and supp(r), and
finally ascending on I — j — [tail(r)|, and k, where r is a rule, S[i, j; k, 1]
is a rule window. To avoid searching for all possible rule windows, we
start with the best window per rule trigger and look for the next best
only if we do not select the former due to conflicts, i.e. its constituent
events are already covered by a previously selected window. We define
the best rule window per trigger as the one with the fewest gaps in its
rule tail window, and among those with same gap count, the one with
the lowest delay.

We give the pseudocode of Cover as Algorithm |5\ We start by ini-
tializing cover C with the empty set and window set W with for each
rule the best rule windows per trigger (lines 1-2). We then greedily add
rule windows to C in order of wINDOW ORDER. If a window conflicts
with an already selected window (line[4), we skip it and search for the
next best rule window for the corresponding trigger and add it to W
(line [7). We continue this process until all events in D are covered. To
avoid evaluating hopeless windows, we limit ourselves to those within
a user-set max delay ratio and max gap ratio. We provide further details
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and pseudo code for BESTRULEWIN and NEXTBESTWIN procedures in
Appendix.

The worst case time complexity of Cover depends on the number
of rules in R, total number of events in D, and the lengths of the heads
and tails per rule. In Appendix.[c.2.2l we show the complexity of COVER
is O(|R| * ||D||(h + 3 + tlog,(|R| - ||D||t)), where & is the max head
length and t the max tail length.

Next, we consider the problem of discovering good rule sets.

Algorithm 5: COVER

Input: Sequence database D, rule set R
Output: Cover C
1 while 35; € D where, Je € S; not covered by C do
2 w «— next w € W in WINDOW ORDER;
W — W\{w};
if 1z € C that conflicts with w then
| C—Cu{w};
else
‘ W — W u {NextBEstWin(w, C, D)};
8 return C

NS Ul AW

4.4.2  Selecting Good Rule Sets

We first propose an approach that does so given a set of sequential
patterns as input. We start from the intuition that, if the ground truth

Algorithm 6: SEQRET-CANDIDATES
Input: Sequence database D, set of patterns F
Output: Rule set R
1 R—{e—e|Vee O}
2 for p € F ordered descending by L(D, F\{p}) — L(D, F) do
3 I arg MaX,cgpryr(p) L(D,R)—L(D,R u {r'})
4 | fL(D,Ru{r}) <L(D,R) then
5 | R~Mu{r};

6 return R;
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includes a sequential rule 2 — bc, a good sequential pattern miner
will return abc. This means we can reconstruct ground truth rules by
considering splits of candidate patterns XY into candidate rules X —
Y and using our score to select the best split.

To this end, we propose SEQRET-CANDIDATES, for which we give the
pseudocode as Algorithm ] We initialize the rule set with all singleton
rules (line 1) to ensure we can encode the data without loss. We then it-
erate over each candidate pattern (line 2) in descending order of contri-
bution to compression [170]. We split each pattern into candidate rules
— for example, pattern abc generates candidate rules € — abc,a — bc,
and ab — c — and choose the candidate rule that minimizes our score
(line 3). We add it to our model if it improves the score (line 5) and
iterate until all patterns are considered.

The run time is dominated by the number of cover computations, i.e.
how many times we have to compute L(D|R). We have to compute a
new cover for each rule we test, and each pattern p can be split into |p|
rules. We test each p € F as such the complexity of SEQRET-CANDIDATES
is O(|F|(maxyer [p])).

4.4.3 Generating Good Rules

Next, we move our attention to generating good rule sets directly from
data. The first step is to generate good candidate rules. Given a rule
r from the current model, we consider extending it with events e € ()
that occur significantly more often within or directly adjacent to the
rule windows of r. A rule has |r| + 1 such gap positions, i.e. before its
first event, between its constituent events, and after its last event. For
example, rule ab — cde has 6 gap positions,

/\ a/\b 7\ c/\d/\e/\.

g0 81 & 83 84 &5

For each rule r we test for every gap position g; if e € () is more
frequent than expected in its rule windows. Our null hypothesis is

Hy : Z L(ee g(i,w)) < 2 Pr(ee g(i,w))

weB weB
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where B is the set of best rule windows of r, B = BESTRULEWIN(r, D),
w € B is a window of rule r, and g(i,w) a function that returns gap i
from window w.

When computing the probability of an event e in gap g;, we have to
account for differences in lengths of gaps between different windows.
The probability of e occurring in gap g; of a rule window w),, is given

by

lg(i,wp)]
. supp(e — e
Pr(ee g(i,wy)) =1— <1 - PP’(D|)> .

To test for statistical significance, we can model the expected neighbor-
hood as a Poisson binomial distribution [184]. That is, the trials are the
rule windows, and the success probability per trial is decided by the
length of the gap at the position of interest. Computing the CDF of
the Poisson binomial distribution is expensive [20, |79, 178]. As a fast
approximation, we use the normal approximation with continuity cor-
rection [79] for cases where the number of trials, i.e supp(r), is greater
than 10. If less than or equal to 10, we simply check if the actual count
of occurrences is greater than the expected count by more than one.

If event e is measured to be significantly more frequent in g; than
expected, we generate a new rule by inserting e at the position of g; in
the rule. We give the pseudo-code in Appendix.

4.4.4 Mining Good Rule Sets

Finally, we describe SEQRET-MINE for mining good rule sets directly
from data. We provide the pseudocode as Algorithm [} We initialize
rule set R with all the singleton rules (line . Next, we build candi-
dates from rule set R (line[3). As we want to generate the most promis-
ing candidate rules first, we start with rules with high support and
high confidence. We define a greedy EXTEND ORDER as 1) 1 supp(r), 2)
1 conf(r), 3) 1 |tail(r)| and 4) 1 |head(r)|, where 1 indicates that higher
values are preferred. For each we generate a set of candidate rules
as described above, we test them for addition in the order of their
p-values (line [4).

We add those rules into the model whose inclusion results in a sig-
nificant reduction in the total encoded size (line [5). We use the no-
hypercompression inequality [12} [71] to test for significance at level «,
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writing «, for “significantly less”? In case adding a candidate rule r’
to the model does not improve compression, we test if replacing rule
r with 7’ leads to compression (line [7and [8). To ensure we can always
describe the data without loss, we never remove singleton rules.

After adding a new rule, SEQRET-MINE performs a pruning step to
remove existing rules that may have become redundant or obsolete
(line . The PRUNE method iterates over the non-singleton rules in the
model and removes those whose exclusion reduces the total encoded
size. We do so in PRUNE ORDER where we consider rules in order of
lowest usage, highest encoded size, and lowest tail length.

We repeat generating candidate rules, adding them, and pruning
redundant rules until convergence. Convergence is guaranteed as our
score is lower bounded by o. The worst case time complexity of one it-
eration of SEQRET-MINE is, O(|R||Q|(h +t)). We provide the full deriva-
tion in Appendix.|c.2.2]

Algorithm 7: SEQRET-MINE
Input: Sequence database D over (), significance level a
Output: Rule set R
R—{e—e|Vec O},

-

2 do
3 for v € R in EXTEND ORDER do
4 for v’ € CANDRULES(D, r) in order of p-value do
5 if L(D,Ru {r'}) <4 L(D,R) then
6 | R—Ru{r};
7 elseifr ¢ {¢ —» ¢ | Ve e ()} and
L(D,R u {r'}\{r}) <« L(D,R) then
8 | R (R\{r}) u{r};
9 if R updated then
10 R — PrunE(D, R);
11 continue with next r
1z while R updated;
13 return R

2 In our experiments we set a to 0.05, which by the no-hypercompression inequality

corresponds to a minimum gain of 5 bits.
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4.5 RELATED WORK

Classical rule miners for event sequences operate similar to frequent
pattern mining, but in addition to the frequency requirement also im-
pose a minimum confidence threshold. Various approaches have been
proposed to address different data modalities, such as rules over item-
sets ordered by time [53} 54, 56], or rules over events in sequences [30,
39, [201]. The former generally count the number of sequences contain-
ing a rule as its support, whereas the latter use sliding or minimal
windows to capture multiple rule occurrences within a sequence.

Rules can be further categorized into partially ordered rules [22, |52
where the rule tail follows the rule head but the constituent events of
the rule head and the rule tail may appear in any order, and sequential
rules where the order both between the rule head and the rule tail as
well as within the rule head and the rule tail has to match [201]. Each
of the above approaches consider the quality of individual patterns
and hence suffer from the pattern explosion. To address this, Fournier-
Viger and Tseng propose TNs [55], a method that reports the top-k non
redundant rules, it uses a strict notion of redundancy and is not able
to avoid semantically redundant rules.

Most closely related to our approach are existing methods that use
MDL to select or mine rules. oMeN [Chapter 2] is a supervised method
for mining ‘predictive patterns’. It is not applicable in our setting as
it requires a target. Existing rule set miners for event sequences either
filter down an existing set of rules [21]], or do not allow for gaps [14].
As such, none of the existing methods directly addresses the problem
we consider.

4.6 EXPERIMENTS

In this section we empirically evaluate SEQRET-CANDIDATES and SEQRET-
MiNE. We implement both in Python and provide the source code, syn-
thetic data generator, and real-world data online3

We compare SEQRET to POERMA [52] and POERMH [22] as represen-
tatives of frequent rule mining, to TNs [55] as a top k non-redundant
rule set miner, to cossu [14] as an MDL-based rule set miner, and to
Sas [170] and SquisH [11] as MDL-based sequential pattern miners.

3 lhttps://eda.rg.cispa.io/prj/seqret/
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Figure 4.3: [Higher is better] F1 scores for synthetic data. We observe that

SEQRET is robust against (a) high noise, (b) rule confidence, (c)

number of true rules, (d) rule tail length, and (e) large alphabets.
In (f) we evaluate rule recovery where heads and tails are only
as frequent as by chance, SEQRET-MINE still picks up the ground

truth.
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As candidate patterns for SEQRET-CANDIDATES we use the output of
Sos [170] because sQuisH crashes regularly. For TNs we set k to the
number of rules, and for POERMA and POERMH, the minimum support
and minimum confidence values according to the ground truth when
known. In the case of real datasets where the ground truth is unknown,
we set k for TNs as the number of rules returned by SEQRET-MINE.
For POERMA and POERMH we use a minimum support threshold of 10
where feasible, and 20 otherwise. We allow all methods a maximum
runtime of 24 hours. With the exception of Cossu, which we allow a
maximum runtime of 48 hours, as it generally took longer to complete.
We ran all experiments on an Intel Xeon Gold 6244 @ 3.6 GHz, with
256GB of RAM. We provide additional details in Appendix. [c.3.1}

4.6.1  Synthetic Data

We first consider data with known ground truth. To this end, we gen-
erate synthetic data from a randomly generated rule set R. For a given
alphabet size, number of rules, sizes of the heads and tails, and con-
fidence, we generate rule heads and the rule tails by selecting events
from alphabet () uniformly at random with replacement.

GENERATING DATA We generate event sequences S as follows. We
first generate background noise by sampling uniformly at random
from the alphabet. Next, we plant patterns, i.e. the empty-head rules
from R. We sample uniformly from all empty-head rules in the model
and write the tails to S at random positions while making sure we
do not overwrite existing rules. Finally, we go over the generated se-
quence and wherever a non-empty-head rule is triggered, we sample
according to the desired confidence of the rule whether the trigger is a
hit or a miss. If it is a hit, we sample the delay and then insert the cor-
responding rule tail. For all tails we plant, we sample gap events. The
probability of delay and gaps are set as input parameters. We provide
additional details of synthetic data generation in Appendix.[c.3.2}

Unless stated otherwise, we generate sequences of length 10 000 over
alphabets of size 500, rule sets of size 20 with rule confidence 0.75. We
generate 20 datasets per configuration in each experiment.
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EVALUATION METRIC As evaluation metric, we consider the F1 score,
we again follow the flow network based approach introduced in Chap-
ter 2l We base the flow capacity on the similarity between the rules,
we compute the similarity using the Levenshtein edit distance without
substitution, i.e the longest common subsequence distance [127]. To
keep the similarities comparable between rules we normalize by the
combined lengths. Formally, we have

sim(X,U) =1—1lesd(X,U)/(|X|+ [U]),

where lesd (X, U) = | X| + |U| — 2|lcs|. We want to evaluate similarity of
the whole rules, the head, and the tails, as such the similarity between
two rules is then a weighted average,

sim(X - Y,U— V) =sim(XY,UV) /24+sim (X, U) /4+sim (Y, V) /4.

SANITY CHECK We first evaluate if our score indeed prefers rules
over other patterns. To this end, we generate synthetic data using a
ground truth rule set consisting of 6 pairs of the form {¢ — X, X — Y}.
We then compare the encoded sizes of the ground truth model against
alternative models of the form {€ — X,e — Y}, {e — XY} resp. {¢ —
X,e — XY}. We find that our score always prefers the ground truth.
Next, we evaluate on data without structure. We find that for 6o trials
on sequences varying in size from 5000 to 15000, SEQRET-MINE, in 51
instances correctly reports no rules. In g instances, it returns a single,
rule with a true confidence between 10% and 40%.

DESTRUCTIVE NOISE  Next, we evaluate robustness against destruc-
tive noise. To this end, we generate data as above and then add noise by
flipping individual events e € S with probability ranging from 20% to
100%. We show the results in Figure We observe that SEQRET is ro-
bust against noise and still recovers the ground truth well even at 80%
noise. At 100% noise, there is no structure in the data and all methods
except TNs correctly discovers no rules. Throughout all synthetic exper-
iments POERMA performs better than POERMH, we hence omit POERMH
from the synthetic experiments results. Further, as sQuisH regularly
crashes, we report averages over finished runs only.

RULE CONFIDENCE Next, we evaluate recovery under different rule
confidence levels. We vary the rule confidence from 0.1 to 0.9. We show
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the results in Figure We observe that SEQRET is robust against
low confidence rules and outperforms the state-of-the-art methods by
a clear margin.

VARYING SIZE Next, we evaluate how SEQRET performs for ground
truth models, alphabets, resp. rule tails of different sizes. First, we
consider data with 10 to 50 ground truth rules. We show the results in
Fig. SEQRET works consistently well across all model sizes. Next,
we vary the alphabet from 100 to 1000 unique events. We give the
results in Fig. and observe that SEQRET recovers the ground truth
consistently well. Finally, we vary the length of the rule tails from 1 to
11. We show the results in Figure We observe that, except for the
case where the rule tail size is 1, SEQRET recovers the rules well and
outperforms the competition by a large margin.

RANDOM RULE TRIGGERS Finally, we evaluate if SEQRET can re-
cover conditional dependencies even when the rule heads and rule
tails are infrequent in the data. For this, we consider the case where
the rule heads occur only by chance. To this end, we generate syn-
thetic data where no rule heads are planted. We insert the rule tails
wherever the corresponding rules have triggered. To ensure that the
rule heads do occur in the data, we limit its size to 1. We also limit
the size of the tail to 1 to ensure they do not stand out as patterns by
themselves. We show the results in Figure SEQRET-MINE is able
to consistently recover the rules. Here, SEQRET-CANDIDATES performs
significantly worse because Sqs is not able to find good patterns in this
challenging setting.

4.6.2  Experiments on Real Datasets

In this section, we examine if SEQRET mines insightful rules from real
world data. We first discuss the datasets and then the results.

DATASETS We use eight datasets drawn from five different domains.
We consider two text datasets, JMLR, which contains abstracts from the
JMLR journal, and Presidential, which contains addresses delivered by
American presidents [170]. POS contains sequences of parts-of-speech
tags obtained by using the Stanford NLP tagger on the book “History
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of Julius Caesar” by Jacob Abbott [145]. Ordonez [133] and Lifelog* con-
tains the daily activities logged by a person over several days. Rolling
Mill contains the process logs from a steel manufacturing plant [187].
Ecommerce contains the purchase history from an online store for sev-
eral users over 7 months? Finally, Lichess contains sequences of moves
from chess games played online® In Table l4.1| we provide statistics on
all datasets, as well as on the results of the different methods.

GENERAL OBSERVATIONS Overall, we observe that frequency-based
methods like PoErMA and PoermH discover a high number of rules,
making interpretation difficult up to impossible. TNS produces largely
redundant rules. Cossu is limited by its restrictive rule language and
discovers only very few rules. SQs is a sequential pattern miner that
identifies meaningful patterns that permit examination by hand, but
does not capture conditional dependencies that SEQRET does success-
fully model. This difference is evident when comparing the compres-
sion achieved by different methods: SQs compresses the data less effec-
tively than SEQRET, likely because SEQRET is more expressive. SEQRET-
CANDIDATES improves upon SQs but still compresses worse than SEQRET-
MINE.

cASE STUDIES Next, we present illustrative examples to highlight
how the results from SEQRET differ from those of state-of-the-art meth-
ods. To better understand the results, we examine a phrase from the
JMLR dataset, ‘support vector machine’, that all methods identify in
some form. SEQRET-MINE discovers the rule < € — support, vector>
as well as the rule <support, vector — machine> which expresses that
<support, vector> is a pattern, and that whenever it occurs it increases
the probability of but is not necessarily followed by machine. In contrast,
SEQRET-CANDIDATES and S@s both treat the entire phrase as a single
pattern, <support, vector, machine>, failing to capture the independent
existence of <support, vector> and the conditional dependency involved.
On the other end of the spectrum, PoERMA and TNS discover 12 resp.
14 rules involving either support or vector, many of which are semanti-
cally redundant.

https:/ /quantifiedawesome.com/

https:/ /www.kaggle.com/datasets/mkechinov/ecommerce-behavior-data-from-
multi-category-store

https:/ /www.kaggle.com/datasets/datasnaek/chess
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In the POS dataset, SEQRET discovers common sentence structures,
such as the pattern <to, verb-base-form>, and the pattern <determiner,
cardinal number> capturing phrases such as “the first”. SEQRET also cap-
tures rules, e.g. <to, verb-base-form — personal-pronoun> and <to, verb-
base-form — possessive-pronoun>. These rules correctly identify how ei-
ther personal pronouns or possessive pronouns tend to follow phrases
like “to tell” or “to give”. cossu, the method closest to our approach,
fails to find any of the rules discussed. Meanwhile, sQs finds these
structures as several independent patterns disregarding the conditional
dependency. The frequency-based methods again return overly many
and highly redundant rules.

On the Rolling Mill data, SEQRET discovers rules that clearly repre-
sent different parts of the production process. For example, <stab, gies,
sort — brwa, Imbr, tmbr> captures the transition from steel mill (where
hot iron is casted and sorted to slabs) to the rolling mill (where slabs
are rolled to plates). This demonstrates the power of rules and pat-
terns in the same set, as there are instances where <stab, gies, sort> is
not followed by <brwa, Imbr, tmbr> but such instances are rare. sQs
again finds several patterns involving parts of <stab, gies, sort, brwa,
Imbr, tmbr> but does not explicitly model the conditional dependency.
Cossu fares better than in other datasets but nevertheless misses many
important dependencies resulting in poor compression.

For the Lichess dataset, SEQRET finds the well known “King’s Pawn
Game” opening move, as the pattern <white:eq, black:e5>. In addition,
it discovers 12 rules with rule head <white:eq, black:e5>, capturing the
different variations that often follow. For example the rule <white:eq,
black:es — white:Nf3>, we show this rule in Figure the red ar-
rows corresponds to move <white:eq>, green to <black:e5>, and blue to
<white:Nf3>. 5Qs, on the other hand, needs several partly redundant
patterns, i.e. repeating moves <white:e4, black:e5> and <white:Nf3>, to
explain the same dependencies.

Diving deeper into results on Lichess, SEQRET discovers rules in-
volving “King’s side castling” (denoted by O-O and shown in Fig-
ure which despite being insightful conditional dependencies are
missed by Sgs. Examples are <black:0-O — black:Re8> and <black:0-O
— white:Qez2>. The former captures black moving its rook to e§, a po-
sition originally occupied by the King and made available only after
castling. The latter captures white moving its queen to e2 following

85



86

MINING RULE-SETS FROM EVENT SEQUENCES

Figure 4.4: Rules discoverd on the Lichess dataset: In (a) we show the rule
<white:eq (ved arrow), black:es (green arrow) — white:Nf3 (blue arrow)>.
In (b) we show black castling <black:0-O>. Castling is a special
chess move where the king moves two squares toward a rook, and
the rook jumps over the king to the adjacent square.

black castling, as a deterrence to black rook (as e8 is in the line of at-
tack of the queen). Another example is the pattern <black:Nf6, black:O-
O> which makes sense as moving the knight away is a prerequisite
for castling. For frequency-based methods, we find anywhere between
128 and 1370 rules involving castling, most of which are redundant.

4.7 CONCLUSION

We considered the problem of mining a succinct set of rules from event
sequences. We formalized the problem in terms of the MDL principle
and presented the SEQRET-CANDIDATES and SEQRET-MINE algorithms.
We evaluated both on synthetic and real-world data. On synthetic
data we saw that SEQRET recovers the ground truth well and is ro-
bust against noise, low rule confidence, different alphabet sizes, and
rule set sizes. On real-world data SEQRET found meaningful rules and
provides insights that existing methods cannot provide.

As future work, we consider it highly interesting to study the causal
aspects of sequential rules. Our approach lends itself to a causal frame-
work by mapping the rule heads and tails to temporal variables and
re-modeling the rules as structural equations involving these variables.
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In Chapter |7l we move towards causal rules by studying causal rela-
tionships between events.
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SEQRET-CANDS SEQRET-MINE SQS PoErMA PoerMH TNS Cossu

Dataset ID|| D] Q] |P||R|] %L |P| |R] %L |P| %L IR| IR| |R| |IR] %L
Ordonez 739 2 10 2 0 11.45 1 5 1685 21145 95923 113337 6 2 -2.42
JMLR 14501 155 1920 62 9 1.90 2 203 3.33 116 1.61 127 1282442 205 — -
Rollingmill 18416 350 446 158 50 52.22 9 313 56.33 247 50.46 - — 247 46 20.56

Lichess 20012 350 2273 81 18 242 11 326 4.57 113 2.13 4326 2068 348 - -

Ecommerce 30875 4001 127 77 10 13.72 89 130 27.87 95 13.59 43513 231824 219

6 -0.09
Lifelog 40520 1 78 36 6 885 16 79 9.97 59 6.51 2001521 1932296 95 5 -1.66
5

POS 45531 1761 36 65 6 1836 38 33 18.12 160 12.64 - - 71 -0.52

Presidential 62010 30 3973 30 4 0.46 2 129 0.96 58 0.38 57 90552 131 — -

Table 4.1: Results on real-world data. We report the number of discovered patterns (non-empty-head rules) P and rules R.
For SEQRET, sQs and cossu, we report the percentage of bits saved against the SEQRET null model as %L. Failed
runs, e.g. because of excessive runtime (cossu) or out-of-memory errors (POERMA and POERMH), are marked by ‘~.



SUMMARIZING EVENT SEQUENCES WITH
GENERALIZED SEQUENTIAL PATTERNS

In the previous chapters we studied how to summarize event sequen-
ces in terms of serial episodes and sequential rules. The proposed
methods provide summaries in terms of, what we call surface level
patterns. That is, patterns over observed events in the data. Surface level
patterns can not capture patters that, at specific location, emit one sym-
bol out of a restricted set of symbols, for example ab followed by c or
d. To address this, we study the problem of succinctly summarizing a
database of event sequences in terms of generalized sequential patterns.
That is, we are interested in patterns that are not exclusively defined
over observed surface-level events, as is usual, but rather may addi-
tionally include generalized events that can match a set of events. We
are not only interested in discovering generalized patterns but also the
generalized events — both directly from the data.

5.1 INTRODUCTION

Succinctly summarizing a database in easily understandable terms is
one of the key problems in data mining. Pattern set mining, where we
mine a small sets of patterns that together model the data well, has
proven to be particularly successful [57, 170, [180]. Existing methods,
however, only consider what we call surface-level patterns. These are
patterns that are exclusively defined over observed events, and there-
with also only match exact instances in the data.

To illustrate the limitations of surface-level patterns, let us consider
a toy example. The two sentences ‘the cat meows’ and ‘the dog barks’
share only the event ‘the’. Any method that only considers surface-

This chapter is based on [35]: Joscha Ciippers and Jilles Vreeken. “Below the Surface:
Summarizing Event Sequences with Generalized Sequential Patterns.” In: Proceedings
of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. 2023, pp.

348-357.
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level events would either just report ‘the” as a common pattern, or, if
they occur frequently often enough in the data report both sentences
as patterns, neither of which is particularly useful. In contrast, any
human would immediately see that these sentences are both instances
of the general statement ‘the [pet] [makes noise]’, and would be annoyed
to get a summary that would both explicitly report all variants of this
general pattern (e.g. mice squeaking, horses whinnying) as well as fail
to report rare instances (e.g. fishes saying blub). For natural language,
there exist high-quality word ontologies that we can use to analyse text
through a more general lens [9, 70]. However, for event sequence data
in general, this is not the case. This raises the question, how can we
automatically discover a set of patterns that succinctly describes the
data in terms of more general patterns?

In this chapter we consider the problem of discovering generalized
events and generalized patterns from event sequence data. A general-
ized event is a symbol that can match different observed events e.g.
« = {a,b} matches a and b. A generalized pattern is a sequential pat-
tern that is defined over observed and generalized events, e.g. pattern
c,,d matches c,a,d and c, b, d. This more expressive pattern language
allows us not only to more effectively summarize event sequence data,
but also provide deeper insight as it is less prone to under or over-
fitting as compared to a pattern language of surface-level patterns. In
this context underfitting means that patterns are either not reported
or only partially, overfitting means semantically identical patterns are
reported multiple times.

We define the problem of discovering the best set of generalizations
and patterns in terms of the Minimum Description Length principle
[71]. Loosely speaking, we are after those that together provide the
best lossless compression. The search space for this problem is vast,
triply-exponential, and is not favourably structured, which is why we
propose the FLock algorithm to heuristically mine good models from
data. FLock finds high-quality generalizations by considering those
events that frequently appear in the same (pattern) context, and finds
high-quality generalized patterns by iteratively merging patterns and
extending them with discovered generalizations.

FrLock aside, very few methods consider sequential patterns beyond
surface level patterns, and either require a beforehand known structure
[9, |70, [163] or can only model ‘generalizations’ that are limited to a
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single location in a pattern [11]. As we will see, methods that only
consider surface-level patterns are prone to highly redundant results —
after all, they cannot generalize and are hence bound to report every
sufficiently frequent variation of a true generating pattern — but also
to underfitting, because they only report sufficiently frequent instances
rather than the more rare but important variants.

Through an extensive set of experiments and comparisons to a wide
array of competitors, we show that our method works well in practice.
On synthetic data, we show that FLock recovers surface-level patterns
as well as the state of the art, but that it outperforms these competi-
tors by a large margin in recovering generalized patterns and gener-
alizations. On real-world data, we show that the small sets of highly
expressive patterns that FLock discovers provide clear insight into the
data-generating process that goes far beyond what surface-level pat-
terns can provide.

5.2 PRELIMINARIES

In this section, we discuss preliminaries and introduce the notation we
use throughout the chapter.

5.2.1 Notation

We consider a database D of |D| event sequences. An event sequence
S € D consists of |S| events drawn from an alphabet ), of observed
events ¢ € (),. We write S[j] to refer to the j eventin S and S [j : k]
to mean a subsequence S|j]...S[k]. Note, we do not allow multiple
events to occur at time point j.

In addition to observed events e € (,, we also consider generalized
events a € (),. Generalized events are special in that they match mul-
tiple observed events e € (), e.g. « = {a,b} will match either a or b.
We allow generalizations to be nested, e.g. = {«,c} will match any
out of a, b, or c. We can flatten a generalized event, fl(«), to obtain all
observed events that « can match.

As patterns we consider serial episodes. A serial episode p € Q! is
a sequence of |p| events over an alphabet ) = ), U (),. We say that a
sequence S contains an instance of a pattern p if there exists a window
S[j : k] that matches p. We explicitly allow gaps between the events in
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p. To avoid spurious matches we consider windows up to a length of
|p| 4+ |p|n, where n is a user-chosen parameter. The support of a pattern
in D is the number of unique matches of p, note that one pattern can
match multiple times per sequence.

During search we iteratively refine the generalized alphabet (), by
adding and removing (events from) generalizations a € (),. We write
(a, R,®) to denote that refinement of (), where we add event set R <
Q) to existing generalization a € ();, or adding a new generalization
® = R to Qg if @ ¢ Q. Analogously, we write («,R,©) whenever
we want to remove (events from a) generalization . Wherever clear
from context we do not write the @ and ©. To denote a set of additive
refinements for (), we write Qg?, and analog Q? to denote a set of
removal refinements.

