
From your Block to our Block: How to Find Shared Structure between
Stochastic Block Models over Multiple Graphs

Iiro Kumpulainen,1 Sebastian Dalleiger,2 Jilles Vreeken,3 Nikolaj Tatti1

1HIIT, University of Helsinki
2KTH Royal Institute of Technology

3CISPA Helmholtz Center for Information Security
{iiro.kumpulainen, nikolaj.tatti}@helsinki.fi, sdall@kth.se, jv@cispa.de

Abstract
Stochastic Block Models (SBMs) are a popular approach to
modeling single real-world graphs. The key idea of SBMs is
to partition the vertices of the graph into blocks with simi-
lar edge densities within, as well as between different blocks.
However, what if we are given not one but multiple graphs
that are unaligned and of different sizes? How can we find out
if these graphs share blocks with similar connectivity struc-
tures? In this paper, we propose the shared stochastic block
modeling (SSBM) problem, in which we model n graphs us-
ing SBMs that share parameters of s blocks. We show that
fitting an SSBM is NP-hard, and consider two approaches
to fit good models in practice. In the first, we directly maxi-
mize the likelihood of the shared model using a Markov chain
Monte Carlo algorithm. In the second, we first fit an SBM for
each graph and then select which blocks to share. We propose
an integer linear program to find the optimal shared blocks
and to scale to large numbers of blocks, we propose a fast
greedy algorithm. Through extensive empirical evaluation on
synthetic and real-world data, we show that our methods work
well in practice.

Code — https://version.helsinki.fi/dacs/SharedSBM

Introduction
In many network settings, we are interested in what is simi-
lar and what is different between two or more graphs. Most
existing methods, however, focus on quantifying similarity
rather than qualifying what are the structures that are specific
to or shared between the graphs. Examples of when we need
more than just a measure of how similar graphs are, but we
are specifically interested in characterizing what makes the
graphs similar, include comparing brain scans of different
patients; protein interaction networks of different species;
social networks of different kinds; or comparing trade net-
works measured at different points of time. In some of these
examples, the graphs will have aligned vertices, but often the
graphs are unaligned or of different sizes. In this paper, we
propose a method for finding shared connectivity structures
between graphs that work in each of these settings.

We build our method upon the notion of the Stochastic
Block Model (SBM), which is a popular approach to model-
ing single graphs (Peixoto 2019). The key idea of the SBM

Copyright © 2025, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

is to partition the vertices of a graph into blocks, modeling
the edge likelihoods of nodes within a block as well as those
of nodes in different blocks using Bernoulli variables. By
optimizing likelihood, we can so obtain a partition such that
the edge densities within each block are similar, and those
between every pair of blocks are similar too.

Towards our goal of revealing shared structure, we extend
the notion of the SBM to n graphs, modeling each with its
own SBM, but, requiring these n models to share s blocks.
That is, we model the edges of a shared block using the
same distribution across all n graphs. This formulation al-
lows the domain expert to flexibly explore what is similar
(the s shared blocks) and what is different (the other blocks)
between the n graphs. We dub this the Shared Stochastic
Block Model or SSBM for short.

We show that fitting the optimal SSBM, as well as the
sub-problem where we know the block memberships per
graph, are both NP-hard, even for n = 2 graphs. Moreover,
these problems are inapproximable unless P = NP. To fit
good models in practice, we propose two approaches. In the
first, we jointly search for the optimal blocks that should
be shared. We show how we can use a Markov chain Monte
Carlo (MCMC) approach with simulated annealing to search
for the optimal assignment.

Our second approach for fitting a good model consists of
two stages. In the first stage, we search only for the assign-
ment of vertices into blocks. Once the vertex assignment is
fixed, we then select which blocks should be shared. We
show that this assignment can be done optimally with an
integer linear program (ILP), but also a faster greedy ap-
proach where we select that shared block that reduces the
log-likelihood the least. We consider and experiment with
several strategies for the initial assignment of vertices: fitting
a model to each graph individually, or using the assignment
given from the first approach as the starting point.

Through an extensive set of experiments, we show that
our methods work well in practice. On synthetic data we
show that 1) we obtain the best results if we use MCMC with
an agglomeration heuristic to find initial SBMs per graph,
and then an ILP to find the s-SSBM, that 2) we can use BIC
to recover the ground truth number of shared blocks, and
that 3) the runtime of our approaches scales linearly in the
number of edges. Through a case study, we show our method
reveals easily interpretable knowledge of the similarities be-

tween brain scans of ADHD patients.

Preliminaries
Let G = (V,E) be a graph with |V | = N nodes and
|E| = M edges. In the standard stochastic block model,
we have B blocks and a partition vector b whose entries
bi ∈ {1, 2, . . . , B} assign each node vi in the graph to one
of the blocks. In addition, we have a B ×B matrix of prob-
abilities Θ where an entry θab denotes the probability of an
edge between a node in block a and another node in block b.

Let A denote the adjacency matrix of graph G with entries
Aij ∈ {0, 1} indicating edges between nodes vi and vj in
the graph. The likelihood of the graph according to the SBM
is given by the Bernoulli distribution

P (G |Θ,b) =
∏

i,j,i ̸=j

θ
Aij

bi,bj
(1− θbi,bj)

1−Aij ,

where we assume that the graph is directed. In the case of
an undirected graph, the product is over pairs of indices i, j
with i < j instead. To simplify the notation, we define Cij

as the number of edges between blocks i and j. Similarly,
we define Fij as the number of missing edges between i and
j. The log-likelihood of the model is then

logP (G |Θ,b) =
∑

i,j∈[B]

Cij log θij + Fij log (1− θij) .

