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Abstract

Understanding causality is challenging and often complicated
by changing causal relationships over time and across en-
vironments. Climate patterns, for example, shift over time
with recurring seasonal trends, while also depending on ge-
ographical characteristics such as ecosystem variability. Ex-
isting methods for discovering causal graphs from time se-
ries either assume stationarity, do not permit both temporal
and spatial distribution changes, or are unaware of locations
with the same causal relationships. In this work, we there-
fore unify the three tasks of causal graph discovery in the
non-stationary multi-context setting, of reconstructing tem-
poral regimes, and of partitioning datasets and time intervals
into those where invariant causal relationships hold. To con-
struct a consistent score that forms the basis of our method,
we employ the Minimum Description Length principle. Our
resulting algorithm SPACETIME simultaneously accounts for
heterogeneity across space and non-stationarity over time.
Given multiple time series, it discovers regime changepoints
and a temporal causal graph using non-parametric functional
modeling and kernelized discrepancy testing. We also show
that our method provides insights into real-world phenom-
ena such as river-runoff measured at different catchments and
biosphere-atmosphere interactions across ecosystems.

Introduction
Gaining insight into the dynamics of complex real-world
processes is closely tied to understanding the causal mecha-
nisms underlying their function. Causal models (Pearl 2009)
allow reasoning about the effect of intervention and distribu-
tional change, which makes them especially useful for mod-
eling systems under changing environments or over time.
At odds with this, however, is that established methods for
discovering causal networks from data (Spirtes et al. 2000;
Chickering 2002) often make the simplifying assumption
that all samples have a fixed data-generating process.

This assumption is especially problematic in time series
data. In climate science, for example, measurements often
come from geographical regions experiencing different cli-
matic conditions. Even within a single region, weather pat-
terns are not constant but often shift over time due to season-
ality, extreme events, or global climate change. Similarly,
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Figure 1: Left: A temporal causal graph representing the
data-generating causal mechanism of three variables (Xp1q,
Xp2q, and Xp3q). The bold edges indicate a local mechanism
change across contexts (g1 or g2) or over time (f1 or f2).
Right: Variable measurements from different contexts (C1

and C2) and under different temporal regimes (R1 and R2).

disease trajectories of patients at multiple locations could
show variability due to varying healthcare infrastructures or
population heterogeneity, and change over time in response
to local interventions or changes in public behavior.

To address such scenarios, in this work we consider a col-
lection of non-stationary time series datasets. Fig. 1, right
shows this setting for three variables that we observe over
time in two contexts. Changes in their data-generating causal
mechanisms (colored) occur at unknown points in time
(Xp1q), called changepoints, or between contexts (Xp3q). We
aim to jointly discover changes across temporal and spatial
scales while explaining the underlying causal interactions,
as shown in Fig. 1, left.

Recent methods focus either on changepoint discovery
in single time series (Saggioro et al. 2020) or on multiple
datasets without detecting changepoints (Günther, Ninad,
and Runge 2023). Here, we suggest considering both tasks
simultaneously and looking for recurring, invariant causal
mechanisms. Examples include cities in geographical re-
gions with similar environmental conditions, or time periods
with seasonal trends or economic cycles. Groups of datasets
across which the causal mechanisms do not change are said



to belong to the same context, and similarly, time intervals
when the causal mechanisms of all variables remain station-
ary are said to belong to the same regime. For example, in
Fig. 1, Xp1q experiences a change at two points in time, but
we observe a repeating regime R1.

Unlike the mostly constraint-based causal discovery lit-
erature for non-stationary time series (Runge 2020; As-
saad, Devijver, and Gaussier 2022), we rely on functional
modeling to provide direct insights into causal mechanisms
and their similarity. We model causal relationships non-
parametrically using Gaussian processes (GPs) (Rasmussen
and Williams 2005). A constraint-based approach to causal
discovery is also limited by the effectiveness of condi-
tional independence testing, which is a provably hard prob-
lem (Shah and Peters 2020). This motivates us to adopt in-
stead a score-based approach based on sparsity constraints,
where we build on the Minimum Description Length princi-
ple (MDL) (Rissanen 1978). We will show how this applies
to the time series causal discovery setting and changepoint
detection tasks in the remainder of this work.