5.3 MDL FOR GENERALIZED SEQUENTIAL PATTERNS

We will now define the problem we aim to solve. As model class M for
a dataset D over observed alphabet (),, we consider tuples that define
a generalized alphabet ();, and a set of patterns P over () = ), U Q.
To ensure that every model M € M can validly encode D we require
P to always include all singleton patterns, i.e. P 2 (),. By MDL, we
are interested in that M € M that most succinctly describes D without
loss.

5.3.1 Decoding a Sequence

Before we define how we encode a dataset given a model M, we first
give the intuition on its main components by explaining how to decode
an already encoded sequence S. We give an example in Fig. In
Cover 1, S has been encoded using singleton patterns only. To decode
it, we simply iteratively read pattern codes from the pattern stream C,,
and use model M to decode these to the correct events.

Cover 2 utilizes model M better. We again iteratively read codes
from C,. The first code is for pattern p, and we can immediately
append its first event (a ‘d") to the decoded sequence. To determine
whether there is a gap or not, we read a code from the meta stream
Cyn. This happens to be a fill-code (1), meaning we can write the next
event of p. This is the generalized event « that can match either e or
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Figure 5.1: Toy example showing two ways to encode the same sequence S.
Cover 1 uses only singletons, while Cover 2 uses the entire model
M. A cover C consists of (up to) three different code streams: C,
contains codes for patterns, C;, defines how these interleave, and
Cs specifies which observed events e € (), the generalized events
a € Q)¢ in the cover map to.
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f. To determine which of these two events we have to emit, we read
a code from the specification stream Cs, and proceed accordingly. We
then continue as before, reading another fill code, and writing a ‘b’
Next, we read a gap-code (2 ) from the meta-stream, which informs us
that there is a gap in pattern p. To fill this gap, we have to read the
next code from the pattern stream. We read the code for pattern g, and
hence write its first event to the sequence. We now have two patterns
that could emit the next event. We therefore read as many meta codes
as there are active patterns. If all of these are gap codes, we read from
the pattern stream, and otherwise we emit the next event for that pat-
tern for which we read a fill code. Here, the latter is the case for p,
we write the corresponding ‘c’, and are finished decoding p. To wrap
things up, we read the next meta-code for g, which is a gap that we
fill according to the next pattern code (‘d’) and finally read two fill
codes for g and hence emit ‘e” and ‘a’, after which we have decoded S
without loss.

5.3.2 Calculating the Encoded Length

Now that we know what we need to encode, we define how many bits
these codes should cost.

ENCODING THE DATA We start by defining how to compute the
encoded cost of a database D given a model M. Formally, we have

L(DIM) = Ln(ID]) + | D Ln(ISil) | + L(Cp) + L(Cm) + L(Cs)
S;eD

(5.1)

We first encode the number of sequences, and then the length of each
sequence in the database. We then encode the pattern stream C,, meta
stream C,,, and specification stream Cs. We encode the number and
length of the sequences using Ly, the MDL-optimal encoding for inte-
gers z > 1 [153].

We next discuss the three code streams. We start with the pattern
stream Cp, Eq. (5.2). Because the occurrences of pattern codes in the
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pattern stream are independent, we encode these using optimal prefix
codes. Formally, we have

— N use(p)log [ 18(P) ,
L(Clﬂ)_ p%\:/l g(p)l g(Zp/eMMSg(P’)> ’ (5.2)

where usg(p) is the number of times the code for p appears in pat-
tern stream C,. To use optimal prefix codes we will have to explicitly
encode the usages in the model.

In contrast, the occurrences of codes in the meta stream C,,, Eq. (5.3),
are dependent on which patterns we are currently decoding, meaning
we need to know (many) conditional probabilities. To avoid having to
make arbitrary choices on how to explicitly encode these in the model,
we propose to use prequential codes [71] (see Chapter [4] Section [4.3).
Formally, we have

fills(p et i gaps(p) et i
L(Cn) 2 Z lo <2e+i>_ Z 10g(2€+ﬁlls(p)+i> ’

peP i=1 i=1

(5-3)

where fills(p) and gaps(p) refers to the number of fills resp. gaps of
pattern p in meta-stream C,,, and € is a small constant. As is common
in prequential coding, we set € to 0.5.

This leaves the encoding of the specification stream C;, Eq. @ Be-
cause specification codes depend on the context of the generalization
at hand, we will again use prequential codes. Generalizations within
a pattern p, however, can additionally be dependent on each other. for
example, cats meow, dogs bark. To exploit and reveal such structure,
we allow for dependencies between generalizations within a pattern.
We provide the details in the model encoding below. For now, what
matters is that we encode the specification code for an event e € fl(«)
for the current generalization « of pattern p conditioned on an earlier
emitted event 4 of p. Formally, the length in bits of the entire stream is

uglp € + usg;(e|d)
Y 2 k’g( (@)le + Teepa usgi<c|d>> - G4

pePacp =1

where for each pattern p € P (first sum), and each generalization & € p
(second sum), we encode the surface-event e conditioned on the value

95



96

GENERALIZED SEQUENTIAL PATTERNS

of event d using prequential codes (third sum). Note that if a gener-
alization a € p is not dependent on an earlier emitted generalization
B € p, d will be a fixed constant by which the above becomes a standard
unconditional prequential code.

ENCODING THE MODEL Next, we define how to compute the en-
coded cost of a model. We start by defining the encoded cost for the
generalized alphabet (),. We have

L(Qg) = LN(‘QoD + LIN(‘Qg‘ + 1) +
Q|

> <108k+10g <k;1> +log (|0%|) +log<|ﬂé‘>> : )
m

k=1

where we first encode the sizes of the observed' resp. generalized al-
phabets using L. We then encode the generalizations a € (), in turn.
For each generalization a; € ()¢, we first transmit how many nested
generalizations it includes, denoted as /, and then identify which these
are using a data-to-model code over the k — 1 generalizations transmit-
ted so far. We then transmit the number of observed events, denoted
as m, in ), that « includes, which are not already defined by its nested
generalizations. Once we know this number, encode which events out
of QO] these are, where ()}, is the set of observed events excluding events
already defined by its generalizations, formally (), = Q0o\ Uge, f1(B)-

Given the generalizations, we can next encode the pattern set P and
their respective usages, i.e. the code table, Eq. . We first transmit
the number |P’| of non-singleton patterns P’ < P, and then the com-
bined usage of all patterns. We finally encode each pattern p € P'. We
have

L(CT) = Ln(|P"[) + Lv(usg(P)) +

usg(P) + |Q| — 1> (5.6)
lo + L .
s (i) * D
peP
To encode a pattern p € P/, Eq. (5.7), we first transmit its length us-
ing L. We then encode which events and generalizations it includes,

and finally for each a € p we encode whether and if so on which ear-

Note that as the size of ), is constant for any model of the same data, it is unnecessary
to include the first term for optimization, but we include it to have a lossless code.
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lier generalization it depends (the plus one corresponds to a dummy
symbol that represents independence). Formally,

d
L(p) = Ln(p]) + |pllog(|Q]) + > log(k+1) (5.7)
i=1
with kis [{j | p[j] € Qg,i < j}|if p[i] € Q4 else k = 0. By which we have
a lossless encoding for model M, L(M) = L(Q);) + L(CT), and data D,
by which we can now formally state the problem.

The Minimal Generalized Pattern Set Problem Given a sequence database
D over an event alphabet C),, find the smallest pattern set P and generaliza-
tion set Q) such that the total encoded size

L(D,M) = L(M) + L(D|M)
is minimal.

For a given database D over observed alphabet (), there exist expo-
nentially many patterns sets P, exponentially many generalization sets
()¢, and exponentially many possible covers C. Worst of all, the search
space of neither the overall nor of the subproblems exhibits any struc-
ture such as (weak) monotonicity or submodularity that we can exploit
for our search. Hence, we resort to heuristics.

5.4 ALGORITHM

To find good models in practice we propose to break the problem into
two parts: 1) given a model M find a good cover C, and 2) given a
cover C find a good model M. We discuss these in turn.

5.4.1 Covering the Data

We start by determining a good cover C given a model M. A valid cover
is a set of windows that covers each event in database D only once. To
find a C that minimizes L(D|M) we first need for each pattern p € P
all windows in D that match p. To find these efficiently, we use an
inverted index.

Next, we describe how we find a cover C given a set of windows.
Given that there are exponentially many possible covers [11], deter-
mining the optimal cover is computationally not feasible, therefore we
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Algorithm 8: REFINE

input :pattern p and current cover C
output:set of candidates Q
1 F — FrReQUENTFOLLOWERS(p, C)
2 Qepx{geF|lg>1}
3 Q<—{g9€Q|AL(g) >0}
4 Q — QU ExTENDPATTERN(p, {g € F | || = 1})
5 return Q

approach this problem greedily. To this end, we define an order over all
windows where we consider window w; > w, if, in order of priority,
\p1| > |p2l, gaps(w1) < gaps(wa), support(p1) > support(pz), and finally
lexicographically, where w; is a window of pattern p;, analogously for
wy. Intuitively, we prefer patterns that cover many events with as few
gaps as possible, as these will likely result in the shortest description
of D. To find a cover given a window set, we consider each window
w. If there does not exist a higher ranked window that conflicts, i.e.
overlaps, with w, all windows that conflict with w are discarded. We
repeat this process until all conflicts have been resolved, resulting in a
valid cover of D.

5.4.2 Finding Good Models

Given a sequence database D, our overall goal here is to discover a set
of generalizations (), and a set of patterns P that together describe D
well. The general idea of our proposed algorithm is to start with an
‘empty” model M that only includes the observed events (), and to
iteratively and greedily refine this model by adding patterns and gen-
eralized events that improve the total encoded length. In each iteration,
we generate a set of candidate patterns based on the current model,
evaluate these, and if a candidate improves the model, we add it to the
model. To avoid getting stuck with stale patterns and generalizations,
we clean up at the end of each iteration by flattening generalizations
and merging similar patterns. We now explain these steps in detail.

GENERATING CANDIDATES A key part of our proposed algorithm
is to find improved or refined versions of a given pattern p. We provide
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the pseudocode as Algorithm [8| The general idea for refining a pattern
p is to check whether there is any structure in the events and patterns
that often occur soon after p in cover C. We then generate candidate
patterns by concatenating pattern p with patterns g (line [2) that occur
within the maximum number of allowed gaps n|p| (line [1). We discard
all candidates for which we estimate that they will not lead to any
gain (line [3). With AL(g) we denote how many bits we actually save
(or lose) by adding g to our model, but as computing this exactly is
computationally costly we instead use an efficiently computable opti-
mistic estimate AL that we define below.

It is relatively straightforward to see how to instantiate the above
strategy for refining an existing pattern with a singleton or pattern
g € P, as it essentially amounts to counting how often in C every
possible g occurs within the maximum window length around p. It
is much less clear how to discover good candidate generalizations «,
however. The first idea that comes to mind is to ‘simply’ first use the
above strategy to find a model M that only includes patterns over €),,
and then to merge those patterns in M that are most similar, replacing
the events where they differ with a new generalized event . While
this strategy works to a certain extent, it can only discover the most
frequent generalized events and patterns, and will not truly solve the
problem at hand.

We therefore propose an improved strategy for discovering general-
izations, where for a given pattern p we consider the distribution of
when which events happen close to p in C. We provide pseudocode in
Algorithm [g} The main idea is that if two or more events a and b often
occur within a similar number of time steps after pattern p, they are
good candidates to be included in a new generalized event as there
is evidence they have a similar contextual (possibly, semantic) relation
to p. Specifically, we propose to generate candidate generalized events
based on the similarity of the distributions of delays between pattern
p and occurrences of events e € (). A delay distribution of event e € ()
relative to pattern p captures how often and how many times steps af-
ter p event e occurs; technically we implement this non-parametrically
using a histogram with one bin per time step. We construct these delay
distributions in line [1| of Alg. [§|for all g4 € Q) that occur within the n|p|
time steps after p in C.
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Algorithm 9: EXTENDPATTERN

1
2

3
4

O Ny o U

10
11
12
13
14
15
16
17
18
19

20

input :pattern p and delay distributions F
output: Candidate pattern p=

F «— ExTENDWITHGENERALIZATIONS(F)
counts(e)
E

pr—pxeée, pr—p

af — &

Q < [(e,(lpl.€") lee F]

while AL(p’) > AL(p+) increasing do
pr—p'

e, (i,e) < top(Q)

p1 < cp;(p,i—1,e) if E<E' else cp;(p,i,e)
if ¢’ € (g then

a—e

O~ QF U {(wia, {e}))

else

o—

i an' — QP U {(aig, {¢,e})}

p2 < cp,(p,i ) B

p < arg MaX,,c 1 (12,08")) AL(p)
QP — OF if p' = p2

update Q

¢’ — argmax,_p

return (px, OF)

To maximize the chance that the resulting generalization will im-

prove the overall cost, we start extending a pattern p with the event ¢/
that has the highest delay probability mass, i.e. occurs frequently with
the same delay after p, formally ¢/ = argmax,_p counts(e)/E, where

E

is the median delay between p and e (line . Next, we seek if

there are other events that together with the just added ¢’ would in-
stead form a promising generalization x. We do this by testing events
e € F in order of the most similar delay distribution to ¢’ normalized
by frequency. That is, W1(E’, E) /counts(e) where E’ and E refer to the
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respective distributions, and W1 is the Wasserstein distance [177] be-
tween two delay distributions, defined as

Wi = mi i :
(El, EZ) m]\}n Z Z nz,]dl,] ’ (5 8)
ieE1 jeE2

where 1, ; refers to the probability mass that has to be moved between
i and j and d;; to the distance. By counts(e) we refer to the frequency
within n|p| time steps after p.

This may once again seem like a sound strategy, but comes with the
problem that events that are next to each other will have similar delay
distributions. That means we have to additionally test whether event e
is truly part of a generalization together with ¢’ or is simply a regular
neighbor to that event or generalization. We therefore, evaluate the
gain in compression by either extending the generalization with a new
event (line or by extending the pattern directly with the event left
or right (line @) Note with cp,(p,i,e) we create a new pattern where
event e is inserted behind the i*" event of pattern p, and analog with
cp,(p,i, ) we create a new pattern where the i event is replaced by a.
Given both extensions, we take the one for which our estimated gain is
higher (line[17). After each added event we update the priority queue.
Here we described the procedure of extending a pattern by adding
events or patterns to the back; we do the same with preceding events
and patterns. This concludes the description of how we create a set of
pattern candidates and generalization candidates given a pattern and
the current cover.

FINE-TUNING CANDIDATES The overall algorithm takes the candi-
dates generated above, and tests, in order of estimated gain, for addi-
tion to the model. Testing a candidate for addition involves computing
L(D, M) and therewith a new cover C'. That is, we now know where
and which instances of p are used, and can take advantage of that in-
formation and further refine the pattern to minimize the total encoded
length. We do so by pruning the generalized events to only include
those instances that are used in a way that aids compression. To this
end, we test for each event in Qg@ whether removing it will improve
the gain in bits (PRUNEGEN). As we allow for gaps in the occurrences,
we can further take advantage of the cover C’ by extending pattern p
with events that frequently occur in these gaps (REFINEINTERLEAVING).
This includes generalized events that are built from multiple observed
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Algorithm 10: MERGE

input :Pattern set P and generalization ()¢, cover C
output: Pattern set P and generalization (), cover C
Q]

forall p e P do

3 q < argmax.cp o |n[} overlap between p and ¢

=

N

4 | if overlap between p and q > 1 then Q.add(p,q);

forall p,q € Q do in order of 1. overlap 2.combined usage
6 | P, Qf « merge pand g
if AL(p’) > 0 then

P—(Puip)\p.q
9 apply OF to O

g1

10 replace all p and g with p’ in C

11 return P, (), C

events that occur in the gaps of p. We provide the pseudocode for both
procedures, as well as a more detailed description, in the appendix.

SIMPLIFYING THE MODEL By iteratively adding more specialized
patterns and generalizations to the model, previously discovered pat-
terns and generalizations may no longer positively contribute to the
MDL score. We therefore prune the model after each iteration by merg-
ing similar patterns and by flattening generalizations. We discuss these
in turn.

We provide pseudocode of the merge procedure as Algorithm
We consider merging two patterns p and g if they have the same length
(line 3) and have an overlap of at least two events (line |4) where we say
an event overlaps if p[i] = q[i]. To prioritize pattern mergers likely to
improve compression and meaningful generalizations, we merge pat-
terns in order of overlap and combined pattern usage, both decreasing
(line [5). When merging two patterns we create for all events where
pli] # qli] a new generalization « = {p[i], q[i]}. Through this process it
is possible to create the same generalization twice, if that happens we
replace all instances with the same generalization and delete the other
one. Since the new pattern will match all windows that the source
patterns matched, we do not have to recompute a new cover and can
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Algorithm 11: FLATTEN

input :Pattern set P and generalization (),
output: Pattern set P and generalization (),
1 forall & € ()¢ do
2 | if a used in just one other € (), then
3 extend B with fI(«)
4 forall p € P do
5 L replace & with B in p
Qg <« Q\{a}
if L(D, M) did not decrease then
L revert all changes

=2

9 return P, (),

directly compute by how many bits our encoding will change (line
[7)- If we have a positive gain we keep the new pattern, and the cor-
responding generalization, and discard the two source patterns (line
B).

Next, we discuss how we simplify the generalizations. We provide
the pseudocode as Algorithm |11 If a generalization « is used in only
one other generalization 8, we consider merging it with its parent(s)
(line [3), meaning we add all events ¢ € fI(«) to B and replace a with
in all patterns p € P (line[5). Similar to above, as the updated patterns
match the same positions as before we can compute the total encoded
size without recomputing the cover. If we obtain a gain, we keep the
change, otherwise we revert (line .

As both types of simplification steps can create new candidates for
the other, we call MERGE and FLATTEN alternating until convergence.
The SimrLIFY algorithm can also be applied to post-process the results
of traditional sequential pattern miners in order to reveal generaliza-
tions from surface-level patterns. We will use it as such in the experi-
ments to permit a comparison to the state of the art.

ESTIMATING GAINS Exact computation of our MDL score requires

computing the cover, which is a computationally costly operation. Rather

than always relying on the exact score, we use an optimistic estimator
AL(p, Q) of the gain in compression where possible. We can estimate
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the gain AL by breaking it down into two parts: the cost of pattern p in
the model and the change to the encoding of the data by the updated
model. The bits needed to describe a new pattern or generalization can
be computed efficiently as shown in Section and no estimation is
necessary; when extending an existing generalization we simply con-
sider the difference in encoding cost between the old generalization
and extended generalization. We propose to optimistically estimate the
encoded cost of the data given the updated model, by using the usage
statistics of the previous cover. To give the intuition, suppose we create
a new pattern p by concatenating g and r, we then estimate the usage
of p by the minimum usage of g and r, and estimate the new usages
of these patterns by subtracting exactly that amount. We then simply
compute L(D|M) with these estimated usages. We give further details
on how we estimate the new usages and how to compute AL(p’, OF)
in the appendix.

5.4.3 The FLock Algorithm

Now that we have seen all the individual parts, we can explain the
Frock algorithm in detail” The general idea is to start with an empty
pattern set P and an empty generalization set (), and iteratively add
patterns and generalizations until adding new patterns no longer im-
proves our model M. We give the pseudocode in Algorithm To
keep track of patterns we want to extend to a more refined version we
maintain a set O, and initialize O with all singletons (line [1). At each
iteration, we refine all p € O to pattern candidates (line[5). A candidate
base on pattern p consists of two parts, a more specific pattern p’ and
a generalization extension Qg?. All pattern candidates are added to a
priority queue that we order by the estimated gain.

Next, we test each candidate. If the candidate gives us an actual gain,
we fine-tune the candidate (PRUNEGEN, line and REFINEINTERLEAV-
ING, line and add it to the model (line [15). To allow for different
refinements of source p and further refinements of pattern p’ we add
both to the open set O. Iteratively adding candidates to the model
does not necessarily result in the most succinct representation, there-
fore we simplify the model after each iteration (line [17). As patterns

The name FLOoCKk comes from the expression ‘birds of a feather flock together’, which
was the inspiration for how we search for generalizations.



5.4 ALGORITHM

Algorithm 12: FLock

input :sequence database D over alphabet (),
output: pattern set P, generalization set (),

O, POy, Q¢ 3, C« D, gain < +o0
while gain > 0 do

=

N

3 PQ <« ], gain <0
4 foreach p € O do
5 L PQ.addAll(ReFINE(p, C))
6 O—0o
while not PQ.empty() do in order of AL(p’, OF)
8 PO, p < top(PQ)
9 gain’,C" — AL(p, OP)
10 if gain’ > 0 then
1 Q?, C < PRUNEGEN(p/, Q?, C’)
12 v, Q?, C < REFINEINTERLEAVING(p/, Qg@, C)
13 O—0u{p,p}
14 apply QF to O
15 P—Pu {p,}
16 gain «— max(gain, gain’)
17 P,Q, C < SmmpLIFY(P, ), C)

18 return PRUNE(P, Q,, C)

can become superfluous as more specific patterns are added, we test
for each pattern whether removing it will decrease the total number of
bits, before returning the model (line [18).

coMPLEXITY Finally, we consider the time complexity of FLock. In
the worst case, we have to find all windows for all possible sequential
patterns over alphabet () to cover the data. We can find all windows
of a pattern p in O(||D|?) [11], where ||D|| denotes the total number
of events in D. To cover the data, in the worst case, we have to sort all
windows, O(||D||log||D||) and check each window against all already
selected O(||D|| |C|). Combined, this gives us an overall complexity of
O(ID|| 1FI(IID|| + log (D)) +ICI)).
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5.5 RELATED WORK

While not technically pattern mining, research in Natural Language
Processing (NLP) on finding synonyms, computing similarities, and
constructing ontologies over words are related to our work. Extensive
ontologies have been constructed that capture relationships between
words [122] but only little work exists on automatically discovering
high-quality ontologies directly from data. Neural networks have been
shown to produce embeddings that place semantically similar words
close to each other [44)} 121] yet unlike our patterns these embeddings
do not allow for a straightforward interpretation. In the experiments
we will compare FLock to WorD2VEC with resp. to the bag-of-words
and skip-gram architecture [121].

Process mining is more closely related to sequential pattern mining
as it also considers event sequences. Instead of mining insightful pat-
terns, it however focuses on discovering process models with explicit
temporal semantics for reconstructing sequences from start to finish
[187]. As these processes can get very complex, methods have been pro-
posed to abstract sub-processes into high-level activities [74} 166, 173],
whereas we aim to find generalizations over individual events. The
key difference to process mining is that we focus on event sequence
data in general, and are interested in patterns that characterize these
sequences without requiring that every sequence has been produced
by the same process.

Frequent pattern miners can be adapted to only report patterns that
match predefined constraints, including or-structures through regular
expressions [60, [139| [140], in contrast to our method the specific or-
structures have to be provided beforehand and are not discovered.

Mining generalized sequential patterns has been studied in the semi-
nal work of Srikant and Agrawal [163, [164] they however require a tax-
onomy and suffer from the well-known pattern explosion of frequent
pattern mining. Closer to our method are the proposals of Grosse and
Vreeken [70] and Beedkar and Gemulla [9] who both study the prob-
lem of summarizing data given an ontology. We, on the other hand,
aim to discover both the generalizations and patterns without prior
knowledge.

SquisH [11] comes closest to our approach, as it is able to discover
patterns that include or-structures and follows a similar MDL based
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approach. SquisH discovers or-structures in a post-processing step
where it combines discovered pattern instances that are exactly the
same except for one event. In contrast, we jointly search for generaliza-
tions and generalized patterns, by which we can identify much richer
(more subtle) generalizations. We allow generalizations to be re-used
between patterns, as well as explicitly model dependencies between
generalizations within a pattern in order to obtain highly informative
models. We compare to SQuisH [11] in the experiments.

5.6 EXPERIMENTS

In this section, we empirically evaluate FLock on synthetic and real-
world data. We implemented FLock in C++ and provide the source
code for research purposes, along with the used datasets in the sup-
plementary material> We compare to Sgs [170], Squish [11], Ism [57],
Skorus [144]], and Worp2VEC [121].

As Sqs, Ism, and Skorus only consider surface-level events, we post-
process their results using the SimpLIFY Algorithm, to extract general-
ized patterns and generalized events from their results. We consider
both the bag-of-words and skip-gram defined versions of WorRD2VEC
[121], clustering the embedding using DBScaAN [50], merging events
part of the same cluster into a new generalized event, and finally ap-
ply Sas on the resulting data to find generalized sequential patterns.
As per default, we set the gap parameter of FLock to n = 10, in the
appendix we provide a sensitivity analysis that shows that FLock is
robust against the parameter choice. For data with very low structure
we see that a low n produces better results. We give a more detailed
description of the experimental setup, and an ablation study on parts
of the algorithm, in the appendix.

5.6.1 Synthetic Data

To evaluate how well FLock recovers the ground truth we consider
synthetic data. We sample, uniformly at random, databases D consist-
ing of 100 sequences S, each of length 200, over an alphabet (), of size
500. We additionally consider between o to 6 generalized events a € (),

3 https://eda.rg.cispa.io/prj/flock/
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each of which, unless stated otherwise, consists of five observed events
e € ), that are sampled uniformly at random. We plant patterns of
length 10. We ensure 10% of all planted instances are interleaved in
the data, meaning the next pattern starts before the last one ends. We
ensure that each planted instance does not collide (overwrites) with an
earlier planted instance.

All results on synthetic data are averaged over ten independently
generated datasets. In terms of runtime FLOCK is comparable to Sqs
and SquisH; for all reported experiments all three finish within sec-
onds to minutes. The competing methods take much longer: for Sko-
rus, which is a top-k method, we had to set k to 50 and limit the pattern
length to 10 to keep the run-time under 24h.

We evaluate the reported pattern sets with standard F1 score, we
again follow the flow network based approach introduces in Chapter
We do the same for generalizations, where we allow a mapping if
the planted is a subset of reported generalization, or vice versa.

First, as a sanity check, we run FLock on data without any structure,
i.e. no planted patterns. FLock correctly reports no patterns. Next, we
consider the setting where we start with 30 independent patterns with-
out any generalization, and in each subsequent experiment we replace
five of these with one generalized pattern p, where one event in p is
a generalized event. Colloquially speaking, we answer the question:
“How well does FLock pickup generalized patterns compared to sur-
face level patterns?”. We show the results in Figure [5.2h. We observe
in the initial setting without any generalization we are on par with
Sas and SquisH, the Word2Vec based approaches are next best, while
Ism and Skorus perform worst. However, as we increase the number
of generalized patterns, FLock maintains a high F1 score throughout
while the score of all other methods decreases significantly.

Next, we consider a more difficult setting. We sample five gener-
alized events and plant 5 patterns each containing 2 generalizations.
Note that this means different patterns share the same generalization.
To investigate performance under decreasing support, we decrease the
total number of planted pattern instances from 400 to 50 in steps of
50. This setup aims to answer the question: “How frequent have pat-
terns to be to be discovered?”. We show the results in Figure [5.2b. We
observe that FLock beats the other methods by a wide margin, with
Sos and SquisH in second place. FLock performs very well up to 100
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|0 FLOCK ¢ SQUISH ¢ SQs ¢ Ism ¢ SkoPUS ¢ w2vB ¢ w2vS
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#Generalized patterns Total planted instances
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Figure 5.2: F1 score for recovery of planted patterns (solid line, Fig. a-c) on
synthetic data over (a) number of patterns containing one general-
ized event, (b) total number of planted pattern instances, and (c &
d) number of observed events per generalized event. F1 score for
recovery of generalized events (dotted line, Fig. a-c). In Plot (d)
we evaluate (F1 score) the recovery of events per generalization.
Overall we see that FLock beats the other competitors by a wide
margin.
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planted instances, at 50 the score drops significantly; as an individual
instance of a pattern on expectation then only occurs 0.4 times this is
unsurprising.

To test how FLock behaves when the pattern frequency stays the
same, but the individual instances get less frequent, we consider the
case where we increase the number of events per generalization (cf.
Figure ). We observe a very wide margin to all other methods. An
increase in generalization size only has a very small effect on FLock’s
ability to recover the planted patterns.

Finally, we evaluate the quality of the reported generalizations (cf.
Figure [5.2d). To do so we generate data containing two patterns, shar-
ing one generalization. To see how well we recover the generalization
if some events are much less frequent, we decrease the usage of events
in the generalization linearly to zero, and in each subsequent experi-
ment we increase the number of events per generalization. With that,
we aim to answer the question: “How accurately does a generalized
event get recovered?”. We again report the F1 score, this time com-
puted over how well the individual events within the generalization
are recovered. We omit Skorus from this experiment as a single run
did not terminate within 24h. We see that FLock recovers the general-
ization well, while Squisa and Sq@s do well in a simpler setting, they
are however not robust against larger generalizations, unlike FLoCK.