Problem Definition
We argue that stochastic block models are also valuable
in settings with multiple graphs and can be used to com-
pare connectivity patterns. Shared models may better ex-
plain common structures in the data than individual SBMs
and require fewer parameters. To that end, we introduce the
concept of shared blocks in SBMs. We then define associ-
ated optimization problems and show that they are NP-hard.

Assume that we have n graphs G1, . . . , Gn with an SBM
for each graph Gk with the partition vector bk and the prob-
ability matrix Θk with entries θkij . We then say that these
SBMs have s shared blocks if we can select s blocks from
each SBM such that the probabilities of edges between cor-
responding block pairs are identical in each SBM.

More formally, SBMs share s blocks if there are n in-
jective mappings σ1, . . . , σn, where σk : [s] → [Bk] such
that θkσk(i)σk(j)

does not depend on k. In other words, the
different Θk matrices must have identical s × s submatri-
ces corresponding to the shared blocks. Note that regardless
of having shared blocks between the SBMs, we can compute
the log-likelihood for each graph as before, and the total log-
likelihood for n graphs is

logP (G1, . . . , Gn | {Θk,bk}k)

=

n∑
k=1

logP (Gk |Θk,bk) .
(1)

This gives rise to the optimization problem of inferring
a maximum-likelihood stochastic block model with shared
blocks. We formally define the problem as follows.

Problem 1 (SSBM). Given n graphs G1, . . . , Gn, each
graph Gk with fixed number of blocks Bk, as well as a
non-negative integer s, find partition vectors b1, . . . ,bn

and probability matrices Θk ∈ RBk×Bk with s
shared blocks between them such that the log-likelihood
logP (G1, . . . , Gn | {Θk,bk}nk=1) is maximized.

One way to approach this problem is to find block as-
signments for each graph independently and then find which
parameters to share between the SBMs such that the log-
likelihood remains as high as possible. This leads us to the
subproblem of inferring the shared SBM parameters while
the assignment of vertices into blocks is fixed.
Problem 2 (SSBM-FIXED). Given n graphs G1, . . . , Gn

and n partition vectors b1, . . . ,bn, as well as a non-
negative integer s, find probability matrices Θk with s
shared blocks between them such that the log-likelihood
logP (G1, . . . , Gn | {Θk,bk}nk=1) is maximized.

Note that the maximum-likelihood probability matrices
Θk for each graph Gk can be easily computed once the
block assignments and shared blocks are known. More for-
mally, let Ck

ij and F k
ij denote the numbers of edges and

missing edges for a pair of blocks i, j ∈ [Bk]. When i and
j are not both shared between graphs, the maximum log-
likelihood is achieved by

θkij =
Ck

ij

Ck
ij + F k

ij

. (2)

Moreover, the optimal parameter between the ith and jth
shared block in kth graph is

θkσk(i)σk(j)
=

∑n
ℓ=1 C

ℓ
σℓ(i)σℓ(j)∑n

ℓ=1 C
ℓ
σℓ(i)σℓ(j)

+ F ℓ
σℓ(i)σℓ(j)

. (3)

Thus, to solve SSBM or SSBM-FIXED, it is sufficient to find
the assignments of vertices into blocks as well as which
blocks to share, and the probability matrices can then be
computed according to Equations 2-3.

Next we show that both SSBM and SSBM-FIXED are NP-
hard and inapproximable by a reduction from the well-
known problem of finding cliques of size k.
Theorem 1. SSBM and SSBM-FIXED are NP-hard, even for
n = 2. Moreover, unless P = NP, there is no polynomial-
time algorithm that always produces a solution for SSBM or
SSBM-FIXED with a log-likelihood LLH such that LLH ≥
αOPT , where OPT is the log-likelihood of the optimal so-
lution and α ≥ 1 is any constant.

The second result states that SSBM and SSBM-FIXED are
inapproximable. Note that α ≥ 1 makes sense since the log-
likelihood of a Bernoulli SBM is always non-positive.

Proof. Let us focus first on SSBM. We will use a reduction
from the NP-hard k-CLIQUE problem, which asks whether
a given graph has a clique of size k. Given a graph G and
integer k as an instance of k-CLIQUE, we construct an in-
stance of SSBM with two graphs by setting G1 = G and G2

as a complete graph with the same number of vertices. In
addition, set s = k, and set B1 = B2 = |V (G)|.

We claim that G has a k-clique if and only if the optimal
log-likelihood equals 0. Assume that there is a k-clique. Set
the partition vectors b1,b2 such that each vertex belongs to
a different block. Set Θi to be the adjacency matrix of Gi.
The log-likelihood in this case is 0 and the clique provides k
shared blocks.

Assume that the optimal log-likelihood is 0. This is only
possible if each parameter in Θ1 and Θ2 is 0 or 1. Let W be
the vertices in G1 in blocks shared with G2. Since k blocks
are shared, we have |W | ≥ k. Since G2 is fully connected,
Eq. 3 implies that any parameter between two shared blocks
cannot be 0, so it must be 1. Consequently, any two shared
blocks are fully connected in G1, that is, W is a clique. The
case for SSBM-FIXED is essentially the same, except now
we fix the vectors b1,b2 such that each vertex is in its own
block already in the construction.