Contributions We propose a framework for causal model-
ing of non-stationary time series in heterogeneous contexts.
We confirm theoretically that our causal discovery scoring
criterion is consistent and develop the SPACETIME algo-
rithm to efficiently discover causal models, regime change-
points, and invariances over time (regimes) and space
(contexts). Besides showing that our approach works well
in different synthetic data-generation settings, we study
two real-world applications exploring drivers of river dis-
charge (Günther et al. 2023) and functional biosphere-
atmosphere interactions (Baldocchi 2014). Our approach
discovers joint causal networks across the span of multiple
years and various locations, and reveals gradients in interac-
tion strength across temporal and spatial scales that match
previous findings (Kraemer et al. 2020; Krich et al. 2021).

Related Work
Causal discovery in time series data has long been limited
to Granger-causality (Granger 1969), which focuses on pre-
dicting whether past values of one variable can help forecast
future values of another. We focus here on related work that
aims to identify true causal relationships.

Most methods, such as PCMCI+ (Runge 2020),
VARLINGAM (Hyvärinen et al. 2010) as well as
DYNOTEARS (Pamfil et al. 2020), assume that the data
are stationary in time and space. The problem of non-
stationarity in time has been studied from different perspec-
tives. R-PCMCI (Saggioro et al. 2020), like us, assumes the
existence of recurrent regimes within each of which the data
is stationary. CD-NOD (Huang et al. 2020), on the other
hand, can capture temporal non-stationarity if it can be mod-
eled as a smooth function of the time index. PCMCIΩ (Gao
et al. 2024) only considers semi-stationary time series where
the causal effects occur periodically. Finally, unlike the
aforementioned approaches, J-PCMCI+ (Günther, Ninad,
and Runge 2023) can handle multiple heterogeneous time
series datasets as well as non-stationarity. However, it does
not perform regime detection or context partitioning.

Theoretical Framework
In the following, we introduce the concepts of contexts and
regimes and our causal modeling assumptions.

Problem Setting
Throughout our work, we consider multivariate discrete-
time stochastic processes over a set of continuous variables
X “ tXp1q, . . . Xpmqu. We assume that we sample each
variable at a discrete set of time indices T “ tt1, . . . , tnu.
This results in measurements Xpiqptq at each time point t,
which we denote as Xt when the variable index can be sup-
pressed. We denote the resulting time series as

`

Xt

˘

tPT ,
shorthand XT .

As in our motivating setting, we observe not just one but
a collection of time series datasets

``

Xd
t

˘

tPT

˘

dPD, or XD
T

for short, for a given set of dataset indices D. To capture that
certain groups of locations share the same data-generating
mechanisms while for others they differ, we propose parti-
tioning the index set D into different contexts.

Definition 1 (Contexts) We define the contexts for a vari-
able X as partitions C “ tC1, . . . , CKu of D into dis-
joint, nonempty index sets Ck ‰ ∅, with ∪kCk “ D and
Ck ∩ Ck1 “ ∅ for any k ‰ k1, such that no mechanism
change of X occurs between datasets d1, d2 in the same Ck.

Analogously, to represent changes over time, we consider
a subset L Ă T of points that index such changes, so-called
changepoints. As similar trends might repeat periodically
over time, there are not necessarily as many distinct causal
mechanisms as changepoints. This motivates partitioning
the regions defined by L into groups, so-called regimes.

Definition 2 (Regimes) We define the regimes for a variable
X as set partitions R “ tR1, . . . , RLu of T into disjoint,
nonempty index sets under a given set of changepoints L,
such that L “ tt P T | regimeptq ‰ regimept ` 1qu, where
no mechanism change of X occurs in the same Rl.

Above, we associate contexts with datasets and regimes
with time indices through the functions context : D Ñ C and
regime : T Ñ R, which map each dataset (resp. time index)
to its corresponding context (resp. regime). Note that we
have l P L whenever the causal mechanism for at least one
node X changes. By assuming a fixed set L over D, we pre-
sume all datasets are identically affected by non-stationarity,
for example, due to seasonality.

Together, the contexts and regimes determine in which
subsamples of observations no mechanism change occurs.
We illustrate these notions in Fig. 1, highlighting each sub-
sample with a different color. We write a subsample in Ck

and Rr as s “ pk, rq for brevity.
In summary, our input data is as follows.

Definition 3 (Non-stationary Time Series) We consider
multivariate time series XD

T with known dataset indices
d P D and unknown changepoints L Ă T , as well as la-
tent contexts C over D and regimes R over T for each X .

In the following, we will define more formally what it
means that variables undergo causal mechanism changes by
introducing our causal model.



Causal Model
As our graphical representation of causal interactions over
time, we work with the following temporal causal graphs.