On the synthetic data experiments we have seen that FLock out-
performs all other methods clearly. In some simple settings Sqs and
SquisH are on par with FLock. The WorDp2VEC approaches only do
reasonably well on data with no or very few generalizations, inspect-
ing the results this is likely mostly due to Sgs. Ism and Skorus do
worst throughout the experiments.

5.6.2  Real-World Data

To evaluate if FLock finds meaningful structure in real-world data,
we test FLock on five distinct datasets, electrocardiograms (ECG)} a
business event log (BPI-2015)7 a rolling mill production log (Rolling
Mill [187]), and two text datasets (J/MLR and Moby [170]). We compare
FrLock to the two best performing competitors, SQs and SqQuisH. Since

4 https://physionet.org/content/stdb/1.0.0/
5 https://data.4tu.nl/collections/BPI_Challenge_2015/5065424/1
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Frock Saos Squisu
Dataset Q| |P] Q] [P| |Qg| |P] Q]
ECG 200 4 1 128 12 88 6
Short-ECG 200 3 2 3 0 4 1
BPI-2015 192 189 53 400 6 525 35
Rolling Mill 836 195 56 430 35 554 73
Moby 10276 239 1 231 o 202 26
JMLR 3845 466 5 580 0 480 87

Table 5.1: Results on real datasets. We given alphabet size |(),|, and the num-
ber of reported patterns |P|, and number of generalization |()|, for
each method. Overall we observe that FLock reports fewer patters
and more generalizations, making the model easier to interpret.

the ECG and text datasets have a very low amount of structure we
set n = 2. We run all three methods on each dataset and report the
number of discovered patterns and generalizations in Table

First, we consider the ECG dataset, we note that compression rates
are similar but there is a big difference in the number and quality of
patterns. FLock can capture the key structure in just four patterns,
while Sq@s reports 128 patterns and SQuisH reports 88 patterns. As
this dataset contains enough events such that each individual instance
is still strongly represented we reduced the number of events dras-
tically, from 100k to 3k (Short-ECG). We find that Sqs and Squish re-
port shorter patterns than FLock, FLock is able to discover generalized
events enabling it to find longer patterns over this extended alphabet.

The next two datasets we consider are event logs (BPI-2015 and
Rolling Mill), characterized by strongly repetitive and structured be-
havior. FLock finds patterns that describe a more general behavior
which we do not observe for the other methods. To demonstrate that
Frock discovers generalizations with strong dependencies between
each other we show a pattern discovered on the Rolling Mill dataset
in Figure The instance of « has a strong influence on p while
determines the value of  and finally the value of 7y has a strong influ-
ence on the value of J, see zoom box. This pattern covers 14 possible
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Figure 5.3: Example pattern discovered by FLock on the Rolling Mill dataset,
of length 8 out of which 4 are generalized events («, 8,7, ). We
see the value of the previous generalization strongly influences
the next generalization (see zoom box): e.g. if « has value “KUBE”,
B has value “wser” in 75 of 76 cases.

instances within one pattern, including rare instances where the usual
procedure is not followed.

Finally, to see how well FLock handles settings with large alphabets
we consider text data. We consider a set of abstracts from the JMLR
journal, and the novel Moby Dick by Herman Melville. For the JMLR
dataset, we see that FLock reports fewer patterns than Sqs and Squisa
while capturing the same amount of structure, allowing for a more
interpretable representation (see Table [5.1). We show a selection of
the patterns discovered by FLock on JMLR, Moby and BPI-2015 in the
appendix.

5.7 DISCUSSION

The experiments on real-world data show that FLock performs well in
practice. It recovers surface-level patterns as well as the state of the art,
but additionally is also able to recover ground-truth generalizations,
generalized patterns, as well as the dependencies between generaliza-
tions within patterns. The models that FLock discovers are smaller,
less redundant, and the more expressive patterns it discovers provide
clear insight into the data-generating process.

It is worth commenting on interpretability. A single surface-level pat-
tern is arguably easier to interpret than a generalized pattern, and if
matching the ground truth, so is a set of surface-level patterns com-
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pared to a set of generalized patterns. One of the key strengths of
Frock is that its MDL objective will automatically determine if it is
better to model the data at hand with surface-level or generalized
patterns; for the former, the experiments show that it is as able as
Sas [170], Ism [57], and SquisH [11] in discovering true surface-level
patterns, while it is unique in its capability to discover generalizations
that allow it to show the forest for the trees.

As good as its results are, we consider it very interesting direction
to explore how to incorporate background knowledge in the form of a
given ontology, a set of generalizations, i.e. sets of surface-level events
that we know or expect should behave similarly, or a similarity ma-
trix over events. To a certain extent, our current problem formulation
already allows for this: we can initialize FLock with a model M that
includes the corresponding generalizations. It is, however, not imme-
diately clear how to best continue from there; should FLock consider
these given generalizations as immutable parts that cannot be pruned,
or as a suggestion that can be refined?

5.8 CONCLUSION

We considered the problem of summarizing an event sequence database
with generalized sequential patterns. To that end, we introduced the
concepts of generalized events and generalized sequential patterns. To
find succinct and non-redundant models, we formalized the problem
using the Minimum Description Length principle, and presented the
efficient FLock algorithm to find good pattern sets in practice.

Experiments on synthetic and real world data showed that FLock
works well in practice and provides insight beyond what is possible
with existing surface-level pattern mining methods, even with post-
processing. To further improve FLock we plan, as future work, to study
how to best incorporate background knowledge as well as how to scale
up through continuous optimization based search.
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SYNTHETIC NETWORK FLOW GENERATION
THROUGH PATTERN SET MINING

In the past chapters we studied methods for event sequences in gen-
eral. In this chapter, we study a specific data type of event sequence,
namely network flows recorded over time. A network flow captures
one connection e.g. one TCP session will be captured as one flow. We
propose a domain specific pattern language and learn a summariza-
tion of the network flow data. We then use this learned summarization
to generate new synthetic network-flows. We compare our approach to
state-of-the-art methods and compare generated data on several crite-
ria, namely realism, diversity, compliance, and novelty.

6.1 INTRODUCTION

Evaluating network security tools, such as intrusion detection systems
(IDS) [171] or firewalls [67], and conducting network measurement
campaigns, such as applications testing [75] or device identification [130],
requires the systematic collection and sharing of network traffic datasets.
However, multiple studies have highlighted recurring issues with
network traffic datasets, such as quality [97], density [93], and label-
ing accuracy [72]. In fact, instead of using actual network captures,
which may not be shared due to confidentiality and privacy risks [93],
researchers have proposed to generate traffic in a controlled environ-
ment. This synthetic traffic does not result from human network activ-
ities but from network automatons, such as web crawlers [151], email
generators [75], or bots that operate specific applications following pre-
defined user profiles [161]. Simulating traffic effectively sidesteps the
issues associated with human-generated traffic [151]: e.g., the risk of

This chapter is based on [33]: Joscha Ciippers, Adrien Schoen, Gregory Blanc
and Pierre-Francois Gimenez. “FlowChronicle: Synthetic Network Flow Generation
through Pattern Set Mining.” In: Proceedings of the ACM on Networking 2 CONEXTy,
ACM, 2024, Article No: 26.
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leaking confidential information is minimized since the users are simu-
lated and not real. Furthermore, the controllable behavior of these sim-
ulated users allows easier labeling of the resulting traffic compared to
traffic generated from human interactions [161].

One major drawback of traffic simulation is scalability: once the sim-
ulation is launched and the traffic is being recorded, the behavior can-
not be adapted to a new constraint that was not implemented at the
starting time. The resulting traffic cannot be adapted to produce un-
planned behavior and, therefore, hardly corresponds to another con-
figuration in terms of hosts or activities [1]. Such adaptation will often
necessitate re-running the entire simulation, which is time-consuming
and costly. To address the issues of both real and simulated traffic, the
research community has resorted to synthetic data generation, which
relies on a modeling algorithm that learns existing traffic characteris-
tics to reproduce them [1) |5, |129]. It is expected that such algorithms
enable the generation of new traffic to assess the generalization of net-
work security measures to new environments [1] while preserving con-
sistency /compliance [125].

This article focuses on the generation of benign traffic in the format
of network flows. For this specific task, several classes of synthetic data
generation models have been proposed so far, including Generative Ad-
versarial Networks (GAN) [s |6, |13, 136} [150], Variational AutoEncoders
(VAE) [64, [119], autoregressive model [195], Bayesian networks [157].
A problem these models have with network flow generation is their
lack of modeling the temporal dependencies among flows [5]]: for ex-
ample, several works [6} 150, 157] are sampling network flows indepen-
dently. We argue that this type of generation is insufficient for real-life
applications.

We therefore propose FlowChronicle, a novel synthetic network flow
generation method based on pattern mining [4, 180]. Our first contribu-
tion is a powerful pattern language especially designed to match net-
work flows, that not only captures relevant value combinations within
flows but also between different network flows. We formalize this prob-
lem as mining a set of non-redundant patterns that best summarize the
training network flow dataset.

Our second contribution is a data generation mechanism based on
the learned representation. As we will show, this approach generates
highly realistic network traffic and respects the protocol specifications.
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Moreover, since FlowChronicle generates synthetic data directly from
the temporal patterns mined from the training dataset, this results
in synthetic traffic that preserves temporal relations among network
flows. In addition, the patterns mined by our generating model are
interpretable and auditable.

Finally, we compare our model to other state-of-the-art generators
to show that our model, on top of providing realistic synthetic traffic,
also preserves time dependencies between flows.

The remainder of this chapter is structured as follows: we intro-
duce preliminaries in Section We detail our contributions, namely
the pattern language and the network flow generation method in Sec-
tions respectively. The evaluation against other generators and
their results are discussed in Section before concluding in Sec-
tion 6.8

6.2 RELATED WORKS

Although many statistical models can be used for synthetic data gener-
ation, in recent years deep-learning-based methods have been increas-
ingly favored due to their ability to generate high-dimensional data
such as images. Especially GAN [68], VAE [94], and Transformers [147,
175] have been shown to produce highly realistic synthetic data. These
methods have also been applied to generate multiple types of network
traffic data, including raw packet contents [24, 46, 76, 116], sequences
of headers [160, 199, flow features [6, |107, 113, 150, 157, |199] or even
temporal series of features [82,|106]]. In the following, we will focus on
methods for synthetic network flow generation.

The first use of these generative methods for creating synthetic legit-
imate network flow generation has been proposed by Ring et al. [150].
It was quickly followed by Manocchio et al. [113] who have shown
that, when applied to network traffic, WGAN-GP [73] is prone to a
phenomenon called mode collapse, which is when the generated data
only cover a part of the training data distribution. Anande et al. [6]
and Bourou et al. [13] have shown that synthetic data generation meth-
ods for tabular data [[192] also work well for network flow datasets.

The major limit of these solutions is that while the generation pre-
serves the dependencies across network features within a flow, it does
not consider the dependencies among the flows. For example, before
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establishing an HTTP connection, a client might have to reach a DNS
server to resolve the domain name of the requested website. That is, a
single action of the client will, hence, lead to two flows, one to the DNS
server and the other to the website host. All the previous solutions, due
to sampling new network flows independently, do not model those
inter-flow dependencies [5]. To solve that issue, Xu et al. [195] imple-
ment a solution that not only model dependencies within one network
flow but also dependencies across network flows by using an autore-
gressive model. Lin et al. [106] propose a different approach where
they model the problem of network traffic generation as a temporal
series generation, where a multidimensional time series represents the
activity. This method was then adapted by Yin et al. [199] to gener-
ate complete network flows. Recently, Schoen et al. [157] have shown
that this solution does not generate realistic network flows and tend to
produce flows that do not comply with basic network-specific checks.
Therefore, generating realistic network flows that also include tempo-
ral dependencies remains an open challenge.

We propose a different approach based on pattern set mining, pat-
tern set mining has been shown to be able to learn representations
suitable for synthetic data generation [179]. Existing pattern set min-
ers, including our own, do not directly address our needs, we hence in-
troduce our own novel pattern language that can model transactional
relations, i.e., structure in a flow, as well as sequential relations, i.e.,
structure between flows. Researchers have successfully used pattern
mining for various tasks related to network data, such as near-live
network monitoring [104], efficient computation of heavy hitters [134],
and to provide succinct visualization of network flow traces [65]. Most
works use pattern mining in the context of anomaly detection: Jakhale
and Patil [83] build on the work of Li and Deng [104] to detect anoma-
lous flows. In contrast, Brauckhoff et al. [15] use frequent pattern min-
ing to summarize flows that cause anomalies. Paredes-Oliva et al. [135]]
propose to classify extracted patterns as either anomalous or not, in
contrast to individual flows or time intervals. Unlike us, none consider
patterns over multiple flows, and all use frequent pattern mining. To
the best of our knowledge, we are the first to use pattern mining to
generate synthetic network flows.
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6.3 BACKGROUND

In this section, we present some background knowledge we rely upon
for FlowChronicle, in particular, related to pattern mining and machine
learning.

6.3.1  Network flows

Network traffic encompasses all the packets that are exchanged among
hosts within a specific network over a designated time frame. A net-
work flow is an abstraction that describes a sequence of packets that
share five common key attributes: source IP address, destination IP ad-
dress, source port, destination port, and transport protocol. Two scopes of
network flows exist: unidirectional and bidirectional. Unidirectional
flows only contain packets sent from the designated source to the des-
ignated destination, while bidirectional flows group packets in both
directions. A network flow record embeds the statistical data related
to the communication identified by the 5-tuple, such as the Duration
of the communication or the Number of Bytes transmitted. Such extra
features depend on the network flow format, and several competing
formats exist. In the following, for brevity sake, "network flow record"
will be abbreviated to "flow".

6.3.2 Bayesian networks

Bayesian networks are a class of generative statistical models that rep-
resent probability distributions [138] and are widely used in statistics.
Syntactically, they are described as a directed acyclic graph, where
each node is a random variable, and a set of conditional probability
tables. These conditional probability tables, one per node, describe the
probability of their associated node depending on the values of its par-
ents. Due to their structure, Bayesian networks are considered to be
explainable models: the edges between nodes are indicative of their
statistical correlations.
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6.3.3 Notations

In the following, we denote F each feature of the network flow (such as
source IP, protocol, etc.) and F its domain, i.e., the set of possible values
for F. Let us denote n the number of features. A flow fis simply a tuple
of the n features: the domain of flows is therefore F; x F, x --- x F,,. We
will typically use the letter ¢ to denote timestamps. Finally, a dataset
D is a sequence of timestamped network flows (¢, f).

64 PATTERN LANGUAGE OF FLOWCHRONICLE

In this section, we formalize the language of patterns that are identi-
fied by FlowChronicle.

6.4.1 Intuition

Given a dataset D of network flows, we aim to identify patterns that
can describe which combinations of flows occur frequently in D. Some
patterns can concern values inside a flow. For example, destination
port 53 is frequently associated with protocol UDP, intuitively, we could
use a pattern to automatically complete the protocol given the destina-
tion port. Some patterns can also concern several flows. For example,
HTTP(S) requests are typically preceded by a DNS request. Similarly,
an IMAP request (to read emails) can be followed by HTTP(S) requests
if URLs of images are present in an email. For this reason, our patterns
can span over multiple flows.

Classical pattern mining searches for deterministic relations, e.g.,
destination port 53 and the UDP protocol. We consider they are not
sufficient to properly encompass network flows dependencies. For this
reason, we propose to also include in our pattern statistical relations.
For example, if a machine has both an SSH and an HTTPS server, then
when this machine is contacted, the destination port will probably be
22 or 443 but not any other port.

6.4.2 Pattern language

A pattern is composed of two parts: the partial flows, to mine discrete
temporal dependencies, and the dependency structure, to mine statis-
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tical temporal dependencies. Since a pattern can span across several
flows and can specify the values of features for these flows, we need
to store this information. For that purpose, patterns contain a table,
called the partial flows, which columns are the network features and
each row corresponds to a flow. We name cell each cell of such table.

Each cell of the partial flow can be one of three types. Firstly, there
are fixed cells: these are cells which values are directly defined in the
partial flows. For example, the first partial flow could have destina-
tion port 53 and the second, destination port 443. Secondly, there are
free cells: these are the cells not defined by the partial flows, and their
values are determined by the dependency structure (described below).
Lastly, there are reuse cells: the values of these cells are equal to the val-
ues of other cells in preceding partial flows of the pattern. A common
illustration of this type of cell could be the Source IP address of a first
flow that is reused as the Destination IP of a subsequent flow.

Because some cells can be free, each pattern also contains a depen-
dency structure. The dependency structure is a Bayesian network that
represents the joint probability distribution of the free cells.

More precisely, a pattern p is a tuple (Z, BN), where Z is a sequence
of partial flows, and BN is the Bayesian network representing the de-
pendency structure between free cells. We write Z[j] to denote the j'"
partial flow. Each cell of a partial flow can be either fixed (i.e., associ-
ated with a f; € F;), free (denoted B, for "Bayesian") or reuse (denoted
with an uppercase identifier). Besides, free cells can be marked for
reuse. This is denoted by adding an uppercase identifier in subscript
to B. For example, the value of B4 will be used for the reuse cell de-
noted A. If an identifier is defined in Z[j], then it can only be used
in later partial flows, i.e., in Z[k] such that k > j. BN is a Bayesian
network defined over all the free cells in partial flows, i.e. all 8 € p.

Examples of patterns are shown in Figure Three patterns are
defined: € has one partial flow with only free cells. Pattern p has two
partial flows. The identifier A in the reuse cell is used to ensure that
the source IP is the same in both flows. The ports are fixed while the
IP addresses are free. Finally, pattern g has three partial flows. The
identifiers A and B and the reuse cell ensure that the source IP of the
second flow is equal to the source IP of the first flow and that the
source IP of the third flow is equal to the destination IP of the second
flow.
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Figure 6.1: Toy example: On the left side we show a model with 3 patterns,
on the right side we show the dataset and how the patterns of the
model cover the dataset. The three patterns are: € has one partial
flow with only free cells (8). Pattern p has two partial flows. The
identifier A in the reuse cell is used to ensure that the source IP is
the same in both flows. The ports are fixed while the IP addresses
are free. Finally, pattern g has three partial flows. The identifiers
A and B and the reuse cell ensure that the source IP of the second
flow is equal to the source IP of the first flow and that the source
IP of the third flow is equal to the destination IP of the second
flow.

6.4.3 Dataset cover

To select the best model able to capture the patterns in a dataset, we
need to compute the term L(D|M). For this, we have to use the pat-
terns to compress the data, i.e., cover the datasets with patterns and
encode the locations of the patterns and the values of their non-fixed
values. To properly define this cover, we first define a window of a
pattern p, which indicates for each partial flow of p an index in the
data, such that the partial flow matches the flow at that index in the
data.

For example, in Figure pattern p is associated to two windows,
(12,89) and (178,206), and pattern g is associated to the window (56,113,145).
Remark that the fixed values of the pattern always match the data. Be-
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sides, the reuse cells also match: for example, in the window (12,89) of
pattern p, both source IP are indeed identical.

A dataset cover is a set of windows such that all flows of the dataset
are associated to exactly one window. To ensure that this is always
possible, we define a “catch-all pattern”, denoted € (see Fig. , that
has only one partial flow and whose cells are all free. € is called the
empty pattern. Remark that multiple covers can explain the data for a
given set of patterns, and that finding the optimal cover is a NP-hard
problem [91]. For this reason, we use a greedy algorithm to find a
cover.

6.4.4 Model encoding

Now that we have given the intuition, we formally describe our MDL
encoding, which has two parts: model encoding and data encoding
given a model. We start with the model encoding.

As model M we consider a set of patterns, we need to encode the
number of patterns, and each pattern. Hence,

L(M) = Ln(IM)) + Y] L(p)
peM

where | M| refers to the number of patterns in M. We encode |M| using
the MDL-optimal encoding for integers z > 1 [153].

To encode a pattern p, we first encode the number of partial flows
a pattern contains, then all the partial flows, and finally the Bayesian
network,

1d

L(p) = Ln(IpD) + | 2 L(Z[fIp) | +L(BNy)
j=1

To encode the number of partial flows we again use the MDL-optimal
encoding for integers.

We split the partial flow encoding into three parts: we encode 1) the
fixed cells, 2) which free cells that are marked for reuse, and 3) if there
are values marked for reuse in earlier flows, where and if we want to
use them. We will explain the encoding in turn.

We start by encoding for how many of the n flow features we want to
encode a fixed value, with log n bits. To select which k cells, we require
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log () bits. Finally, we encode the respective values by choosing one
value from the respective domain. To encode which cells we mark for
reuse, we first encode how many, out of the n — k remaining, and then,
choose the I cells we want to mark. Finally, we encode for which cells
we want to reuse values: we again encode how many of the remaining
n —k — [ and choose which m cells. For each of the m selected cells, we
select which of the previously marked cells we reuse. Formally this is,

L(Z[jl|p) = log(n) + log <Z> + (Z log Fi) +

i€R;
log(n — k) + log (n Z_ k) +
. n—k—1 .
1(((,p)| = 0) (1ogln —k~1) +1og ("7 )+ mlog(l(i, ),

where R; is the set of all features with a fixed cell, and 7(j|p) is a set
of all cells marked for reuse before the j* flow.

We encode the Bayesian network by encoding for each node its
number of parents ¢, in log K bits, where K is the maximum num-
ber of parents passed as a parameter to the learning algorithm, and
then select the parents out of all |B| — 1 possible parents, where B
is the set of free cells described by the Bayesian network (formally

B ={(j,1) | Z[jli = B v Z[jli = Ba})- So:

L(BN,) = >} logK +log <B|f1>
(j)eB i

We do not encode the conditional probability tables, as explained in
the next subsection.

6.4.5 Data encoding given a model

Now that we know how to encode a model M, we describe how to
encode D using a model M. We define the encoding of D by M as the
cover of D. Its length in bits is L(D|M). Because M is a set of patterns,
the cover is a set of pattern windows. In Figure we show a toy
example of a dataset, a model and its cover. Before we define how we
encode a dataset D, using a set of patterns, let us give the intuition by
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Code Sequence — encoding of data with model:

2p: 12 77 134.96.235.78 ' 142.251.36.5 212.21.165.114 178

28 134.96.235.36 185.15.59.224 1128.93.162.83 1q: 56 57 33
134.96.235.129 1 198.95.26.96 1 198.95.28.30 1€ : 156 134.96.235.78
134.96.235.5 | | 21

Figure 6.2: Encoding of the data shown in Fig. i.e. how the data is de-
scribed using the model.

describing how we decode a dataset from a given cover. More precisely,
a cover is a sequence of codes, encoding how often each pattern occurs,
where these occurrences are, and the values of the free cells.

In Figure we show the sequence of codes corresponding to the
toy example in Figure To decode the cover, we start by reading the
first code from the cover, in our toy example (2 P), indicating that we
use pattern ‘p’ twice in the cover. Next, we read for each partial flow
in the pattern the codes corresponding to the timestamps and (77),
the first one being the start time, and the second one the delay to the
tirst partial flow. Next, we read for each free cell one code—decoding
the values. We repeat these steps for the second occurrence of pattern
‘p’. We do the same for pattern ‘q’. Finally, code (1€), tells us there is
one flow is covered by the empty pattern. We read again the timestamp
code as well as the encoded values. With that, we have fully decoded
the cover.

Now that we have seen how data encoding works, we will formally
describe how many bits we need to encode it. For each p, we encode

how often we want to use it, i.e., the number of windows in the cover.

We then encode each window. Formally this is:

L(D| M) =) (Ln(W,]) +L(W,))
peM

where W), denotes the set of windows of pattern p used to describe D.
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The length of W, is the timestamps plus the free cells, encoded based
on the probabilities given by the Bayesian network,

W, | vl
L(W,) = > [ L(ts of w;) + ) L(teof w; | i) | —
i=1 k=2

log(Pr(w;|BNy, {w;|j < i}))

where L(t) = 1og(tmax — tmin) and tmax (resp., fmin) refers to the max-
imum (resp., lowest) timestamp in the data D, L(t; | t;) = Ln(t; —t;).
As we expect lower delays between flows, we chose Ly to encode the
difference between time points. It closely follows a geometric distribu-
tion, hence giving higher probability mass to lower delays, and thereby
requiring fewer bits for those.

To avoid having to encode the contingency table of the BN and
make arbitrary encoding choices in the process, we use prequential

codes [71](see Chapter [4] Section [4.3).

6.5 ALGORITHM

In this section, we present the whole generation pipeline: data pre-
processing, pattern identification—the previous section describes the
MDL loss used to choose a model but does not explain how to find the
candidate model—and data sampling from the selected model.

6.5.1 Preprocessing a network flow dataset

Network flow data are tabular data, where each network flow is a line
in the table, and each feature is a column. The features are either cate-
gorical (e.g. Transport Protocol), or continuous (e.g. Duration of the flow).
To mine patterns in that tabular dataset, we first need to discretize the
numerical features in our network flow description. Similar to Schoen
et al. [157], we discretize the numerical features into 40 categories, such
that each category contains the same number of samples.

6.5.2 Pattern Miner

In this section, we explain how to discover a good model and a de-
scription of the data under a given model M. We begin with the latter.
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6.5.2.1 Finding a cover

Given a model M, we want the cover C that minimizes the encoding
cost L(D | M). Finding the optimal cover is a NP-hard problem, so
we propose a greedy method. For this, we have to find out where we
can use a pattern p, i.e., we have to find the windows of p. We only
consider minimal windows, i.e., windows for which there does not ex-
ist a window w(p) whose interval I(w(p)) is a proper sub-interval of
I(w(p)). We sort all windows by 1) the number of covered flows (de-
creasing), and 2) inter-flow delays (increasing). Note the empty pattern
€ is defined to cover o flows, i.e., it should only be used to cover flows
that are not covered by any other pattern. Finally, we greedily add win-
dows to the cover until all flows are covered. If one window overlaps
with precedent windows, we skip it. With that, we have a description
of D in terms of pattern.

6.5.2.2 Iterative Pattern Search

The general approach is an iterative search procedure: at each iteration,
we generate pattern candidates and test if these candidates help in
reducing the description length. If so, we add them to our model. At
each step of the search, we ensure no source or destination IP has a
fixed value. Indeed, we do not want to learn the behavior of specific IP
addresses. Besides, we restrict reuse cells and cells marked for reuse
to only be source IP or destination IP.

CANDIDATE GENERATION The initial set of candidates is created
as follows: for each couple of features, and for each combination of
values of these two features (except the source IP and destination IP),
we create a pattern with a single flow with two fixed cells. The rest of
the cells are free and described by a Bayesian network.

During the search, we build new candidates by extending existing
patterns. Given a pattern, we have three different ways to generate new
candidates: 1) by directly creating a fixed cell, either from a previously
free cell or by adding a new row of free cells and transforming one
into a fixed cell—once again, this fixed cell cannot be a source IP or
destination IP; 2) by merging existing patterns. If both patterns have
only one partial flow and have no conflicting fixed cells, we merge
them into a new single-flow pattern. For patterns over multiple flows,

127



128 SYNTHETIC NETWORK FLOW GENERATION

Algorithm 13: FlowChronicle

-

N

© o NN o Ul e W

10

11
12
13
14

Input :set of flow D,

continous misses threshold ¢

Output: model M and Cover of D

M — {e}

C < all pairwise combinations

mode « single-flow, misses<— 0

while misses< t or mode = single-flow do

C <« C u BurLpCANDIDATES (M, mode)
¢ < argmaxgc ¢s(c)
if L(D,M) > L(D, M u c) then
M < PrUNE(M U ¢)
misses<— 0
else
L misses<— misses+1

if misses > t and mode = single-flow then
L mode « multi-flow

misses < 0

15 return M, C
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we create candidates by appending them; 3) by transforming a free
cell into a reuse cell. Such cells can only appear in multi-flow patterns
because a reuse cell can only reference a marked cell from previous
partial flows. This reuse cell can reference previously marked cells or
mark new previous cells to reference them.

CANDIDATE SCORE  As testing all candidates is not feasible in a rea-
sonable time, we want to test the most promising candidates first. To
this end, we derive a candidate score. The candidate scores capture
how many values a pattern can cover: the number of non-overlapping
windows multiplied by the number of fixed or reuse cells in the pat-
tern.

MINING A MODEL  We show the pseudocode of FlowChronicle in Al-
gorithm (13} We initialize our model with the empty pattern. We start
our search with the initial set of patterns. The basic idea is to take
the best candidate ¢ according to the candidate score c¢s(c), and if it
reduces L(D, M), we add it to the model. If a pattern fails to reduce
L(D, M), we will not test it again in future iterations™

As testing all candidates is not feasible, we propose an early stop-
ping criteria. We propose to stop when we exceed a consecutive misses
threshold t. This threshold is defined by the user.

To avoid building uninformative patterns spanning many rows, we
begin by searching for patterns within single flows. In practice, we do
that by only generating single-flow candidates. We continue this until
we surpass the consecutive misses threshold; at this point, we reset the
consecutive misses threshold and also allow the construction of candi-
dates that cover multiple flows.