In summary, solving SSBM or SSBM-FIXED also solves
k-CLIQUE, which means that both problems are NP-hard.
Furthermore, the optimal objective value is 0, which means
that an approximation algorithm with any multiplicative ap-
proximation guarantee would have to find the exact optimal
solution thus solving k-CLIQUE.

Algorithms
Our next step is to consider techniques to fit our model. We
will first consider a method that solves the main problem
SSBM with a Markov chain Monte Carlo (MCMC) approach.
Next, we consider a two-step approach in which we first
find and fix the block assignments and then find the shared
blocks. The latter step can be then optimized with an ILP or
with a greedy algorithm. We evaluate different group assign-
ment strategies in our experiments.

MCMC Algorithm for SSBM
Although exact inference of a maximum-likelihood SBM
is computationally infeasible, there are efficient algorithms
to find an SBM that fits the data well in practice, such as
the MCMC approach (Peixoto 2019). We modify this ap-
proach to suit our model. For each graph Gk, we start with
a randomly initialized partition vector bk and assign the
first s blocks in each graph to be shared such that blocks
with corresponding indices are mapped to each other, that
is, σk(i) = i for i ∈ [s]. At each step of the algorithm,
we propose a new block assignment b′

k where one vertex is
moved to a new block.

Rather than proposing new blocks uniformly randomly,
we use a heuristic described by Peixoto (2019) where moves
to neighboring blocks become more likely. This move pro-
posal is then accepted with probability

min

(
1,

P (b′
k |G1, . . . , Gn)

βP (bk | b′
k)

P (bk |G1, . . . , Gn)βP (b′
k | bk)

)
,

where β is an inverse temperature parameter used for simu-
lated annealing. Computing the acceptance probability boils
down to computing the log-likelihood given in Eq. 1 with
the maximum likelihood parameters given in Eqs. 2–3.

Instead of computing the full log-likelihood for each
move proposal, we can compute the change in log-likelihood

more efficiently by keeping track of the counts of edges be-
tween blocks along with the counts of vertices in each block.
Then each move proposal and update can be performed in
time O(deg(v) +Bk), where deg(v) represents the degree
of the vertex v being moved and Bk is the number of blocks
in that graph. Hence, one full iteration over all the nodes in
all graphs takes time O(

∑n
k=1 |Ek|+ |Vk|Bk), where |Ek|

and |Vk| are the numbers of edges and vertices in graph Gk.
The number of graphs n is a small constant in our exper-

iments, so we use a simpler implementation without stor-
ing and continuously updating the counts of total edges or
vertices for shared blocks. This leads to a running time of
O(n

∑n
k=1 |Ek|+ |Vk|Bk) per iteration over all the nodes.

Integer Linear Program for SSBM-FIXED
Next, we consider solving SSBM-FIXED. The number of
blocks in an SBM is typically much smaller than the number
of vertices. In our case, when the numbers of blocks Bk are
small, we can solve SSBM-FIXED exactly using an integer
linear program (ILP).

Solving SSBM-FIXED amounts to finding s injective func-
tions σk that maximize the log-likelihood. To express this
problem as an ILP, we need to introduce additional notation.
Assume that we are given σk and fix i ∈ [s]. Then define a
vector r of length n with rk = σk(i), that is, rk indicates the
ith shared block in graph Gk. Instead of searching for σk, we
will search for such vectors r. For this purpose, let us define
the space of such vectors as T = [B1]× [B2]× · · · × [Bk].

Next, we express the log-likelihood as a linear function
over certain variables and then impose conditions on those
variables so that the program matches solving SSBM-FIXED.
To that end assume that i or j are not shared blocks in Gk.
Then the associated log-likelihood between these blocks is

Uk
ij = Ck

ij log θ
k
ij + F k

ij log(1− θkij) ,

where θkij is given in Eq. 2. On the other hand, let r, t ∈ T
be two vectors indicating shared blocks. Then the associated
log-likelihood between these shared blocks is

Qrt =

n∑
k=1

Ck
rktk

log θrt + F k
rktk

log(1− θrt) ,

where

θrt =

∑n
k=1 C

k
rktk∑n

k=1 C
k
rktk

+ F k
rktk

.

To state our ILP, we need the following two sets of binary
variables. The first set zkij , where k ∈ [n] and i, j ∈ [Bk],
indicates whether blocks i and j are shared in Gk. The sec-
ond set wrt, where r, t ∈ T , indicates if r and t correspond
to shared blocks. The log-likelihood is then equal to∑

r,t∈T
wrtQrt +

n∑
k=1

Bk∑
i,j=1

(1− zkij)U
k
ij . (4)

Next, we need to impose constraints on zkij and wrt. To that
end, we introduce binary variables xkiℓ, indicating that for
graph Gk, the block i ∈ [Bk] is the shared ℓth block. In
other words, xkiℓ will correspond to having σk(ℓ) = i. To

guarantee this correspondence we require that each graph
has exactly one ℓth shared block by imposing

Bk∑
i=1

xkiℓ = 1, k ∈ [n], ℓ ∈ [s] . (5)

Now, we introduce an auxiliary binary variable yki, indi-
cating that the block i ∈ [Bk] for graph Gk is shared. We
achieve this by requiring that

yki =

s∑
ℓ=1

xkiℓ, k ∈ [n], i ∈ [Bk] . (6)