Definition 4 (Temporal Causal Graph (Assaad, Devijver,
and Gaussier 2022)) A temporal causal graph (TCG) G “

pV,Eq over X and T is a directed acyclic graph (DAG) G,
where V includes nodes Xpiqptq for each i and t and E in-
cludes two types of edges,

• instantaneous links Xpiqptq Ñ Xpjqptq for i ‰ j whenever
Xi causes Xj at time point t P T , and

• lag-specific directed links Xpiqpt´τq Ñ Xpjqptq pointing
forward in time whenever Xpiqpt´τq causes Xpjqptq with
a time lag of τ ą 0.

Note that lag-specific links may include self-transitions so
long as τ ą 0.

We make the standard assumptions of Causal Markov
Condition, Faithfulness, and Sufficiency (Pearl 2009).

Assumption 1 (Causal Markov Condition, Faithfulness,
and Sufficiency) We assume the Causal Markov Condition
and Faithfulness stating that d-separations in G correspond
to conditional independencies in the data distribution P . We
further assume that no unobserved confounding or selection
variables exist.

We also adopt a common assumption that the causal edge
directions in the TCG persist over time.

Assumption 2 (Repeating Edge Property (Gerhardus
2024)) We associate the time series XD

T with a TCG G, with
all edges remaining constant in direction across datasets D
and through time T , in the sense that if Xpiqptq Ñ Xpjqpt1q

then Xpiqpt`τq Ñ Xpjqpt1`τq is in G for any τ ě 0.

Under this property of edge consistency over time, we can
condense the information in the TCG into a single time win-
dow of the length of the maximum time lag τ .

Definition 5 (Window Causal Graph (Assaad, Devijver,
and Gaussier 2022)) For the maximum time lag τ in a TCG
G, the window causal graph (WCG) Gτ “ pV,Eq over ver-
tices Xpiqptq at each time t ´ τ , . . . , t contains lag-specific
directed links Xpiqpt´τq Ñ Xpjqptq pointing forward in time
whenever Xpiqpt´τq causes Xpjqptq in G with time lag τ ,
where 0 ď τ ă τ if j ‰ i and 0 ă τ ă τ if j “ i.

Under edge consistency, the causal mechanism changes
preserve the causal parent sets. Their differences lie, there-
fore, in the structural mechanisms themselves as follows.

Assumption 3 (SCM with Contexts and Regimes) Given
a time series XD

T , we assume a Structural Causal Model
(SCM) M “ pG,L, C,Rq with TCG G, changepoints L,
and contexts and regimes C,R for each X . Each variable X
is generated through a set of structural equations of the form

Xd
t “ f pk,rq

`

papXd
t q, Nd

t

˘

(1)

where Xd
t a sample at time t in set d with contextpdq “ k,

regimeptq “ r, f pk,rq is its causal mechanism in Ck and Rr,
papXd

t q the set of its contemporaneous and lagged parents
in G and Nk

r KK Xk
r an independent noise variable.

That is, all datasets and time points in a subsample pk, rq

have identical generating process, where each variable has
its mechanism f pk,rq and noise distribution Nk

t . The above
keeps variable indices implicit but can be similarly stated
for all mechanisms fpiq of Xpiq in the system. Note that our
model can therefore show which variables induce temporal
or spatial changes at which locations.

Discovering this model from data will be our next focus.

Causal Discovery with Contexts and Regimes
Here, we describe our kernelized approach combined with
minimum description lengths to discover the causal model
underlying non-stationary time series.

MDL for Causal Discovery
We base our approach on the Algorithmic Model of Cau-
sation (AMC) (Janzing and Schölkopf 2010), which postu-
lates that the factorization of the joint distribution with the
lowest Kolmogorov complexity (Li and Vitányi 2009) is the
true causal model. In this paradigm, we reason about causal
mechanisms as programs that compute effects from their
parents. Kolmogorov complexity is not computable, but, can
be approximated from above in a statistically sound man-
ner via the Minimum Description Length (MDL) (Rissanen
1978; Grünwald 2007) principle. Marx and Vreeken (2021)
formally connect two-part MDL and the AMC.

MDL systematically balances model complexity and
goodness of fit. The description length L of the data X to-
gether with the model, here its causal graph G, is given by

LpX;Gq “
ÿ

iPG
LpXpiq | papXpiqq;Hq

under a fixed model class H. Each summand measures the
length L, in bits, of both encoding the functional model class
H itself as well as the data for Xpiq given papXpiqq under its
optimal model. Our model class of choice are hereby Gaus-
sian processes (GPs), also used by Mameche, Kaltenpoth,
and Vreeken (2023), as they are both non-parametric and
have refined MDL scores (Grünwald 2007), that is, there is
a principled way of defining the model cost.