Adding a new pattern to M can make existing patterns redundant.
We hence prune redundant patterns by testing for all patterns p where
the usage in the cover has been reduced: if L(D, M\{p}) < L(D, M),
we remove it from the model M.

6.5.3 Parallelization

To improve run-time on larger data sets, we propose to split the pre-
processed data into n chunks. We learn independently a model for

1 For better readability, we omitted this part from the pseudocode.
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each chunk, so each chunk can be processed in parallel. The learned
models then capture local characteristics and provide a cover of the
respective chunk. Since each model is a set of patterns and the corre-
sponding BN, we can simply take the union of all models resulting in
a new model for the entire dataset. The cover of the entire dataset can
be constructed by appending all individual covers. Finally, we relearn
the BN of the empty pattern (the pattern used to cover all flows not
covered by any other pattern).

6.5.4 Synthetic data generation

Once we have a set of patterns and the cover, we can use them to gener-
ate a synthetic dataset. From the cover, we can learn the probability dis-
tribution over the usage of each pattern (including the empty pattern).
To generate data we sample patterns form this distributions. Given a
sampled pattern, we sample the initial timestamps for each pattern. As
some patterns might occur more frequently during some periods (e.g.,
fewer emails during lunch, more OS updates in the morning, etc.), and
to not make any assumption about the shape of the distribution, we
estimate the frequency over time via a Kernel Density Estimation (KDE).
We then sample the timestamps from this distribution. For patterns
with multiple partial flows, we estimate a distribution of the delay
between consecutive partial flows, again with KDE, and sample from
this distribution. Finally, we have to fill the cells of all sampled pattern
occurrences. Cells with a fixed value are already set. For the free cells,
we sample from the Bayesian network BN associated with the pattern.
Finally, we set the values of reuse cells. This completes the generation
of a synthetic flow dataset.

6.6 EVALUATION METHOD

Our goal in this part is to provide an evaluation framework to com-
pare the generated data of different models. This evaluation will be
twofold: we will first evaluate the different generated flows indepen-
dently, without any consideration for temporal dependencies, and sec-
ond, we will study how well the generation preserves temporal depen-
dencies present in real data.
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6.6.1 Independent evaluation

Independent evaluation involves analyzing the network flow distribu-
tion generated by a model and comparing it with the training data
to determine if the model has captured the essential characteristics
needed to create new data. For each evaluated model, we compare its
synthetic network flow distribution with the real network flows from
the week-3 dataset (the training dataset). As described by Schoen et
al. [157, 158]], this comparison should elucidate four key attributes of
the generated data: Realism, Diversity, Compliance, and Novelty. Re-
alism ensures that a generated network flow should be sampled from
the same distribution as the real network flows. Diversity ensures that
the generated network flows should cover the entire real network flow
distributions. Compliance refers to the criterion that checks if the gen-
erated network flow adheres to specific network rules. Lastly, Novelty
ensures that the generated network flows are not mere replicas of the
real network flows.

REALISM Similarly to Schoen et al. [157], we evaluate the realism
of the joint distribution with the Density metric [124], the realism of
the conditional probability distributions with CMD (Contingency Ma-
trix Difference) and PCD (Pairwise Correlation Difference). CMD is
the difference between the generated data’s correlation matrix and the
training data’s correlation matrix (for numerical features). PCD is the
difference between the generated data’s contingency matrix and the
training data’s contingency matrix (for categorical features).

DIVERSITY Similarly to Schoen et al. [157], we evaluate the diver-
sity of the joint distribution with the Coverage metric [124]. A low
score indicates that the generated distribution does not cover the en-
tire training distribution. We also evaluate the marginal distributions
of each features. with the JSD (Jensen Shannon Divergence) for cate-
gorical features and the EMD (Earth Mover’s Distance) for numerical
features.

coMPLIANCE Compliance is the property that the generated net-
work flow should respect network protocol specifications. For exam-
ple, a generated UDP flow should not contain any TCP flags. We eval-
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uate this property with the DKC (Domain Knowledge Check) [150], a
succession of boolean tests for the generated network flow, each test
representing one property that we want to enforce in the generation.
We use the implementation proposed by Schoen et al. [157]. A lower
DKC means fewer tests have failed and a more compliant generation.

NOVELTY We evaluate the novelty similarly to Schoen et al. [157]
with he Membership Disclosure (MD) metric. This metric evaluates the
privacy risk of synthetic datasets generated by models trained on real
datasets. It involves comparing the synthetic samples to the training
and testing sets from the original data by computing the Hamming
distances between each pair of generated and real samples. When a
synthetic sample is sufficiently similar to a real sample (i.e., the Ham-
ming distance is below a certain threshold), the real sample is consid-
ered a potential leak from the training set. By varying the threshold,
a detection method for training samples is established, and the effec-
tiveness of this detector is measured using the Fi-score. The overall
privacy risk is quantified by integrating the Fi-scores over all possible
threshold values. In a network context, very similar flows like DNS or
NTP requests are not uncommon, so the level of novelty in synthetic
data should mirror that of a reference set of real data.

6.6.2  Preservation of temporal correlation

The above metrics only account for individual network flows, but we
seek to generate data that preserves temporal dependencies, so we also
need to evaluate this aspect. We propose to use feature-wise metrics to
assert whether a generated dataset preserves the temporal dependen-
cies present in the training set. We will consider the numerical features
on one hand and the categorical features on the other.

NUMERICAL FEATURES Inspired by several papers [109), (128, 131,
165], we evaluate the temporal dependencies between a generated dataset
and a training dataset by comparing the Autocorrelation Functions
(ACF) of every numerical features. The ACF of a numerical feature is
the (linear) autocorrelation between the value of the feature at a times-
tamp t and its value at a later timestamp t+I, where [ is the lag.
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Figure 6.3: TSTR methodology: two LSTMs are trained, one on the training
data, and the other on the generated data. Their accuracy are then
compared on evaluation data. This is repeated for each categorical
feature.

However, since not all lags exhibit strong autocorrelation, calculat-
ing the difference between ACFs across all lags may smooth out the
differences for those lags that do reveal significant temporal depen-
dencies. To address this, we discard any lags whose autocorrelation in
the training data does not exceed the Bartlett confidence interval [7].
This ensures that we compute the ACF difference only for the lags that
demonstrate strong temporal dependencies. This approach allows us
to verify whether a temporal dependency present at a certain lag in a
training feature is accurately reproduced at the same lag in the gener-
ated feature, and we apply this procedure across all numerical features
of the training dataset.

CATEGORICAL FEATURES For categorical features, we decided to
implement a TSTR (Train on Synthetic, Test on Real) method [208]. It
is commonly used when it comes to evaluate the preservation of tem-
poral dependencies [128) 165, [167]. This method compares the perfor-
mance of a model in a machine learning task when it is trained on the
training dataset and when it is trained on the generated dataset. To ap-
ply this methodology and highlight how a model preserves temporal
dependencies, we compare the performance of an LSTM (a temporal
deep learning model) when it is trained on training data versus when
it is trained on generated data for a feature-wise autoregressive task.
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For one categorical feature, we first encode its values in a one-hot
encoded vector. Then, we train an LSTM to predict the next one-hot
encoded value of that feature given the previous values in a context
window. This first training is done on the training dataset. Afterward,
we train another LSTM with the same hyperparameters (same num-
ber of hidden dimensions, same context size, etc.) on the generated
dataset. We compute the accuracy of the two LSTMs on the evaluation
set, and the final TSTR score is the difference between the two values.
We do this process (illustrated in Figure for every categorical fea-
ture. In practice, because we do not want our score to rely too heavily
on one configuration of the LSTM, we repeat the operation multiple
times while varying its hyperparameters. The score for each categori-
cal feature will be the average of the differences in accuracy for every
LSTM.

6.7 EXPERIMENTS

In this section, we would like to verify whether FlowChronicle is able to
generate network flows with a higher quality than other model-based
generation methods. The implementation of FlowChronicle, as well as
the experimental setup, are available online as open source software?.

6.7.1  Competing methods

We compare FlowChronicle with CTGAN [192], TVAE [192], EEWGAN-
GP [150] and NetShare [199]. NetShare does model temporal depen-
dencies, so we can compare our model against another method with
temporal dependencies. We were also interested in adding STAN to
our benchmark, but despite our best efforts, we were unable to re-
produce the work of Xu et al. [195] from the author’s repository. We
therefore omit it from comparison. We also compare our method to
the Bayesian Network proposed by Schoen et al. [157]: we call it Inde-
pendentBN. We also propose a variation that generates a sequence of
five network flows instead of generating every network flow indepen-
dently: we call it SequenceBN. Recently Tranformer-based methods
have been shown to be great synthetic data generators. As a represen-

2 https:/ /github.com/joschac/FlowChronicleCoNEXT
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Feature Description of the feature
Date first seen  Timestamp of the first packet of the flow
Proto Transport protocol

Src IP Addr Source IP Address (Client)
Dst IP Addr Destination IP Address (Server)

Dst Pt Destination Port

In Byte Number of Bytes coming to the client

In Packet Number of Packets coming to the client
Out Byte Number of Bytes sending from the client
Out Packet Number of Packets sending from the client
Flags Type of flags contained in the flow
Duration Duration of the flow

Table 6.1: Set of Features in our dataset

tative, we compare against the GPT2 architecture [147]. We tokenize
the data as we do for our method, and use a context window of 60
tokens.

6.7.2  Experimental protocol

We evaluate the methods on the CIDDS-001 dataset [151]. It is a sim-
ulated dataset of 4 weeks of traffic from 30 terminals (5 servers, 3
printers, 4 Windows clients, and 15 Linux clients). Because we focus
on generating benign traffic, we only kept the data recorded in the
OpenStack environment.

We use week-3 as a training set, and week-4 as a held-out Reference
set. The creation of week-4 followed the same process as week-3, and
thus, we consider this Reference set as the best possible synthetic gen-
eration. Because some parts of our evaluation methodology also re-
quire another evaluation subset (see Section 6.6.2} |Categorical features)),
we consider the benign traffic of week-2 as an evaluation set. We process
the original unidirectional flows into bidirectional flows. We consider
the 11 flow features shown in Table We did not include the Source
Port because it is generally randomly sampled in a particular range
(cf. RFC6056 [98]). In the original dataset, the external public IP ad-
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dresses were anonymized [151]. The value generated by our method
will, therefore, be anonymized too.

6.7.3 Time-independent Evaluation

We begin by evaluating the flows independently, without considering
temporal dependencies between flows. The different metrics were com-
puted 20 times on 20 different subsamples of both the generated and
training data. Each subsample includes 10000 flows. The average value
of each metric as well as the ranking of all our models according to
each of them are reported in Table With this global benchmark, we
can see that FlowChronicle is on average above the other model-based
methods, with CTGAN being a close second.

Density | CMD PCD EMD JSD Coverage | DKC MD Rank
Real. Real. Real. Real./Div. | Real./Div. Div. Comp. Noo. Average
1 ! ! ! ! t ! = Ranking
Reference (0.69) (0.06) (1.38) (0.00) (0.15) (0.59) (0.00) (6.71) -
IndependentBN | 7 (0.24) 5(0.22) 6(2.74) 8(0.11) 4 (0.27) 4(0.38) 4 (0.05) 4(5.47) 5.25
SequenceBN 6(0.30) 2(0.13) 5(2.18) 7 (0.08) 3 (0.21) 3(0.44) 2(0.02) 3(5.51) 3.875
TVAE 3(049) 4(0.18) 3(1.84) 2(001) 5(030)  5(033) 6(0.07) 5(517) 4.125
CTGAN 2(0.56) 3(0.15) 2(1.60) 3 (0.01) 2 (0.15) 2(0.51) 8 (o.11) 2(5.70) 3.0
E-WGAN-GP | 8(0.02) 7(0.34) 8(3.63) 5(0.02) 7 (0.38) 8 (0.02) 7 (0.07) 6 (4.66) 7.0
NetShare 5(0.32) 6(0.28) 1(147) 6(0.03) 6 (0.36) 6(0.22) 5(0.05) 7(3.82) 5.25
Transformer 1(0.62) 8(0.78) 7(3.62) 1 (0.00) 8 (0.55) 7 (0.03) 3(0.05) 8(3.75) 5.375
FlowChronicle | 4(0.41) 1(0.03) 4(2.06) 4 (0.02) 1 (0.10) 1(0559) 1(0.02) 1 (5.87) 2.125

Table 6.2: Ranking of our different models without considering the preserva-
tion of temporal dependencies. For each metric, the average of the
score is given between parentheses. Real.: Realism, Div.: Diversity,
Comp.: Compliance, Nov.: Novelty, |: Lower is better, 1: Higher is
better. =: closer to Reference is better.

REALISM We see that Transformer and CTGAN achieve a pretty
high density (0.62 and 0.56 respectively). However, Transformer seems
unable to represent cross-feature correlation as illustrated by its CMD
and PCD (0.78 and 3.62, respectively). Moreover, E-WGAN-GP seems
unable to create realistic data (0.02 of Density, 0.34 of CMD and 3.63 of
PCD). This might be because our dataset is bidirectional, whereas the
encoding IP2Vec was originally intended for unidirectional datasets.
FlowChronicle creates above-average data regarding the Realism of its
synthetic network flows.
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DIVERSITY While the Transformer produce a rather realistic result,
it fails to produce diverse results: it has a low Coverage (0.03) and a
high JSD (o.55). This is because the Transformer model fell into a well-
known behavior of autoregressive generative models during training
called degeneration [59, |203|]. This phenomenon consists of the model
learning to generate one specific sequence of network flow and keep
repeating it during the generation process. We also see the difficulty
for Bayesian Networks to work with numerical variables (EMD of 0.08
and o.011 for SequenceBN and IndependentBNs, respectively) — a phe-
nomenon already highlighted by Schoen et al. [157]. FlowChronicle and
CTGAN are among the best models for covering the entire training
distribution.

coMPLIANCE Apart from CTGAN (DKC of o.11), the models are
able to generate traffic that is compliant with our set of rules. FlowChron-
icle produces data with the least compliance issues.

NOVELTY With its MD of 5.8y, FlowChronicle is closest to the refer-
ence data set (6.71), denoting its ability to generate fresh data. On the
other hand, Transformer and NetShare introduce too little novelty in
the synthetic data.

6.7.4 Preservation of temporal correlation

The previous evaluation did not consider preserving temporal depen-
dencies between the flows during the generation. This is the goal of
this subsection. Overall, FlowChronicle preserves temporal dependen-
cies in both categorical and numerical features, making it closest to
the reference.

NUMERICAL FEATURES: DIFFERENCE OF AUTOCORRELATION In
Figure we represent the differences of the autocorrelation function
(ACF) across all numerical features between the real training dataset
and the generated dataset. CTGAN and TVAE are the worst models for
preserving temporal dependencies in numerical features. Both models
come from the same library [137] and do not take into account tem-
poral dependencies. Both Transformer and NetShare preserve the tem-
poral dependencies well since these models are designed to preserve
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Figure 6.4: Difference of ACF between the generated data and the train data
across all the numerical features for our different generative meth-
ods. Lower is better.

such dependencies. More surprisingly, EEWGAN-GP, which samples
network flow independently has also a low score. FlowChronicle is bet-
ter than those methods and reproduces well the different autocorrela-
tion across the different numerical features. The differences in ACFs
between the set generated by FlowChronicle and the Reference set are
almost equivalent.

CATEGORICAL FEATURES: IMPACT OF GENERATED SEQUENCES ON
THE ACCURACY OF AN LSTM  In Figure[6.5, we see the difference in
accuracy between two LSTMs trained on the training data and on syn-
thetic data generated by every model, and this, for every categorical
feature in the dataset. FlowChronicle is the best among the other gener-
ative models for preserving temporal dependencies across categorical
features, with a score once again close to the Reference set.

6.7.5 Computational Cost

Comparing computing costs can be useful for choosing the right gener-
ation method. In Table we report the time taken for training each
method and generating synthetic data from it. All our experiments
have been carried out on a server with 500 GB of RAM, 2 AMD EPYC
7413 CPUs, and 3 A4o Nvidia GPUs.

One drawback of FlowChronicle is the time required to train and gen-
erate new data. Even if FlowChronicle obtained on average the best per-
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Figure 6.5: Average difference of accuracy of various LSTMs trained on the
train data and our generated data from our different generative
models. Each subgroup is one feature, and each bar is one gener-
ation method. Lower is better.

formances on independent and temporal metrics, it is also the longest
to train and produce new data. While a long training time is a known
issue of MDL-based methods, we are confident the generation time
could be largely lowered due to the simplicity of the process.

6.7.6  Explainable patterns

Besides a good-quality generation, FlowChronicle has the advantage of
learning explainable patterns. In this section, we present a few inter-
esting multi-flow patterns.

The first one contains three partial flows, from the same source IP
and the same destination IP. All three partial flows are HTTPS requests
(TCP protocol, destination port 443). When a browser requests a web-
page, there can be many resources that it needs to download from the
same server (images, scripts, styles, etc.) that can be fetched with a
different HTTPS connection.

A second pattern is a DNS request (UDP protocol, destination port
53) followed by an HTTP flow (TCP protocol, destination port 80). The
source IP is the same. This is a classical network pattern: before a
device can access a domain for an HTTP request, it must know its IP.
It could be cached locally but sometimes requires a DNS request to
obtain it.

139



140

SYNTHETIC NETWORK FLOW GENERATION

Duration (hh:mm)

Model Training  Generating
IndependentBN | oo0:12 <0:01
SequenceBN 00:31 <0:01
CTGAN* 20:12 00:02
TVAE* 02:01 00:03
E-WGAN-GP* 00:36 01:59
NetShare* 59:39 05:00
Transformer* 84:02 34:41
FlowChronicle 106:54 85:16

Table 6.3: Training and generating runtimes. Methods annotated with * rely
on GPU.

A third pattern contains two partial flows, from the same source
IP but to different destination IPs. The first partial flow is an HTTPS
request (TCP protocol, destination port 443) and the following one
is a DNS request (UDP protocol, destination port 53). It can be ex-
plained by the fact that there can be some resources on a web page
that are stored on other web servers (scripts or images). In that case,
the browser needs to ask for the IP address of the server that stores
those resources. This pattern is probably missing some later HTTPS
connections. We did not find multi-flow patterns related to non-Web
protocols though. We consider that such patterns explanation strongly
indicates that FlowChronicle is indeed capable of learning relevant pat-
terns that can be verified and explained by experts.

6.8 CONCLUSION

In this article, we consider the issue of generating synthetic network
traffic, with a focus on preserving the temporal dependencies within
the generated data. To achieve this goal, we introduced an innova-
tive data-generating approach, dubbed FlowChronicle, which is based
on pattern set mining. Initially, FlowChronicle learns a set of patterns
that effectively encapsulate the data distribution and describe the data
within the model. We formalize the problem with the Minimum De-
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scription Length (MDL) principle, by which our method is naturally
robust against overfitting.

During the evaluation phase, we observed that FlowChronicle not
only upholds the diversity and realism of the data but also main-
tains the temporal dependencies among flows. Even without taking
into account any temporal dependencies, the generation through pat-
tern mining allows us to reproduce network flows that are really close
to the training data. In the non-temporal evaluation, the second-best
method was CTGAN, but it struggled to capture temporal depen-
dencies. Conversely, the Transformer model preserved temporal de-
pendencies well but failed to generate high-quality individual flows.
FlowChronicle, however, consistently ranked highest in both evalua-
tions, excelling in both flow quality and temporal dependency preser-
vation.

Finally, contrary to other methods, FlowChronicle outputs patterns
that can be manually analyzed. This way, the generation method can be
audited, and possibly manually verified and corrected. It is also easy
to manually include new pattern to modify the generation without a
relearning procedure.

Looking ahead, we identify two primary avenues for improvement.
Firstly, a more powerful pattern language, Although our language is
already robust, there are certain concepts, such as repeating flows as
observed in video streaming, that we cannot represent effectively yet.
A more expressive pattern language will come with additional chal-
lenges, such as the increased search space.
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CAUSAL DISCOVERY FROM EVENT SEQUENCES BY
LOCAL CAUSE-EFFECT ATTRIBUTION

In the previous chapters we have summarized event sequences using
different pattern languages, that is we discovered correlations between
events in the event sequences. In this chapter we are going to study
the causality between events in event sequences. The gold standard
for inferring causal relationships is the randomized controlled trial,
commonly a population sample is randomly divided into two groups:
one group receives an intervention on the suspected causal variable,
while the other serves as a control. The impact of the intervention is
then measured and compared across groups. However, in many real-
world scenarios, conducting such controlled experiments is either pro-
hibitively expensive or practically infeasible. In this chapter, we study
the problem of discovering the underlying causal structure from ob-
served event sequences. To this end, we introduce a new causal model,
where individual events of the cause trigger events of the effect with
dynamic delays.

7.1 INTRODUCTION

Suppose we are considering a multivariate event sequence. What caused
a specific event to happen? Which variables are causes of each other?
Data-driven methods can infer causal relationships from observed data.
Existing methods for discovering causal networks from event sequence
data [19, [84) |191]] are based on Granger causality [69]. This purely pre-
dictive notion defines a variable X to be a cause of another variable
Y if the past of X helps to predict the future Y. It is a relatively weak
notion of causality that excludes instantaneous effects and is often un-

This chapter is based on [36]: Joscha Ciippers, Sascha Xu, Musa Ahmed, and Jilles
Vreeken. “Causal Discovery from Event Sequences by Local Cause-Effect Attribution.”
In: Advances in Neural Information Processing Systems. 2024, pp. 24216—24241.
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able to discover true causal dependencies; in Granger causality, baking
a cake is causal to a birthday.

In this chapter, we instead build upon Pearl’s model of causality,
which assumes the existence of an an underlying causal structure in
the form of a directed acyclic graph (DAG) [138]. In our context, such a
graph describes the causal relationships between types of events, such
as alarms in a network. We propose a new causal model for event se-
quences based on a one-to-one matching of individual events, where
we model the process of one individual event of a certain type possi-
bly causing an individual event of another type. In our model, we take
into account the uncertainty of whether an event is actually caused or
independently generated, the uncertainty of an event actually causing
an effect or failing to do so, and the uncertainty of the delay between
cause and effect. As we will show, our model has several advantages,
such as a clear notion of what event caused another and the identifia-
bility for both instant and non-instant effects.

We base our theory on the Algorithmic Markov Condition (AMC) [85],
which postulates that the true causal model achieves the lowest Kol-
mogorov complexity. As Kolmogorov complexity is not computable,
we instantiate it via the Minimum Description Length (MDL) princi-
ple [71]. We show that our score is consistent, identifies the true causal
direction for both instantaneous and delayed effects, and formally con-
nect it to Hawkes processes. To discover causal networks in practice,
we introduce the CascaDE algorithm, which adds edges in topological
order. Through extensive empirical evaluation, we show that CASCADE
performs well in practice and outperforms the state of the art by a
wide margin. On synthetic data, CASCADE recovers the ground truth
without reporting spurious edges, and on real-world data, it returns
graphs that correspond to existing knowledge.

7.2 PRELIMINARIES

We write i — j when §; is a cause of S; and pa(j) for the set of parents
of node j. We assume faithfulness, sufficiency, and the causal Markov
condition [96].

INFORMATION-THEORETIC CAUSAL DISCOVERY The Algorithmic
Markov Condition (AMC) postulates that the factorization of the joint
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distribution according to the true causal network achieves the lowest
Kolmogorov complexity [85]. The Kolmogorov complexity K(x) of a
binary string x is the length of the shortest program p for a universal
Turing machine ¢/ that computes x and halts [103]. For a distribution
P, it is the length of the shortest program that uniformly approximates
P arbitrarily well,

K(P) = pgéig{lpl VylU(p,y,q) —Py)l < =} .

The AMC states that the Kolmogorov complexity of the joint distribu-
tion P(X) is the sum of the complexities of the conditional distribu-
tions P(X;|pa(i)) of the true DAG G*, i.e.

p

K(P(X)) = Y K (P(Xilpa(i))) , (7.1)

i=1

up to a constant independent of the input. Due to, among others, the
halting problem, Kolmogorov complexity is not computable, but we
can approximate it from above. A statistically well-founded way to do
so is by Minimum Description Length (MDL) [71, 115]. For a fixed
class of models H, MDL identifies a description length L of encoding
data X together with its optimal model,

L(X | H) = min (L(X | B) + (k) -

Next, we introduce the assumed data generating process, its corre-
sponding model class H and encoding length function L, and show
under which conditions it can be identified.

7.3 THEORY

To be able to infer causal relationships from observational data, we
need to make assumptions about the underlying data-generating pro-
cess [138]. The key assumption we make here is that an individual
event of type i at time ¢ with probability «; ; causes an individual event
of type j at time #' > t. To illustrate, we give a toy example in Fig.
in which event sequence S; causes event sequence S;. The individual
events in S; occur uniformly at random. The first and third events in
Si cause events in §j, resp. with a delay of 0.2 and 0.3. The other two
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Figure 7.1: Cause-effect matching, where S; causes S;.

events in S; do not cause events in S;, denoted by a delay of co. The
final event in S; is due to noise, marked by N;.

Next, we formally describe the causal mechanism. We differentiate
between source and effect nodes.

Source nodes are nodes i in G* with an empty parent set pa(i). For
source nodes i we assume that the events in S; occur uniformly at
random with a rate of A; events per time unit. This mechanism, com-
monly known as a homogeneous Poisson process, is used, for example,
as a model for accident rates requiring hospital admission [185]. In this
work, we focus on the delay times between individual events, denoted
as dj for the delay ty —t,_1 and as A;_,; = {dk},’:i:1 for the sequence.
For a Poisson process, the delay times are independently and expo-
nentially distributed. Thus, we model a source event sequence S; as

k
Si = {tk}Zizl P where tk = Z dl, Ai—»i = {dk ~ EXp()\l) lld}Zl:l (7.2)
=1

Effect nodes are nodes j in G* with at least one parent pa(j). For each
effect node j, the individual events in Sj are either caused by an indi-
vidual event in an S; with i € pa(j) or due to noise. That is, reasoning
from the causing node i, every event t; € S; may trigger an event of
the effect S; with a probability of «; ;. If triggered, an individual event
in §; will occur after a random delay di, drawn from a cause-effect
specific delay distribution ®;; parameterized by 0; ;, e.g. the rate A of
an exponential distribution, and «; ;. If no event is triggered, then we
model the delay as infinite, i.e. d;y = oo. The sequence of delays A, ,;
from S; — S; is modeled as

Ainj = {di}iq, di ~ @ j(w;j,0;;)iid ,

1—a; if d = oo (7.3)
¢ij(d) = Y
p(d, 91',]') . le-,]- else
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where ¢; ;(d) denotes the density of the delay distribution. Thus, given
the event sequence S; of the cause and delays A;_,j, the individual
events in S; caused by S; are obtained by adding the delays dj to the
time stamps ¢ of the individual cause events, with the reconstruction
function f as

fl’,]'(si, Ai%j) ={ty+di|dy # 0}, fork=1,...,n;. (7.4)

In addition, individual events in S; can also be due to noise. Like for
source nodes, we assume these a Poisson process as per Eq. with
rate A;, i.e. N; ~ Poisson(A;). Putting this together, given causal struc-
ture G¥, an effect event sequence S; is generated by taking the union
of the individual delays from the causal parents pa(j) and the time
stamps due to noise N;,

5p= ( U fi (SifAiﬁj)) UN;. (7.5)

iepa(j)

Next, we instantiate an MDL score for this causal model and con-
sider its identifiability.

7.3.1  Minimum Description Length Instantiation

We now develop a score for our causal model using MDL [71]. It con-
sists of the cost of the data given the model, L(S | ®), i.e. the negative
log-likelihood of the data, and the cost of the model, i.e. that of the
parameters, L(®), and that of the graph, L(G), all measured in bits.