Note that since yki are binary, the corresponding functions
σk are forced to be injective. By definition, zkij = 1 if and
only if yki = 1 and ykj = 1. We achieve this by requiring
that

zkij ≤ yki, zkij ≤ ykj , k ∈ [n], i, j ∈ [Bk] ,

zkij ≥ yki + ykj − 1, k ∈ [n], i, j ∈ [Bk] .
(7)

To constrain wrt we introduce binary variables crℓ that indi-
cate that from each graph Gk, the block rk is mapped to the
shared ℓth block. We achieve this by requiring

crℓ ≤ xkrkℓ, r ∈ T , k = [n], ℓ ∈ [s] ,

crℓ ≥ 1 +

n∑
k=1

(xkrkℓ − 1), r ∈ T , ℓ ∈ [s] .
(8)

In addition, we introduce binary variables dr indicating that
σk(rk) = ℓ for some ℓ ∈ [s]. This is done by requiring

dr =

s∑
ℓ=1

crℓ, r ∈ T . (9)

Finally, by definition, wrt = 1 if and only if dr = 1 and
dt = 1. We achieve this by requiring that

wrt ≤ dr, wrt ≤ dt, wrt ≥ dr + dt − 1 r, t ∈ T . (10)

Note that Eq. 4 is linear since Uk
ij and Qrt are constants.

Moreover, the constraints in Eqs. 5–10 are linear. Hence,
maximizing Eq. 4 subject to Eqs. 5–10 can be done with an
ILP. Finally, the constraints guarantee that we can construct
σk from crℓ by setting σk(ℓ) = rk and that the cost in Eq. 4
matches to the log-likelihood.

The number of variables and equations are inO
(
|T |2

)
=

O
(∏

B2
k

)
, which grows exponentially with the number

of graphs. Moreover, solving an ILP can be done in
log(2h)O(h) time, where h is the number of variables (Reis
and Rothvoss 2023). However, the ILP does not depend on
the number of nodes or edges in the graphs, and we can solve
it efficiently in practice when the number of graphs is small.
In addition, we show an alternative ILP in the Appendix,
which does not have an exponential number of variables but
does depend on the number of nodes in the graphs. For our
experiments, the above version is adequate.

Greedy Algorithm for SSBM-FIXED

As an alternative to integer linear programming approaches,
we propose a greedy algorithm that iteratively picks shared
blocks consisting of one block from each graph. In each it-
eration, the greedy algorithm chooses the shared block that
yields the highest log-likelihood with the previously chosen
shared blocks. The pseudocode for the greedy algorithm is
given in Algorithm 1.

Algorithm 1 Greedy algorithm for SSBM-FIXED.

Input: number of shared blocks s, graphs G1, . . . , Gn and
their block assignments.

1: S ← ∅; T ← [B1]× · · · × [Bn]
2: while |S| < s do
3: r ← vector in T with the smallest decrease in log-

likelihood when added to shared blocks S
4: Add r to S
5: Delete any vector from T sharing blocks with r

6: return S

To compute the change in log-likelihood for a single can-
didate shared block, we update the parameters for edge
probabilities between it and the other currently shared
blocks. Calculating the log-likelihood change for each of
the n graphs for the at most O(s) updated parameters thus
takes time O(ns). In each of the s iterations, we con-
sider |T | candidates, which leads to a total running time
of O

(
ns2B1 · · ·Bn

)
. Note that this is polynomial when the

number of graphs n is constant, and does not depend on the
number of edges or vertices. However, the number of pos-
sible shared blocks grows exponentially with the number of
graphs, so future work may design different algorithms for
cases where n is large.

Related Work
The Stochastic Block Model (SBM) has been extensively
studied and adapted to capture various complexities in
network structures. The classic SBM, introduced by Hol-
land, Laskey, and Leinhardt (1983), provides a founda-
tional framework for modeling community structures within
networks through probabilistic block assignments. This
model has since been expanded to address different types
of network characteristics, including degree heterogeneity
through the Degree-Corrected SBM (Karrer and Newman
2011), the incorporation of temporal dynamics into SBMs
enabling the analysis of evolving networks (Matias and
Miele 2017), and the ability to model multi-layer networks
with SBMs (Han, Xu, and Airoldi 2015).

Sharing. Sharing in the context of the SBM framework
has focused on capturing overlapping communities. Airoldi
et al. (2008) developed the mixed-membership stochastic
block model (MMSBM), which allows nodes to belong to
multiple communities. While Consensus SBM (CSBMs)
(Faskowitz et al. 2018) aim to create a single unified SBM
from a collection of hundreds of individual SBMs, they can-
not distinguish between shared and specific blocks. This ap-
proach is informed by methods developed for community

detection in multiplex networks and overlapping community
models. The work of Yang and Leskovec (2012) on over-
lapping community detection models how nodes can belong
to multiple communities simultaneously, which they effi-
ciently put into practice using Non-Negative Matrix Factor-
ization (Yang and Leskovec 2013). Recent work by Cohen-
Addad et al. (2024) introduces multi-view SBMs to esti-
mate a shared SBM jointly for multiple graphs. To date, re-
search on fine-grained block-sharing in the context of multi-
ple graphs is lacking.