A GP models a distribution over functions f „

GPpmpxq, κpx, x1qq where mpxq “ Erfpxqs is a mean func-
tion and κpx, x1q “ Erpfpxq ´ mpxqqpfpx1q ´ mpx1qqs a
covariance kernel (Rasmussen and Williams 2005).

The refined MDL description length (Grünwald 2007) of
the data for a variable Xpiq given its causal parents papXpiqq

under its optimal GP model is given by

LpXpiq | papXpiqq;Hκq

“ min
fPHκ

´

´ logP pXpiq | papXpiqqq ` ∥f∥2κ
¯

` 1
2 log detpσ

´2KS ` Iq ,

where K is the Gramian for κ over papXpiqq.
The score assesses the fit of the GP via the negative

log-likelihood component, as well as its complexity via the
squared norm ∥f∥2κ “ αJKα of the space H which can
be seen as a measure of the smoothness of a given function,
where α “ pK ` σ2Iq´1y, and σ2 is a scaling coefficient.



MDL for Non-stationary Time Series
To encode our causal model, we consider the causal mecha-
nisms per variable for each subsample under given contexts
and regimes. We approximate each using a GP with additive
Gaussian noise to obtain their description lengths.

Given time series datasets, the MDL principle suggests
the true causal model is the one minimizing this score,

argmin
M

LpXD
T ;Mq

“ argmin
Gτ ,L,

`

C,R
˘

ÿ

XPGτ

ÿ

prPR,kPCq

LpXk
r | papXk

r q;Hκq . (2)

This raises the question of whether this score identifies
the correct model components, including the WCG Gτ , the
regime changepoint indices L, and partitions C and R. To
this end, we impose a notion of persistence of regimes simi-
lar to the literature (Saggioro et al. 2020).
Assumption 4 (Sufficient Capacity and Persistence) For
each variable X and subsample s “ pk, rq P C ˆ R, we
have a large enough sample size

|s| “ |tXd
t | contextpdq “ k, regimeptq “ ku|

so that there exists a GP f pk,rq P Hκ such that Eq. (1) holds.
For each interval w “ rtmin, tmaxs Ă T subject to
"

regimeptq “ r @t P w

regimeptmin ´ 1q ‰ r and regimeptmax ` 1q ‰ r

we have |w| ě dmin, ensuring persistent regimes.
It is important to note that time series are subject to

auto-correlation and therefore not i.i.d., therefore we as-
sume above that we access a large enough sample for each
causal mechanism such that a GP can capture it. We also as-
sume that each process persists for a minimal duration dmin

through time. Furthermore, we assume the following.
Assumption 5 (Shift Faithfulness) For distinct pairs i ‰

j, k ‰ k1 and r ‰ r1 we have f
pk,rq

piq ‰ f
pk1,r1

q

pjq
.

Last, to allow us to distinguish causal directions we
assume the principle of independent changes of causal
mechanisms (Schölkopf et al. 2021; Perry, Kügelgen, and
Schölkopf 2022; Mameche, Vreeken, and Kaltenpoth 2024).
We state it informally as follows and also express it through
a latent-variable formulation of our causal model in the Ap-
pendix.
Assumption 6 (Independent Changes (Schölkopf et al.
2021)) The causal mechanisms fpiq, fpjq change indepen-
dently of each other for each pair of variables Xpiq, Xpjq.

Under these assumptions, we can show that our score is
consistent, with the proof provided in the Appendix.
Theorem 1 (Consistency) Let Assumptions 1-6 hold. Then
Eq. (2) is minimised for the true causal model M˚ with
WCG G˚

τ , changepoints L˚, and partitions C˚ and R˚ in
the limit of D and T .

Given the large search space over models in Eq. (2) and
the inherent complexity in identifying the causal relation-
ships and mechanisms while the regime changepoints and
context and regimes partition are unknown, we develop a
practical algorithm in the next section.