DATA cosT The cost of data in bits directly corresponds to its nega-
tive log-likelihood, i.e. the likelihood of each delay as per Eq. (7.3) over
all the event sequences corresponding to the parents of node j and that
of the noise events. Formally, we have

L<Sj | Spa(j)s @> = > D —log(¢ij(d))+ >, —log (¢;(dr)) -

lEpEl(]) dkEA,'_,j dleA]-_,j
(7.6)

The first term encodes those events that were caused by the parent S;
through the delays A,;_,;. Here, we use a Shannon-optimal coding that
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requires —log(¢;;(dy)) bits per sample [71]. In the second term, we
encode all remaining events as noise using the delay distribution of a
Poisson process. For source events, i.e. variables without any parents,
only the noise term is present. The cost of all sequences is then simply

L(S|G,0) = > L(S; | Syu(j), ©)
jelp]

PARAMETER cOsT Next, we define the costs of the DAG, L(G), and
that of the parameters, L(©). We encode the DAG in topological order.
Per node we encode its number of parents |pa(i)| and identify which

those are, i.e. L(G) = Y 3 <log(k) +log (Ipalzi)l))' Depending on their
type, we encode the parameters 6 € ©. For parameters 6 € IN we
use Ly, the MDL-optimal encoding for integers [153]]. For parameters
8 € R we use Lr(0) = Ln(d) + L ([0 - 109]) + 1 as the number of bits
needed to encode a real number up to a user-specified precision [114].
For an edge i — j, the parameters are the trigger probability «;; and
those of the delay distribution ¢. For the cost of an edge we hence
have L(i — j) = Lr(a;j) + 296471‘4‘ L(6). For ® as a whole, we have

L(®) = ZH]-GG L(i — j). The overall MDL score is then

L(S|G,0)+L(G) +L(O). (7.7)
7.3.2 Identifiability

We now study the identifiability guarantees of our model and score,
i.e. under what conditions we can identify from a given pair which is
the cause and which the effect. Consider a pair of event sequences §;
and S;, where S; — S; and the cause §; is a source event while S; is an
effect event.

INSTANT EFFECTS We begin with the case of instant effects only.
Instant effects are observed when the sampling frequency of the data,
e.g. a daily time scale, is insufficient to pick up a difference in time,
such as a financial crash that can spread across the globe within hours.
It is well-known that Granger causality cannot identify the causal di-
rection for instant effects [142]. In Pearl’s causal framework, on the
other hand, the causal direction between two binary variables is iden-
tifiable [16, 95, 143]. We can build upon these results and show that our
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causal model and MDL-based score can identify the causal direction
for non-deterministic instant effects.

Theorem 1. Let S; be an event sequence generated by a Poisson process
as per Eq. and S; be an effect of S; as per Eq. (7.5), with, low noise
Aj < (1 —wjj)A;, and a trigger probability a;; < 1.

In the case of exclusively instant effects, i.e. ¢;;(d) = 6(d), where 6(d) is
the Dirac delta function, the MDL score in the true causal direction is lower
than in the anti-causal direction, i.e.

nllilgo L(S] | Si,®1) —|—L(Si | @1) < L(Sl‘ | Sj,@Q) +L(S] | @2) .

We provide the full proof in the Appendix. the general idea is
under a non-deterministic trigger mechanism, i.e. «;; < 1. Then, in the
causal direction, we can fully explain S i with S;, but not vice-versa, as
the cause is generated by a Poisson process. If a;; = 1, i.e. the process
is deterministic, we always observe cause and effect together, making
them indistinguishable.

DELAYED EFFECTS Next, we consider the case of exclusively de-
layed effects. Here, there is an inherent asymmetry in the benefit of
knowing the cause versus the effect. As shown by Didelez [45] for
marked point processes, and later used by Eichler, Dahlhaus, and
Dueck [49]] and Xu, Farajtabar, and Zha [191] for Granger causality in
Hawkes processes, the intensity of observing the cause after an event
of the effect is unchanged. That is, the future of the cause is indepen-
dent of the past of the effect, while if a cause triggers an effect, the
intensity of the effect is increased by the cause. We have the following
identifiability guarantee.

Theorem 2. Let S; be an event sequence generated by a Poisson process as

per Eq. and S; be an effect of S; as per Eq. (7.5), such that H (¢;;) >
H(p(;6:7)) + oc;le (B(aij)) + uc;le (B(wj,)), where H denotes the en-
tropy and B the Bernoulli distribution.

Then the matching in the anti-causal direction A;_,; of the effect S; to the
cause S; has a worse MDL score than the true matching A;_,j, i.e.

L(S;]5:,0.j) + L(S; | ©;) < L(S; | S;,0-;) + L(S; | ©) .

We provide the full proof in the Appendix. The idea being that
in the anti-causal direction S; — §;, the delay times follow the same
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exponential distribution of Exp(2;), leading to no gain in score com-
pared to the self-delay encoding. On the other hand, in the true causal
direction, knowing the times of the cause leads to a better knowledge
of the delay and hence a lower cost, so long as the delay distribution
¢i,; provides a better description than treating it as noise. This require-
ment is closely related to the Algorithmic Markov Condition, which
postulates that the shortest description of a variable is given through
its parents.

7.3.3 Connection to Hawkes Processes

Hawkes processes [78] are analytically convenient and well-suited for
modeling real-world processes where events trigger further events,
e.g. earthquakes triggering aftershocks. Consequently, the majority of
methods focusing on Granger causality are based on Hawkes pro-
cesses [19, 84} |191]. The Hawkes process extends the Poisson process
by incorporating the influence of past events on the intensity, i.e. the
rate of occurrence of future events. This is done by means of excita-
tion functions v; ;(t — t;), which increase/inhibit the intensity of future
events based on past events. The intensity function of a Hawkes pro-
cess under a DAG structure is given by

)\j(f) = Uj + Z Z i (t — tk) . (7.8)

iepa(j) tk<t,tc€S;

Each event t; € S; increases the intensity of seeing an effect by v; ;(t —
tx). The main difference between our model and a Hawkes process is
our direct trigger model from cause to effect. In a Hawkes process, an
event of type i increases the intensity and, therewith, the probability
of effect events occurring. That is, contrary to our framework, in a
Hawkes process there is no explicit one-to-one relationship between
causing and effect events, i.e. no one event can be attributed solely
to causing another. Nonetheless, in Appendix we show how to
identify S; as a parent of S; by constructing a sequence of delays A,;_,;
with the most-influential past event and therewith ¢;;. If ¢;; fulfills
Theorem 2} we can identify S; as a parent of S;. Hence, should the data
be generated by a Hawkes process, our method can still pick up the
causal relationship between the two event classes, so long as there are
sufficiently many events where S; is the primary cause.
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7.4 ALGORITHM

With our model in place, we now turn to the problem of discovering

the underlying causal structure from an observed sequence of events.

In recent years, several methods that find and proceed on a topological
ordering of the true graph have been introduced [18, |26, 154], which
outperform other score-based frameworks such as GES [25] in terms
of accuracy. We here propose the CascADE algorithm that instantiates
this idea for information-theoretic scores. We prove that in the limit, it
recovers not only the correct topological ordering but also the correct
parent set of each node. CASCADE derives its guarantees from the gain
in bits of adding an edge i — j to the model, i.e.

g(i—j1®) =L(Sj| Spa(j), ®) = L(S | Spa(jyuir @V i) + L(i — ) .
(7.9)

The edge cost L(i — j) is constant and independent of the number
of samples ;. In the limit n; — o, the gain inherits the identifiability
guarantees from Sec. such that¢(i — j | ®) > g(j —>i| ©)if S;
is a true ancestor of S;. In other words, the gain of an edge is greater
in the causal than in the anti-causal direction.

7.4.1  High Level Overview

CAscADE initializes the model with an empty graph G. During the
search, we maintain a set of nodes C = [p], from which we remove
nodes in a topological order of G*. We iterate over the following four
steps until C is empty.

1. Source Node Selection: Select that node i € C with minimal gain
for any edge j — 1, j€ C, i.e.

argmin maxg(j — i |©) —gli | ©). (7.10)
icC jec

2. Edge Adding: Add all outgoing edges from i — j, j € C, to G that
improve our score.

3. Edge Pruning: Remove all incoming edges j — i from G that
harm our score.
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4. Node Set Update Remove i from C.

Each iteration, CAscADE selects that node i, which has the minimal
achievable gain when adding any edge j — i to the current graph
G, expressed in Eq. (7.10); below, we will show that under our causal
model this node is guaranteed to be a true source of the graph G*.
We then add all edges from i to nodes j € C that improve our score;
provided that all true causal edges i — j were added, there is now at
least one node j € C whose parents are all accounted for, that in the
next iteration can be identified as a source. We prune edges j — i from
G to remove shortcuts. By repeating this process, CASCADE proceeds
in a topological order of the true graph G*. In total, CASCADE requires
p iterations, leading to an overall cubic complexity O(p?).

SOURCE NODE SELECTION. To identify a source node in the graph,
we can use the identifiability guarantees from Sec. They show
that the gain g(i — j | ®) correctly orients the edge i — j in the
unconfounded bi-variate case. We additionally require that the edge
gain is pathwise oracle, i.e. it can identify the direction of the path from
i to k.

Theorem 3. Given an event sequence S generated by a causal structure G*,
let S; be a source node of G* and S, be a descendant of S;, where there exists
apathi —j— --- —>vin G*.

Then, the gain in the causal direction of the path g(i — v | ©) — g(v —
i| ©) is greater.

We provide the proof in Appendix. We can now show that
the criterion in Eq. selects nodes in a topological ordering of
G*. Initially, CascADE has to identify a true source of G*, i.e. a node i
without parents. For that node i, all other nodes j are either ancestors
or independent of i. If i is an ancestor of j, then g(j — i | ©) — g(i —
j | ® < 0, ie. the gain in the anti-causal direction is lower. If i is
independent of j, then g(j — i | ®) = 0 and g(i — j | ®) = 0. Hence,
the maximum achievable gain for a node without parents is zero.

Now consider a node v which does have a parent. For this node,
there exists an ancestor u which is a true source. Hence, for that pair
gu - v ] ©)—g(v - u | ® > 0. Consequently, the maximum
achievable gain is positive, whilst for a source node, we can maximally
achieve zero, allowing us to identify true sources with Eq. (7.10).
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Figure 7.2: Causal chain

In the next step, we add all outgoing edges from the source i to
G that improve the score. As G* is a DAG, we are now guaranteed
to have another node j, whose incoming edges are all accounted for
in G. Then, as per the causal model from Eq. , the only events
that remain are those of the noise N;. Hence, j is now a source node
for which the guarantees from above apply. By repeating this process,
Cascapek thus follows a topological order of G*.

EDGE ADDITION Given a source i, CAscADE adds all outgoing edges
i — j that improve the score. We restrict the set to nodes j € C from
the candidate set only, i.e. to nodes further down the topological order.
By the Algorithm Markov Condition, the description length of the true
set of parents of a node j is smaller than the description length of any
other set of parents, and hence the gain of the true edge is positive in
the limit of n; — oo.

When adding an edge i — j, where there is already an edge v — j,
we use an Expectation Maximization approach to attribute all events
to their respective cause. That is, we first find the bi-variate alignment
A;_,j using all events in S;. Now, it is very likely that there are conflicts
between A;_,; and A,_,j, as the same event can be attributed to both
i and v. In those cases, we choose that event where the density (¢;;
or ¢,) is higher and set the delay to infinity in the other matching.
After re-assigning all events, we refit the delay distribution function
¢i; using the new matching.

EDGE PRUNING Lastly, we deal with removing any shortcuts that
have been added in the previous iteration. With the previous two steps,
we are guaranteed to have a superset of all true causal edges incom-
ing to i. Fortunately, we can prune such edges directly with MDL by
removing any incoming edge i — j that does not improve the MDL
score. In the chain graph i — j — v, shown in Figure we would
remove shortcut i — v as the edge j — v is sufficient to explain the
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data. In practice, given the current set of parents of i in G, we search
for the true set of parents by starting with the empty set and greedily
adding only those edges that improve the score. As we show in Ap-
pendix. a shortcut always has a lower gain than the true edge
and hence will not be re-added. In this manner, we are asymptotically
left with only the true causal parents. We can now finally show the
consistency of CASCADE.

Theorem 4. Given an event sequence S, where each individual subsequence
S; was generated as per Eq. by an underlying causal graph G*. Assum-
ing all A;_,; are the true causal matchings. Under the Algorithmic Markov
Condition, CASCADE recovers the true graph G* for n — oo.

We postpone the proof to Appendix. In the experiment section,
we show that CAscADE recovers the true DAG even in challenging
settings and works well on real-world data.

7.5 RELATED WORK

Causal discovery on observational data is an active research topic.
Two main research directions exist: constraint-based [138] and score-
based [25, 149] methods. Our approach belongs to the latter and is
based on the Algorithmic Markov Condition [85]. While Kolmogorov
complexity is uncomputable, Marx and Vreeken [115] formally showed
that if we instantiate the AMC with two-part MDL [71], we, on expec-
tation, achieve the same results. MDL has been successfully used for
bivariate causal inference [16| [114} 194], causal discovery [120], iden-
tifying hidden confounding [9o], identifying mechanisms shifts [110],
and identifying selection bias [89].

In this chapter, we consider point processes. Particularly close to our
method are Hawkes processes [78] as a way to model the influence of
past events onto future events. As such, our work is also related to
the concept of transfer entropy [159]], which measures the influence in
terms of Shannon entropy. Budhathoki and Vreeken [17] proposed an
MDL-based method for bivariate causal inference on event sequences,
which is unsuitable for learning a global causal structure.

Existing methods for discovering causal graphs from event sequence
data focus on different instantiations of Granger causality and can
mostly be categorized by different intensity functions. Most common
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are parametric approaches with different regularizing [19, |191, |207].
ADM4 [207] uses the nuclear matrix norm in combination with lasso,
THP [19] uses BIC for regularization. The method MDLH by Jalaldoust,
Hlavackova-Schindler, and Plant [84] is most closely related, as they
also use MDL for regularization. NPHC [2] takes a non-parametric ap-
proach by using a moment matching method to fit second and third-
order integrated cumulants. A recent development is neural point pro-
cesses. Mei and Eisner [118] propose a deep neural network that learns
the dependencies [118], which Xiao et al. [190] extended to include at-
tention mechanisms. Zhang et al. [202] first learn a neural point pro-
cess and then use a feature importance attribution method to obtain a
weight matrix of pairwise variable influence.

7.6 EXPERIMENTS

We evaluate CascAaDE on both synthetic and real-world data. CAscaDE
is implemented in Python. We provide the source code, along with
the synthetic data generator and the used real-world datasets online!
We compare our method to four of state of the art methods: THP [19]
as representative for the regularized parametric approaches, CAUSE
[202] as representative for the neural point processes and NPHC [2]
as a representative non-parametric approach, and MDLH [84] who
also rely on MDL, as our most closely related competitor. CAUSE and
NPHC do not return a graph but rather a weight matrix where the
weight indicates the strength of the causal relation. On synthetic data,
we can obtain a graph by thresholding such that we optimize the F1
score.

7.6.1  Evaluation

We evaluate the estimated graphs in terms of structural similarity by
the Structural Hamming Distance (SHD) [87], in terms of causal sim-
ilarity by the Structural Intervention Distance (SID) [141], and predic-
tive performance by F1 score. To compare graphs of different sizes, we
report the scores normalized by the maximally achievable SHD/SID
and show the unnormalized scores in Appendix

1 https://eda.rg.cispa.io/prj/cascade/
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NPHC, CAUSE, and MDLH can and often do return cyclic graphs.
As SID is strictly only defined for acyclic graphs, we omit these meth-
ods from the SID evaluation.

7.6.2  Synthetic Data

We begin by comparing all methods on data with known ground truth.
To this end, we generate synthetic data. We generate both data within
and outside our causal model and vary aspects such as noise intensity,
number of event types and the number of parents of a variable. We
describe the full data-generating process in Appendix

SANITY CHECK We start with a sanity check on data without any
structure over 20 variables, CASCADE correctly does not report any
causal edge. THP reports in 45% of the cases at least one spurious
edge. We omit the results of CAUSE and NPHC as it is unclear how to
choose a meaningful, non-trivial threshold, in this setting. MDLH did
not terminate within 96 hours.

SCALABILITY We evaluate how well each method scales under an
increasing number of variables. We vary the number of nodes, which
correspond to the number of unique event types, from 5 to 50 and
report the results in Fig. As MDLH did not terminate within 96
hours for 15 variables, we omit it from here on out. For a lower num-
ber of nodes, both Cascape and THP obtain far better results than
NPHC and CAUSE. With increasing event types, all methods SID and
F1 scores worsen. Amongst all methods, CAscADE scales best with an
increasing number of nodes, whereas Granger causality based meth-
ods such as THP and NPHC find many spurious edges of connected
but not causal variables. On the other hand, CASCADE is the most accu-
rate method for a higher number of nodes, showing the efficacy of its
causal model and MDL-based approach.

NOISE Next, we assess the impact of noise, which are events that is
not caused by any parent. To this end, we vary the ‘cause’ probability
and the fraction of events due to additive noise. We do so by varying
a noise parameter g, adding an additional n; - a events to S; (additive
noise), and by setting the ‘cause’ probability « = 1 — a, i.e. we decrease
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DAG recovery in different settings. We show normalized SHD,
normalized SID, and F1 score, the Y-axis are truncated for better
visualization. In (a) we vary the number of event types, on the SID
score we observe that the graph reported by CASCADE is casually,
the most similar to the true DAG. In (b) we decrease the noise,
CascaDE does recover a close causal graph, even under high noise.
Finally, in (c) we increase the number of parents of a collider, we
observe that a high number of parents does not pose a problem
for CASCADE.
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Figure 7.4: DAG recovery on data generated by a Hawkes process.

additive noise and increase trigger probability. We show the results in
Fig. We observe that CascaDE does quite well for high noise and
that for noise levels of 2 = 0.7 and lower, it (mostly) recovers the true
DAG. All other methods perform considerably worse.

COLLIDERS Matching an effect event to the correct parent, resp. mod
eling the correct excitation, becomes increasingly challenging for a
larger number of parents. We test this through a setting where half
([’%1]) the variables converge into a collider, and the other half ([pT_lj)
are independent. We vary the total number of variables, p and we show
the results in Fig. We observe that CascaDE achieves almost per-
fect results. THP is robust, but with an increasing number of nodes, it
starts to miss edges. Beyond 100 variables, it does not terminate within
24 hours. To validate that our method can recover structures with mul-
tiple colliders, we repeat the same experiment where 10% of nodes are
colliders. That is, for 50 event types, 5 are colliders and 23 direct causes
of all 5 colliders. The remaining 22 are independent. Resulting in an
F1 score of 0.97 for 50 event types, slightly decreasing to 0.82 for 200
event types; as such CASCADE can deal well with multiple colliders.

INSTANTANEOUS EFFECTS Next, we evaluate performance under
instantaneous effects. First, we consider data with exclusively instant
effects. CASCADE achieves an average unnormalized SHD of 32.8. The
second best-performing method, NPHC, achieves 46.85. Next, we gen-
erate a setting where 9o% of the effects are instantaneous and the oth-
ers occur with a small delay. CAscaDE improves to an SHD of 19.45,
while NPHC achieves the second lowest average with 47.5. We provide
all results in the Appendix
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HAWKES PROCESSES  Finally, we evaluate how effectively CAsCADE
recovers the true DAG on data generated by a Hawkes process. We
vary the intensity of the excitation function, i.e., the expected number
of events generated per cause. We show the results in Figure We
observe that CascaDE performs best when generation is close to our
assumptions, i.e. when there is, on expectation, one effect per cause or
fewer, but still demonstrates strong performance across all settings.

7.6.3  Real-World Data

We evaluate CascaDE on three distinct datasets of real-world event
sequences. We begin by evaluating CASCADE on a dataset of network
alarms, where the causal structure is known.

NETWORK ALARMS  This data was provided by Huawei for the NeurIPS

2023 CSL-competition® and consists of data from a simulated network
of devices in which alarms can cause other alarms. We run all meth-
ods and get an (unnormalized) SHD score of 42 for CAsScADE, 127 for
THP, 214 for NPHC, and 1564 for CAUSE. As the network connectiv-
ity structure is known, we can take it into account during the search.
THP supports this natively, CASCADE can be trivially constrained to
only consider the given edges. CASCADE correctly identifies 142 out of
147 causal edges, THP 20. Neither method reports spurious edges. We
show the full recovered graph in Appendix

GLOBAL BANKS Second, we run CASCADE on a daily return volatil-
ity dataset [43]], we follow the preprocessing of Jalaldoust, Hlava¢kovéa-
Schindler, and Plant [84], specifically we turn the time series into an
event sequence by rolling a one year window over the data and register
an event if the last value is among the top 10%. The dataset includes
the 96 world’s largest publicly traded banks. We show the largest
discovered subgraph in Fig. In addition, three unconnected sub-
graphs are discovered, one covering banks in Australia and two others
connecting banks in Japan, which we provide in Appendix

https://github.com/huawei-noah/trustworthyAl/tree/master/competition/
NeurIPS2023/sample
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Figure 7.5: Result of CascADE on the Global Banks dataset, we show the largest
subgraph, we highlight the 10 largest, by assets, banks. We clearly
see CASCADE recovers locality and that larger banks have a strong
influence on the market, both information not provided in the
input.

DAILY ACTIVITIES We run CASCADE on a dataset of recorded daily
activities [133]. Our method reports plausible causal connections such
as Sleeping End — Showering Start — Showering End — Breakfast Start —
Breakfast End, etc. We show the complete graph in the Appendix
This result reinforces the suitability of our causal model and Cascape
for real-world data, and illustrates the potential of our method to dis-
cover causal structures in a wide range of applications.

7.7 CONCLUSION

We studied the problem of causal discovery from event sequences, we
propose a cause-effect matching approach to learn a fully directed
acyclic graph (DAG). To this end, we introduced a new causal model
and an MDL based score. We proposed the CAscADE algorithm to dis-
cover causal graphs through a topological search from observational
data. Finally, we evaluated CAscADE on synthetic and realistic data.
On synthetic data, we find that CAscADE is either the best or close to
the best-performing method across all settings, both within and out-
side our causal model. In particular, whenever conditions get challeng-
ing, e.g. due to noise or with multiple colliders, CAscADE outperforms
all other methods by a significant margin. We examined how Cas-
CADE performs on real world event sequences, where the true data-
generating process may lie outside our causal model. We found that
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CascaDE recovers meaningful graphs that match with a common un-
derstanding of the world.

Limitations As is necessary, we have to make causal assumptions.
The most prominent in our work is the direct matching between a
cause event and an effect event — which precludes modeling of a single
event causing multiple other events, as well as multiple events jointly
causing a single effect event — and that we only consider excitatory
effects — which precludes modeling the absence of events due to a
cause. Our proof of identifiability for instantaneous effects depends
on the strengths of the trigger resp. noise probabilities.

Future Work Currently, our structural equations are ‘or’ relations
over the parent’s variables. An interesting future direction would be
to explore ‘and’ relations, e.g., A and B together cause C. This raises
several questions, like how close to each other A and B have to occur
or if the order matters. Another interesting future direction is to allow
matching of multiple causing events to one event, where each parent
could have caused the event. This would allow us to answer counterfac-
tual questions, such as if a causing event had not occurred, would we
nevertheless observe its effect? This strongly relates to the firing squad
example by Pearl [138], where multiple guards shoot a prisoner at the
same time; if one guard did not shoot, the prisoner would still have
died.
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In this thesis, we explored various methods for the exploratory anal-
ysis of event sequences. In this chapter, we summarize our contribu-
tions, discuss the challenges of evaluating pattern set miners, reflect
on the limitations of our work, and conclude with an outlook on fu-
ture directions.

8.1 SUMMARY OF CONTRIBUTIONS

We studied summarization of event sequences by identifying mean-
ingful patterns and predictive models. Our proposed methods use the
Minimum Description Length (MDL) principle as a model selection cri-
teria, ensuring that discovered models are both informative and com-
pact. We made progress towards two main goals in this thesis, summa-
rization of event sequences, and the discovery of actionable insights
from event sequences, we summarize our contributions towards these
goals in turn. The first problem was,

Research Goal 1 (Summarizing Sequential Event Sequences) Given an
event sequence database, discover models that summarize the data so that it
provides meaningful, interpretable insight.

We proposed a set of methods that provide a richer summarization
of event sequences, that go beyond the traditional definition of serial
episodes. In Chapter |3, we study the gaps between events. Existing
methods, if they allow for gaps, treat them as undesirable noise, some-
thing to be minimized, or ignore them completely. We take a opposing
view point towards gaps, rather than treating gaps as noise, we model
delays explicitly, thereby rewarding consistent behavior. This allows
us to capture patterns with long consistent delays between their con-
secutive events. We formalized the problem in terms of the Minimum
Description Length principle. To discover good patterns sets in prac-
tice we introduced a greedy search algorithm, HOPPER, that iteratively
builds up patterns by combining patterns form the model. While our
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score is capable of rewarding patterns with long delays, we still have
to discover such patters form the data, to do so we use the ALIGNFAR
Algorithm introduced in Chapter |2, Experiments showed that on syn-
thetic data HopPPER recovers the ground truth well and is robust against
high delays and variance. On real-world data we observed that Hop-
PER finds meaningful patterns that go beyond what state of the art
methods can capture.

Next, in Chapter |4 we studied summarization in terms of rules.
While patterns express co-occurrence, rules express conditional depen-
dencies between patterns and events. We again formalized the prob-
lem in terms of MDL. To discover rule sets, we explored two ap-
proaches SEQRET-CANDIDATES and SEQRET-MINE. SEQRET-CANDIDATES
constructs a rules set from a given set of candidate patterns whereas
SEQRET-MINE discovers a set of rules directly form the data. In SEQRET,
to avoid testing unpromising candidates, we only test extensions that
occur statistical significant more often than expected. In the experi-
ments we showed that SEQRET discovers a meaningful summarization
of the data in terms of rules, e.g. on the chess data, capturing the dif-
ferent variation after the opening moves.

Existing methods summarize event sequences in terms of surface
level patterns — serial episodes defined over observed events. In Chap-
ter [5| we explored generalized patterns, that is, patterns not only over
observed surface level patterns but also over generalized events. Gener-
alized events are events that can match a set of observed events. We
considered the problem of discovering, not only generalized patterns,
but also the generalized events directly from the data. We proposed the
greedy FLock algorithm that jointly discovers generalized patterns and
generalized events directly from the data. Through experiment on syn-
thetic and real-world data we have shown that FLock recovers patterns,
that also cover instances that are rare enough that would not have been
considered a pattern by themselves.

For our final contribution towards Research Goal 1, we explored
summarization of sequential data for specific domain, network flows.
A network flow is a summary of network packages, e.g. a TCP session.
Each flow has a timestamp and a set of attributes, e.g. ports, source and
destination IPs etc. We developed a specific pattern language that can
not only model patterns over attributes and different network flows
but also model some of the key characteristics of network flows, e.g.
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that patterns occur frequently but with different Src Ip addresses. We
again formalized the problem in terms of MDL and proposed a greedy
search algorithm. We used the learned summarization to generate syn-
thetic network flows, we did so by sampling from the model. Evalu-
ation showed that we not only model in inter-flow dependencies but
also preserve the temporal relation between flows.

Beyond summarization, we studied predictive models, where the
goal is not only to describe event sequences but also use the model to
predict upcoming events, bringing us to our second research goal,

Research Goal 2 (Discovering Actionable Summaries) Given an event
sequence database, find a summarization that enable action from the gained
insight.

Naturally, SEQReT (Chapter [4) provides a predictive summarization,
as rules not only explain but also forecast upcoming patterns and
events.

In Chapter [2| we explicitly tackle predictive summarization. We con-
sider the problem of discovering a set of actionable patterns that jointly
predict if and when target events will occur. We introduced the OMEN
algorithm to discover a small set of non redundant predictive patterns.
To overcome local minima we introduced an optimistic estimator. Our
model is a set of tuples consisting of patterns and their associated de-
lay distribution. The delay distribution not only states how likely we
are to observe the target event but also when we can expect it. To avoid
bias we model the delay distribution non-parametrically. Experiments
showed that the OMEN score performs very well, at discriminating be-
tween predictive and non-predictive patterns, and that the OMEN algo-
rithm recovers predictive patterns well.

Finally, we investigate causal relationships in event sequences in
Chapter [71 We consider the problem of discovering a fully oriented
causal graph over the different event types. Asking the questions which
events cause which other events. Knowing all the causal parents and
the causal relation between cause and effect, naturally, also functions
a predictor of the effect. Unlike a purely predictive modelling, know-
ing the causal relations allows to make informed decision about in-
terventions in systems. We based our approach on the Algorithmic
Markov Condition [85], by which we identify the causal network as
the one which minimizes the Kolmogorov Complexity. As the Kol-
mogorov Complexity is not computable we instantiated our model
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with MDL, and show under which assumptions we can identify the
causal direction. Experiments showed that our method finds graphs
that inherently make sense and match with existing knowledge.

In summary, this thesis presents novel methods for pattern discovery,
rule-based summarization, predictive modeling, and causal discovery
on event sequences. By formalizing problem in terms of the MDL prin-
ciple our approaches result in small interpretable models that give
insight into the data at hand.

8.2 EVALUATING UNSUPERVISED METHODS

In this section we discuss the challenges in evaluating pattern set
miners. All methods proposed in Chapters [2 to [7] are unsupervised
Whereas supervised methods can reasonably straightforwardly be eval-
uated in an objective manner (e.g. by comparing prediction accuracies),
meaningfully and fairly evaluating unsupervised methods poses many
challenges. In this section we will discuss these challenges and how we
addressed them.