Inferring. Markov Chain Monte Carlo (MCMC) meth-
ods are widely used to estimate posterior distributions over
block assignments and model parameters (Peixoto 2014).
Latouche, Birmele, and Ambroise (2012) pioneered the use
of variational inference (Blei, Kucukelbir, and McAuliffe
2017) to efficiently approximate the posterior distributions
in large-scale SBM applications (Tabouy, Barbillon, and
Chiquet 2020), enhancing computational feasibility and
offering a more scalable inference. Peixoto (2017) fur-
ther refined these techniques by employing nonparametric
Bayesian inference to better capture complex community
structures without requiring predefined numbers of blocks.
Additionally, clustering techniques, such as spectral clus-
tering (Lei and Rinaldo 2015), and graph partition heuris-
tics, such as Kernighan-Lin (Kernighan and Lin 1970), have
been used to efficiently estimate block structure. Funke and
Becker (2019) provide a comparative study of the experi-
mental efficacy of many inference algorithms.

Comparing Graphs. Graph kernels (Vishwanathan et al.
2010; Kriege, Johansson, and Morris 2020), such as the
graphlet kernel (Shervashidze et al. 2009), the Weisfeiler-
Lehman (WL) kernel (Shervashidze et al. 2011), and
Wasserstein WL kernel (Togninalli et al. 2019), can be used
to compare structural properties of pre-existing communi-
ties and blocks, but fail to capture the high-level commonal-
ities between distributions and blocks that are specific to our
use case. While divergences and metrics over distributions,
such as Wasserstein kernels (De Plaen, Fanuel, and Suykens
2020), may perform better for many needs, they also require
pre-existing communities which we aim to find.

Experiments
Next, we present our experimental evaluation.

Methodology. To discover block assignments—while ig-
noring the shared block requirement—we consider three ap-
proaches: Single independently fits a single SBM to graph
using MCMC. The algorithm samples a new assignment
by moving a random node between blocks (Peixoto 2019).
Alternatively, Multilevel fits single SBMs for each graph
using an MCMC algorithm with an agglomerative heuris-
tic that starts with all nodes in separate blocks and uses a
series of block merges and individual node movements to
reach a stable node assignment for the desired number of
blocks (Peixoto 2014). Third, ML+Single first runs the Mul-
tilevel algorithm as a starting point for Single to refine the
node assignment further.

To find block assignments with shared blocks, we con-
sider two approaches: Shared fits SBMs with shared pa-
rameters using the MCMC algorithm for SSBM. Finally,

ML+Shared uses Multilevel similarly as a starting point
for Shared. However, since Shared assumes that the first s
blocks in each graph share parameters, we use the ILP, given
in Eqs. 4–10, to select which blocks to share and reorder
them to be first. We use the last 3 methods directly to find
SBMs with shared blocks. In addition, we use all 5 meth-
ods to compare the ILP and Greedy algorithms for SSBM-
FIXED, with a Random baseline that randomly selects the
shared blocks.

We implemented Single and Shared in C++ using graph-
tool,1 which includes Multilevel. Our experiments and other
algorithms are implemented in Python, and we use Gurobi
for solving the ILP instances.2 The experiments were run
on an AMD EPYC 7452 32-core processor in a high-
performance computing environment. All code for repro-
ducing the experiments is publicly available.3

Experiments on Synthetic Graphs
For each experiment on synthetic data, we create n graphs
using stochastic block models with 200 to 500 vertices with
a fixed number of blocks and shared blocks. The vertices are
randomly partitioned into the blocks, edge probabilities be-
tween blocks are sampled from a Beta distribution with pa-
rameters α = 0.5, β = 1.0, and the probabilities for shared
blocks are set to be equal. Each pair of vertices then has an
edge between them based on the edge probability between
the corresponding blocks.

We evaluate how accurately our algorithms for SSBM-
FIXED can find the ground truth shared blocks by computing
the Shared ARI, which we define as the adjusted Rand index
(ARI) (Hubert and Arabie 1985) score between an inferred
binary partition of vertices into shared or non-shared blocks
and the corresponding ground truth partition.

Random Noise. Since solving SSBM via SSBM-FIXED
requires a separate inference algorithm to provide block as-
signments that may be imperfect, we assess how mistakes in
the input block assignment reflect in the Shared ARI scores
for our algorithms for optimizing the shared blocks. We add
noise to the ground truth block assignment by independently
moving vertices to random blocks with increasing probabil-
ity. Figure 1 shows that ILP outperforms Greedy and Ran-
dom in finding the ground truth shared blocks when pro-
vided with the true assignment of blocks and how increasing
levels of random noise slowly degrades performance.

Block Assignment Accuracy. We then compare the al-
gorithms for inferring the block assignments by using the
ARI score to measure the similarity between the inferred and
ground truth partitions of vertices into blocks. Figure 2 (left)
shows the average partition ARI over 10 runs on 3 graphs
with 500 vertices and 5 blocks each, with 3 shared blocks be-
tween the graphs. All algorithms find partitions highly sim-
ilar to the ground truth, and we note that Multilevel is more
consistent at finding partitions close to the ground truth than
the simpler Single and Shared algorithms. ML+Shared per-
forms the best by slightly improving upon Multilevel and

1https://graph-tool.skewed.de/
2https://www.gurobi.com/solutions/gurobi-optimizer/
3https://version.helsinki.fi/dacs/SharedSBM/

finding the ground truth partition nearly every time.
Accuracy of Discovering Shared Blocks. Combining

the inference algorithms with the algorithms for selecting
which blocks to share, we obtain a pipeline for solving
SSBM. Figure 2 (right) shows the Shared ARI scores for
different pairs of algorithms for inferring the block assign-
ments and for choosing the shared blocks. When selecting
the s first blocks to be shared, Shared is notably better than
random, but the multi-step approaches involving Multilevel
perform better, with results close to ground truth when us-
ing ILP. Notably, the ML+Shared combination slightly im-
proves upon Multilevel, while ML+Single does not.