Algorithm 1: SPACETIME

Require: Multivariate time series datasets XD
T , minimum

distance between changepoints dmin, maximum time
lag τ

Ensure: A window causal graph Gτ , a set of regime
changepoints L, regime and context partitions R, C

1: Gτ “ empty graph
2: while not converged do
3: L “ CHANGEPOINTDETECTIONpGτ ,X

D
T , dminq

4: R, C “ PARTITIONINGpGτ ,L,XD
T q

5: Gτ “EDGEGREEDYSEARCHpL,R, C,XD
T , τ q

6: end while

Algorithm
Here, we introduce our algorithm SPACETIME1 for causal
discovery over space (contexts) and time (regimes). Follow-
ing our theory, we develop our algorithm around discover-
ing the causal model that minimizes the summed descrip-
tion lengths in Eq. (2). Our algorithm’s modular elements
are therefore discovering the graph, changepoints, and parti-
tions. We first describe how we discover a WCG Gτ for fixed
L, C, and R; then how we leverage changes of the functional
models in Gτ to reveal contexts C and regimes R; and last,
how to identify the correct changepoints L given Gτ . We
iterate these steps until convergence.

Edge-Greedy Search MDL naturally allows ordering po-
tential edges in the causal graph by their causal strength.
Therefore, we adopt an edge-greedy search as proposed
by Mian, Marx, and Vreeken (2021). Starting with an empty
WCG Gτ for a prespecified time lag τ , we first consider all
pairwise edges among its nodes. We define the edge strength
of a directed edge E : Xpiqptq Ñ Xpjqpt1q under the current
model M as the relative gain in compression

δE :“ LpXD
T ;Mq ´ LpXD

T ;M1q

where M1 differs from M only by the additional edge E.
We proceed with a forward phase where we populate

the graph Gτ , adding edges in decreasing order of causal
strength. Because this process is greedy, we may add edges
that later become obsolete, so we follow it by a pruning
phase. In this backward phase, we refine each variable’s par-
ent set and time lags based on our score and finally return
the resulting WCG Gτ .

Regime- and Context Partitioning To discover regimes
and contexts, we need to test for differences in causal mech-
anisms. Given two subsamples s “ pd,wq, s1 “ pd1, w1q

for any time intervals w,w1 and d, d1 P D, we test for
(in)equality in conditional distribution under our model,

H0 : P pX | papXq, θpd,wqq ‰ P pX | papXq, θpd1,w1
qq

where papXq are the causal parents of X in Gτ and θ the GP
parameters for the respective samples s, s1. For this purpose,
we apply kernelized hypothesis testing (Huang et al. 2020;

1Code available at https://eda.group/spacetime



Perry, Kügelgen, and Schölkopf 2022). Specifically, intro-
ducing a discrete variable S that labels samples in s with
S “ 0 resp. s1 with S “ 1 we test the conditional indepen-
dence X KK S | papXq in the pooled data over s and s1 using
the kernel test HSIC (Zhang et al. 2011).

We recall that we define the contexts in a spatial dimen-
sion and not constant over time. Therefore, we can perform
this test pairwise over the datasets in D, considering mea-
surements aggregated over all of T . To arrive from pairwise
tests to a partition C, we group the datasets such that no
group contains two datasets for which the test indicated a
mechanism change.

Regime shifts, on the other hand, may occur over time
irrespective of the context. Thus, we obtain the partition R
by aggregating the pairwise tests performed over the time
windows induced by L with all datasets combined.

Changepoint Detection Unlike the dataset indices for the
context partition, the regime changepoints must be identi-
fied beforehand. We propose an efficient method that takes
advantage of the causal knowledge to identify changepoints
without having to enumerate and test for mechanism change
over all possible combinations over T .

We recall that two regimes are distinguished by a change
in the functional relationship between at least one variable
and one of its parents. A functional model fitted on data from
one regime should poorly predict data from another. Hence,
we identify the changepoints L by looking for changes in
the GPs prediction error over time, instead of directly in the
raw data where it might not be obvious.

We begin by fitting GPs to each variable and context
within a time window where the regime is assumed constant,
starting from the last known changepoint and of length equal
to the minimum distance dmin between changepoints. We use
the resultant GPs to predict the variable values across the en-
tire dataset. Then, we apply a statistical changepoint detec-
tion technique to the prediction errors across all variables
and contexts simultaneously, identifying the next change-
point. Many different techniques can be used here; a good
choice is PELT (Killick, Fearnhead, and Eckley 2012), an ef-
ficient algorithm that does not require the number of change-
points.

Iterative Model Learning We apply an iterative strategy
to combine the above steps, as summarized in Alg. 1. Ini-
tially, we segment the temporal space T into changepoints
under an empty graph (Line 1), given that this captures
marginal distribution shifts. An iteration consists of detect-
ing changepoints L (Line 3) using changes in residual distri-
bution of the functions f pk,rq under the current graph; learn-
ing the regime and context partitions (Line 4) using the cur-
rent graph and updated changepoints; and finally, discover-
ing Gτ (Line 5) with a greedy strategy, where we need the
current changepoints and partitions to obtain the scores in
Eq. (2). We repeat these steps until convergence. Pseudo-
codes of the components are deferred to the Appendix.