WITH KNOWN GROUND TRUTH To establish how well the proposed
pattern set miners, presented in Chapters [2| to |5, recover the ground
truth, we evaluated them on data with known ground truth — syn-
thetic data. Even with known ground truth evaluation poses a chal-
lenge, let us consider the recall and precision metrics. Recall is defined
as the fraction of correctly discoverd patterns over all true patterns in
the data, formally,

true positives

recall = — ,
true positives + false negatives

Precision is the fraction of correctly discoverd patterns out of all re-
ported patterns, formally,

true positives
true positives + false positives

precision =

While the denominators are straight forward to define, true positives +
false negatives = number of planted patterns and true positives + false

We consider OMEN [Chapter |2 as a unsupervised method, as we are interested in
discovering predictive patterns and hence evaluate the discoverd patterns and not the
predictive performance.
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positives = number of returned patterns, it is not inherently clear how
to define the number of true positives. Consider the case where abcd
is the true pattern, and a method recovers abc, or ab and bc, or acd
and bc. None of them are the true pattern, but arguably they are not
wrong and capture some structure of the true pattern. The question
now becomes how correct these returned patterns are. As throughout
all chapters our objective is to discover a set of patterns, we also want
to evaluate how well the true set of patterns, as a whole, was recovered.
Suppose the ground truth set contains the patterns abcx and abcy. Now
a method recovers only abc. Should we say that both abcx and abcy are
75% recovered? Or should we say that we recovered just one of them
— either abcx or abcy — to 75%?

The naive way to count true positives is to tally up the exact recov-
ered patterns, treating everything else as wrong. This is a very strict
approach, it not only fails to reward partial discoveries but actually
penalizes them, putting them on the same footing as entirely spurious
patterns. That is, a partial hit and a completely wrong pattern would
be considered equally good.

To avoid that and reward partial discovery one possibility is to de-
fine a distance metric between patterns, e.g. Levenshtein distance. To
compute the true positives for the recall metric we compute the most
similar pattern for each planted pattern, e.g. abc matches abcx to 75%,
and take the sum over all. To compute the number of true positives for
the precision metric we do the analog for all reported patterns. This
approach has some drawbacks. For example, it can lead to different
counts of true positives when calculating recall and precision. In some
cases, the number of true positives, when computed over all reported
patterns, might even be higher than the actual number of planted pat-
terns. It can also cause double counting, such as when a single discov-
ered pattern matches multiple planted patterns best and is therefore
credited more than once.

To alleviate these problems we propose to compute the number of
true positives by constructing a flow network between discovered and
planted patterns, the maximum flow is then considered the number
of true positives. We provide the technical details on how we con-
struct the flow network in Chapter [2| Section This ensures that
each planted, respectively discoverd pattern contributes at most as one
full discovery.
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Throughout this thesis we considered different pattern languages
that are more expressive, this adds another layer of complexity to the
evaluation. Consider, FLoCk, we not only want to evaluate how well we
recover the patterns but also how well we recover the generalizations,
how we evaluate this we explain in the respective chapters.

WITH UNKNOWN GROUND TRUTH Precision, recall, and its har-
monic mean — the F1 score, are not the only way to measure the qual-
ity of discovered patterns. Another way to compare discoverd models
is to compare the likelihood of the data under the discoverd model,
or the MDL equivalence — the encoding cost. This does not require
known ground truth and is therefore suitable to compare output of
real-world results. This, however, raises other questions, like choosing
the model class under which to evaluate the model. Unless two meth-
ods optimize for the same model class their encoding cost, respectively
likelihood, are only of limited comparability. Unlike F1, a compression
or likelihood score does not allow direct interpretation of the quality
of results, a compression of 3% can be a good result, if most of the
data is noise, on a different datasets, with lots of structure, it would be
considered a poor result. In contrast F1, recall and precision gives an
interpretable number of how good the results are, for example a recall
score of 0.95 tells us that 95% of all relevant patterns where recovered.

To further evaluate the results we conduct a qualitative evaluation
for all methods. We did this by manually analyzing the results, show-
ing examples that demonstrate that a methods discovers meaningful
patterns that existing methods are not capable of discovering. Such
kind of evaluation is limited to fairly well understood datasets or well
understood patterns. A truly novel discovery in the data would re-
quire further validation or interpretation from a domain expert, we
hence restricted our evaluation to datasets we can interpret. The goal
of this kind of evaluation is not to measure the quality of the results
but do show that the proposed methods is capable of discovering new
insights that existing methods can not discover.

EVALUATING SYNTHETIC GENERATED NETWORK FLOWS So far
we have discussed evaluation of discovered pattern sets, in Chapter
6| we use a learned pattern set for a domain specific task — generat-
ing synthetic network flows. As such we are not directly interested in
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the quality of the pattern set but the generated data based on the pat-
tern set. To evaluate the quality of synthetic network flows is no trivial
task but has been studied [157] and the field of synthetic tabular data
generation as a whole has established a set of metrics we can use [3,

40].

EVALUATING CAUSAL GRAPHS  Similarity, the causal discovery method
we propose in Chapters [7, while it is a unsupervised task there is no
ambiguity if an edge was recovered or not. As such, when the ground
truth is known, we can use well established metrics for evaluation,
like the Structural Hamming Distance (SHD) [87], and the Structural
Intervention Distance (SID) [141].

Evaluating performance is challenging, and no single metric captures
all aspects. However, in combination, that is testing on both synthetic
and real-world data, along with manual inspection of real-world re-
sults, gives a good insight on the capabilities and shortcomings of a
method.

8.3 LIMITATIONS

In this section we discuss the limitations of our methods.

For all proposed methods we assume a static process over time, that
is, we assume the generating process is the same throughout the se-
quence, respectively for all sequences in the database. If this does not
hold our approaches will likely still capture the relevant patterns, but
they will do so in a suboptimal way. If we can detect different seg-
ments, or model each time point as a mixture of different generating
processes, a more efficient and insightful model could be discovered.
Dalleiger and Vreeken, explored this for tabular data [37], and van
Leeuwen and Siebes for incoming transactions over time [174]. Gau-
trais et al. [61] study segmentation from a different angle, identifying
segments, over timestamped transactions, with shared item sets.

Our approaches require a given sequences or a set of sequences,
however, event sequences are mostly recorded over time. An interest-
ing future direction is to study how a live summary can be provided,
that summarizes the current generating process live.
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To discover a set of patterns we design a pattern language and its
encoding, this inherently introduces a bias about what kind of patterns
we find, patterns that do not match this pattern language can, at best,
be described in a suboptimal way. This means that we prefer certain
patters over others, however we can also use this to our advantage,
if we want to find patterns of certain shape we can design a pattern
language to fit these kind of patterns very well.

So far we have discussed the impact of our modelling choices and
how they impact the results. One of the key limitations in scaling to
large alphabets is the combinatorial search, while we introduce op-
timistic estimators [Chapter [2]], gain estimates [Chapter [5]], and sig-
nificance tests [Chapters [4]] to speed up the search, they reach their
limit on very large alphabets. In recent years differential based ap-
proaches have been introduced to address this problem [38| |51, [181].
Instead of discovering patterns through combinatorial search, pattern
representations are learned through continuous optimization. These
approaches, in essence, work by regularizing and constraining a net-
work such that the learned weights are interpretable. To the best of our
knowledge, no such approach has been proposed for event sequences.
The transformer [175] architecture has been very successful used to
model event sequences, how to extract interpretable patterns from it is
still an open problem. How to combine the noise robustness of MDL
based approaches with combinatorial search with the speed of differ-
ential approaches is another promising future direction.

Finally, real-world data is often complex and comes with additional
attributes, e.g. on the Rolling Mill dataset, events associated with mea-
suring the width, the value of this measurement will be relevant e.g.
when the measurement does not match the specifications future events
will be different than when it does. We already do that to model the
network flows in Chapter |6} but do not do it in general.

8.4 OUTLOOK

In this thesis we proposed richer pattern languages, going beyond the
traditional definition of frequent serial episodes. Used pattern min-
ing for a domain specific problem, and studied the causality between
events. In this section we discuss promising future directions that ad-
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dress some of the current limitations of exploratory data analysis, with
a specific focus on pattern mining.

In Chapter[7]we studied the causal aspects of event sequences, causal-
ity has the potential to greatly improve the gained insight, once the
causal relations of a system are understood one can intervene and
reason about the effect of interventions. It would be interesting to fur-
ther study causality in event sequences and connect it to methods pre-
sented in this thesis. Consider OMEN presented in Chapter |2, once
we understand which patterns cause which events, e.g. errors, we can
make the changes to prevent the causing events from occurring and
thereby the errors. Causal discovery relies on assumptions [138]], one
assumption is the one of causal sufficiency, i.e. no unobserved con-
founders. If we wrongly assume no hidden confounders, the causal
graph we discover might be wrong, and implementing interventions
might not results in the desired effects. Kaltenpoth and Vreeken [8§]]
propose a way to detect confounding on continues valued variables in
a tabular setting, how to detect confounding on event sequences is still
an open research question.

In the Limitations Section, we discussed the scaling issue of combi-
natorial search based approaches and how differential approaches can
address this. This line of research has the potential to complement ex-
isting combinatorial methods. While combinatorial methods do well
on smaller datasets and have been shown to be very robust to high
amounts of noise, they fail to scale to larger alphabets. This is where
differential methods excel. To bring such approaches to different data
modalities, like sequences and graphs, or increasing the expressivity
of the discovered patterns, like generalized patterns, has the potential
to open up new discoveries from datasets so far out of reach for com-
binatorial methods.

The ultimate goal of pattern mining is not to discover patterns, but
to discover new insight into the data, that are useful in some man-
ner. Most approaches, including our own, do not differentiate between
knowledge already known and truly novel knowledge. While there ex-
its approaches that aim to discover insights that are most surprising
given some background knowledge [42], they require formalization of
all knowledge, and does not provide a way link discoverd patterns to
existing knowledge. Ideally, we are interested in patterns that are truly

171



172

CONCLUSION

novel, or novel to us. The fast majority of discovered knowledge is
unfortunately not captured in queryable databases but in form of text.

The recent emergence of foundation models, in the form of Large
Language Models (LLM), offers a potential solution for this. LLM’s
can essentially be used as a universal knowledge bases, in combina-
tion with e.g. domains specific publication databases and Retrieval-
augmented generation (RAG) [102]. Future work could focus on which
structures are already known and which ones are novel. Combined
approaches that hide well understood patterns that every domain ex-
perts knows are in the data, provides sources to the less understood
ones and highlights the one that can not be linked to any existing
knowledge, have the potential to increase acceptance and trust into
the discovered patterns. To further increase trust, domain experts also
need to be able to effectively explore the data and the patterns within,
e.g. through interactive tools that show where in the event sequences
a pattern occurs. While visualizations and interactive tools have been
proposed [66}|101, 117, [146]], less attention has been paid to understand-
ing which types of visualizations and interactions actually help build
trust in the discovered insights. How to do that is a open question
and not so much a data exploration problem but a human computer
interaction problem.

In this thesis we explored richer pattern languages and while com-
bining existing approaches and introducing more expressive concepts,
for example loops or sub-patterns will enable discovery of new in-
sights. It's unlikely to exactly address the needs of domain experts,
every domain will have their own specific requirements. In short, do-
main experts know best what kind of patterns they look for, however
they often lack the expertise to design specialized pattern languages
and the needed algorithms to discover them. While there exist meth-
ods that can discover patterns under a given set of constraints [81} 132
i.e. excluding specific cases from the pattern set. Future work could be
working on approaches that allow for data exploration under custom
pattern languages, without the need for extensive formalization and
designing of optimization algorithms. Such an approach has the po-
tential to speed up exploration by increasing iteration time.

To conclude this thesis, we studied exploratory methods for event
sequences, focusing on summarization and predictive models, that en-
able action. The models presented are easily interpretable and pro-
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vide actionable insights that can support decision-making processes.

Looking ahead, we hope future research will build on and extend
the ideas discussed in this section — particularly in the direction of
scalability, integration of causal discovery, and the development of
domain-adaptive pattern languages. Addressing these challenges will
not only advance the theoretical foundations of pattern mining but
also enhance its practical applicability, making it more accessible and
impactful for domain experts across diverse fields.
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MINING SEQUENTIAL PATTERNS WITH RELIABLE
PREDICTION DELAYS

In this appendix to Chapter [2} we provide additional technical details
as well as additional metrics on the experiments presented.

A.1 REFINEMENT ALGORITHMS

In this section we give additional details ans pseudo-code on the re-
finement algorithm.

A.1.1  OMEN Refinement

When adding a pattern to our model we fist refine, i.e. extend it, to
the best version we can find, we do so in a greedy fashion. We give
the pseudo-code for refining a pattern as Algorithm |14} We start with
a pattern s (1. 1) and consider the extensions es and se, where ¢ € ()
and choose the one with maximal frequency. To do so efficiently, we
only consider events e that are adjacent to pattern occurrences that are
currently aligned to an interesting event (1. 3—4). The key idea is that
extending a pattern makes it more specific, and hence reduce recall—
while, by maintaining the current predictions, we maximize precision.
We repeat this process until our optimistic estimator no longer gives a
better estimation than the best seen pattern up to this point. We then
return that pattern with lowest L,(Sg).

A.1.2 FOMEN Refinement

When we find a compressing pattern we greedily refine it to its most
compressing form. We do this by combining our compressing pattern
with the candidate pattern that has the highest intersection of pre-
dicted interesting events. We repeat this process until our optimistic
estimator no longer estimates a better refinement. From the chain of
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created patterns we return the most compressing version. As Algo-
rithm [15| we give the pseudo code of the refinement procedure.

Algorithm 14: REFINE Pattern

input :predictive pattern p,
output: greedy refinement of pattern p with associated delay
distribution ¢,
pre—p p<p
while Lp’(SR) < Lp’(SR) do
H —{(i,j) € Ay | j # skip, X[i + 1] = s'e}
T —{(i,]) € Ay | j # skip, X[i] = es'}
if max,cq |T| > max.cq |H| then
L p — p' +argmaxeeq |T|

-

N

o U1 s W

else

8 L p' — argmax.cq |H|+p’
9 if Lp* (SR) > Lp/(SR) then
10 L p* < pl

1 return (p*, ¢p=)

A.2 EXPERIMENTS

In this section we provide additional metrics on experiments presented

in Chapter [2] Section

A.2.1  Additional Experiment Results

In Section [2.6| we show the F1 results for synthetic data. Here we pro-
vide the recall and precision results for destructive noise in Figure.
additive noise in Figure. and for both additive and destructive
(combined) noise in Figure. For all three settings we see that OMEN
and FOMEN have near perfect precision whereas the recall scores reflect
the F1 scores. From this we can conclude, as the signal to noise ration
increases it becomes more difficult to find the planted patterns but our
scores correctly filters non predictive patterns even under high noise.
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Algorithm 15: FREFINE

input :predictive pattern p,
output: refinement of pattern p and delay distribution ¢,
pr—p; plep

2 do

3

4
5
6

7

p < arg max ||§5 A SA§/||1 / / Ignore used events for singleton
patterns.
C— (C\{p.p}h) v O
p/ <« argmaXpe{pp,p' p} Hséqu
if Lp*(SR) < Lp/(SR) then
L prp

8 while L,/(Sg) < Ly (Sr)
9 return (px, Pps)

In Figures and we report the worst model discovered by
OMEN and FOMEN respectively. The worst model is the one that has
the largest difference between the number of bits needed to encode S,

compared to the ground truth model. We see that there are no big dif-

ferences between the average and the worst case showing that OmMEN
and FOMEN return consistently good models.
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(b) Recall under destructive noise.

Figure a.1: [Higher is better] Precision and recall score result on synthetic data
for destructive noise. We see that OMEN and FOMEN only return
true positives and recall most patterns even under high noise.
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Figure a.2: [Higher is better] Precision and recall score result on synthetic data
for additive noise. We see that OMEN and FOMEN only return true
positives and OMEN recalls most patterns even when 9o% of inter-

esting events are noise.
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Figure a.3: [Higher is better] Precision and recall score result on synthetic data
for combined destructive and additive noise. We see that OMEN
and FOMEN only return true positives and recall most patterns
even under high noise

—— Ground Truth —— OMEN —— Null Model

6 -10° 4 -10* : 103
&, 5 3 56
2 =2 =4
ml\ 2 V)b' (J;—\
I =1 =2
o 30 60 90 o 30 60 90 o 30 60 90
destructive noise in % additive noise in % combined noise in %
(@) (b) (c)

Figure a.4: [Lower is better] FOMEN discovers models close to the ground
truth for destructive (a), additive (b) and combined (c) noise. Plots
show bits needed to encode Sy given the null, planted and discov-
ered model. We show for each noise level the experiment with
the worst performance, i.e. where the difference, in bits, between
discovered and planted model is greatest.
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Figure a.5: [Lower is better] OMEN discovers models close to the ground truth
for destructive (a), additive (b) and combined (c) noise. Plots show
bits needed to encode Sy given the null, planted and discovered
model. We show for each noise level the experiment with the
worst performance, i.e. where the difference, in bits, between dis-
covered and planted model is greatest.



DISCOVERING SEQUENTIAL PATTERNS WITH
PREDICTABLE INTER-EVENT DELAYS

In this appendix to Chapter [3, we provide additional details on method
and experiments presented.

B.1 ALGORITHM

In this section, we provide the derivation of the gain estimation as well
as further details about the search algorithm.

B.1.1 Estimating Candidate Gain

In this subsection, we provide the derivation of

AL(D | M@p') =slog(s) —s'log(s") + zlog(z)—
xlog(x) + x"log(x") —ylog(y) +y'log(y")

where z is the assumed usage of p’ and s the sum of all usages, s =
2pem Usg(p), for readability, we shorten usg(p1) to x, usg(p2) to y and
write x/, 1/, s’ for the “updated” usages, thatis X’ = x—z, Y =y—z
and s’ = s —z [10].

We want to compute the difference in encoding cost induced by
adding pattern p’ with assumed usage z to model M,

AL(D | M@&p')=L(D | M)—L(D| Ma&p)

As we do not have any information about the delays between p; and p»
we assume these are encoded for free, this makes it a more optimistic
estimation. As the constant costs will not affect the difference we do
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not consider them here, therefore we estimate the change in the pattern
stream as,

~ L(Cy | M)~ L(C, | M&p)

= 3% -usglp)tog (5 ) - —usg(ptog (52

peM peM®@p’

= ( 2 —usg(p)log (usg(p))) — xlog (f) —ylog (Z)
peM\(p1,p2} ’ °
- ( ) —usg(P)log< g(p))

peM@p'\{p1.p2.p'}

/
+x log( >+y log (y ) —i—zlog(:,)

since Z usg(p) =s—x—y and Z usg(p) =s —x' -y —z
peM\{p1,p2} peM\{p1,p2.p'}

= (s —x—y)log(s) + Z —usg p)) — xlog (g) —ylog (%)
1.P2

—(s' = x'—y' —2)log(s') - Z —us g (p))
pEM TP’}

+x log( ) +y'log <y/) +zlog 5)

_ _ y

=(s—x-y)lo xlg() ylog(s)

—(s' —x' -y —z)log(s') + x' log (JSC,) +y'log <y/) +zlog )

= slog(s)—xleg(s) —yleg(s] — xlog(x)txleg(s] — ylog(y)tyleg(s)
—s'log(s") -2 dog (5] 1/ deg (5] +zlog(s")

+x'log(x") —x1eg(s) +y' log(y') —yeg(s") + zlog(z) —zleg(s")

= slog(s) — xlog(x) — ylog(y)

—s'log(s") + x"log(x') +y/'log(y') + zlog(z)

B.1.2 Mining Good Models

ALIGNFAR To find a good initial alighment between p; and p,, we
use ALIGNFAR [Chapter . However, we can not use ALIGNFAR directly,
we first have to transform the data. We first summarize the functional-
ity ALIGNFAR, we give a full explanation in Chapter |2/ Section
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ALIGNFAR takes a set of sets I as input, each set U € I is a set of pos-
itive integers i.e. U € INT. ALIGNFAR finds that y* € R that minimizes
the squared difference to the closest d € U over all sets U € I, formally
that is

p* = argmin Z mm (n —d)?
HeR - (rep

Given a set of windows of p; and a second set of windows of p,, we
are after that alignment, between the last event of the windows of p;
and the first of p,, that minimizes delay variance. For each window of
pattern p; we build a set of delays U to all following p, windows, that
is all who are in the same sequence S. If |[U| = 0 i.e. there does not
exist a occurrence of p, we can align the respective occurrence of p; to,
we omit this U from I.

This gives us a set of delay sets I. ALIGNFAR then finds that delay
u* € R that minimizes the squared difference to the closest delay in
each set. We then pick for each U € I that d with minimal distance to
p* ie. argmin,_, |u* — d|. With that, we have an initial alignment from

P1 to p2.

Algorithm 16: ALIGNCANDIDATE
Input :pq, p2
Output: estimated gain, pattern candidate p’ = p1 @ p»
1 AN < ALIGNNEXT(Cp,4, Cop,)
2 Ap < ALIGNFAR(Cy,, Csp,)
3 gainy, An < OPTIMIZEALIGNMENT(p1 @ p2, AN)
4 gaing, Ap — OPTIMIZEALIGNMENT(p1 @ p2, AF)
5 return gainy;, p1 @ p2 with Ay if gainy > gain, else
gaing, p1 @ p2 with Ar

ALIGN CANDIDATE In Algorithm [16] we show pseudocode of the
alignment procedure. With C, ., we refer to, the set of positions of the
last event of pattern p; under the current cover C, analog C,), for the
tirst events of p,. In ALIGNNEXT we map each occurrence of p; to the
next one of py, provided they are in the same sequence S.

We optimize both alignments, as described in Chapter [3| and return
the one for which we estimate a higher gain.
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Algorithm 17: FILLGAPs
Input :p, index i
Output: pattern p’
1 foreach e between p’[i] and p’[i + 1] in cover C do in order of
frequency

2 | gainy, Ay — ALIGNCANDIDATE(e,p'[i + 1 :])

3 | gain,, Ay — ALIGNCANDIDATE(p'[i :]e,)

s | Peplioenpli+1]

5 if gain, > 0 A gain, >0 A L(D,M) > L(D,M@p') then
6 pi < FiLLGars(p/, i)

7 p' — FieGars(py, i+ 1+ [p7| —[p'])

8 return p’

9 return p

FILL GAPS Before adding a pattern p to our model M, we refine the
gap introduced by combining p; with p,. We show the pseudocode in
Algorithm |17} To use FILLGAPs(p, i) we need a cover that includes p,
we use this cover to see which patterns, incl. singletons, are frequently
used within gap i of p. We test these for addition, in order of frequency.
If we choose to extend pattern p we call FILLGAPs on the two newly
introduced gaps. This is a recursive algorithm that fills all gaps until
we no longer get a gain by adding events.

TOY EXAMPLE — SEARCH ITERATION In this paragraph we go
through one iteration of the main search loop, Algorithm |4 We con-
sider a toy input sequence shown in Figure (1), over the alphabet
QO = {a,b,c,d,e, f}. We begin by generating a set of candidates, we
do so by taking the cross product between all existing patterns (incl.
singletons), hence Cand = {aa, ab, ac, ba, bb, bc, ca, cb, cc, ...} (line 1 in
Alg. [4).

Let p1p> be the candidate from patterns p; and p,. Next, we sort
all candidates by |p1|usg(p1) + |p2|usg(p2), where usg(p1) is usage of
p1 in the current cover, so the usage multiplied by the pattern length,
favoring long and frequent patterns. For this toy example we assume
the order of the candidates to be [ab, ba, ac, bc, ...].

Next, we test the candidates in order, we begin with ab. First, we
estimate the gain AL(p; ® p2) (line 3), i.e. we estimate if including
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(1) S: a ¢ a C.b.f.b.d.a.c.e.b.bJ

(2) S: \a.c.a.c.b.f.b.d.a.c.e.b.bJ
3
/1\x//1>§3\ PN

(3 S a ca cb fbdacebb

Figure b.1: Toy example of main search algorithm, (1) input sequence, (2)
alignment between symbols a and b, and (3) pattern after ‘filling
in” symbol ¢ between a and b.

this pattern in our model will decrease the total encoding cost. If we
estimate a gain we align p; with p; (line 4). When aligning p; with
p2 we find an mapping such that the variance in delay between p;
and p; is minimal. For candidate ab we find the alignment shown in
Figure (2). As a “bonus” we get a better estimation of the gain, if
this one is still positive we test (not estimate) if adding the pattern
actually improves the total encoding cost (line 5). Once we have added
a pattern we further improve it by filling in events that frequently occur
between p; and p;, naturally we only add events if it improves our total
encoding cost. In our example we extend our pattern with event c, this
results in pattern abc, Figure|b.1/(3). Finally, we extend our candidates
with the crossproduct between all existing pattern in the model and the
newly added pattern, hence Cand = {acba, acbb, ...}. We keep iterating
until we no longer find any patterns that improve our score or our
early stopping criteria is met (considering up to |Q2|?/100, but at least
1000, unsuccessful candidates in a row).

B.2 EXPERIMENTS

In this section we provide additional details on the experimental setup
and experimental results.
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B.2.1 Experimental Setup

All experiments were executed single-threaded on an Intel Xeon Gold
6244 @ 3.6 GHz, with 256GB of RAM (shared between multiple simul-
taneously running processes). We report wall clock runtime.

HOPPER We run all experiments, synthetic and real-world data, with
the default parameter settings, that is a max delay of 200 and precision
p = 1. We did not optimize max delay or precision. We set the max
delay to 200 as we did not expect longer delays for any of the synthetic
and real-world datasets. We set the precision to one as it gives the nec-
essary precision for data sequences where the minimal delay between
events is one.

SQS AND SQUISH are parameter-free.

1sM  The number of iterations has been set to 500 and the number of
structure steps to 1000, the max runtime was set to 24h for synthetic ex-
periments and 48h for real-world data sets except for the text datasets
where we set the 72h. Parameters were chosen to keep the runtimes
within workable durations.

skorUs We use the default interesting measure (leverage), and the
default parameter for smoothing and support (Laplace). For all exper-
iments we set k = 10 i.e. we get the top 10 patterns, and the maximum
length to I = 10. We set the parameters to match the ground truth
of the synthetic experiments, in the sense that we planted 10 patterns
with length 10. We kept these values throughout.

PPM  is parameter free.
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Figure b.2: Recall (a) and Precision (b) results for recovered patterns on syn-

thetic data. We vary the number of delay distributions per pattern
from o to 9.
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Figure b.3: Recall (a) and Precision (b) results for recovered patterns on syn-
thetic data. We decrease the number of planted instances from 200

to 100. We sample for each planted instance, uniform at random
which of the 10 unique pattern to plant
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B.2.2 Recall and Precision Results
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Figure b.4: Recall (a) and Precision (b) results for recovered patterns on syn-
thetic data. We vary the mean of the inter-evnet delay.
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Figure b.5: Recall (a) and Precision (b) results for recovered patterns on syn-
thetic data. We vary the the variance of the inter-event delay.

B.2.3 All Holidays

Here we show all pattern reported on the Holidays dataset by the re-
spective methods.

HOPPER

e [May 1%t (155 days) National Holiday (83 days) 1%t Christmas Day
(1 day) 2" Christmas Day, (6 days) New Year's (80 to 112 days)
Good Friday (3 days) Easter Monday (49 days) Whit Monday]
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where all delay distributions are uniform.

SQS
e [1% Christmas Day, 2™ Christmas Day, New Year’s]
* [May 15t, Ascension Thursday, Whit Monday]
® [Good Friday, no holiday, Easter Monday]

SQUISH
e [no holiday, 1%t Christmas Day, 2"d Christmas Day]

ISM
* [New Year's, May 15]

® [no holiday]

®* [no holiday]

® [no holiday]

e [National Holiday, 1%% Christmas Day, 20d Christmas Day, New Year's]
e [May 1%

e [National Holiday, 18! Christmas Day, 224 Christmas Day, New Year’s]
e [May 1%

® [Good Friday, Easter Monday, Ascension Thursday, Whit Monday]

® [Good Friday, Easter Monday, Whit Monday]

® [no holiday]

* [no holiday]

e [May 1%

e [Ascension Thursday, Ascension Thursday]

® [Good Friday, Easter Monday, Ascension Thursday, Whit Monday]
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SKOPrUS

B.2.4

[New Year'’s, Good Friday, Easter Monday, May 18t, Ascension
Thursday, Whit Monday, National Holiday, 18t Christmas

Day, 2™ Christmas Day]

[New Year's, Easter Monday, May 1%%, Ascension Thursday,

Wwhit Monday, National Holiday, 1%t Christmas Day, 224 Christmas
Day]

[New Year's, Good Friday, May 15¢, Ascension Thursday, Whit
Monday, National Holiday, 1%' Christmas Day, 2'd Christmas

Day]

[New Year’s, Good Friday, Easter Monday, Ascension Thursday,
whit Monday, National Holiday, 1%t Christmas Day, 22d Christmas
Day]

[New Year's, Good Friday, Easter Monday, May 1%, Ascension
Thursday, Whit Monday, National Holiday, 2" Christmas

Day]

[New Year's, Good Friday, Easter Monday, May 1%, Ascension
Thursday, Whit Monday, 1%t Christmas Day, 29 Christmas

Day]

[New Year’'s, Good Friday, Easter Monday, May 1%%, Whit

Monday, National Holiday, 1%t Christmas Day, 2" Christmas

Day]

[New Year’s, Good Friday, Easter Monday, May 18t, Ascension
Thursday, National Holiday, 15t Christmas Day, 24 Christmas
Day]

[New Year'’s, Good Friday, Easter Monday, May 18t, Ascension
Thursday, Whit Monday, National Holiday, 1%t Christmas

Day]

[Good Friday, Easter Monday, May 18t, Ascension Thursday,

Whit Monday, National Holiday, 15t Christmas Day, 2™d Christmas
Day]

Extended Real World Statistics
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MINING RULE-SETS FROM EVENT SEQUENCES

In this appendix to Chapter [4) we provide additional details on the
SEQRET methods as well as a detailed complexity analysis. We detail
the experiment setup and the synthetic data generation.