Information Gain. To evaluate if sharing the parame-
ters between the blocks leads to a better model, we use
the Bayesian information criterion (BIC) for model selec-
tion. In Figure 3, we compare the differences in BIC and
log-likelihood for Multilevel, ML+Single, and ML+Shared
when using no shared blocks compared to when using the
ILP for selecting shared blocks and sharing parameters.
When sharing blocks, the BIC slightly decreases for all
three, implying that having shared blocks leads to a better
model despite small decreases in the log-likelihood. The im-
provement in BIC is highest for ML+Shared, whereas for
ML+Single the loss in log-likelihood nearly offsets the in-
formation gain from decreasing the number of parameters.

Inferring the Number of Shared Blocks. While our ex-
periments use fixed numbers of blocks and shared blocks, in
practical applications these may have to be inferred from the
data. Figure 4 shows the BIC scores for ML+Shared with
ILP assuming different numbers of shared blocks for two
graphs with 400 vertices and 8 blocks each and 3 shared
blocks between them. The BIC score is lowest when the as-
sumed number of shared blocks matches the ground truth,
showing we can infer it from the data. In future work, the
numbers of blocks and shared blocks could be inferred au-
tomatically using Bayesian inference (Peixoto 2019).

Running Time. We compare the running times of ILP,
Greedy, and Random for an increasing number of graphs,
with each graph having 4 blocks, and the number of shared
blocks set to 2. We show the results in Fig. 5. Greedy is
significantly faster than ILP, taking less than two minutes
for six graphs. The exponential trend matches the theory.

Finally, we analyze the total running times for the dif-
ferent MCMC-based inference algorithms. We run Single
and Shared for 500 iterations over all vertices, while Mul-
tilevel uses graph-tool’s default parameters. Figure 6 shows
the running times as a function of the total number of edges
in two graphs with 4 blocks each and 2 shared blocks. The
running times of all algorithms scale linearly with the edge
count, but Single and Shared are significantly faster, and
combining them with Multilevel adds almost no overhead.

Use Case: Brain Networks
To assess if our algorithms can find shared block structures
that can be meaningful in practice, we test them on brain
network samples from the NITRC ADHD-200 (Bellec et al.
2017) resting-state dataset available in the nilearn library.4

4https://nilearn.github.io/

0.00 0.04 0.08 0.12 0.16 0.20
Noise level

0.00
0.25
0.50
0.75
1.00

Sh
ar

ed
 A

R
I Random Greedy ILP

Figure 1: Comparison of ARI scores for the partitions of
vertices into shared or non-shared blocks by different algo-
rithms for selecting shared blocks, with increasing levels of
random noise in the input block assignment.

SBM inference
0.00
0.25
0.50
0.75
1.00

Pa
rti

tio
n

A
R

I

Firsts Greedy ILP

Sh
ar

ed
 A

R
I

Single Shared Multilevel ML+Si ML+Sh

Figure 2: (Left): Average ARI scores measuring the simi-
larity between the inferred partitions of vertices into blocks
with the ground truth partitions. (Right): ARI scores be-
tween ground truth and inferred partitions of vertices into
shared or non-shared blocks for different algorithms for in-
ferring the block assignments paired with different methods
for choosing the shared blocks. The Firsts method represents
choosing the first s blocks in each graph to be shared, which
is effectively random for Single, Multilevel, and ML+Single.

ML
ML+Si

ML+Sh
0

50
100
150
200

BI
C

BI
C I

LP

ML
ML+Si

ML+Sh
0

30
60
90

120

LL
LL

IL
P

Figure 3: Decrease in BIC (higher is better) and in log-
likelihood (lower is better) for Multilevel (ML), ML+Single
(ML+Si), and ML+Shared (ML+Sh) when using ILP shared
blocks compared to not using any shared blocks.

We obtain one graph per patient, with each graph having
1000 nodes representing brain regions of interest, and we
construct an undirected edge whenever the functional con-
nectivity between the corresponding brain regions has a cor-
relation coefficient of at least 0.5.

We note that the brain networks between patients vary
greatly. In Figure 7 we highlight a set of three patients with
attention deficit and hyperactivity disorder (ADHD) whose
brains display similar connectivity patterns. We set the num-
ber of blocks to 10 per graph of which we seek to share 2. By
using the Greedy algorithm, ML+Shared identifies shared

0 1 2 3 4 5
Number of shared blocks

242500

243000

243500
B

IC Ground Truth

Figure 4: BIC scores for different numbers of shared blocks
for ML+Shared with ILP. The BIC is lowest at 3 shared
blocks matching the ground truth value used for generating
the graphs.

2 3 4 5 6 7
Number of graphs

0
25
50
75

100

R
un

ni
ng

 ti
m

e
(s

)

Random
Greedy
ILP

Figure 5: Average running times of different algorithms for
optimizing which blocks to share as a function of the number
of graphs.

0.0 0.5 1.0 1.5 2.0 2.5
Number of edges 1e6

0
150
300
450

R
un

ni
ng

 ti
m

e
(s

)

Single
Shared
ML
ML+Si
ML+Sh

Figure 6: Average running times of different SBM inference
algorithms as a function of the number of edges in randomly
generated synthetic graphs.

blocks that correspond to approximately the same brain re-
gion. Being able to discover shared structures solely based
on the connectivity patterns, our method does not use the
dataset-inherent node-alignments.