Experiments
In this section, we evaluate our approach on synthetic data
and real-world datasets in hydrology and meteorology.
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Figure 2: Causal Discovery, Changepoint Detection and
Regime Partitioning. We evaluate the methods on multiple
time series with causal mechanism shifts across time and
datasets, with non-linear functional form, Gaussian noise,
where |Gτ | “ 5, |T | “ 200, |C| “ 2, |R| “ 3, |L| “ 2, and
a fraction s “ 1

2 of intervened edges.

Experimental Setup
To simulate time series datasets, we generate random WCGs
Gτ with maximum lag τ “ 2, with corresponding summary
DAG G. We sample regime changepoints L uniformly at ran-
dom using a pre-set minimal duration, set to dmin “ 30 un-
less otherwise specified. In each context and regime, we re-
sample the edge weights of a fraction of all edges, and finally
sample data similarly to Günther, Ninad, and Runge (2023)
using TIGRAMITE Runge (2020), with linear or non-linear
functional form and Gaussian or uniform noise.

Our first real-world case study investigates the ef-
fect of meteorological drivers on river discharge over
different gauged catchments across Europe, given data
derived from the Global Runoff Data Centre (GRDC)
datasets (Cornes et al. 2018). Secondly, we study bio-
sphere–atmosphere fluxes in the FLUXNET dataset (Bal-
docchi 2014). Both cases include multiple datasets D from
diverse geographical locations where the respective time
series span multiple years, with daily time resolution. Af-
ter pre-processing (Günther et al. 2023; Krich et al. 2021),
we obtain |D| “ 307 locations for the river runoff, resp.
|D| “ 63 locations for the fluxes data, and set T to a period
of one year (2006 resp. 2010) during DAG discovery given
that the available years are non-overlapping. We provide the
datasets D from all locations to our method, using fixed hy-
perparameters dmin “ 30 and τ “ 2 for consistency.

Throughout our experiments, we are interested in how the
modular components of SPACETIME work together, which
leads to the following questions: whether it discovers causal
directions correctly over time and contexts; whether it accu-
rately detects changepoints over time; and whether it finds
meaningful partitions of similar causal mechanisms.
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(a) WCG Gτ . (b) Strength of P Ñ Q across D.

Figure 3: Drivers of River Discharge. Given temperature
(T), precipitation (P) and river discharge (Q) in 307 catch-
ments across Europe, we discover a common WCG Gτ for
τ “ 2 (a) with a lagged edge P Ñ Q, and illustrate its vari-
ability in causal strength between catchments (b).

Synthetic Data
We show our results on synthetic data in Fig. 2. We report
F1 scores over L (top) for changepoint detection, F1 scores
over directed edges in Gτ (middle) and the DAG G (bottom)
for causal discovery, and the Adjusted Rand Index (ARI)
and Normalized Mutual Information (NMI) for regime par-
titioning. We also report changepoint detection with known
Gτ resp. causal discovery with known L (hatched). How we
apply the methods depends on whether they can handle mul-
tiple datasets (ours, JPCMCI) resp. multiple regimes (ours,
R-PCMCI ). We apply methods that assume a single dataset
to each d in turn. Across time, we apply methods that assume
a single regime either to each subsample s with known L
(hatched), or all regimes together (solid). We aggregate all
resulting graphs using a majority vote for each edge in the
graph. We find that SPACETIME consistently performs well
compared to its competitors, exemplified in Fig. 2 for the
non-linear Gaussian case, and with varying functional form
and noise distributions which we postpone to the Appendix.

Causal Discovery Regarding causal discovery, the meth-
ods DYNOTEARS and VARLINGAM make linearity as-
sumptions and the latter in addition assumes that the noises
in the model are non-Gaussian. Therefore, it is not surpris-
ing that they show sub-par performance here. Even though
they and PCMCI+ assume stationarity, i.e. the absence of
regime shifts, the effect of known (hatched) compared to un-
known changepoints (solid) is not overly pronounced. This
could be due to a slight advantage due to increased sample
size when combining all regimes and the fact that changes
in edge strength are not as drastic as changes in the graph.
While CD-NOD can address temporal shifts, it only dis-
covers a summary DAG G. As all the aforementioned meth-
ods assume a single time series, note that we apply them
to each dataset and combine the resulting graphs using ma-
jority voting. Only J-PCMCI+ can consider multiple con-
texts, but does not achieve a significant performance gap
here. This may be due to mechanism shifts being too sub-
tle, given that J-PCMCI+ relies on changing graphs across
contexts, or because it may need a larger number of differ-
ent contexts to effectively outperform single-context meth-
ods, in which case conditional independence tests however
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Figure 4: Changepoints of the Interaction between Precip-
itation and Runoff. We show the regime changepoints L
and partition R that we discover for P Ñ Q with SPACE-
TIME for selected catchments d1 (CH), d2 (PL), d3 (GB).
The colors denote different regimes.

become increasingly expensive due to a high dimensional
one-hot encoding.