C.1 ALGORITHMS

In this section we give additional details on the SEQRET method.

c.1.1  Rule Windows

A rule window SJi, j;k,1] captures the positions at which a rule oc-
curs in a sequence S. Here, S[i, j] is the window within which the rule
head occurs and S[k, ] is the window within which the rule tail oc-
curs such that j < k. To avoid double counting and minimize gaps, we
use minimal windows to identify the rule head patterns that trigger
the rules. But what about the rule windows? For each rule head, we
prefer the nearest minimal window of the rule tail pattern to com-
plete the rule window. We prefer minimal windows as they mini-
mize the gaps and treat the rule tail as a cohesive unit. If multiple
minimal windows of the rule tail exist following the trigger, then
we pick the nearest one so as to minimize the delay. Further, we re-
strict the search to windows that follow a user-set max delay ratio
such that k — j — 1/|tail(r)| < max delay, and a max gap ratio such that
I —k+1/|tail(r)| < max gap and j —i — 1/ |head(r)| < max gap.

Algorithm[1§ outlines the pseudo-code to find the best rule windows
for a given rule.

The BEsSTRULEWIN method, however, assumes that none of the events
forming the preferred windows for different rules have already been
covered. As we start covering the sequence with these windows, how-
ever, it may happen that, at some point, events that are common to
multiple rule tails have already been covered. In such cases, we look
for the next best rule window. The next best rule window is the near-
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Figure c.1: An illustration of potential rule windows for the rule ab — cd. We
pick the nearest minimal window of the rule tail as our preferred
window.

est minimal window of the rule tail following the trigger such that
the events forming the rule tail are not already covered. Algorithm
outlines the pseudo-code for the NExTBESTWIN method.

As an example, consider the sequence {a,a,b,b,c,c,d,d) in Figure
and rule ab — cd. The minimal window S[1,2] captures the rule head
that triggers the rule. Assuming none of the events in the sequence
have already been covered, we pick S[5,6] as the rule tail window.
The alternate windows for the rule tail are considered if and only if
positions 5 or 6 have already been covered by other rules.

Algorithm 18: BESTRULEWIN
Input: rule, D
Output: windows
1 windows «— {};
2 triggers «
{S[i,j]1S€ D, (j—i+1)— |head(rule)| < max gap = |head(rule)|} ,
3 where S[i, j] is a minimal window of head(rule);
4 for S[i, ] € triggers do
5 | kI < indices of first minimal window S|k, I] of tail(rule)
such that (k —j — 1) < max delay = |tail(rule)| and
(I —k+1) — |tail(rule)| < max gap = |tail (rule)|;
6 | if S[k,1] exists then
7 ‘ windows «— windows v {(rule,S[i, j; k,1])};
8 return windows
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Algorithm 19: NEXTBESTWIN

Input: win, cover, D

Output: win’

/* win contains a pointer to the rule (win.rule) and the window
in the format S[i, j; k,1] */

1 k', 1" — indices of first minimal window S[k’, I'] of tail(win.rule)
such that Ve € {e | S[k’,!'] covers e}, #w € cover where w covers e
and (k' —j — 1) < max delay = |tail (win.rule)| and
(I' = k' + 1) — |tail(win.rule)| < max gap = |tail(win.rule)|;

2 win' — (win.rule,S[i, j; k', I']);

3 return win’

c.1.2  Prune Algorithm

In Algorithm |20/ we show the pseudo-code for the PRUNE procedure.
The general idea is iterative over all rules in PRUNE ORDER, that is we
consider rules in order of lowest usage, highest encoded size, and low-
est tail length, and remove all rules that harm compression.

Algorithm 20: PRUNE
Input: D, R
Output: pruned R
1 for r € R ordered by PRUNE ORDER do

2 | if r is not a singleton rule then

3 if L(D,R\{r}) < L(D,R) then
: | R R\{r);

5 return R

c.1.3 CandRules Algorithm

In Algorithm [21| we give the pseudo-code for the CANDRULES proce-
dure. Given a rule, it returns a set of candidates, it does so by extend-
ing the rules with events that occur significant more frequent than
expected, We give a detailed explanation in Chapter |4 Section
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Algorithm 21: CANDRULES

Input: D, ), rule

Output: candidates

candidates — {};

2 windows «— BESTRULEWIN(rule, D);

for pOSitiOTZ € {]’lo, h1, ey h\heud(ruleﬂ} V) {to, £, .y t\tail(rule)\ } do
/* h represents rule head and f represents rule tail */
4 forec () do

-

53]

5 count «—

| {w € windows | w contains e in the gap at position} |;
6 Pec 1 — W ; /* ¢° refers to the complement of e */
7 expected — |windows| — Zwewindows (pec)|gw|;

/* gw refers to the gap in w at position */
8 if count significantly greater than expected then
9 candidates «— candidates U {INSERT(rule, e, position)}
/* INSERT inserts e to rule at position */

10 return candidates

Algorithm 22: SpLiT

Input: Pattern p
Output: Set of rules R
1 R—
210
3 while i < |p| do
4 L R < Ru(p[0,d,pli+1,]pl])
5 i—i+1

6 return R

c.1.4 Split Algorithm

In Algorithm [22| we show the pseudo-code for the Sriir procedure.
Given a pattern it splits it ino a set of rules, e.g. abc into € — abc,
a — bc, and ab — c.
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C.2 TIME COMPLEXITY ANALYSIS

In this chapter we provide a complexity analysis.

c.2.1  Time Complexity of the Rule-Set Mining Problem

To evaluate the time complexity of the problem, let us split the problem
into two parts - one, to find the optimal cover given a rule set, and two,
to find the optimal rule set. For simplicity, let us assume a single long
sequence S in the database, drawn from the alphabet ).

Given a rule set R, we know that a cover is a many-to-one mapping
between the events in S to rules in R. In other words, it is a permutation
with replacement of the rules in R over |S| events. Therefore, we can
compute the number of possible covers as |R|I°l. The worst-case time
complexity of the first part of our problem is

O(IR[®) .

Now let us compute the time complexity of the second part of our
problem. The longest rule that can occur in S would be of length |S].
The total number of rules possible would be the sum of the number
of rules possible per size, with size ranging from 1 to |S|. Considering
that rules can be built from sequential patterns, let us first compute the
number of sequential patterns possible for size k. A sequential pattern
is a permutation of the alphabet with replacement. Therefore, for size k
we get |Q[¥ possible sequential patterns. Now, including the possibility
of an empty-head, we can choose k positions to split the pattern into a
rule head and a rule tail. Thus, for size k, we can compute the number
of rules possible as k * |Q|F. The total number of rules possible is then
given by

S|

Dlkx|QfF
k=1

A rule set being a subset of all possible rules, we can compute the
number of possible rule sets as the size of the power-set. Since we
retain the singleton rules in every possible rule set, we can compute
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i Sy kxlOF-|0] i
the number of valid rule sets as 22#=1 . The worst-case time
complexity of the second part of our problem is then given by

oLkl o2l0ly

c.2.2  Time Complexity of SEQRET-MINE

Let us now analyze the time complexity of our solution. We will ana-
lyze each part of the problem separately. We consider the worst-case
where all the events in the database occur as a single long sequence S.
The set of distinct events form the alphabet ().

TIME COMPLEXITY OF COVER Given a rule set R, we first compute
the complexity of finding the rule windows. To do so, the method
looks for all rule triggers and for each rule trigger, finds the near-
est minimal window of the rule tail. Iterating over S and looking for
triggers of each rule r € R results in a worst-case time complexity of
O(|S| * X,cg |head(r)| = max gap). Ignoring the max gap parameter that
stays constant irrespective of the problem size and upper bounding the
size of any rule head by max,cr |head(r)|, denoted by max_head_size, we
can rewrite the same as

O(|S| * |R| * max_head_size) .

To complete the rule window for each trigger, BESTRULEWIN next looks
for the nearest minimal window of the rule tail until the maximum al-
lowed delay. Given a trigger, looking for a rule tail, for any rule r,
requires computational time in the order of O(|tail(r)| * max delay =
|tail(r)| * max gap). Once again ignoring the constant parameters and
using max_tail_size to upper bound the size of a rule tail, we can
rewrite this as O (max_tail_size®). Thus, we can compute the worst-case
time complexity of BESTRULEWIN as

O (\S | % |R| * (max_head_size + max_tail_size2)) . (c.1)

As triggers are bounded by minimal windows, and only one minimal
window can exist per starting or ending position, the number of trig-
gers per rule is upper bounded by |S|. Since BESTRULEWIN finds only
the one nearest minimal window of the rule tail for each trigger, we
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can upper bound the total number of rule windows returned to |R| « |S].
The next step in COVER is to sort the rule windows in WINDOW ORDER.
This incurs a time complexity of

O(IR] #[S] = log, (IR *S[)) - (c:2)

The final step in COVER is to consider each rule window in the sorted
order and cover the sequence. However, there could arise cases where
the considered rule windows are in conflict with previous rule win-
dows which already covered the same events. This in turn leads to
the execution of NEXTBESTWIN. Each time NEXTBESTWIN is called for
a rule trigger, it looks for the next nearest minimal window of the
rule tail until the maximum allowed delay. If such a rule window is
found, then it is added to the sorted list of rule windows maintaining
the order. A single call to NExXTBESTWIN for a trigger of rule 7, in the
worst-case, incurs computational time in the order of |tail(r)|* to find
the next nearest minimal window of the rule tail (ignoring the param-
eters max gap and max delay). Suppose W denotes the sorted list of rule
windows at any point in time. Once (if) the next best rule window is
found, the method incurs additional computational time in the order
of log,(|W|) to find the position of insertion using a binary search.
The question is how many such calls to NExTBESTWIN could happen
in the worst case. We could also upper bound the size of W by the same
value. To answer this question, let us consider when NEXTBESTWIN is
called. It is called whenever an event that participates in a rule window
is already covered by a previous rule window. From the point of view
of a rule trigger, each event following it until a limit determined by max
delay and max gap times the rule tail, can potentially participate in a
rule window. The SEQRET starts with one such rule window and looks
for the next best rule window if and only if any of the participating
events is already covered. Further, the next best rule window omits
the previously covered events. Therefore, the maximum number of
times NEXTBESTWIN gets called is limited by the number of events
following the rule trigger, given by |tail(r)|  (max delay + max gap + 1).
Ignoring the constants for the purpose of complexity analysis, we can
rewrite it as |tail(r)|. Over all triggers for all rules, we can then compute
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the worst-case time complexity of finding the next best windows and
adding them to the sorted list of rule windows as

@ (Z |S| * [tail(r)| = (|tail (r)|? +log2(|W|))) ,
reR

where W is the list of rule windows. Once again, as worst-case, we use
max_tail_size to rewrite the same. Further, we can limit the size up to
which W can grow by the number of times NEXTBESTWIN gets called,
i.e in the order of |R|  |S| * max_tail_size. Putting it all together, we find
the total computational time for all calls to NEXTBESTWIN to be in the
order of

O(|R| * |S| * max_tail_size x 1og, (|R| * |S| * max_tail_size)

C.
+ [R| * |S] * max_tail_size3) (3)

Finally, using the ordered list of rule windows W, we cover the se-
quence S. As singleton rules are also included in R, it is guaranteed
to cover the entire sequence in one iteration over all the rule windows
in W (in practice, it will be much lesser as many events get covered
by a single rule window). Therefore, we can compute the worst-case
time complexity to loop over the list of rule windows and cover the
sequence S as

O(|R| * |S| * max_tail_size) . (c.4)

Thus, from equations and we can compute the total

worst-case time complexity of COVER as

O(|R| *|S| % (max_head_size + max_tail_size®)
+R| #[S] *1og, (R| *[S])
+ |R| # |S| * max_tail_size
+ |R| * |S| * max_tail_size +10g, (|R| « |S| = max_tail_size)

+ |R| # |S| * max_tail_size®) .
Considering only the dominating terms, we get

O(|R| * |S| * (max_head_size

+ max_tail_size®

(c:5)
+ max_tail_size  log, (|R| * |S| * max_tail_size)) .
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TIME COMPLEXITY OF SEQRET-MINE Next, we analyze the time
complexity of the greedy miner, SEQRET-MINE. Let us consider a sin-
gle iteration of the miner. Let R’ be the candidate rule set at that
time point. Then, SEQRET-MINE grows the rule set by searching for
a new rule that improves the encoding cost by extending each rule,
at each position, with their significant neighbors. As worst-case, let
us assume that the miner had to search over all rules, at all positions.
Further, let us assume that all events in the alphabet () are signifi-
cant (although this is impossible). To simplify the computations, we
use max g |head(r')| as the max_head_size and max,cg |tail(r")| as the
max_tail_size to upper bound the lengths of head(r') and tail(r’") for any
" € R'. Then, the computational time of the search will be in the order
of O(|R'| * (max_head_size + max_tail_size) = |Q)|) . Once a new rule is
added to the rule set, SEQRET-MINE tries to prune the rule set by re-
moving each non-singleton rule. The computational time required by
PruUNE will be in the order of |R’| — |(}]. Considering only the dominat-
ing term, we can thus conclude the worst-case time complexity of each
iteration as

O(|R’| * (max_head_size + max_tail_size) = |Q)|) , (c.6)

where R’ denotes the candidate rule set at that time point. Next, we
try to analyze the number of iterations possible before the algorithm
converges.

We know that in each iteration, SEQRET-MINE adds a new rule to
the current rule set only if the addition improves the encoding cost.
Similarly, a rule is pruned from the current rule set only if the removal
improves the encoding cost. If the encoding cost cannot be improved
anymore, then the algorithm halts. In other words, SEQRET-MINE will
never revert back to a rule set from which it grew in the past. Therefore,
the maximum number of iterations is upper bounded by the number
of unique rule sets possible. In Section we saw that the number
of possible rule sets is in the order of O(2/°! | ).

CACHING FOR FASTER RUNTIME In practice, however, we observe
the number of rule sets considered by the greedy approach to be much
smaller. Further, we cache the rule windows found for each rule as
and when they are first encountered. Therefore, if the same rule is
present in a future rule set, we do not recompute the rule windows. In
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other words, BEsTRULEWIN is invoked only once per rule. The same
is true for CANDRULES. We cache the neighbors found for each rule as
and when they are first encountered. As a result, the time complexity
in practice would be much lower, even if SEQRET-MINE attempted the
worst-case possibility of all unique rule sets before converging. Further,
we do not reconsider rules once pruned in the future iterations.

C.3 EXPERIMENTS

In this section we describe the experiment setup as well as the syn-
thetic data generation.

c.3.1  Setup

We ran all experiments on an Intel Xeon Gold 6244 @ 3.6 GHz, with
256GB of RAM. For the methods PoErMA and PoermH, the JVM max
heap size was increased upto 64 GB. Both these methods discover par-
tially ordered rules from long event sequences, albeit with different
definitions of rule support. To ensure fair comparison, we constraint
our synthetic data generation to rules where constituent events appear
in lexicographical order, and re-arrange the partially-ordered rules
found to this order. We set a time limit of 24 hours for all methods
except cossu. As Cossu took a very long time to complete across all
experiments, we increased the time limit for Cossu alone to 48 hours.
Across all synthetic experiments except where the rule tail size was
varied, SEQRET-MINE completed within a few seconds to 1 hour max.
In experiment varying rule tail size, SEQRET-MINE took upto 3 hours in
a few instances indicating that data with highly interleaved rules take
up more time in rule search. We report the runtimes on real datasets
in Tablelc.1l

c.3.2 Synthetic Data Generation

Given an alphabet as input, we first generate a random rule set. We
take in as parameters the rule set size, the rule-head size, the rule-tail
size and the rule confidences. We also parameterize whether or not
the rule heads occur as independent patterns, i.e for a rule X — Y,
whether € — X exists or not. If ¢ — X doesn’t exist, then X is only as
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frequent as expected by chance. Given these parameters, we randomly
select events from the alphabet to form the rule heads and the rule
tails, and add them to the rule set.

Next, using the rule set as ground truth, we generate the sequence
database. We first generate an initial sequence using all the empty-
head rules, and then insert the rule tails wherever the non-empty-head
rules have triggered. We take in as parameters an initial sequence size
and noise percentage. By noise, we mean the events in the sequence
that can be covered only using one of the singleton rules. Therefore,
given a noise percentage, we uniformly sample from the singleton
rules, i.e the alphabet, to generate the stipulated percentage of the
initial sequence size. Following this, we uniformly sample from the
empty-head non-singleton rules and fill them into random positions
to generate the remaining sequence. Finally, we go over the generated
sequence, identify rules that have been triggered and insert the corre-
sponding rule tails as per the specified rule confidences.

As for the delays and gaps, we take in as parameters a delay prob-
ability, i.e probability with which the data generation algorithm skips
positions following a rule trigger, and a gap probability, i.e probability
with which the data generation algorithm skips positions within rule
tails. Note that the insertion of rule tails will alter the sequence size
and the noise percentage. We keep the gap and delay probabilities low
at 0.1 and 0.2 respectively. To run SEQRET, we set the max delay and the
max gap both to 2.

Dataset Runtime
JMLR 4h
Presidential 8 h
POS 3h
Lifelog 2h
Ordonez 3s
Ecommerce 11 h
Rollingmill 22h
Lichess 17h

Table c.1: Runtime of SEQRET-MINE for different datasets.
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SUMMARIZING EVENT SEQUENCES WITH
GENERALIZED SEQUENTIAL PATTERNS

In this appendix to Chapter |5, we provide additional details about the
Frock method and the experiments, presented in Chapter

D.1 ALGORITHM

In this Section we provide additional details on the FLock Algorithm.

p.1.1  Cover

Given a Model M, we want to find the shortest description of se-
quence database D given model M, i.e. that cover C that minimizes
L(D|M). To this end we need for each pattern p € CT, all subsequences
Slji,j2, -, j‘p‘] where p matches, that is window set W.

In Chapter |5, we explained what a valid cover is and what it means
for two windows to be in conflict. Here we describe how we actually
find a valid cover C.

We show pseudocode in Algorithm 23| Given a set of windows W
we first sort W by j;. The general idea is now to move a pointer i
from left to right through W where all windows to the left of i are
conflict free whereas to the right we still have to resolve all conflicts.
We iterate over the window list W while maintaining three pointers,
the first pointer i points to the lowest non conflict free window. The
second one, greatest window gw, is used to keep track of the current
greatest window after i, that is not in conflict with a greater window.
The third one, greater window searcher gws, is used to find conflicting
greater window then the current greatest window gw.

We initialize i with o such that it points to the first window in W, at
this point this is, trivially, also the greatest window we have seen so
far. We now search for a greater window that overlaps with gw, line @
If we find one we update our gw pointer. Once we can’t find a greater
window we remove all windows that overlap with gw. To this end,
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Algorithm 23: GREEDYCOVER

input :set of windows W and D
output: list of ordered windows covering D

101

2 sort W by j;

3 while i < |W| do

4 | gW—1i

5 qws «— gw +1

6 | while Wlgws].first < Wgw].last do

7 if Wigws| > W[gw]

and W(gws]| in conflict with W[gw| then

8 L QU « guWs

9 qws < gws +1
10 ifgw=ithen i —i+1;
11 wr «— 1
12 | while Wwr]| first < Wgw)].last do

13 if W[wr] in conflict with W[gw] then
14 L remove wr from W
15 wr — wr+1

16 return W

we start again at position i and increase a window remover pointer
wr until the first position of W{wr]| is larger than the last position of
W(gw], at this point we can be sure to have considered all windows
that might overlap. If i points to the greatest window we increase i
by one. Note i might overlap with gw in this case we can still simply
remove it, 7 then just points to the next window, which is exactly what
we want. We repeat this process until i points to the last window in
W, at this point each event in the database D is covered by exactly one
window.

WINDOW SEARCH To efficiently find all windows given a pattern
p we use an inverted index. We add triples (i, ], k) to a set O, where
i refers to the sequence j to the next event S;[j] to be tested against
plk]. We initialize O with all (i, j + 1,2) where S;[j] = p[1]. We increase
j until S;[j] = plk|, this means we found the next event in S; that
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matches the next unmatched event in p. Hence we increment the j and
k pointer by one, (i,j + 1,k + 1), and additionally add (i,j + 1, k) to O.
To illustrate why we add the second case, where we do not increase k,
consider the case with sequence abbc and pattern abc, to capture both
windows, i.e. the one with the first and the second b we need one
instance to move over b without matching it.

We continue this process until k = |p| + 1, at this point we found a
window w that matches p and can remove the triple form O. We also
remove a triple from O if the respective windows grows larger than
the maximum window length of |p| + n|p|. We continue this process
until O is empty, at this point we have found all windows of p.

D.1.2 Generalization refinement example

Example of applying a set of generalized refinements O to a set of
generalized events ();. Let us consider the following case we have
OF = {(aig, {c,d}), (via, {a,e, f})} and Qg = {a, p} where a = {a,b}
and B = {g,h}. We now apply QOF to Q. Since (), already contains
a generalization &« we extend it with the specified events, hence a =
{a,b,c,d}. The generalization 7 on the other hand not does not yet
exist, we hence add a new generalization -y to Qg, hence Qg ={a, B, v}
where v = {a,e, f}. As an does not specific any additions for B it is
not affected.

D.1.3 Optimistic Gain Estimation

In this section, we will explain how we compute the gain estimation
AL(p, QE;B) That is we want to estimate by how our encoding cost
L(D, M) changes by adding pattern p to CT and applying a set of
generalization refinements Q? to Q.

The cost of encoding a new pattern, or generalized event, can be
directly computed as shown in Section However, when extending
a generalization i.e adding new elements to an existing generalization,
we have to update the cost of this generalization. To compute the dif-
ference in cost we subtract the cost of the old generalization and add
the cost of the new one. Since we allow generalization to contain other
generalization, and we encode these differently, we also have to do so
here. So when extending an existing generalization a with k' new gen-
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eralization f1,..., B and m’ new events. With that, we estimate the
increased cost as,

AL(x) = —log (i ; 1> +log (Icl—f—li’)
~ log(10%]) + log(C%) (@)

* /
—log 5] + log %
m m—+m'

where () are those observed events not defined by the old nested
generalizations B € a, i.e. QOF = Q0\ Upe,, fI(B) and X, those observed

events not defined by the extended generalizations i.e. (), = O\ U;‘/:l f(B;),
k is the number of generalizations in « and m the number of events in

« before the extension. This covers the estimated cost on the model
side.

Next, we consider the difference in the cover cost. To estimate the
gain of a new model we have to estimate how the cost of the Cp,, Cyy,
and C; changes. To avoid recovering the data for each candidate we es-
timate the effect a pattern extension, new generalization, or extending
a generalization has on the usage of all patterns and singletons. We
will later explain how we estimate these usages for all cases. Given the
estimated usage changes for all patterns, we can compute the differ-
ence in bits needed for the pattern code stream Cp,

AL(Cp) = ). U8, (p) *10g(1sg e, ()
pePo{p') (d.2)

—usg,4(p) * log(usg,:(p))

For the specification sequence. Given an estimation how often each
pattern instance will be used for each pattern, we can create specifica-
tion sequence Cs ¢ representing the new specification, and with C; ;4
we denote the old specification sequence.

As we can’t compute the pattern structure at this point we assume
all generalization to be independent, to more accurately estimate the
gain we make the same assumption for the existing patterns. The dif-
ference in encoding cost is then,

AE(CS) = L(Cs new) - L(Cs old)
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As we do not have a good way to estimate the number of needed gaps
and fill codes we do not estimate the difference for the meta stream.
All operations we consider create a new pattern based on an existing
pattern. Importantly we do not remove the existing one i.e. the old
one is still in the P. We infer a frequency estimate on the number
of instances we count in Algorithm |8, Next, we consider all different
refinement cases and describe how we estimate the new frequencies
for the specific cases.

Case 1 (New pattern): This case we already explained in Chapter
and included here, in extended form, for completeness. Creating one
new pattern p* with p; and p, where p, is another pattern. From
F we get ¢, how often p, follows p;. The usage of our new pattern
p1 X p2 is simply ¢, while we reduce the usage of p; and p> by c.
Hence usgnew(p*> = ¢ and usgnew(pl) = usgold(pl) =G usgnezu(pZ) =
usg,;(p1) — c. If we extend a p; by more than one singleton c is sim-
ply the minimum count out of all extensions, we then subtract ¢ from
all extensions. The frequency of how often events of a generalization
are used we adjust proportionally to the pattern frequency. That is for
each event e € fl(x) where generalization « in the patterns p;, respec-

P
c usgg,]d(e)

tively p, we adjust the usage to usghe (e) = usg’,(e) — Ty

. Usage

c usgg,b(e)
usgy(p1)
Case 2 (New pattern, extended with Generalization): Next, we con-

sider the case where we extend a pattern with an existing or newly
formed generalization «. To estimate the frequency of the patterns, we
can treat this case analog to Case 1, ¢ is now just the sum of all counts
of events e € fl(«). The usage of e € « is set to the count of e, whereas
existing generalizations are adjusted as in Case 1.

Case 3 (Extending an existing Generalization): Extending an exist-
ing generalization with new elements does effect all patterns that use
this generalization. The effects are hence not contained to the pattern
we refine. First we just consider p* which contains a generalization a
which we extend with event e. We increase the the frequency of pattern
p* by the number of counts of e. Of course we reduce the usage of e
by the same amount. The estimated usage of event e in p* is naturally
also the same.

*
of same e in the new pattern p* is usgh.,(e) =
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Algorithm 24: PRUNEGEN

input :pattern p, generalization extensions Q?, cover C
output: pruned generalization extensions O, updated cover C
1 forall (a;y, R) € OF do in order of increasing usg(e)
2 L if AL(p, OP\(wig, R)) > AL(p', QF) then

3 | O — OP\(ai, R)

4 return Q?, C

To estimate the usage of other patterns p’ that contain «. We search
for all windows of p’ and assume that all new windows are used. That
is all windows that did not match p* before the extension of a with
e. From the windows we can directly infer the respective frequency,
which we use as a usage estimation.

D.1.4 Pattern search

In Chapter [5| we describe the main search procedure, in this section
we will expand on that explanation, providing more details.

GENERALIZATION PRUNING We show pseudocode in Algorithm
When we initially build new generalization and extend existing
ones we estimate the usage of the individual elements in the general-
ization. Once we have actually computed a cover we have actual usage
counts. Hence we test, for each added event ¢, if under these counts
we still get a gain when adding e.

REFINE INTERLEAVING Before adding pattern p to our model, we
search within the gaps of p for possible generalization. We provide
pseudocode in Algorithm 25/ At this point, we have a cover C that in-
cludes pattern p. We count for all gaps of pattern p how frequent each
event is in each respective gap. The frequency of all events between
the i — 1 and the i event in pattern p is given by ¢; = counts|i]. We
refine one gap at a time, we start with the gap with the most frequent
event. Per gap, we test all events in order of frequency, if we add a
second event we create a new generalized event that matches the first
and second event, analog for the third, forth, etc. event.
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Algorithm 25: REFINEINTERLEAVING

input :pattern p, generalization extensions Q?, cover C
output:refined pattern p’, extended generalization extensions
Q?, updated cover C
1fori=0;i<|p|—1,i++ do
2 L counts[i] < get frequencies for all events between p[i] and
pli+1]
3 sort counts by max countsi
4 forall ¢ € counts do

5 sort ¢ by frequncy in decending order
6 forall e € c do

7 P, QP — extend p and QP with e
8 if AL(p/,QF") >0 ;chen

9 L POF P07

10 return p, Qg@, C

Algorithm 26: SIMPLIFY

input :Pattern set P and generalization (), cover C
output: Pattern set P and generalization Qg, cover C
1 while P changes do
2 L P,Qy, C «— MERGE(P, ), C)
3 | P,Q4 < FLATTEN(P,())

4 return P, Qg, C

sIMPLIFY The SiMrLIFY algorithm simply calls MERGE and FLATTEN
until convergence. This algorithm is applicable to any kind of pattern
set P. The required generalized alphabet (), is simply the empty set,
and the cover C is computed using GREEDYCOVER.