Use Case: Wikipedia Networks
To test the scalability of our methods on real-world net-
works, we run an experiment on the extensive English and
Chinese Wikipedia link networks from the Koblenz network
collection (Kunegis 2013). Each node represents an article
on Wikipedia with directed edges representing links from
one article to another. The graph for English Wikipedia has
13 593 032 nodes and 437 217 424 edges, while the Chinese
Wikipedia has 1 786 381 nodes and 72 614 837 edges. Since
many Wikipedia articles exist in both languages, we expect
that the two networks include similar connectivity patterns
that shared blocks could represent.

For the large Wikipedia networks, Multilevel took too

L R L R L R

Figure 7: Brain networks for three patients with ADHD at
the Oregon Health & Science University (ages 9, 9, and
11). Brain regions highlighted in red and blue correspond
to shared blocks between the graphs having similar connec-
tivity patterns identified by ML+Shared with Greedy.

long to execute, exceeding our time limit of 8 hours. How-
ever, with 100 iterations over all nodes, Single and Shared
were completed in approximately 5.5 hours. With the num-
ber of blocks set at 20 per graph and having 2 shared blocks
between the graphs, the ILP took prohibitively long while
the Greedy algorithm took less than one second. Shared re-
sulted in a better log-likelihood than Single (−5.036 × 109

versus −5.050 × 109), and the BIC scores improved in
both cases when incorporating the shared blocks chosen by
Greedy compared to when not sharing any parameters be-
tween blocks. This suggests our models with shared blocks
may fit the data better. In this instance, further analysis of
the shared blocks would be difficult due to the lack of node
labels in the dataset.

Conclusions
In this paper, we studied the problem of common structure
in multiple graphs using the stochastic block model. We
showed that the related optimization problems are NP-hard
and inapproximable. To fit the model we considered several
approaches, based on a Markov chain Monte Carlo (MCMC)
approach, integer linear programming, and greedy optimiza-
tion. In our experiments, the best approach was to first dis-
cover block structure using MCMC, and then refine the re-
sult by optimizing the shared blocks with an integer linear
program. We showed that our algorithms can find shared
structure between graphs that may be of practical interest
and that our methods can be applied to large graphs with
over 108 edges.

Developing even better or faster algorithms for finding
shared blocks, especially when the number of input graphs
is large, is an interesting direction for future work. Alter-
natively, other definitions for shared blocks may be consid-
ered, such as allowing the shared blocks to repeat within
the graphs by using many-to-many instead of injective map-
pings to indicate which blocks are shared. Furthermore, the
models for shared blocks could be used in Degree-Corrected
SBMs—for example, by requiring that the distributions of
node degrees are also shared—or other variants of the SBM.

Acknowledgements
This research is supported by the Academy of Finland
project MALSOME (343045). This research is supported

by the Wallenberg AI, Autonomous Systems and Software
Program (WASP) funded by the Knut and Alice Wallenberg
Foundation.

References
Airoldi, E. M.; Blei, D.; Fienberg, S.; and Xing, E. 2008.
Mixed membership stochastic blockmodels. Advances in
Neural Information Processing Systems, 21.
Bellec, P.; Chu, C.; Chouinard-Decorte, F.; Benhajali, Y.;
Margulies, D. S.; and Craddock, R. C. 2017. The Neuro
Bureau ADHD-200 Preprocessed repository. NeuroImage,
144: 275–286. Data Sharing Part II.
Blei, D. M.; Kucukelbir, A.; and McAuliffe, J. D. 2017. Vari-
ational Inference: A Review for Statisticians. Journal of the
American Statistical Association, 112(518): 859–877.
Cohen-Addad, V.; d’Orsi, T.; Lattanzi, S.; and Nasser, R.
2024. Multi-View Stochastic Block Models. In Forty-first
International Conference on Machine Learning.
De Plaen, H.; Fanuel, M.; and Suykens, J. A. 2020. Wasser-
stein exponential kernels. In 2020 International Joint Con-
ference on Neural Networks (IJCNN), 1–6. IEEE.
Faskowitz, J.; Yan, X.; Zuo, X.-N.; and Sporns, O. 2018.
Weighted stochastic block models of the human connectome
across the life span. Scientific reports, 8(1): 12997.
Funke, T.; and Becker, T. 2019. Stochastic block models:
A comparison of variants and inference methods. PloS one,
14(4): e0215296.
Han, Q.; Xu, K.; and Airoldi, E. 2015. Consistent estimation
of dynamic and multi-layer block models. In Proceedings
of the 32nd International Conference on Machine Learning,
1511–1520. PMLR.
Holland, P. W.; Laskey, K. B.; and Leinhardt, S. 1983.
Stochastic blockmodels: First steps. Social Networks, 5(2):
109–137.
Hubert, L.; and Arabie, P. 1985. Comparing partitions. Jour-
nal of classification, 2: 193–218.
Karrer, B.; and Newman, M. E. 2011. Stochastic blockmod-
els and community structure in networks. Physical Review
E—Statistical, Nonlinear, and Soft Matter Physics, 83(1):
016107.
Kernighan, B. W.; and Lin, S. 1970. An efficient heuristic
procedure for partitioning graphs. The Bell System Technical
Journal, 49(2): 291–307.
Kriege, N. M.; Johansson, F. D.; and Morris, C. 2020. A
survey on graph kernels. Applied Network Science, 5: 1–42.
Kunegis, J. 2013. Konect: the koblenz network collection. In
Proceedings of the 22nd international conference on world
wide web, 1343–1350.
Latouche, P.; Birmele, E.; and Ambroise, C. 2012. Vari-
ational Bayesian inference and complexity control for
stochastic block models. Statistical Modelling, 12(1): 93–
115.
Lei, J.; and Rinaldo, A. 2015. Consistency of spectral clus-
tering in stochastic block models. The Annals of Statistics,
215–237.