Changepoint and Regime Identification In the change-
point detection and partitioning experiments (Fig. 2 top), we
can see that SPACETIME is robust to a small number of mis-
takes in the causal graph as the full results (solid) are close
to the oracle version (hatched). This also matches our obser-
vation that the interleaving steps in Alg. 1 converge quickly,
typically within three iterations. Reasons that we outperform
R-PCMCI (Fig. 2) may include the fact that we impose
regime persistence explicitly, whereas R-PCMCI can only
impose a given number of regime-switches here provided as
background knowledge.

Case Study: Identifying Drivers of River Discharge

As a real-world application, we explore the effects of mete-
orological variables on river discharge using data from so-
called catchments, that is, an area where water drains into
an outlet. We focus on temperature (T), precipitation (P) as
well as river runoff (Q) in our analysis.

Causal Discovery over Different Catchments While a
previous study of this data using PCMCI+ was limited in
considering each location and month separately (Günther
et al. 2023), we are interested in a unified analysis of all
catchments. As we show in Fig. 3a, we discover a direct
influence of precipitation on discharge through the lagged
edge E : Ppt´1q Ñ Qptq which we consider reasonable. The
joint graph aside, we also visualize the causal strength δE
of this edge for each of the 307 locations in the year 2010 in
Fig. 3b. We observe regional similarities but also geograph-
ical variation in causal strength. The latter is likely due to
differences in topology and climate in the different parts of
Europe, plus distinct characteristics of each catchment such
as area, altitude, and vegetation (Günther et al. 2023).

Changepoints and Regimes over Time Fig. 4 shows for
selected examples the changepoints and regimes with simi-
lar causal relationships that SPACETIME discovers.
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Figure 5: Biosphere-Atmosphere Interactions. For the
FLUXNET data from 64 locations D in multiple years T ,
we show the DAG G (a) that SPACETIME discovers. We vi-
sualize the causal strengths of the seven edges in G in two di-
mensions using t-SNE (b), where each sample px1, x2q cor-
responds to a fixed location di, month mj , and year yk. We
recover regions that correspond to distinct underlying mete-
orological conditions (precipitation P , global radiation Rg).

Case Study: Reconstructing Gradients of
Biosphere-Atmosphere Interactions
In the FLUXNET datasets, we study interactions of mete-
orological and atmospheric variables, with a primary focus
on air temperature (T), global radiation (Rg), net ecosystem
exchange (NEE), sensible heat (H), latent heat flux (LE) and
vapor pressure deficit (VPD).

Causal Strengths across Datasets We show the common
graph jointly over all locations and months in Fig. 5a. As
there is no known ground truth regarding the network, we
replicate the qualitative analysis in Krich et al. (2021) to see
whether the causal strengths across locations and time cor-
respond to plausible interactions between atmospheric and
meteorological variables. To this end, we consider the MDL
edge strengths δE for the seven edges in Gτ for each loca-
tion d P D and each month m P Td, and project them to
two dimensions using the t-distributed stochastic neighbor
embedding (t-SNE). The result is shown in Fig. 5b, where
each sample px1, x2q represents a location d and month m.

Perhaps surprisingly, the grouping by causal strength is
not strongly tied to the actual geographic location and corre-
sponding ecosystem, but rather correlates with water avail-
ability and global radiation. For example, we find strong
edge connections in G (upper right) to be associated with
high radiation and precipitation, even though these variables
are not directly used during causal discovery. As noted in
prior work (Kraemer et al. 2020; Krich et al. 2021), these
conditions create an optimal growing environment in the re-
spective ecosystems and months. This opposes a low-energy
output state often reached in the winter time, which we re-
construct with weak edge connectivity in G (lower left).

Grouping the biosphere-atmosphere interactions by
causal strength therefore reveals different meteorological

P t

R1 (other)

R2 (2003)

(a) Regimes R in d1 : De-Hai.