PRUNING The pruning step is only done once, as a final step. We
test for each pattern if removing it improves the model. If it does we
remove it otherwise we keep it.

IMPLEMENTATION DETAILS After we test 100 candidates back-to-
back without any actual gain we break the current search loop, i.e.
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Algorithm 27: PRUNE

input :Pattern set P and generalization ()¢, cover C
output: Pattern set P and generalization (), cover C
1 forall p e P do
2 if L(D,P) > L(D, P\{p}) then

P P\{p}
update C and ()¢ accordingly

[SS)

4

5 return P, Qg, C

move on to the next iteration. In preliminary experiments, this did not
have an effect on the results.

D.1.5 Dependence structure

When adding a pattern to our model we compute its dependency
structure. Meaning we choose for each generalized event that earlier
generalization that minimizes the specification cost for this general-
ization. This is, essentially, equivalent to picking that generalization
with the lowest conditional entropy. More precisely when the penalty
of the prequential encoding is ignored the encoding cost is equiv-

alent to the conditional entropy. The specification cost of one gen-

St : . usage(p) _ usg(eld) in-
eralization without the epsilon. >}~ log (Zceﬂ(a) g (C] d)> The in
ner part is just the probability of p(e|d). Using Bayes’ theorem we

can transform that into £ p((e[’g), summing over all usages is equivalent

to summing over all combinations each weighted by its joined prob-
ability. Making it equivalent to the conditional entropy, defined as
HY | X) = =X exyey P(x,y) log %. In practice however we di-
rectly compute the bits needed by the prequential encoding, which is
asymptotical equivalent to picking that generalization with the low-
est entropy. In practice it can be cheaper to encode a specifications of
a generalization independently of any previous generalization, hence
we also allow that.
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D.2 EXPERIMENTS

In this section we give further details about the experiment setup, eval-
uation and additional examples reported by FLock.

D.2.1 Experiment Setup

Skorus reports the top-k patterns, where k is a hyperparameter. In pre-
liminary experiments we tested setting k to the number of all reported
instances of FLock. The number instances of a generalized pattern p
are the unique instances that match p. In the setting we considered
these where between 100 and 200 instances. Since Skorus did not ter-
minate with 24h, we set k to 50 and limited the pattern length to 10.

The wordavec architecture [121] has been shown to be good at train-
ing an embedding where items that occur in similar contexts are placed
close to each other, while originally proposed for text the architecture
lends itself to arbitrary sequences over a discrete alphabet. In short, we
train an embedding into 4 dimensions using the word2vec architecture
[121] with a window size of 10.

To extract generalizations from this embedding, we use DBScan
with a maximum distance of € = 0.2 and with a minimum number
of samples of 3. Next, we replace elements in D contained within a
cluster with a new generalized event, representing that cluster. Finally,
we apply Sqgs on the modified dataset. The groups found by DBScan
we consider our generalizations and the pattern found by Sas are our
patterns. We tuned the hyperparameters to produce clusters as close as
possible to the true planted generalizations while also trying to avoid
spurious clusters. We did this on synthetic generated data where each
generalization was only used within one pattern.

The ECG dataset is based on the first record (id 300.1) of the MIT-
BIH ST Change Database! We subsampled the record, replacing each 5
subsequent values with their average, and transformed the result into
a relative sequence by replacing each value with the difference to the
previous value. Finally, using SAX [105] we discretize the sequence to
200 events.

1 https://physionet.org/content/stdb/1.0.0/
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Figure d.1: Parameter sensitivity analysis: On seven datasets with pattern
lengths from 3 to 12, each pattern includes two generalization.
We see FLOCK is robust against the parameter choice. The dataset
with a pattern length of 4 stands out, with half the events being
generalization true patterns become hard to distinguish from ran-
dom correlations.

On the datasets ECG, Short-ECG, Moby, and JMLR we run FLock
with gap parameter n = 2, in we show that small values of n
works better for datasets with a low amount of structure.

D.2.2 Parameter Analysis

FLock comes with one user parameter n the factor of how many gaps
we allow relative to the pattern length. We consider a setting with
patterns of different lengths, 3 to 12, each pattern contains two gener-
alization. We report the F1 of FLock given the parameter 7.

D.2.3 Real-World Pattern Examples

In Table we show a selection of patterns and generalization re-
ported by FLock on real-world datasets. Note, the rich generalization
B of the JMLR dataset was discovered with the default gap parameter
of n = 10.

D.2.4 Ablation Study

Frock consists of several subroutines, we evaluate the impact of dis-
abling REFINEINTERLEAVING and SIMPLIFY. We evaluate the performance
on synthetic data, we use the same setting as for the experiment shown
in Figure [5.2[b), with 400 planted pattern instances. We report the F1
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Figure d.2: Ablation study on synthetic with subroutines turned off. We ob-
serve that without REFINEINTERLEAVING and SIMPLIFY the F1 score
decreases by a large margin.

score. The results show that REFINEINTERLEAVING and SIMPLIFY pro-
vide key functionality that greatly improves performance.
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Table d.1: Selection of found patterns on real-world datasets. We see that FLock discovers rich generalization and patterns
that use multiple generalization. On the BPI-2015 dataset, we see two patterns using the same generalization.
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Frocxk Sgos  SquisH

Dataset ID|  ||D]| IS| %L t %L %L

ECG 1 107395 107395 97.2 17k 96.7 98.9
Short-ECG 1 3384 3384 98.2 1 983 98.7

BPI-2015 1199 51867 43.36 79.1 43k 60.7 63.2
Rolling Mill 1000 51390 51.39 63.2 1k 49.9 52.9
Moby 1 105719 105719 99.3 0.6k 99.3 99.4
JMLR 788 75646 96 96.7 0.7k 96.6 97.6

Table d.2: Extended results on real datasets. We given number of sequences,
|D|, total number of events ||D||, and average sequence length |S|.
For each method we give the relative length under our model. For
Frock we provide the runtime in seconds.






CAUSAL DISCOVERY FROM EVENT SEQUENCES BY
LOCAL CAUSE-EFFECT ATTRIBUTION

In this appendix to Chapter|[7}, we provide proofs and additional details
on the experiments.

E.1 THEORY

In this section we provide the proofs of the theorems of Chapter 7|

E.1.1 Proof - Identifiability on Instant Effects

Theorem 1. Let S; be an event sequence generated by a Poisson process
as per Eq. and S;j be an effect of S; as per Eq. (7.5), with, low noise
Aj < (1 —wjj)A;, and a trigger probability a;; < 1.

In the case of exclusively instant effects, i.e. ¢;;(d) = 6(d), where 6(d) is
the Dirac delta function, the MDL score in the true causal direction is lower
than in the anti-causal direction, i.e.

lim L(S] | Si/®1) + L(Sl | @1) < L(Sl | S],®2) + L(S] | @2) .

n;—o0

Proof. Let n; be the number of events in S; and 1; the number of events
in S] As n; — O

L(Si) = miH(¢ii),  L(Sj|Si) = miH(B(a;;))

where B is the Bernoulli distribution. In the reverse direction, we have

L(S;) =njH(¢;;),  L(SilS;) = miH(B(ai;)) + (ni — nj) H(¢i)
To show

L(Sl’) + L(S]‘|Sl‘) < L(S]‘) + L(5i|5]‘) (e.1)

niH(¢i;i) +niH(B(a;;)) < niH(p; ;) +niH(B(a;;)) + (n; —nj) H(¢i)

(e.2)
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a;; = &;; since every event that does not cause an i, can not be explain
by j in the reverse direction, hence

niH(¢i;) + mH(Btwi)) < niH(¢y;) + mHBCari)) + (n; — nj)H (i)
(e3)
niH(¢ii) < njH(¢j;) +niH(¢ii) —njH(dii) (e4)
nHegi7) < niH(¢j,) + niBAei) — njH(¢ii)  (e.5)

niH(¢i;i) < njH(¢;,) (e.6)
H(¢ii) < H(¢j;) (e.7)
(e.8)

For H(‘Pi,i) < H((P],]) to hold n;i > I’l]'.

n;oCA; njoca jAi + Aj (e.9)
(e.10)

Ai > wijhi+ A (e.11)

Ai —ajjAi > A (e.12)

(1—a;;)A; > Aj (e.13)
(e.14)

It directly follows that H(¢;;) < H(¢;,), and hence for n; — co

L(Sj|Si,©1) + L(Si|©1) < L(S4]Sj,®2) + L(S;1©2) .

E.1.2 Proof - Identifiability on Delayed Effects

Theorem 2. Let S; be an event sequence generated by a Poisson process as
per Eq. and S; be an effect of S; as per Eq. (7.5), such that H (¢;;) >
H(p(;0:))) + (x;le (B(aij)) + w;le (B(wj,)), where H denotes the en-
tropy and B the Bernoulli distribution.

Then the matching in the anti-causal direction A;_,; of the effect S; to the
cause S; has a worse MDL score than the true matching A;_,j, i.e.

L(S; | Si,®ij) + L(Si | ©;) < L(Si | 5j,0j) + L(S; | ;) .
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We will show that the delays between S; itself, i.e.A;_,;, and the de-
lays between S]- to S;, i.e. Ai_,]-, are equivalent.

Proof. We consider a source event S; with exponentially distributed de-
lays, i.e. Aj_; ~ exp(A;). Consider any event t € S;, then the intensity
of observing an event in S; at time t > #; is given by A;. The distri-
bution of the delay to the next event in S; is exponential with A = A;.
Thus, the difference between

L(S|S;) — = ) log(A) —di/Ai— ) log(A)+di/A; =0.

dkEAlﬂj dieD; i

It remains to show that the likelihood in the causal direction is better
when conditioning effect on the cause, i.e. L(5|S;) < L(S;).

GAIN BY i — j For i to cause j it has to provide information about
j, that is the cost of selecting which i events cause j, and with what
dealys. Additional it has to ofset the cost which j events do not have
to be encoded as a self delay. Formally this is,

1,
niH(B(aij)) +niH(p(;6;))) + ”jH(B(rT])) <niiH(gj)
]
where 7;; are the number of events in j caused by i, and H(p(;6;;))
is the entropy of distribution described by the pdf p.
Asn — oo,

223

L(Sj) = njH(¢;;)  L(SjISi) = niH(¢ij) + (nj—mnij) H(¢p;j) +niH(B(aj;))

To show,

L(Sj) > L(5;1S:)

JH () > niH (i) + (nj —n;j)H(pj,;) +njH(B(wj;))

(e.15)

ni,]'H<(P]',]')+(n'_ 1J >nH(P1] ‘I’M‘Fn]

(e.16)
niiH(¢j;) > niH(¢i;) +nH(B(aj;)  (e17)

B(wj,;))
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we can substitute TZiH(gbi,]‘) = ni,]-H(p(; 91"]')) + TliH(B(lXi’]'))
n,-,]-H(qu,]-) > l’li’]'H(p(,‘ 91',]')) + TZiH(B(DCi,]')) + n]H(B((x],])) (8.18)

Now, note that the number of caused items «; jn; = n;; and a; jn; = n; j,
then it follows

") n
niiH(p;j) > niH(p(0;)) + —LH(B(w;j)) + a;;H(B(“jJ))

D(i,]'
(e.19)
1 1
H(¢;;) > H(p(;6;))) + —H(B(wiz)) + —H(B(wj))  (e20)
L] 1.]
Hence, we show that i — j is identifiable. O

E.1.3 Proof - Path Identifiability

Theorem 3. Given an event sequence S generated by a causal structure G*,
let S; be a source node of G* and S, be a descendant of S;, where there exists
apathi —j— --- - vin G*.

Then, the gain in the causal direction of the path g(i — v | ®) — g(v —
i | ©) is greater.

Proof. We begin by proving that the path identifiability holds for a
triplet of nodes i — j — v, by constructing a new alignment from
i— 0.

From A;_,j and A;_,, we can construct A;_,,. For each dj € A;_,;, there
is a corresponding d; € A;_,,, i.e. the trigger time of the triggered event.
To construct A;_,,, we consider the following cases:

1. If dy = oo for di € A;,j, then dy € A;_,,, is set to dy = oo.

2. Let d; € Aj_,;, be the delay of event a of type j where a has been
caused by delay dy. If dy # oo for dy € A;_,; and d; = oo then then
dy € Ay, is set to dy = 0.

3. Let d; € Aj_,;, be the delay of event a of type j where a has been
caused by delay dj. If di # oo for di € A;_,j and d; # oo then then
dr € Ay, is set to dy = d + d.

As A;_,, is another valid alignment, and i remains a source node, the
guarantees of Theorem [1] and [2| hold, i.e. the path is identifiable. This
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extends to a path of arbitrary length. Consider an additional edge v —
w, then we construct the alignment A;_,;, by considering the delays of
A, and Ay_y.

Furthermore, we can show that the true path j — v has a better gain
than the shortcut i — v, so that we can remove the shortcut in the
pruning stage. (1) Since i — j and j — v are independent processes, it
follows either Var(¢;,) > Var(¢;), or #;, > «j, and by that a more
costly description of v.

(2) If j > v ¢ G, we can construct a new function

fi,v = fj,v(fi,]'(sir Ai—>]') o le Aj—>v)

by Theorem [2|it follows that edge i — v improves our score.

(3) Assume j — v € G then each individual v event that is matched
to by i — v is already matched to by j — v, and from (1) we know it
does so cheaper, hence we get no gain by adding the shortcut i — v.

O

E.1.4 Consistency

Proof. Here we will show that L(S",®) asymptotically behaves like

BIC. L(S, ®) directly corresponds to the log likelihood, which we rewrite

as log p(5"|®, G) Our approach can be instantiated with arbitrary de-
lay distribution, to show consistency we have to upper bound the num-
ber of parameters by O(logn), this trivially holds for the parametric
setting we focus on here, because |pa(i)| € O(logn) [120]. The encod-
ing of the graph G is independent of #, i.e. fixed for a given network,
hence in O(1). Finally this results at,

log p(5§"|®,G) +clogn + O(1)

we set ¢ = 2 where d is the number of free parameters, arriving at the
BIC score. O

From Haughton [77] and Chickering [25] we know that BIC identi-
ties a Markov equivalence class of the true DAG. For the identifiability
of undirected edges we refer to Theorem [1]and O
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E.1.5 Connection to Hawkes Processes

The key difference between a linear Hawkes process and our model is
the assumption of direct triggers, that is the mechanism of one event
and one event only causing another. In a linear Hawkes process ‘cause
events’ increase the intensity and therewith the probability of events
occurring. However, one can generally not label for a specific event
another as the ‘cause’, as each event is the result of a multitude of
causes.

In this section, we are going to explore under which conditions we
can identify a Hawkes process under our causal model.

Given an event sequence S; = {tk}:;jzo generated by a linear Hawkes
process,

)\j(f) =uj+ Z Z i (t—tg) . (e.21)

iepa(j) te<t,tx€S;

We construct a set of primary causes for each event #; € S; as

Ci= {(t, it) | teS, (i) = arg max v;;(t — tk)} , (e.22)

(i,tk), iepﬂ(j),tk<t,fk65]'

where we consider as primary cause of an event that past event with
the highest influence at time point f from a causal parent i € pa(j).
Using these delays, we construct an alignment (mapping of delays) as

Ainj={B(t) [ e S} Bltx) = t—t ifoi(t—t) > u; ,

0 else

(e.23)

where t = Arg MaXycs. 54 f,)eC; v;,j(t —ti) if A(t,4,tx) € Cj then B(t) =
. We consider t; € S; a cause of an event t € §; if it is the primary
cause of t and f; has no stronger influence on any other event of S;.
Finally, the influence has to be stronger than that of the base intensity

To be able to identify a causal edge between S; and S; the improve-
ment gained by this alignment must outweigh the edge cost L(i — j).
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Figure e.1: DAG recovery on data generated by a Hawkes process.

For this, there are two conditions: firstly, the number of primary cause
events from i to j, i.e. those instances where an event from S; has the
maximum influence on an event from S;, must be large enough. This
is the case as long as |A;_,;| increases with 7, i.e. the total number of
events of S;. Then, in the limit n; — co the number of primary cause
events is large enough to offset the constant edge cost.

The achievable score gain is obtained by constructing a delay distri-
bution from |A;_,;| as

(d) = 1—w ifd =0 - b
(Pl’] B PA,-_,].(d) “ K else where a;; = 1— imj = 0) .

(e.24)

If this density ¢; ;(d) fulfills the conditions of Theorem |2} we can iden-
tify S; as a parent of S; in the limit of n; — oo.

In conclusion, CASCADE can identify a causal pair generated under
a Hawkes process, if there exist sufficiently many events from S; — §;,
where v; ;(t) has the strongest influence on A;(t) for some of the t. By
aligning the delays of these events, we can identify the causal edge
and recover the underlying causal structure.

E.1.6 Empirical Evaluation

[From Chapter [7] To empirically evaluate how effectively CASCADE re-
covers the true DAG on data generated by a Hawkes process, we gen-
erate synthetic data using the tick library’. We vary the intensity of
the excitation function, i.e., the expected number of events generated
per cause. We show the results in Figure We observe that CAsCcADE

1 https://x-datainitiative.github.io/tick/
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performs best when generation is close to our assumptions, i.e. when
there is, on expectation, one effect per cause or fewer, but still demon-
strates strong performance across all settings.

E.1.7 Consistency of Algorithm

Theorem 4. Given an event sequence S, where each individual subsequence
S; was generated as per Eq. (7.5) by an underlying causal graph G*. Assum-
ing all A;_,; are the true causal matchings. Under the Algorithmic Markov
Condition, CASCADE recovers the true graph G* for n — oo.

Proof. We begin by proving that in the first step, CascADE identifies a
true source node of G*. We denote the parents of i in the true causal
graph G* as pa(i), whilst we write for the parents in the graph main-
tained by CASCADE as pa’(i, G).

Let i € [p] be a node of G* without parents, i.e. a source. By Theorem
for a pathi — --- — v € G* the gain in the causal direction g(i — v |
©) is greater than the gain in the reverse direction g(v — i | ©).

For all nodes v € [p], v # i, v is either an descendant of i or unrelated.

1. If v is a descendant of i, then the gain of g(i — v | ©) is greater
than the gain of ¢(v — i | ©®).

2. If v is unrelated to 7, then the gain in both sides is 0.
Hence it follows, that for a node i where pa(i) = &,
maxg(j —>i|®)—g(i—>j|0)=0.
jeC
On the other hand, consider a node i with parents pa(i) # . Then, as
G* is a DAG, there exists an ancestor v of i, where v is a source node,
i.e. pa(v) = . For that v, it holds that the gain from v to i is greater

than the gain from i to v. Hence, for a node i with parents, it holds
that

maxg(j —i[0)—-g(i—j|©)>0.

jeC
Therefore, by taking the argmin over all nodes, CascADE identifies the
true source node of G*, i.e.

argminmaxg(j —>i|0©)—g(i > j|0O) = pa(i)nC= .
iec  JeC
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EDGE ADDITION Now, we show that CAscaDE always identifies a
true causal edge for n; — oo. First, note that given a source node i,
there do not exist any incoming causal edges in the graph G*,

pa(i)nC=@ = PjeC:j—ieG*.

Hence, by fitting outgoing edges only, we test all possible edges for i
and never add a false oriented edge,

VjeCiionjeG* = j—i¢G.

Finally, we recall that the true causal graph G* is the graph that mini-
mizes the description length of the data as per the Algorithm Markov
Condition. Hence, adding a true causal edge to the graph will result
in a lower description length, i.e.

V] eC,i > ] e G*: L(S]"Spa’(j,G)l®/) > L(Sj|spa/(j,G)Ui’®/ U 91',]') .

EDGE REMOVAL Consider the node i, where pa(i) n C = ¢J, and
given a graph G where all true causal edges have been added, i.e.

VieC:Vj—>veG*:j—>0veG.
Then, for i it holds that
Viepa(i):i—jeG.

It follows, that pa’(i,G) 2 pa(i). By the Algorithm Markov Condi-
tion, the shortest description length of the data is achieved by the true
causal graph G*. Hence, a superset of the true parents of i will result
in a higher description length, and it holds that

L(Si\SW,(l-),G’) > L(Si|spa(z‘)r®) .

Therefore, by testing that subset of the parents of i results in a lower
description length, CascaDE identifies the true parents of i.

OVERALL CONSISTENCY For n; — o0, we note that in each step for
the node i it holds that

1. i has no parents in the candidate set pa(i) nC = .
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2. We add no false oriented edges to the graph, as pa(i) n C =
O = 3jeC:j—icG*

3. We add all true edges i — j to the graph G,ie. Vje C,i — j€
G* . L(Sj’Spa’(j,G)/@/) > L(Sj]Spa/(j,G)ui,(D’ ) 91,])

4. For i, the current graph G contains a superset of all true parents,
i.e.pa’(i,G) 2 pa(i), while the description length of the data is
minimized by the true graph L(S;|S, (i), ®') > L(Si[Spai), ©)-

Hence, by repeating the edge addition and pruning in a topological
order, in the limit of n; — o under our causal model and by the Al-
gorithm Markov Condition, CascaDE identifies the true causal graph
G*. O

E.2 EXPERIMENTS

In this section we provide additional detail on the synthetic data gener-
ation and the experiment setup. Additional we provide further metrics
on the synthetic experiments. For the real-world data we provide ad-
ditional results.

E.2.1 Synthetic Experiments

We generate synthetic data according to our causal model. We dis-
cretize the timestamps to 1 million unique timestamps. Throughout
the experiments we vary the following parameters:

* Variables: Number of unique events types p.

¢ Edges: The total number edges in the generating causal graph
G,

* Delay Distribution: For all synthetic experiments we generate de-
lays according to geometric distribution (as a discretize instanti-
ation of the exponential).

¢ Delay Distribution Parameter: For each causal edge we sample
the rate A uniformly from a specified range.

¢ Cause probability: For each causal edge we sample a uniformly
from a specified range.
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e # Source Events: Number of events sampled for source nodes
(variables without any parents in the DAG).

¢ Additive noise parameter: percentage of additional added events
to the caused events, also applies to source nodes, where # Source
Events are considered as ‘caused’.

* Instant effect: Except for the ‘Instant Effect” experiments no in-
stant effects are created.

For all experiments, unless otherwise stated a random DAG is gen-
erated. And for each parameterization 20 independent samples are
generated.

SANITY CHECK We set the number of types to 20 and generate 100
root events per source node (in this every node is a source node).

INCREASE OF EVENT TYPES In this experiment we increase the
number of event types p from 5 to 40, We set the number of edges
to (d*> —d)/(2+5), that is 20% of all possible edges. To avoid overly
many events in the colliders we set the number of root events to 20, for
40 variables this results in up to &~ 30.000 events. We do not include
any additive noise and set « = 1. For the delay distribution, we sample
A from a range between of [0.3,1].

DECREASE OF NOISE In this experiment we increase the probability
of #, and decrease the fraction of additive noise. We set the number of
variables to 20 and set the number of root events to 100. We sample A
from a range of [0.1,0.4].

DISTRIBUTION MISSPECIFICATION To further evaluate robustness
of CASCADE we test recovery on generated data where the actual dis-
tribution does not match the assumed distribution. To this end, we
change the assumed distribution of CAscADE and use the same setup
as the previous experiment (Increase of Event Types) with 20 unique
events. For the, true, exponential we observe an average F1 score of
0.82, for the Poisson 0.81, with a Normal distribution 0.76, and uniform
0.75. While recovery is best when assumed and generating distribution
match CAscADE still performs well under misspecification.
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F1

Number of Colliders

5 0.97 £0.01
6 0.96 £0.01
7 0.95 £0.02
8 0.93 £0.01
9 0.92 +0.02
10 0.91 £0.01
15 0.88 £0.02
20 0.82 £0.01

Table e.1: Average F1 score on Multiple Parents experiment with multiple col-
liders.

MULTIPLE PARENTS For this experiment we specify a DAG, where
[%51] are direct parents and | 5! | are independent, the n node is the
collider. We plant 30 events per root cause and increase the number of
variables from 50 to 200. We add 30 % of additive noise and set the
cause probability randomly between 0.9 and 0.6. We repeat the same
experiment where 10% of nodes are colliders. That is, for 50 event

types, 5 are colliders and [’%5] direct causes of all 5 colliders. The
remaining [’%5] are independent. We show the results in Table

INSTANT EFFECTS For the instant effects experiments we again use
20 variables with 100 root events, we shift the geometric delay distribu-
tion and set A = 0.9, such that 9o% of the events are generated at the
same timestamp. We randomly sample the trigger probability between
0.7 and 0.5. For the exclusively instant effects we set A = 1. We show
the full results in Table le.2|and

E.2.2 Method Parameterization

cASCADE  We set the precision parameter for all experiments to 2.
For all synthetic experiments we consider events as potential causes of
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F1 SHD SID SHD-Norm SID-Norm

Method
CASCADE 0.74 19.45 104.10 0.05 0.27
CAUSE  0.19 264.50 NaN 0.69 NaN
NPHC 0.57 47.50 NaN 0.12 NaN
THP 0.23  64.20 180.70 0.16 0.47
Table e.2: Average results on 9o% instant data

F1  SHD SID SHD-Norm SID-Norm
Method
CASCADE 0.55 32.80 216.05 0.08 0.56
CAUSE  0.19 249.60 NaN 0.65 NaN
NPHC 0.57 46.85 NaN 0.12 NaN

Table e.3: Results of instant effects, we omit the results of THP as it only
reports empty DAGs
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# Event Types Cascape CAUSE NPHC THP MDLH

5 2.05 6.50 4.30 2.35 3.00
10 2.80 9.50 4.25 3.55 16489.00
15 7.10 16.75 4.40 13.80 NaN
20 35.20 42.95 4.15 40.90 NaN
30 362.65  225.70 4.75  305.50 NaN
40 1957.65  890.45 4.85 1984.60 NaN

Table e.4: Mean runtime, in seconds, of Increase Event Types Experiment

at most 100 timestamps. For all experiments we consider a geometric
distribution, which we shift back to cover instant effects.

MDLH For the results of the Increase event types experiment we use the
sparse version, where we set the maximum degree to the true maximal
degree and set T =1000. In an effort to reduce runtime with higher
number of types (i.e. nodes), we tested it with T=100, where it also did
not terminate within 96 hours.

OoTHER For all other competing methods we used the default param-
eters.

E.2.3 Compute Recourses

All experiments where executed on a internal cluster on compute nodes
equipped with a AMD EPYC 7773X 64-Core Processor (2.2 GHz; Tur-
boboost: 3.5 GHz), with 2 TB of RAM, while in practice a fraction of
that was necessary. We provide the average runtimes below.

E.2.4 Network Alarms

In the provided dataset each event happens on a specific device. In
addition to the event sequences a topology 7 over the devices is pro-
vided. An event can cause an event on each neighboring device, in
addition to the device where the event occurred. To support this we
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Noise Cascape CAUSE NPHC THP
0.10 147.85  231.50 4.55 97.20
0.50 66.85  176.85 4.40 71.45
0.60 42.75  142.30 4.50 61.55
0.70 25.20  113.30 4.40 51.35
0.80 14.05 76.75 4.25 41.65
0.90 7-55  48.60 445 3295

Table e.5: Mean runtime, in seconds, under increasing Noise.

# Event Types Cascape CAUSE NPHC THP
50 45.80  323.65 6.30 587.45
60 79.60  536.75 6.10 1596.55
70 131.30  904.50 5.90  3175.30
8o 196.80 1129.00 6.45 5393.70
90 283.90 1513.60 6.95 8295.25
100 392.55 1941.80 7.20 12923.50
150 1479.60  4694.75 10.05 NaN
200 3736.70 9736.05 16.95 NaN

Table e.6: Mean runtime, in seconds, of Increase Event Types (Collider Exper-
iment)
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Figure e.2: SHD, SID, and F1 score for the synthetic experiments

can include a matching for connected devices. That is if {a,b} € T we

i—j’

include Al(il;) and A", we include both directions since events on a

can cause events on b and events on b can cause events on a. For all

devices we include the self loop Al(i j

E.2.5 Real World Experiment

a)

In this section we provide the Causal Graphs reported by CASCADE on
the real world data. For the Global Banks dataset additionally provide
the graph reported by THP.
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Figure e.3: Recovered Causal Graphs on the two Daily Activities datasets.
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Figure e.4: Recovered Causal Graph on Network Alarms dataset.
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