Matias, C.; and Miele, V. 2017. Statistical clustering of tem-
poral networks through a dynamic stochastic block model.
Journal of the Royal Statistical Society Series B: Statistical
Methodology, 79(4): 1119–1141.
Peixoto, T. P. 2014. Efficient Monte Carlo and greedy
heuristic for the inference of stochastic block models. Phys-
ical Review E, 89(1): 012804.
Peixoto, T. P. 2017. Nonparametric Bayesian inference of
the microcanonical stochastic block model. Phys. Rev. E,
95: 012317.
Peixoto, T. P. 2019. Bayesian stochastic blockmodeling. Ad-
vances in Network Clustering and Blockmodeling, 289–332.
Reis, V.; and Rothvoss, T. 2023. The subspace flatness con-
jecture and faster integer programming. In 2023 IEEE 64th
Annual Symposium on Foundations of Computer Science
(FOCS), 974–988. IEEE.
Shervashidze, N.; Schweitzer, P.; Van Leeuwen, E. J.;
Mehlhorn, K.; and Borgwardt, K. M. 2011. Weisfeiler-
lehman graph kernels. Journal of Machine Learning Re-
search, 12(9).
Shervashidze, N.; Vishwanathan, S.; Petri, T.; Mehlhorn, K.;
and Borgwardt, K. 2009. Efficient graphlet kernels for large
graph comparison. In van Dyk, D.; and Welling, M., eds.,
Proceedings of the Twelfth International Conference on Ar-
tificial Intelligence and Statistics, volume 5 of Proceedings
of Machine Learning Research, 488–495. Hilton Clearwater
Beach Resort, Clearwater Beach, Florida USA: PMLR.
Tabouy, T.; Barbillon, P.; and Chiquet, J. 2020. Variational
inference for stochastic block models from sampled data.
Journal of the American Statistical Association, 115(529):
455–466.
Togninalli, M.; Ghisu, E.; Llinares-López, F.; Rieck, B.; and
Borgwardt, K. 2019. Wasserstein weisfeiler-lehman graph
kernels. Advances in neural information processing systems,
32.
Vishwanathan, S. V. N.; Schraudolph, N. N.; Kondor, R.;
and Borgwardt, K. M. 2010. Graph kernels. The Journal of
Machine Learning Research, 11: 1201–1242.
Yang, J.; and Leskovec, J. 2012. Community-affiliation
graph model for overlapping network community detection.
In 2012 IEEE 12th International Conference on Data Min-
ing, 1170–1175. IEEE.
Yang, J.; and Leskovec, J. 2013. Overlapping community
detection at scale: a nonnegative matrix factorization ap-
proach. In Proceedings of the sixth ACM International Con-
ference on Web Search and Data Mining, 587–596.

Appendix — Alternative Integer Linear
program for SSBM-FIXED

In this section we will describe alternative definition for ILP.
This definition avoids having exponential number of param-
eters but it is most likely impractical due to a large number
of parameters required.

The key observation is that the optimal parameters are ra-
tional numbers of certain forms. Let Λ be the set of all ratio-
nal numbers x/y, where x, y are integers such that

0 ≤ x ≤ y ≤
n∑

k=1

(
|V (Gk)|

2

)
.

We will index Λ with a, that is, we will write Λ = {λa}. It
follows that Λ is of polynomial size and the optimal param-
eters are in Λ.

In our ILP we will map each block in each graph to an
index. Let xkir be a binary variable indicating that the ith
block in Gk is mapped to index r. We will use the first s
indices as shared, while the remaining indices can be unique.
Consequently, we need q = s+

∑
(Bk−s) indices, at most.

We force that that each block is mapped to one index with
q∑

r=1

xkir = 1, k ∈ [n], i ∈ [Bk]. (11)

We also force that each graph has s shared blocks with
Bk∑
i=1

s∑
r=1

xkir = s, k ∈ [n] (12)

Next we introduce a binary variable zrℓa which indicates
that block pair with indices (r, ℓ) uses λa. Every block pair
should use one λa which we force by∑

a

zrℓa = 1, r, ℓ ∈ [q]. (13)

Finally, we introduce a binary variable ykija that states
that block pair (i, j) in graph Gk uses λa. To make y consis-
tent with x and z, we require that

ykija ≥
q∑

r,ℓ=1

xkir + xkjℓ + zrℓa − 2 (14)

that is ykija = 1 if block i is mapped to index r and block j
is mapped to index ℓ and this index pair using λa.

Finally, we maximize
n∑

k=1

Bk∑
i,j=1

∑
a

ykija(C
k
ij log λa + F k

ij log(1− λa)). (15)

We should point out that we did not need to specify upper
bounds for ykija (in addition to the lower bound given in
Eq. 14) since the logarithm terms in Eq. 15 are negative.

The constraints and the objective in Eqs. 11–15 are linear
so the problem is solvable with ILP. The number of needed
variables and equations is in

O

(
(

n∑
k=1

Bk)
2

n∑
k=1

|V (Gk)|2
)
.