P t

R1 (other)

R2 (2003)

R3 (2006)

(b) Regimes R in d2 : De-Tha.

Figure 6: Regime partitioning reveals distinct trends. The
regime partitions that SPACETIME discovers reveal abnor-
mal conditions, such as the effects of a European heatwave
(2003) on the FLUXNET ecosysyems Hainich (De-Hai) and
Tharandt (De-Tha) (2000-2009).

states that the ecosystems traverse over the year. In partic-
ular, matching previous insights (Krich et al. 2021) these
findings support the hypothesis that distinct ecosystems can
traverse very similar meteorological states over time.

Distinct Trends over Time A limitation of the t-SNE vi-
sualization is that the resulting space is not metric and thus
does not provide a direct way to perform comparisons (Krich
et al. 2021). With SPACETIME, we can test for statistical dif-
ferences in causal mechanism, and, for example, investigate
how the causal interactions evolve over the years at a given
location. To illustrate, we show in Fig. 6 for the locations
Hainich (DeHai) and Tharandth (DeThai) the regime parti-
tions over multiple years (here 2000-2009). We discover a
common causal mechanism in most years (greyed out) and
distinct regimes in 2003, resp. 2006 (colored). Such changes
likely result from abnormal meteorological conditions; in
this case, a drought event in Europe in 2003, which is re-
flected in the monthly precipitation P (Fig. 6).

Conclusion
While causal discovery often treats cause-effect relation-
ships as fixed, most real-world processes change and evolve,
often in multiple environments and over time. Thinking of
such settings, we study causal discovery and changepoint
detection for a collection of multivariate time series. We
model causal mechanism shifts across datasets and time
jointly using the notions of contexts and regimes. We pro-
pose discovering temporal causal graphs using Minimum
Description Length (MDL) encodings for Gaussian pro-
cesses (GPs), where we detect regime changepoints from
changes in residual distributions. Alongside this, we dis-
cover contexts and regimes with similar causal mechanisms
using kernelized hypothesis testing. We confirmed that our
strategy for discovering causal models, changepoints, and
partitions, summarized in the SPACETIME algorithm, works
well in our simulations. On real-world data, our method
can be used to discover summary networks, varying edge
strengths, and meaningful groups of time spans and loca-
tions with similar mechanisms. This supports a research
direction where we base cluster analysis not only on the
marginal distributions, but on causal interaction structures
between variables of interest (Günther et al. 2023), which
future continuations of this work could explore further.
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Perry, R.; Kügelgen, J. V.; and Schölkopf, B. 2022.
Causal Discovery in Heterogeneous Environments Under
the Sparse Mechanism Shift Hypothesis.
Rasmussen, C. E.; and Williams, C. K. I. 2005. Gaus-
sian Processes for Machine Learning (Adaptive Compu-
tation and Machine Learning). The MIT Press. ISBN
026218253X.
Rissanen, J. 1978. Modeling by shortest data description.
Automatica, 14(1): 465–471.
Runge, J. 2020. Discovering contemporaneous and lagged
causal relations in autocorrelated nonlinear time series
datasets. In Peters, J.; and Sontag, D., eds., Proceedings of
the 36th Conference on Uncertainty in Artificial Intelligence
(UAI), volume 124 of Proceedings of Machine Learning Re-
search, 1388–1397. PMLR.



Saggioro, E.; de Wiljes, J.; Kretschmer, M.; and Runge, J.
2020. Reconstructing regime-dependent causal relationships
from observational time series. Chaos: An Interdisciplinary
Journal of Nonlinear Science, 30(11): 113115.
Schölkopf, B.; Locatello, F.; Bauer, S.; Ke, N. R.; Kalch-
brenner, N.; Goyal, A.; and Bengio, Y. 2021. Toward Causal
Representation Learning. Proceedings of the IEEE, 109(5):
612–634.
Shah, R. D.; and Peters, J. 2020. The hardness of condi-
tional independence testing and the generalised covariance
measure. The Annals of Statistics, 48(3): 1514 – 1538.
Spirtes, P.; Glymour, C. N.; Scheines, R.; and Heckerman,
D. 2000. Causation, prediction, and search. MIT Press.
Zhang, K.; Peters, J.; Janzing, D.; and Schölkopf, B. 2011.
Kernel-Based Conditional Independence Test and Applica-
tion in Causal Discovery. In Proceedings of the Twenty-
Seventh Conference on Uncertainty in Artificial Intelligence,
UAI’11, 804–813. Arlington, Virginia, USA: AUAI Press.
ISBN 9780974903972.


